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The color of environmental noise in river
networks

Tongbi Tu 1,2 , Lise Comte3 & Albert Ruhi2

Despite its far-reaching implications for conservation and natural resource
management, little is known about the color of environmental noise, or the
structure of temporal autocorrelation in random environmental variation, in
streams and rivers. Here, we analyze the geography, drivers, and timescale-
dependence of noise color in streamflow across the U.S. hydrography, using
streamflow time series from 7504 gages. We find that daily and annual flows
are dominated by red and white spectra respectively, and spatial variation in
noise color is explained by a combination of geographic, hydroclimatic, and
anthropogenic variables. Noise color at the daily scale is influenced by stream
network position, and land use and water management explain around one
third of the spatial variation in noise color irrespective of the timescale con-
sidered. Our results highlight the peculiarities of environmental variation
regimes in riverine systems, and reveal a strong human fingerprint on the
stochastic patterns of streamflow variation in river networks.

Environmental variation is inherent to natural ecosystems, and
consists of deterministic (“signal”) and stochastic (“noise”)
components1. The direction and degree of temporal autocorrela-
tion in environmental noise, or “noise color”, measures the per-
sistence of stochastic variation in the environment, and has
received relatively little attention despite presenting key implica-
tions for ecosystems2,3. Environmental fluctuations can be purely
random (white noise), or autocorrelated (e.g., reddened spectra,
reflecting positive autocorrelation where conditions can remain
stable for a certain time; or blue spectra, reflecting negative
autocorrelation where conditions vary faster than white noise)4.
The characteristics of environmental fluctuations (including noise
color) have important implications for population dynamics,
species persistence, and community stability5–7. Noise color can
also affect the management of natural resources such as water,
since autocorrelation structures influence intervals between
extreme events (e.g., droughts and floods)1,8. Understanding the
spatio-temporal patterns in environmental noise color in ecosys-
tems, and how they are controlled by natural and anthropogenic
drivers, is thus consequential for natural resource management.

Previous research has shown that marine environments are more
reddened than terrestrial ecosystems, likely because large bodies of

water buffer variation at short frequencies (e.g., diel swings in
temperature)4. Freshwater ecosystems such as lakes and ponds are
smaller9; and are thus likely to be less buffered against short-term
variation than oceans. The dendritic spatial structure of rivers and
directional flow controlling the movement of energy, matter, and
organisms from headwaters to the estuary could also represent a key
difference relative to oceans10–12. Whereas streams and rivers may
present reddened daily flows (from slightly pink to black noise color1),
flow noise color is expected to change within and across river net-
works, as drainage area increases and rivers collect water from a larger
diversity of landscapes and climates13.

Beyond natural biophysical processes, human activities may
modify environmental variation in natural environments, potentially
“coloring” noise14. For example, flow regulation can dampen or
exacerbate flow variability driven by hydroclimate15–19, and the artificial
movement of water from wet to dry seasons or from water-abundant
to water-scarce watersheds can cause widespread flow regime
stabilization20,21. Similarly, urbanization often leads to increased runoff
and decreased infiltration, thereby increasing flashiness and changing
temporal flow variability22. Anthropogenic climate change could also
affect the color of environmental noise—both directly (e.g., via
increasedmagnitude and frequency of intermittency and flash floods),
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or by interacting with anthropogenic processes such as increased
water storage to satisfy human needs in the face of water scarcity15,23,24.

Finally, another important, yet often overlooked consideration is
that environmental noise color may be time-scale sensitive1,25. Com-
parisons of flow noise color at multiple scales (e.g., daily and annual)
have been rare in the literature1. Given that the dynamics of hydro-
climate and human activities can vary at a range of temporal scales26

and that short- and long-lived organisms may experience environ-
mental variation in different ways (e.g., as stress or as cues that entrain
life histories)4,26,27, the structure and drivers of environmental noise
color should be examined across a range of ecologically-relevant
temporal scales.

In this work, we explore the geography and drivers of flow noise
color in river networks. We first examine the spatial patterns of flow
noise color at different temporal scales (daily and annual) across
streams and rivers in the conterminous United States by spectral
methods on 7504 gageswith long-termhigh resolution discharge data.
We then quantify the associations and relative importance of a suite of
natural and anthropogenic variables (geography, hydroclimate, land-
use, regulation by dams). Our analysis demonstrates that the char-
acteristics of environmental fluctuations in riverine networks differ
from those previously reported from terrestrial and marine ecosys-
tems, andbear the signature of humanactivities. These results advance
current understanding of stochastic variation in the environment—
potentially assisting in the identification, management, and con-
servation of river ecosystems degraded by hydrologic alteration.

