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Abstract

An outstanding question in human genetics has been the degree to which adaptation occurs from standing genetic
variation or from de novo mutations. Here, we combine several common statistics used to detect selection in an
Approximate Bayesian Computation (ABC) framework, with the goal of discriminating between models of selection and
providing estimates of the age of selected alleles and the selection coefficients acting on them. We use simulations to assess
the power and accuracy of our method and apply it to seven of the strongest sweeps currently known in humans. We
identify two genes, ASPM and PSCA, that are most likely affected by selection on standing variation; and we find three
genes, ADH1B, LCT, and EDAR, in which the adaptive alleles seem to have swept from a new mutation. We also confirm
evidence of selection for one further gene, TRPV6. In one gene, G6PD, neither neutral models nor models of selective
sweeps fit the data, presumably because this locus has been subject to balancing selection.
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Introduction

Most organisms harbor large amounts of, mostly neutral or

nearly neutral, standing genetic variation [1–4]. As environments

change, alleles that previously segregated neutrally, or were only

weakly affected by selection, may become targets of strong selection.

Examples of a change in environment that could induce such a

change include invasion of a new habitat or niche through dispersal,

climate changes, and introduction of novel disease agents. This type

of selection, in which selection acts on already segregating alleles, is

called selection from standing variation (SSV).

We contrast this model with the more commonly assumed model

of selection on a de novo mutation (SDN). In the SDN model the

selection pressure already exists when a new mutation is introduced

into the population. In addition, there are several more complicated

scenarios of selection. The case where an allele under selection has

multiple independent origins has received particular attention [5–

7], and is often also referred to as selection from standing variation.

In this paper, we focus on the case where all copies of an allele are

identical by descent, and do not consider multi-origin alleles.

Of great interest is the question of which mode of selection has been

more frequent in the evolution of a species [5,8]. In particular, if we

observe a selected variant, which mode of selection is more likely to

have occurred? Theoretical results by Hermisson & Pennings [5] find

that SDN should be common if selection is strong and mutation rates

are low, in all other cases we expect SSV to be more prevalent.

Statistics affected by selection
Detection of selected regions has been a major goal in

population genetics in recent years [9–13]. Rather than working

with the full data, all of these studies simplified their data by using

various statistics designed to detect the signal of selection (see e.g.

[12,14]). These statistics may be classified in different categories,

based on the information they exploit. First, functional differences

between different codon positions, and the substitution rates of

synonymous and non-synonymous sites were used by [15,16].

Another approach relies on finding related populations, where

selection acts on only one of them. This leads to locus-specific high

population differentiation, which may be detected by statistics such

as FST [17] or XP-EHH [18]. A third category of statistics is based

on the length of haplotypes associated with a given allele.

Haplotypes associated with the selected allele will on average be

younger than haplotypes carrying the derived allele, and there will

therefore be fewer recombination events that break up the

haplotypes. Statistics such as EHH [9] and iHS [19] were

developed to detect this pattern. Finally, the site frequency

spectrum (SFS) can also be used to detect departures from

neutrality and hence selection. SFS based statistics usually

compare various estimators of the population mutation rate h.

The first and perhaps most well-known statistic in this category is

Tajima’s D [20], but the statistic can be generalized [21,22], and

other statistics such as Fay and Wu’s H [23] belong to the same

family.

Distinguishing SSV and SDN
In this study, we are interested in distinguishing the SDN and

SSV models of evolution for a single putatively adaptive mutation.

Barrett & Schluter [24] identify three possible ways of identifying

SSV: i) the selected allele may occur in an ancestral population, ii)

an allele is shown to be older than the environment it is adaptive in
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and iii) the signature of selection at linked loci, the selected sweep,

is different between SSV and SDN. Our approach is based on

differences in the genetic signature of selection, but when possible,

we will compare to inferences based on i) and ii).

