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Abstract
Sé]f-consistent kinetic equations are obtained for the evolution of
plasma-wave action density in ray phaﬁe spacé and osci1]atiqn—center density
in,guiding-cgnter phase space. Both resonant and nonresonant interactions are
included, in a strong, weakly-nonuniform magnetic field. Energy conservation

‘and entropy production are the hallmarks of self-consistency.
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Many years ago bewar 11 fohmu]ated the concept of the oscillation center
in terms of a well-defined canonical tranformation of particle phase space.

He derived an evolution equation for F(z), the oscillation-center phase-space
density, which clearly separated the nonresonant effect of the waves,
represented by the pohderomotive Hamiltonian K(z), and the quasilinear
diffusion of F due to resonant interaction Qith the waves. He then proposed,
on an 1ntd1t1ve basis, a self-consistent evolution equation for the
(incoherent) wave-action density J(y) in ray phase space y = (k,x), and
obtaihed from these two eduations an appropriate set of energy-momentum
conservation laws.

Dewar's pioneering work pertained to an unmagnetized plasma; in the
present paper we consider the analogous, but considerably more complex,
problem for a weakly non-uniform magnetized plasma. We draw on a number of
new techniques and understandings developed since, to obtain this
generalization, as well as to include wave emiésiOn by disCrefe particles. We
1ist these important new tools, which are essential for our derivation: (1)
the Weyl symbol calculus leads rigorously to the wave kinetic equation for
J(y) [2], allowing the inclusion of incoherent discrete-particle sources; (2)
the guiding-center phase-space is represented in Littlejohn's symplectic form,
in terms of Poisson brackets [3]; (3) the canonical Lie transform [4] is used
to transform the linear wave-perturbation Hamiltonian to second order, thereby
obtaining K(z) in terms of a Lie derivative; (4) the K-x theorem [5] is used
to relate the linear susceptibi]ity x(y), needed for the wave kinetic
equation, to the Hamiltonian K(2).

With these powerful techniques, the derivation is reasonably straight-

forward. In this paper we present the results in detail, and refer to some
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extensions of this work.

To simplify the notation, we suppress the labels for particle species and
wave branches, and set e=m=c=1. Our results for the oscillation centers are
expressed in terms of the Poiséon brackets on functions of the gyrophase,e,
its conjugate the magnetic moment u, parallel momentum p, and guiding-center
position X, denoted collectively as z. Since F(z) and K(z) are both (by
construction) o-independent, their Poisson bracket [3]

{F,K} = be[VKxVF + (VF)(3K/ap)-(VK)(aF/ap)]/B* ' (n
contains no y-derivative. Here b(X) is the direction of the magnetic field
B, while B* = b-B*, with B* = B + p Wxb.
The osci]]ation-center.Hami\tonian
K(z) = Ho(z) + Kz(z) (2)

consists of its "unperturbed" part [3]

Ho(2) = P2/2 + ea(X) + WB(X) - (3)
and the wave—induéed ponderomotive part [6] : |

Kp(2) = 1¢% 3(y) Suly)/sF(2). o (4)
(Here d6y = d3x d3k/(2«)3.) The frequency w(k,x) depends functionally on

F(z), and thus yields K, directly.

2 _
To obtain this frequency, we first consider the local susceptibility,

x(k,w;x,t), which is the centered local Fourier transform [2] of the
two-point susceptibility, obtained by Lie transform methods:

-1

2 K7 e, dF/0’. (5)

x (Kowix,t) = <2 (x,)1/6° + 2, [¢°2 (o - d

o~

)

(Here mz = 4wnse§/ms). This expression involves the characteristic Lie

operator

d, = (20 + keX, + } = 23/3u + ke(B*3/3p + bxV)/B* (6)



which arises when the interaction Hamiltonian js expressed as a Fourier series
in gyrophase (exp ite). In differential geometric language, it is the
Hamiltonian vector field generated by exp (i%e + ik-X). The corresponding
Fourier coefficients
1, = (% + m(;)gL/ki) 3, * (ng/ki) 2igu (31,/u) . (7
form the coupling tensor
oy = Li* 83 (xxabxk/kl), | (8)

which appears in (5). (In (7), Jl is the usual Bessel function, and Q =
eB/mc is the local gyrofrequency.) The resonanée denominator of (5),

u—d!K=m~[le+50_)g.K}=m-9.é—_lg~i(_, (9)
thus includes the ponderomotive drifts and gyrofrequency shift. The numerator
of (5), th, involves all the gradients of F; the action of the same operator
da on both F and K is of course crucial for the conservation laws.