Results
Spatial variability in flow noise color
We observed a large range of variability in flow noise color across
space, and large differences between noise color based on daily versus
annual time series. We quantified flow noise color by analyzing the
spectrum of frequencies, using long-term records (15–50 years) of
mean daily discharge from 7504 gages for daily analyses and 2594
gages for annual analyses. For daily flows, reddened spectra (i.e.,
positive values) dominated (Fig. 1a), with 48.5% of the gages displaying
pink noise colors (i.e., values ranging from 0.5 to 1.5), and 41.0% of the
gages displaying red noise colors (i.e., from 1.5 to 2.5). In contrast, only

6.8% of the daily flow time series were categorized as white (0 to 0.5),
and 3.7% as black (>2.5). Annual flows presented much whiter spectra,
regardless of themetric being analyzed—mean annualflows,maximum
annual flows, or minimum annual flows (Fig. 1b). However, some pat-
terns across metrics emerged. While 85.5% of the gages showed white
(random) noise for annual maximum flows (median = 0.08), minimum
flows showed relatively more persistent variation (57.3% of “white”
gages; median = 0.23), and annual mean flows fell in between the two
(77.0%; median = 0.39) (Fig. 1b). This result indicates that while flows
have high “memory” at short timescales (i.e., fromoneday to the next),
in most of the country wet or dry years do not predict next-year con-
ditions (i.e., the annual mean flow at a high or low magnitude may not
be very likely to occur in consecutive years). The observation that
minimum annual flows showed more persistent dynamics than max-
imum annual flows also suggests that extreme low flows (often asso-
ciated with droughts) are more likely to extend for long time periods,
whereas anomalously wet years in a row are uncommon. Moreover,
our results indicated that daily flow noise color is a poor indicator of
annual flow noise color (Pearson’s correlation coefficient r <0.1). For
instance, persistent flow variation (i.e., pink, red, or black) at the daily
scale often turned into random (white) or anti-persistent behavior
(blue) when analyzed at the annual scale, as illustrated by site 2 in
Fig. 2. An illustration of how the noise color was calculated can be
found in Fig. 2.

We also found that noise color patterns were almost identical
regardless of the option selected for detrending long-term linear
trends and seasonal cycles (see Methods for details). Correlation
coefficients for noise color estimates based on data that had been
transformed using different methods ranged from 0.999 to 1.0. While
differences inflownoise color estimates were observed in somegages,
mean differences were overall negligible, averaging −0.006 or −0.012
units relative to the “raw” version, depending on the method (Fig. S1).

In order to test formultiple scaling regimes, we further compared
daily noise color estimates obtained across a range of timescales
(Figs. S2 and S3). We observed a flattening pattern towards the lower
frequencies (i.e., longer periods). Across the whole set of 7504 gages,
the average change in noise color estimates when comparing “global”
slopes to the sub-monthly “local” slopes (i.e., 7–30 days; Fig. S3a) was
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Fig. 1 | Observed patterns of flow noise color across 7504 (for daily data) and
2594 stream gages (for annual data) across the conterminous United States.
In a and b we show the spatial distribution of daily and annual flow noise color
respectively, together with their density distributions (for annual flow noise color,
we show the mean, minimum, and maximum annual flow; obtained from the
average, minimum, and maximum daily flows in a year). Four different sites are
shown, selected to illustrate a range of flow regimes: site 1, USGS gage #08086212,