To understand the difference between the SSV model and the

SDN model, it is important to realize that all the information

regarding selection, and mode of selection, is captured by the allele

frequency trajectory through time. In other words, the full allele

frequency path through time would be a sufficient statistic for the

selection coefficient, if it was known. As selection acts only to

change the allele frequency in the selected site, and does not act

directly on adjacent sites, the effects of the selection on linkage

disequilibrium, haplotype patterns, allele frequencies in linked

sites, etc., are only through the effects caused by the change in

allele frequency of the selected allele (hitch-hiking effects). This

observation is the foundation for standard population genetic

theory on selective sweeps (e.g., [27–28]) and forms the basis for

several simulation methods, in which the path of the selected

mutation is first simulated and then neutral simulations are

performed conditional on the allele frequency path [28]. Such

simulation methods would be invalid if the allele frequency path

did not contain all information regarding the selection coefficient

acting on the selected mutation. Similarly, if the path of an allele is

the same under the SSV and the SDN model, no additional

genomic data could help us distinguish between the two models.

Armed with this insight, we can further explore the differences

between the two models. Figure 1a, 1b depict the trajectory, the

number of copies of the selected allele through time for an SSV

and SDN model. Looking backward in time, the adaptive alleles

are selected at first in both models, and during this stage the two

models do not differ at all. In the SSV model, however, the

mutation stops being advantageous at some point in the past.

Backwards from this time point, the mutation in the SSV model

acts as a neutral allele, whereas the mutation in the SDN model is

under selection.

As selection is the same in the phase when both alleles are

selected, the difference between the models is during the phase in

which selection is acting on the mutation in the SDN model but

not in the SSV model. How big is this difference? It depends on

two parameters: the selective advantage of the mutation under the

SDN model, and the frequency of the mutation at the time when

selection first start acting in the SSV model. A good measure of the

difference might be the allele age distribution at this point, which is

plotted in Figure 1c and 1d for a mutation at a frequency of 1%

and 5%, respectively. Unfortunately, it turns out that the

difference it is rather small: While the allele age of a mutation at

a low frequency does depend on the selection coefficient, the

difference is very small if selection is weak. Clearly, it will be much

easier to distinguish between the two models if selection is strong

and if the frequency of the mutation is initially high in the SSV

model.

However, we cannot observe the trajectory directly, but only the

diversity at linked site. It has been shown that the genetic signature

of sweeps from standing variation differs in three important aspects

from the signature of sweeps from new mutations [29]: at the same

selection coefficient, the signal of selection from standing variation

is 1) weaker and 2) affecting a narrower region. As a third

difference, we expect an increased variance in both allele age and

trajectory. Under the SSV model, the selected allele may be

present on several haplotypes when selection starts, and these

haplotypes will be affected equally strongly by selection. Thus,

there will be more variation compared to SDN, and the, loss-of-

diversity signal of selection will be weaker. The fact that the signal

of selection affects a narrower region is due to the fact that the

selected allele is older in the SSV model, and hence recombination

had more time to break it up (Figure 1a, 1b). The increase in

variance is evident from the large variance in the neutral phase of

the allele trajectory in Figure 1b, and the wider distribution of the

allele age of neutral alleles in Figure 1c and 1d. In Figure 1e and 1f

we give the expected distribution of Fay and Wu’s H [23] and

EHH [9], two statistics used to detect selection, and where we

show that the signal is indeed expected to be weaker and affecting

a narrower region under the SSV model.

The objective of this paper is to develop and explore a statistical

method for distinguishing between SSV and SDN models, and for

providing associated estimates of relevant parameters. However,

the method we develop is not intended as a new method for

performing scans for selection in genome-wide data or for

quantification of genome-wide levels of selection. For computa-

tional reasons, other methods might be more suitable for such

genome-wide analyses. We focus on illustrating the method on a

few loci previously hypothesized to be under selection in humans,

but the method could as well be applied to other human loci or

data from other species.

Approximate Bayesian Computation
To exploit the characteristics of selective sweeps discussed in the

previous section, we combine different statistics and calculate them

for different genomic regions. Using combinations of statistics to

improve inference is not a new concept, and has been applied

previously (e.g. [30]). Here, we choose an Approximate Bayesian

Computation (ABC) framework for combining statistics [31,32].

ABC has the advantage that it extends naturally to allow both

model choice and parameter estimates under a given model.