The susceptibility x (to be precise, its Hermitian part) is combined with
.the vacuum local Maxwell dispersion tensor to form the dispersion fénsor [2]=
O(k,03x,t). Its local eigenvalues D(k,w;x,t) and ejgenvectors é(g,m;;,t) then
yield, by setting D=0, fhe frequency function o(k,x;t) and the corresponding
polarization é(g,;;t).

Since D = S*-g,é, we can obtain 8w/&F by implicit functional
differentiétion:

sa(y)/8F(2) = [63(x-8) - dy(ay (o - d,K)7)1/0’D, (10)
where D = 30/3w and oy = 3*591-3. substituting (10) into (4), and using the
definition [2] of J:

EE> (K,wiX,t) = 4e&* &(D) 3, (1)
we obtain an expression for K2 in terms of <EE>, in agreement with what we

can obtain directly [7] by Lie transforms.

£



a

The frequency function w(k,x;t) is the ray Hamiltonian, and appears as
the generator of the flow in ray phase space. The non-resonant propagation is
given by

(3(Y), o(y)} = (3373x)+(30/ak) ~ (33/3K) +(30/3%) )
and . preserves the action, as is well known. -(Note‘that here {,} is a
canonical bracket on ray phase space; which bracket is meant is always ciear
from the context.)

The full evolution, including linear resonant interaction, is found (by

the methods of Ref. (2)) to be

ai/at + (3,0} = [d°2 5, T, (13)
where the %th gyroresonant coupling is given by
'I‘l(y.n = 21 8(w(y)-d K(2)) o (3(y)d F(z) + F(z)1/D, (14)
6

2«B*d3Xdudp is the Liouviile measure of guiding-center phase space.

]

and d'z
The term of (14) linear 1n J represents gyroresonant damping/growth, with the
same Lie derivative d F as in (5), as expected from Kramers-Kron1g ‘The term
independent of J represents incoherent emission by gyroresonant discrete
particles. |

The self-consistent evolution of F muSt preserve the total energyJC(F,J) =
Idsy Jw+ ]dsz F Ho. This determines the dissipative terms of its kinetic
equation:
aF/at + (F,K} = Id y zld r » (15)
Inserting (14) into (15), we see that (15) is a Fokker-P]anck equation of
remarkably concise form. The term linear in J represents quasi-linear

diffusion in (X,u,p). It is easy to verify that the local diffusion matrix is

symmetric. The term independent of J is the radiation reaction due to the

emission process. This evolution equation can be obtained directly, of



course, by generalizing Dewar's averaging method to deal with the

non-canonical Poisson structure [8].

.

A crucial test for the self-consistency of these coupled evolution

equations is the entropy theorem. Defining the entropy functional S(J,F) =

Idsy In J(y) - Idsz F(z) In F(z), we immediately obtain the desired i
monotonic increase of entropy: A i
dS/dt ~ 8(w-d,K) (I doF + F)°. . (16)

Note that this dissipat1on is due only to gyroresonant interaction. Thus, as
expected, this interaction produces a tendency toward a thermal equ111br1um
given by J le +F=20, or ‘
S AL (17

In the absence of other symmetries, the unique solution of (17) is the Gibbs
distribution F(z) ~ exp{-BK(z)] and the Rayleigh-Jeans distribution J(y)w(y)
= B_], where B is the effective temperature of the resonant particles and
waves, and the resonaﬁce'condition W= dlK of (16) has been used.

The set (13), (15) is incomplete, in that the evolution of the background
fields B,¢ is omitted. A proper treatment of them requires knowing the
quasistatic polarization and magnetization associated with the wa;e
distribution. This aspect has recently been investigated [9], using a
Lorentz-covariant phase-space Lagrangian approach. The results will be
reported in a future publication, together with the associated energy-momentum
conservation laws.

These results were presented at the April 1982 Controlled Fusion Theory Y
Conference at Santa Fe, NM. We are 1ndebted to Dr. Gary Smith for checking 07

our results, uncovering some sign errors, and discussing the application of

our formalism to practical situations [10].
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