Hubbard Creek in Albany, Texas (white daily and annual noise color); site 2, USGS
gage #12178100, Newhalem Creek inWashington (pink daily and blue annual noise
color); site 3, USGS gage #10255550, New River in Westmorland, California (red
daily and pink annual noise color); and site 4, USGS gage #02228000, Satilla River
in Atkinson, Georgia (black daily and white annual noise color). The background of
the CONUS credits to Copyright:© 2013 National Geographic Society, i-cubed in
ArcGIS® software by Esri.
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on average 0.19, and 77.3% of the gages showed decreased values.
When comparing local slopes at the seasonal scale (i.e., 30–180 days)
to sub-monthly scales (Fig. S3b) that difference was of −0.41 on aver-
age, and 77.2%of the gages showeddecreased values. These results are
consistent with Vasseur and Yodzis4, who reported that 60% of ana-
lyzed spectra (on a range of environmental time series) flattened at
lower frequencies. However, we note here that the existence of mul-
tiple scaling regimes does not undermine the representativity of the
global scaling regime, as higher frequencies tend to dominate the
regression, and the impact of flattening at low frequencies is often
trivial to the regression4. Moreover, noise color at the global scale was
strongly correlated with that obtained at sub-monthly (7–30 days,

r =0.90) and intra-annual (7–365 days, r = 0.87) scales, indicating that
daily noise color extracted from global scales can be a good indicator
of the short-term stochastic variation. At the annual scale, the “local”
slope of daily noise color still partially captured variation in noise color
estimates (Fig. S3c, d). However, at that scale (and any scale longer
than annual), annual-scale analyses are preferable, as they are not
influencedby the confounding effects of sub-annual autocorrelation in
the data. In this vein, at temporal scales larger than a year, noise color
based on annual flows was required, as daily noise color at this scale
flattened significantly, and linear relationships between the log-
transformed spectra against its frequency did not hold for 91% of the
gages. Overall, the two scales of analysis (based on daily and annual
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Fig. 2 | Observed flow regimes and noise color at daily and annual scales.
In a and b we show hydrographs, Autocorrelation Functions (ACF), and spectral
density plots for four different sites (shown in Fig. 1), calculated based ondailyflow
values (a), and mean annual flow values (b). The spectral density plots show how

noise color is calculated from the linear regression of spectral density against
frequency (noise color is the slope in opposite sign; see Eq. 3 in Methods). Warmer
colors indicate higher ‘memory’–as indicated by significant correlation at
longer lags.
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data) allowed us to explore a broad range of scales, with daily noise
color accurately capturing flow patterns that occur at scales shorter
than annual, and annual noise color better capturing interannual
patterns.

At the daily scale, white noise was mostly found in rivers across
the Southwestern U.S. and the Southern Great Plains, which could be
explained by dominant flashy hydrologies (i.e., flow regimes in grass-
land and prairie streams dominated by Hortonian overland flows,
which tend to rise and fall quickly after precipitation events) in these
regions. Pink noise was found along the West Coast and Appalachia,
and the most “reddened” categories (red and black noise colors) were
found in clusters across the Rocky Mountains and the Sierra Nevada
ranges, the Great Lakes, the South-East coast, and Florida (see Fig. 1
and USGS Hydrologic Unit Codes in Fig. S4). At the annual scale, white
noise dominated nation-wide, but pink color was sometimes observed
in California’s Sierra Nevada, the Central Plains, and Florida. In turn,
blue noise (associated with “whiplash” patterns of anomalously low
versus high-flow years) was scattered, with some clustering across the
Midwest and Southwest deserts (Figs. 1 and S5).

Natural and anthropogenic drivers of flow noise color
Using random forest models, we then tested for associations between
daily or annual flow noise color and a suite of geographic, hydrocli-
matic, and anthropogenic variables (land cover and water manage-
ment). Random forest regression models are based on averaging
multiple predictions from a multitude of decision trees, and provide a
ranking of the relative importance of individual variables (or pre-
dictors) on the response variable (here, the variability of noise color;
see Methods for details of the implementation of the random forest
models). We found that both natural and human factors were impor-
tant predictors of flow noise color across the U.S. streams and rivers
(R2 = 0.72 and 0.35 for prediction of daily and annual noise color,
respectively; see Figs. 3 and S6, S7, S8 and S9). Importantly, flow noise
color often showed nonlinear relationships with the drivers con-
sidered, particularly upstream drainage area, wetland cover, and
temperature (Fig. 3c, d). Despite this apparent complexity, some
dominant drivers emerged that could explain some regionalized noise
color patterns (Fig. S10). Among all drivers, upstream drainage area
(geographic variable) was the single most important variable in
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Fig. 3 | Environmental and human-related drivers of flow noise color. Relative
importance of natural and anthropogenic drivers of flow noise color at the daily
scale (a) and at the annual scale (b); and partial dependence plots of 5 selected
drivers on daily noise color (c) and annual noise color (d). Partial dependence plots
(c, d) show change in noise color attributed to each variable while removing the
influenceof other variables. The x-axes in c,d represent the dimensionless scales of