ABC was developed to estimate parameters of complex models in

manageable computer time, and has been widely used in population

genetics, most frequently to infer parameters for complex models of

demographic history [32–37]. Several implementations of the ABC

algorithm have recently been published [38–40], and in the past few

years, various variations of the algorithm have been developed [41–

43]. ABC is a rejection sampling algorithm used to calculate the

posterior distribution of a parameter under a given model, used

frequently when the likelihood cannot be calculated analytically. In

ABC inference, a large number of data sets are simulated using

parameters randomly drawn from a prior distribution. If a

simulation does not match the observed data, it is rejected,

Author Summary

Considerable effort has been devoted to detecting genes
that are under natural selection, and hundreds of such
genes have been identified in previous studies. Here, we
present a method for extending these studies by inferring
parameters, such as selection coefficients and the time
when a selected variant arose. Of particular interest is the
question whether the selective pressure was already
present when the selected variant was first introduced
into a population. In this case, the variant would be
selected right after it originated in the population, a
process we call selection from a de novo mutation. We
contrast this with selection from standing variation, where
the selected variant predates the selective pressure. We
present a method to distinguish these two scenarios, test
its accuracy, and apply it to seven human genes. We find
three genes, ADH1B, EDAR, and LCT, that were presumably
selected from a de novo mutation and two other genes,
ASPM and PSCA, which we infer to be under selection from
standing variation.

Selective Sweeps from Standing Variation
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otherwise it is retained. However, if the data is complex, the

probability of a match is prohibitively low, and two important

approximation steps are used: First, the data is transformed into a

set of summary statistics. If these statistics are sufficient (i.e. retain all

the information present in the data), this step is exact. However, in

many cases, including this study, no sufficient statistics are known,

and this step results in a first approximation step. In many cases,

however, this transformation will still result in very low acceptance

probabilities. Therefore, the condition of an exact match is relaxed.

Specifically, the summary statistics based on the simulations (S) are

compared to the summary statistics of observed data (S*). Using

some distance measure d, simulations are retained if |d (S,S*)|,e
for an arbitrarily small distance e. Frequently, some post-sampling

adjustment is used in an attempt to correct for the error introduced

in the second approximation step, and posterior distributions are

estimated from the parameters of the retained simulations.

In this study, we propose to use ABC to distinguish between a selective

sweep from a new mutation and a selective sweep from standing

variation. We use simulations to determine which parts of the parameter

space the method has power to make this distinction, and aim to estimate

parameters under both models. We then apply our method to seven

genes that were previously reported to be under selection.

Results

Accuracy of parameter estimates
We first wanted to assess how accurately we can estimate the

selection coefficient and the age of the selected mutation from the SSV

and SDN models. For this purpose, we performed ABC inference on

simulated data sets with known parameter values. Results for a case of

moderately strong selection (a = 400) are given in Figure 2, with a being

the population scaled selection coefficient a = 4Ns. As can be seen from

the figure, the mode is an accurate estimator of the true value for both

models. However, in the SSV case the posterior distribution is much

broader than under the SDN model, and the 95% confidence interval

extends to the edges of the prior, indicating low accuracy in the

estimate. For the initial frequency parameter, f1, the posterior differs

only marginally from the prior, and therefore this parameter cannot be

reliably estimated.

Accuracy of model choice
We aim to identify parameter regions where we can distinguish

between the SSV and the SDN model. As a control, we also

consider a model of neutral evolution (NT), where an allele

increases to high frequency solely due to genetic drift. In

particular, we are interested in three parameters that are expected

to have a strong influence on model choice accuracy: the selection

parameter a, the frequency of the mutation when it became

selective advantageous, f1, and the current frequency of the

selected allele fcur. In Figure 3 and Figure S1, we explore the

accuracy of our model choice procedure in three series as a

function of a, f1, and fcur..

We find (Figure 3a) that in cases where a,100; the method

cannot reliably distinguish between selection and a neutral model.

This is not surprising, as for such values of a, standard neutrality

tests have little or no power to detect selection [44,45]. For

selection coefficients of a = 100 and a = 200 the neutral model has

a very low posterior probability and would be rejected, but we still

do not have sufficient power to distinguish the signals from SSV

from SDN. Only under strong selection (a = 1,000) do we have

Figure 1. Characteristics of a selective sweep from standing variation. orange: sweep from standing variation blue: sweep from a new
mutation, blue: neutral model a: A cartoon of the allele frequency trajectory with relevant parameters: f1: allele frequency at the time selection
started, fcur: allele frequency at the time mutation is observed. t1: time at which selection started. t0: time when mutation arose.,. b: 100 stochastic
realizations of the allele frequency trajectory. Panels c,d: Age distribution of an allele at 1% frequency and 5% frequency in a population (log scale).
Blue line denotes neutrality, green lines represent selection with a= 20,100,200 and 1000 (right to left). Panels e,f: Distribution of the EHH (e) and H (f)
statistic under neutrality (blue), a de novo mutation (green) and standing variation (red). Full and dashed lines represent selective pressures of
a= 1,000 and 200, respectively. The dash-dot line represents a= 4000. Note that the slopes of the curves are different for the two scenarios, and the
low H value around 0 under neutrality is due to the conditioning on a high frequency derived allele. Times are given in coalescent units and are
plotted on a logarithmic scale.
doi:10.1371/journal.pgen.1003011.g001