the variables after normalizing them between 0 and 1. The color of bars in
a, b indicate the different driver categories: hydroclimate (Hydro), geography
(Geo), land use – land cover (Land use), and human activities on the water cycle
(Water management, indicated asWater use). The relative importance of each
driver was evaluated using random forest models (seeMethods for model details),
and is illustrated via pie charts by driver category.
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explaining spatial variation in daily flow noise color, but its effect was
comparatively weaker for annual flow color. Daily flow noise color
reddened quickly across smaller to medium watershed sizes, while
annual color generally showed the opposite behavior. Both daily and
annual noise colors remained stable as watershed area increased fur-
ther (Fig. 3c, d). Elevation was also important for both daily and annual
noise color (ranked 5th out of 13 variables, Fig. 3). In turn, hydroclimate
variables (e.g. precipitation, temperature) explained a total of 38% and
49% of variation in daily and annual flow noise color, respectively
(Fig. 3a, b; see Table S1 for details). Variability in precipitation (Pre-
cipitation CV in Fig. 3a, b) had a stronger effect on flow noise color at
annual than at daily scales, and was ranked first in terms of relative
importance among all drivers considered at the annual scale. Con-
versely, variability in temperature (Temperature CV in Fig. 3a, b)
showed a much weaker influence on annual relative to daily noise
color. In addition, temperature displayed a negative association with
daily noise color (r = −0.27, p < 0.01), suggesting that river flows have
more random variability (at the daily scale) in relatively warmer cli-
mates. At the annual scale, flow noise color also responded strongly,
and non-linearly, to temperature—showing maximum noise color
values in the warmest watersheds (Fig. 3d).

Importantly, human activities (land andwater uses) accounted for
around a third of the spatial variation in flow noise color, both at daily
and annual scales (32% and 35% in terms of total relative importance
respectively, Fig. 3). Wetland coverage showed high predictive pow-
er for both daily and annual flow noise color. At the daily scale,
larger wetland coverage led to reddened flow noise color, while a
non-monotonic pattern (sharp increase followed by a mild decrease)
was observed at the annual scale (r =0.27, p <0.01 for daily; r = 0.03,
p <0.01 for annual). Urbanization was also important, but showed a
negative association with daily flow noise color (r = −0.26, p <0.01).

Interestingly, the overall importance of land use was quite similar at
the daily and annual scales (22% at the daily scale and 23% at the annual
scale, Fig. 3d). Flowmanagement also presented a non-trivial influence
on flow noise color, although not as important as that of land use
(Fig. 3a, b). Specifically, the degree of regulation and the degree of
fragmentation in the watershed (both controlled by dam density and
size), increased both daily and annual flow noise color (r =0.22
and 0.17 for regulation and r =0.25 and 0.11, p <0.01 for fragmenta-
tion, respectively). Dam regulation reddened daily flow noise only
slightly at the daily scale, but more strongly at the annual scale—
especially when approaching the upper bound of dam regulation
(Fig. 3). Despite some overlap in their range of noise color values,
regulated rivers showed reddened regimes relative to free-flowing
ones (Fig. S11, mean of 1.68 for regulated versus 1.18 for unregulated
across the gages being analyzed). This pattern was expected, as reg-
ulation and water use are known to decrease flow variability—not just
its magnitude. Here we note that free-flowing and regulated rivers
within each hydrologic region are subject to similar hydroclimatic
conditions. Thus, differences in noise color between these two types of
river ecosystems (p < 0.01 from a Kolmogorov-Smirnov test for regu-
lated versus unregulated rivers) are likely driven by variation in
subwatershed-level characteristics and by dam-induced alteration of
their flow regimes.