Selective Sweeps from Standing Variation
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reasonable power to distinguish between SSV and SDN. Thus, we

find that there is a parameter range of a between 100 and 500, in

which selection can be reliably detected, but the two models of

selection are statistically indistinguishable.

In the second series (Figure 3b), we vary the initial allele

frequency (f1). We find that simulations under the SSV model, with

f1 = 1%, are identified as SDN models, but that the accuracy in

model choice increases with f1. For larger values of f1, we can

detect selection when selection is strong (a= 1,000). For high initial

allele frequency (f1 = 20%) we correctly infer the true mode of

selection even when a is 200. This suggests that the ability to

distinguish the two models increases with f1. Furthermore, we also

find a negative relationship between the estimated value of f1 for a

data set and the posterior probability of the SDN model (Figures

S2, S3 and S4): As we would expect, the larger the estimate of f1,

the lower is the posterior probability of the SDN model, and we

find a strong negative correlation (R2 = 0.51) between these two

quantities based on 1,000 simulations.

In the third series (Figure 3c), we investigate the effect of the

current allele frequency fcur on the model comparison. For

simulations under the SSV model, we find that the accuracy

strongly decreases with fcur. For fcur = 0.2, we classify slightly less

than half of the data sets correctly. This is in contrast to

simulations under the SDN model, where the power to correctly

classify simulated data sets gradually increases with fcur. Thus, in

studies aimed at detecting selection on standing variation, the false

positive rate should depend only slightly on fcur, but the false

negative rate is expected to increases drastically when fcur is low.

Figure 4 illustrates how the selection parameter (a) and the

initial allele frequency (f1) affect the accuracy of model choice

between the SSV, SDN and NT models for three values of fcur

(fcur = 0.95, fcur = 0.8 and fcurr = 0.5). As in Figure 3, the number of

correctly assigned data sets increases with a, f1 and fcur. Under the

SSV model, the gradient with which the power declines is

strongest when fcur is large (95%, Figure 4a), and becomes less

pronounced for smaller fcur (see Figure 4c and 4e). For fcur = 95%

(Figure 4a), there is a region with f1.0.05 and a.1,000 where

there clearly is very high power to infer the correct model. On the

other hand, for a,200 or f1,0.03, we make incorrect inferences

more than half of the time, indicating that in these regions of the

parameter space, the signal of the sweep is too weak to

discriminate between the SSV and SDN models. While that

global pattern is the same for fcur = 0.8 and fcur = 0.5 (Figure 4c,

4e), the distinction between regions where we can and cannot

assign simulated data sets correctly is less pronounced.

Quite surprisingly, however, we find that for fcur = 0.8, the

number of correctly assigned data sets increases when selection is

low. The same trend holds for fcur = 0.5 (Figure 4e), however here

the influence of selection is even weaker, and inference becomes

quite ambiguous, with posterior probabilities ranging from 60% to

80% in the entire parameter space.

In contrast, the pattern is much simpler for simulations under

the SDN model (Figure 4b, 4d and 4f), where the probability to

correctly identify the model increases with decreasing fcur. When

fcur is set to 0.95, we need a selection coefficient of a = 1,500 to

make confident inferences. For fcur of 0.8 and 0.5, this value

decreases to 900 and 300, respectively.

In summary, a high current allele frequency increases the power

to distinguish between SSV from SDN (Figure 3c, Figure 4). The

frequency with which the SDN model is correctly inferred

increases slightly with decreasing fcur, presumably because the

selected phase makes up a larger proportion of the trajectory.

Applications
We illustrate our model choice procedure by analyzing seven genes

that have previously been identified as candidates for being under

selection. These genes are ADH1B, ASPM, EDAR, G6PD, LCT,

PSCA and TRPV6. The genes were selected using the following set of

criteria: i) there is evidence for selection from a previous study, ii) a

putative causal mutation has been identified and iii) the putative causal

site has reached a high frequency in at least one population, but has not

yet reached fixation. In addition, we also analyzed four regions that

were noncoding and presumably neutral. We retrieved polymorphism

data from the 1000 Genomes Project low coverage data [46] using tabix

Figure 2. Parameter estimation accuracy under SSV and SDN model. Prior distributions are given as histograms; the orange and blue lines
depict the average posterior distribution from 100 replicates of the parameters under the SSV and SDN model, respectively. The vertical dashed red
line gives the parameters used for the simulation: a = 400, m = 2.5e-8, f1 = 0.05, log(t1) = 21.51 (SSV)/21.36(SDN). Estimates for the SSV model are less
accurate for all parameters except m, and 95% confidence intervals of estimates under the SSV model span the entire prior range for f1, a and t1. The
age of the sweep is given in coalescence units.
doi:10.1371/journal.pgen.1003011.g002
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[47]. Ancestral genotypes were inferred by comparison to the

homologous chimpanzee allele. If a signal of selection was present in

more than one population, we used data for the population where the

selected site was most frequent, to facilitate inference. Model choice

and parameter estimation were performed using the procedures

described in the methods section. In contrast to the inference on

simulated data sets, here we explicitly model varying recombination

rates and the complex demographic history of the human population.

Results for the sample genes are given in Figure 5 and Figure S4, as

well as Table 1. For six of the seven genes analyzed, the neutral

scenario was strongly rejected with a posterior probability of less than

1%, and we can confirm the prior evidence that these genes are under

selection. Three of those genes, ADH1B, EDAR and LCT, were found

to be under selection from a new mutation and one gene, TRPV6

could not be assigned with any significant probability to either model.

Two genes, ASPM and PSCA, were found to be under selection from

standing variation. Finally, none of the three models provided a good fit

to observed data in the G6PD gene, suggesting that neither of the

models is appropriate for this gene. In the following paragraphs, we will

discuss each gene in some detail, and give estimates for selection

coefficient and time when appropriate. All estimates are given with a

point estimate for the mode, and the lower and upper bound of a 95%

Highest Posterior Density interval in brackets. Estimates in years were

made assuming a generation time of 25 years.

Discussion

Applications
ADH1B. The ADH1B gene encodes one of three subunits of the

Alcohol dehydrogenase (ADH1) protein, a major enzyme in the

alcohol degradation pathway that catalyzes the oxidization of alcohols

into aldehydes. ADH1B is part of a 60 kb gene cluster on chromosome

4, encoding for all three ADH1 subunits. Selection on the major ADH

gene complex has received major attention as it is suggested to be one

of the major genetic causes of alcoholism risk [48], and a possible cause

of the ‘‘alcohol flush’’ phenotype prevalent in many Asian populations,

where individuals turn red due to increased acetaldehyde levels in the

blood after alcohol consumption [49]. As a result, the genes are well

studied and several non-synonymous polymorphisms are known to

have various effects on enzyme activity [50,51]. One particular allele,

Arg47His, has been proposed to be under selection based on several

lines of evidence: First, the derived Histidine allele results in an

increased enzymatic activity. Second, age estimates of the derived allele

based on its frequency correlate with the onset of rice domestication

[48,49] and the availability of fermented beverages [52].

In our analysis, we analyzed the CHB population where the

allele is found at a frequency of 0.71 in the 1000 genomes data.

For this data set, we could clearly reject the neutral model, with a

posterior probability of 1e-8. The SDN and SSV models have

posterior probabilities of 78.3% and 21.7%, respectively, indicat-

ing slightly stronger evidence in favor of the SDN model. Under

this model, we estimate a selection coefficient of s = 0.036 (0.009–

0.19), and an age of the mutation of 11,100 (1,900–42,900) years It

is remarkable that this age corresponds very well with the arrival of

rice agriculture and the availability of fermented beverages in

China around 10,000 year ago [49]. Our finding of evidence for a

de novo sweep is conflicting with the fact that the derived 47His

allele also occurs at a high frequency in Western Asian

populations, but only at low frequencies in Central Asian and

Indian populations [48], a pattern of genetic variation that has

previously been suggested to be a result of selection on standing

variation [48].