Predicting flow noise color in rivers across the CONUS
After excluding stream segments that displayed environmental con-
ditions outside of the calibration range, we were able to predict daily
and annual flow noise color for a total river length of 1,922,615 km and
1,890,951 km, respectively (Fig. 4a, b). Thesemaps confirmed that flow
noise color is highly variable across and within river networks. Daily
flow noise decreased (from red to pink) from the northwest to the

Fig. 4 | Flow noise color predicted by the random forest models at ~430,000
river reaches (~1.9 million km) across U.S. river networks. a Daily flow noise
color; b Annual flow noise color. In c, d we show predicted daily and annual flow

noise color for river basins in the U.S. Southeast. The contour of the CONUS credits
to Copyright:© 2013 National Geographic Society, i-cubed in ArcGIS® software
by Esri.
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southeast, but increased again (from pink to black) when approaching
the coastal belt (Fig. 4a). In contrast, annual flow noise color did not
show any distinct spatial structure, despite some clusters of pink
color in the central U.S. and Florida. Overall, we found that across the
U.S. river network, daily flows showed predominantly red spectra
(~53.7% of the total stream length) whereas annual flows were strongly
dominated by white (random) noise colors (~93.8% of the total
stream length).

When looking at finer spatial patterns within stream networks, we
observed directional noise color patterns along the longitudinal
gradient–particularly on daily noise color (Fig. 4c, d). For example, in
the river basins of the U.S. southeast, daily noise color increased as a
function of stream order and drainage area, with pink colors dom-
inating in the headwaters, red colors in the larger main-stems, and
black colors in the most downstream sections of the basin (Fig. 4c). At
the annual scale, no obvious effect of network structure appeared,
even when focusing on the same Southeast region (Fig. 4d).

We further compared the differences in daily noise color predic-
tions across the CONUS between the random forest model and a
spatial interpolation approach via Empirical Bayesian Kriging, EBK (see
Methods for details). We found that daily noise color extracted from
the spatially-interpolated grid was highly correlated with observed
noise color at those gages (r =0.91). In addition, daily noise color
across the CONUS showed similar spatial patterns (Fig. S12a, b), with
similar global means (1.21 for the random forest and 1.48 for the EBK),
andmore than 70.0% of the river segments were classified in the same
noise color category. However, spatially-interpolated noise color via
EBK does not account for the hierarchical structure of the river net-
works, and therefore cannot be used to conclude on the predictive
ability of our models.

Discussion
Flow noise color in rivers across the conterminous U.S. showed a
larger range of values—from white to black noise for daily flows, and
from blue to red for annual flows—compared to previously reported
values of noise color of streamflow or air temperature and sea sur-
face temperature from marine and terrestrial environments, which
generally range from white to red1,4. Flow noise color captures the
temporal autocorrelation structure of flow variation, and can be
viewed as the watershed storage or buffering capacity of precipita-
tion and snowmelt over time—through land surfaces, soils, aquifers,
and human activities1,28. Consequently, streamflow is expected to
display stronger temporal correlation (pink to black color as found
here) than precipitation, which generally shows uncorrelated or
short memory behavior (especially at daily scales)29–31. Flow noise
color showed large spatial heterogeneity and inconsistencies at
different temporal scales—daily to seasonal, and even across years,
consistent with previous research1,32. However, unlike nearly uni-
formly white annual flow noise color reported by other studies1, we
found that more than 20% of the gages showed non-white color,
indicating that water storage variation significantly deviates from
zero across years. The large variability of flow noise color across
river networks further shows that looking for regionalized flow
patterns without detailed information on the river network struc-
ture (e.g., topology, degree of regulation) may be misleading, as
influences on flow variation have cumulative effects along the river
network. Overall, our results demonstrate that the structure and
drivers of noise color in river networks may fundamentally differ
from those previously reported from marine and terrestrial eco-
systems, and highlight the importance of human influences driving
variation in river flow regimes at local to continental scales.

Our results highlight the impacts of anthropogenic hydrologic
alteration on patterns of temporal variability in streamflow, and
further confirm the complexity of streamflow dynamics, which inte-
grates signatures of the hydrosphere and anthroposphere across

spatiotemporal scales33,34. We found that drivers such as upstream
drainage area, topography, precipitation, and temperature all exhib-
ited strong correlation with flow noise color. In agreement with
previous work32,35–37, drainage area was the variable that correlated
the most with temporal persistence of daily flow variation. The
scaling of flow variability with basin area is likely driven by hetero-
geneity in watershed runoff transport processes38. For instance, flow
regimes that would be flashier in smaller (sub)watersheds can
become smoother when integrated across larger drainage areas.
Climate non-stationarity is critical for flow variability, as we found
that temporal variability in precipitation is strongly correlated with
flow noise color, especially at the annual scale. The observed tem-
perature effects are also likely linked to precipitation-driven versus
snowmelt-driven hydrographs. Snow influence is less important in
rivers located in warmer basins; thus, antecedent conditions may not
contributemuch to flow discharge persistence in those areas. In turn,
cooler basins tend to have more snow and longer memories39, lead-
ing to the observed reddened spectra of rivers in these regions.

Importantly, we found that human-related factors (land use and
flow management) strongly correlated with spatial variation in flow
noise color, even if not as important as natural drivers. Flow regimes in
urbanized landscapes often have large flow variability and peak mag-
nitude at the daily scale, as infiltration is limited, and water evacuates
watersheds faster via runoff, often in the form of noisy (white), pul-
satedflows (a symptomof the “urban stream syndrome”22). In contrast,
wetlands act as natural “sponges” by storing water, regulating quick-
flow and baseflow, increasing infiltration and decreasing surface
runoff40. It is thus not surprising that watersheds and regions with
higher relative wetland cover generally present smoother flows and
thus reddened spectra. As natural land cover is increasingly altered
due to societal development, our results underscore the importanceof
human-driven hydrologic alteration (via damming and alteration of
natural land covers) in shaping patterns of flow variation across large
spatial scales.

Flow regulation by dams is a major factor affecting river con-
nectivity globally19. In the U.S. alone, dams affect nearly 1 million kmof
rivers41, disruptingmany physical and ecological processes26,42,43. Dams
tend to stabilize flow variability by muting high flows, increasing base
flows, and reducing the frequency of high and low-flow events through
reservoir operations16. Consequently, regulation tends to smooth flow
variability—and homogenize flow regimes across large spatial scales17.
However, we note here that flow regulation was not universally asso-
ciated with “reddened” flows, which could be potentially caused by
variation in reservoir management goals16. As temporal autocorrela-
tion in the environment may change substantially over time44, flow
regimes from regulated and non-regulated rivers may diverge from
each other under increasingly variable hydroclimates23. Because river
ecosystem structure and functioning is sensitive to the timing, fre-
quency, and magnitude of environmental extremes45–47, noisier river
flows may likely lead to declines in ecosystem stability7. This may be
particularly true in small systems (e.g., in headwaters), where small
changes in flow regime could turn perennial into intermittent systems
—leading to a “blueing” of their flow regimes and a shift in their eco-
system structure and services48,49.

Our results have broad implications for conservation and man-
agement of riverine ecosystems and flow-dependent biodiversity.
Most research on regional patterns of streamflow alteration, and
widely-used metrics aimed at capturing hydrologic alteration (e.g.,
the Indicators of Hydrologic Alteration, IHA), have largely focused on
the time domain (e.g.,23,45–47). We propose that these indices could be
complemented with spectral-based metrics that result from parti-
tioning signal and noise in the frequency domain, like those inves-
tigated here and in previous similar research (e.g.,1). Flow noise color
is an example of a facet of flow variation that may not be captured via
traditional time-series analyses in the time domain—in fact, two flow
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regimes with similar levels of variation could fundamentally differ in
their temporal autocorrelation structures (e.g., a flood-control ver-
sus a hydropeaking reservoir). Additionally, changes in the color of
environmental noise of other regimes, such as light50 or sediment
regimes51, have not been investigated to the same extent than flow in
river ecosystems–but they could all control key processes like eco-
system productivity. We contend that anthropogenic change to
watersheds, via increases in imperviousness (due to urbanization)
and in water residence time (due to dam regulation)may be affecting
riverine biodiversity persistence, among other mechanisms, by
changing the frequency and predictability of extreme events1,52. For
instance, the reddening of flow regimes due to dam regulation
may increase extinction risk by lengthening the time spent in unfa-
vorable environmental conditions, reducing demographic rescue
(though different life history strategies or life stages are expected to
respond differently53), while also promoting non-native species
establishment17. Investigating the link between changes in flow sea-
sonality or stochasticity and ecological outcomes remains an
important research frontier for implementation of environmental
flows (see13,48,49,54).