Figure 3. Simulation results for ABC model choice procedure. We simulated data using the fixed parameter values given in the lower part of
the figure. The boxplots show the lower and upper quartiles, the median and the limits of a 95% interval of the posterior probability for the NT (blue),
SSV (red) andSDN(green) models, respectively. Panel a: We compare the effect of the increasing selection coefficient a. Panel b: The effect of
increasing initial frequency f1. Panel c: The effect of the current frequency fcur, In panels a,b fcur was set to 0.95, and in panel c, a = 1,000.
doi:10.1371/journal.pgen.1003011.g003

Figure 4. Parameter regions where distinction between models is possible. On x and y axes are the prior ranges for selection coefficient and
initial frequency of a selective sweep, respectively. Panels a, c and e give simulations under the SSV model, panels b, d and f for the SDN model. The
different panels represent different current frequencies: In Panels a, b fcur is 0.95, in c, d fcur = 0.8 and in panels e and f fcur = 0.5. Color gives the
proportion of simulated data sets that were assigned to the correct model, when compared to the two alternative models. Black areas correspond to
regions where this proportion is less than 50%, white areas to parameter regions where 95% or more of the data sets are correctly assigned. Each
shade of grey corresponds to a 5% increase in the number of correctly assigned data sets.
doi:10.1371/journal.pgen.1003011.g004

Selective Sweeps from Standing Variation
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ASPM. The ASPM (abnormal spindle-like microcephaly asso-

ciated) gene has been identified as a major determinant of brain size

[53]. Much attention has been focused on the difference between

humans and chimpanzee in that gene, and several studies [54,55]

have quantified these differences and found an unusual high

amount of fixed substitutions between these two species, indicating

positive selection on the branch between humans and chimps. In

addition, recent ongoing selection was proposed based on the

finding that a single haplotype was unusually frequent in several

populations [56]. However, the interpretation of their results stirred

considerable debate [57–60], with researchers pointing out that the

haplotype distribution found by [56] is not that unusual [60] and

that neutral demographic scenarios are able to produce haplotype

distributions similar to the one observed in ASPM [58].

Figure 5. Distribution of summary statistics of 7 genes. This figure shows the observed (red) and prior predictive distribution of the first two
PLS-DA components. Neutral simulations are shown in grey, SSV in orange and SDN in blue. For G6PD we show components 2 and 3 to highlight the
finding that none of the three models analyzed is able to model the data for this gene.
doi:10.1371/journal.pgen.1003011.g005

Table 1. Genes analyzed in this study.

Estimates

Gene chr function pop Model S t1 (years) t0 (years) References

ADH1B 4 Alcohol metabolism CHB SDN(0.78) 0.036 (0.009–0.192) - 11,100 (1,900–42,900) [50]

ASPM 1 microcephalism GBR SSV(0.87) 0.029(0.003–0.17) 17,400 (800–56,400) 79 (17–288) ky [56]

EDAR 2 NF-kB Activation CHB SDN(0.88) 0.14 (0.07–0.31) - 11,400 (4,300–43,700) [61]

G6PD X malaria resistance YRI - - - - [66]

LCT 2 lactase persistence FIN SDN(0.99) 0.025 (0.004–0.20) - 11,200 (1500–64,900) [73,74]

PSCA 8 Involved in bladder &
pancreas cancer

YRI SSV(0.86) 0.035 (0.004–0.015) 8,000 (1,000–54,900) 191 (50–698) ky [86]

TRPV6 7 Calcium absorption CEU SSV (0.55) 0.032 (0.005–0.25) 7.600 (900–43,300) 211 (29–697)ky [90]

SDN (0.45) 0.023 (0.007–0.08) - 23,400 (6,400–70,400)

Chr: chromosome, pop: population we analyzed using the population code from the 1000 genomes project; For each gene, we give the favored model(s) and in
brackets the posterior probability for that model.
doi:10.1371/journal.pgen.1003011.t001
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We used the non-synonymous SNP A44871G (rs41310927) for

our study, which was identified in [56] as a putative causal variant

in our analysis. We found evidence for selection on standing

variation (Pr(SSV) = 0.87), with little support for the neutral and

SDN model with posterior probabilities of 0.13 and 2e-7,

respectively.

We estimate a rather weak selection coefficient of 0.029 (0.003–

0.170), and estimate that selection started to act 17,412 (771–

56,443) years ago, and an age of the mutation of 97 (17–289) ky.