The patterns we revealed also have key ecological implications in
the context of ongoing and predicted climate change. Our results
suggest that any changes in themean and variance of temperature and
precipitation—which both have been predicted55—will have con-
sequences for flow noise color in the future. For instance, widespread
increases in mean surface temperature may lead to changes in the
volume and timing of snowmelt runoff56, thereby decreasing the sea-
sonal persistence of flow regimes39. The reddening and spatial homo-
genization of temperature regimes predicted globally57,58 may also
participate in the large-scale convergence of historically distinct flow
regimes and their associated floras and faunas. Leveraging long-term
high-resolution discharge data such as done in this study could allow
us to explore the concomitant effects of changes in spatial and tem-
poral autocorrelation of climatic variables that have occurred over the
last decades with the effects of river regulation on flow noise color.
Unveiling the full range of impacts that climate non-stationarity and
human management may have on streamflow regimes is a necessary
first step to anticipate, andpotentiallymitigate further river ecosystem
degradation.

Methods
Selection of Streamflow Gages
The streamflow datasets used in this study are daily streamflow time
series from the United States Geological Survey (USGS) flow gages
(access at: https://waterdata.usgs.gov/nwis/). We used daily records
from 7504 gages and annual records from 2594 gages. Gages were
selectedbasedon the following criteria: (1) Recordingperiodof at least
15 consecutive years, within 1960 to 2019; (2) missing records being
less than 5% of the total length. Any missing data was estimated by
linear interpolation. When provided, sub-daily flow values were con-
verted to mean daily discharge. To illustrate the impact of temporal
scales on noise color, annual flow noise color was further estimated
basedon the subset of 2594 streamflow time series that had50 yearsof
complete daily records.

Flow noise color
The color of environmental noise from the streamflow time series can
be determined through linear regression of the power spectrum den-
sity and the characteristic frequency of streamflow. We removed sea-
sonal components (annual cycles) and long-term trends (long-term
linear trend) of the flow discharge (by using the “stl” function, “Sea-
sonal Decomposition of Time Series by Loess”, in the stats package in
R; see Cleveland, et al. 59. for details of the decomposition) to obtain
the remaining residuals of the time series. Then we calculated the
frequency spectrum of the residuals for each flow time series. The

power spectrum density Pk can be estimated by the Fast Fourier
Transform (FFT) as follows:

Fk =T
�0:5

XT�1

t =0

f te
i2πtk=T , k =0, 1, � � � ,T � 1 ð1Þ

Pk = F
2
k ð2Þ

where T is the Nyquist frequency; t is the current record; k is the
current frequency; Fk is the amount of frequency k/T in the streamflow
signal; i is

ffiffiffiffiffiffi
�1

p
; ft is the detrended streamflow records. Then, noise

color can be determined as follows:

log Pk = � alog
k
T

� �
+b ð3Þ

where a is the coefficient representing noise color; b is the intercept of
the regression line. To account for the range of variability in noise
colors, in this study we followed a similar classification to that used in
Sabo and Post1 and Vasseur and Yodzis4. We classified noise color as
follows: blue noise (−1.5≤ a ≤ −0.5), white noise (−0.5 ≤ a ≤0.5), pink
noise (0.5 < a ≤ 1.5), red noise (1.5 < a ≤ 2.5), and black noise (a > 2.5).

We explored the effects of detrending the data in different ways:
1) By removing the long-term linear trend only; 2) By removing both
the long-term linear trend and periodic (mostly annual) cycles; and
3) By using the raw data. Noise color estimates remained virtually
unchanged regardless of the detrending procedure chosen (Fig. S1).
We show results on detrended and deseasonalized data for con-
sistency with previous work that calculates noise color based on
“residuals” (e.g., as reported in Sabo and Post1 and Vasseur and
Yodzis4).

Random Forest Model
We used random forest models to identify the main drivers of flow
noise color at daily and annual scales, and applied the models to pre-
dict noise color for each reach of the river network across the CONUS.
We developed the following workflow:
(1) Explanatory variables. We selected 13 variables from 4 general

categories of drivers: geography, hydroclimate, land use land
cover, and water management. See Table S1 for details on the
variables. Basin characteristics, such as drainage area and eleva-
tion, were extracted from Falcone60 and Lehner and Grill61. Long-
term mean annual precipitation and temperature estimates at
these gages, between 1964–2017, were extracted from the 4-km
monthly PRISM datasets62, and climate characteristics at each
gage were estimated by bilinear interpolation. The land use/land
cover data, including forest, wetland, and urbanization estimates
were derived from Kroeker, et al. 5. for each corresponding
watershed (hydrologic unit code level-10, HUC10). Metrics from
2006 were used to represent overall conditions. Anthropogenic
impacts, namely degree of regulation (DOR) and degree of
fragmentation (DOF), were extracted from Grill, et al. 19. and
Lehner and Grill61 for each stream segment. Human water use in
2005 was used to represent the overall mean annual freshwater
withdrawal63 from 1985–2010, as estimated by the sum of water
uses across HUC10.