This is considerably older than the estimate of 5,800 years for the

most recent common ancestor of the selected allele by Mekel-

Bobrov et al. [56], a difference that might be due to the fact that we

assume a different demographic history.

EDAR. The EDAR gene region has been suggested to be

under selection in East Asians based on multiple genome scans

[10,11,19] and has been studied in more detail by Bryk et al. [61].

EDAR encodes a cell-surface receptor that activates a transcrip-

tion factor [61,62], and, among other phenotypes, has been

associated with the development of distinct hair and teeth

morphologies [62,63]. A non-synonymous SNP (rs3827760,

V370A) has been associated with these phenotypes, and has been

confirmed in an in vitro study to enhance the activity of the EDAR

gene [61]. The rs3827760 SNP lies in a DEATH-domain that is

highly conserved within mammals [18], and is found at a very high

frequency in East Asian and American individuals, but is absent

from all European and African populations [61].

In the 1000 genomes data, EDAR shows the strongest signal of

selection for EHH, Tajima’s D and Fay & Wu’s H among all genes

we analyzed. This is reflected in our model choice analysis, where

we find a 88.5% probability that the V370A polymorphism

originated from a new mutation. The probability for the SSV

model was 13.3%, and the neutral model did not receive any

measurable support. We estimated a very high selection coefficient

of s = 0.15 (0.04, 0.31), and an origin of the mutant allele 3,000

(1,400, 6,900) years ago. This estimate is most likely too young, as

the allele is also present in Native American population and so is

strongly expected to have been present before the colonization of

America. A possible explanation for this is that selection does not

act codominantly on EDAR. Comparing our codominant model

with a model where the dominance parameter h was allowed to

vary between 0 and 1 resulted in a strong favor for the more

complex model (Bayes Factor = 36). Under this model we estimate

a selection coefficient of s = 0.14 (0.07–0.31), but a much older age

of the allele of 11,400 (4,300–43,700) years. This is at the lower

end of estimates for the time of colonization of the Americas

[33,64], indicating that the derived allele might have moved into

the American populations at a low frequency. This hypothesis is

consistent with the very high divergence of the EDAR region

between the Mexican and Chinese populations, where we find an

FST of 0.36 (excluding the conserved DEATH-domain), which is

much higher than the genome-average FST of 0.069 between these

two populations [65]. This may indicate that the 370A allele has

risen in frequency largely independently between these two

populations.

This is in contrast to the analysis of Bryk et al. [61], who

estimated that the derived 370A allele has been fixed 10,740 years

ago. However, both in the 1,000 genomes data and the data of

[61], the site is still segregating within the CHB population. While

we cannot exclude the scenario of fixation and recent reintroduc-

tion of the ancestral allele, the high divergence between Native

Americans and East Asians seems to favor a more recent sweep.

G6PD. The G6PD gene is located on the X chromosome, and

is one of the best studied cases of selection in humans [9,66–68].

The G6PD gene encodes the Glucose-6-phosphate dehydrogenase

protein, the first enzyme in the pentose phosphate pathway. The

G6PD gene has long been associated with reduced-efficiency

erythrocytes [69,70], and several hundred variants causing various

levels of reduction in catalytic activity have been discovered [71],

leading to a significantly reduced fitness in affected individuals. As

a benefit, however, G6PD deficiency provides resistance to

malaria [72] and therefore even strongly deleterious alleles rise

to considerable frequencies in populations where malaria infec-

tions are epidemic. Due to these antagonistic selective pressures,

G6PD in populations affected by malaria is one of the best

examples of balancing selection described in the human genome.

We use the A/A- polymorphism (rs1050828), identified by [66]

as the putative site under selection. When applying our method,

however, none of the models provided a good fit to the data,

indicating that the models we used are too simplistic for the

complicated history of G6PD (see Figure 5). The combination of

summary statistics with a low EHH, very low IHS and high, non-

significant values for Tajima’s D and Fay and Wu’s H cannot be

captured by either of our models. This is not surprising given that

the selection on the G6PD locus cannot be described as a selective

sweep, but is the effect of balancing selection. It is encouraging the

method in this case indirectly, through a poor model fit, helps

determine that the simple selective sweep models considered here

are not appropriate for this locus.