(2) Random forest implementation. The random forest models were
fitted using a 10-fold cross-validation, and were trained on 80% of
the gages (randomly selected) and tested on the remaining 20%of
the gages. Details of the random forest algorithm can be found in
Breiman64. The implementation of the random forest models was
done with the R package randomForest65. The out-of-bag error
(mean squared error, MSE) was used to evaluate the model
performance. The random forestmodel was first used to describe
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the relative importance of each variable in explaining spatial
variation in flow noise color (for details on the estimation of
relative importance, see Breiman64). The same procedures were
used to construct a random forest model with annual flow noise
color. For daily flow noise color, the finalmodel had an out-of-bag
error of 0.12 on the training dataset. On the testing dataset, the
Pearson’s correlation coefficient (r) was 0.85, percentage bias was
1.2% andMSEwas 0.11. In comparison, for annual flow noise color,
the final model had a MSE of 0.09, and r was 0.57.
Most of the prediction error (i.e., the difference between pre-
dicted and observed daily flow noise color) fell within the range
of −0.25 to 0.25 units (mean = 0.0007; percentage bias = −0.1%).
Misfit maps for training and calibration datasets are shown
separately in Fig. S6a, b. Prediction errors did not vary system-
atically across hydrologic regions (HUC2) or stream orders
(Fig. S7), for neither the training nor the testing data sets.Overall,
over three quarters of the gages (76% of the gages in the cali-
bration data set, and 75% of the gages in the validation data set)
were correctly assigned to their noise color category.

(3) Mapping flow noise color. Finally, we used the calibrated models
to predict daily and annual flow noise color for each individual
river reach across the CONUS (from Grill, et al. 19. and Lehner and
Grill61). Noise color at the midpoint of each river reach was
selected to represent the overall color of the reach (the average
length of the river reach is about 4 km). The 13 aforementioned
predictors at these points were obtained in the same manner as
those used for the 7504 gages. River reaches were selected only if
the associated attributes were within the range of the corre-
sponding predictor variables observed among the gages used to
calibrate themodels (i.e. 7504 and 2594gages fordaily and annual
noise color, respectively). This step allowed us to avoid extra-
polating flow noise color to unobserved environmental condi-
tions. Based on the availability of environmental and
anthropogenic data, we were able to predict flow noise color for a
total of 437,766 stream segments, corresponding to 1,922,615 km
and 1,890,951 km of the U.S. hydrographic network for daily and
annual noise color, respectively.

(4) Evaluation of global prediction of flow noise color. We compared
flow noise color estimates from the random forest to those
obtained by spatial interpolation via Empirical Bayesian Kriging
(EBK). We ran EBK in ArcGIS 10.7, with optimal interpolation
parameters (covariance and regression coefficients) and
accounting for error by estimating the semivariogram (for details
of the EBK, see Gribov and Krivoruchko66). We mapped observed
noise color onto a ~2 × 2 kmgrid across the CONUS, and extracted
noise color values at the mid-point of each flow line from the
gridded map.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets generated in this study are available at the https://doi.
org/10.6084/m9.figshare.21428061.The streamflow datasets used in
this study were retrieved from the United States Geological Survey
(USGS) flow gages (access at: https://waterdata.usgs.gov/nwis/). The
precipitation and temperature datasets were retrieved from PRISM
Climate Group at https://prism.oregonstate.edu. The water manage-
ment datasets were retrieved from USGS Data Release at https://doi.
org/10.5066/F7XW4J1J. The gage properties were retrieved fromUSGS
at https://doi.org/10.3133/70046617. The datasets of upstream catch-
ment area and stream order were retrieved at https://figshare.com/
articles/dataset/Mapping_the_world_s_free-flowing_rivers_data_set_
and_technical_documentation/7688801.

Code availability
The code of the analyses performed in R (version 4.0.5) can be
accessed at https://doi.org/10.5281/zenodo.7585325.
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