LCT. In most mammals, the ability to digest lactose, a common

disaccharide in milk, decreases when they stop being milk-fed. In

contrast, in many humans the main enzyme used to digest lactose

into monosaccharides, continues to be expressed even in adults, a

phenotype known as lactase-persistence [73–76]. Several presum-

ably independent alleles have been identified that confer the same

phenotype [76] in different populations. The first and possibly best-

characterized allele is the C/T-13910 polymorphism (rs4988235)

that is particularly prevalent in Northern European populations and

has been shown in Finnish populations to be 100% associated with

the lactase phenotype [77]. Further evidence that the T-13910 allele

is causal for the persistence phenotype is given by in vitro analyses

[78,79] that found increased enhancer activity.

We analyzed the FIN population from the June 2011 data

release of the 1,000 Genomes Project, using the C/T-13910

polymorphism as the selected site. We found a 98.7% posterior

probability for the SDN model and only a 1.2% posterior

probability for the SSV model, indicating that this particular LCT

allele most likely was under selection shortly after it arose. We

estimated a rather low selection coefficient of 0.025 (0.003–0.19),

and an origin of the mutation 11,200 (1,500–64,900) years ago.

Our estimate is much older than the estimates by Bersaglieri et al.

[75], who estimated a selection coefficient between 0.09 and 0.19,

and an age of the mutation of 1,625–3,188 years using a

deterministic approximation based on the observed frequency of

the allele. The fact that they used a deterministic approximation

may explain the fact that we have wider confidence intervals. Our

estimate is more consistent with the estimate of Tishkoff et al., [76]

who used the width of the sweep region to date the selected allele

to an age of 7,998 years and obtained an estimated selection

coefficient of 0.069. Our estimates are also in good concordance

with the estimate of Itan et al. [80]. In their study, they modeled

the spread of lactase persistence through Europe using a spatially

explicit ABC model, which takes advantage of the arrival of dairy

farming in various locations. They estimated a selection coefficient

of 0.095 in dairy farmers and a slightly older age for the selected

allele (7,441 years). While all studies suggest a more recent origin

of the selected allele, we note that the confidence intervals on both

the selection coefficient and age of the sweep overlap between all

four studies.
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A complimentary approach to dating the age of an allele, and

estimating selection coefficients from modern DNA data, is the

usage of ancient DNA [81–83]. Indeed, the derived allele of the

LCT the C/T-13910 polymorphism as was found in a single copy

in a 5,000 year old sample from Sweden [82], and at a higher

frequency of 27% in the Basque country in a sample of

approximately the same age [83]. In contrast, the derived allele

was absent from an Eastern European sample roughly 7,000 years

old [81]. These findings are in good agreement with our estimates

and other estimates on genetic data. Based on this ancient DNA

evidence, it has been speculated that the LCT allele may have

swept from standing variation [83], mainly due to the fact that the

derived allele is found at a rather high frequency only two

millennia after the introduction of agriculture in that population.

However, if the allele was mostly neutral before the arrival we

would expect it to be rather old, and in particular we might also

expect to see the derived T allele in African populations, which is

not the case. Calculating the expected age of an allele at a

frequency of 27% [84,85] results in expected ages of 480 ky and

6,500 (2,500–36,000) years for neutrality and selection, respec-

tively, using our estimated selection coefficient and an effective

population size of 10,000. While these estimates based solely on

allele frequencies should be interpreted with great caution, they

nevertheless show that our estimate of a de novo selected mutation is

consistent both with the observed allele frequencies around 5,000

years ago and an assumed origin of dairy farming 11,000–12,000

years ago.

PSCA. The prostate stem cell antigen gene (PSCA) on

chromosome 8 has been proposed to be under selection by [86]

based on an analysis of population differentiation in a global array

of human populations. A non-synonymous SNP in PSCA

(rs2294008) is known to be involved in various forms of cancer

[87,88], and we therefore used it as the causal site in our analysis.

Interestingly, the derived allele is present in all human populations

although the frequency varies considerably between different

populations [86]. The highest derived allele frequencies of more

than 75% are reported in West African and East Asian

populations, whereas some sub-Saharan African and most Native

American populations have allele frequencies below 20%. This

worldwide distribution of the allele was interpreted as evidence of

selection from standing variation [86].

Our analysis confirmed this hypothesis based on analyses of

data only from the Yoruban population, with the SSV model

receiving a posterior probability of 86.0%, compared to a posterior

probability of 23.9% for the SDN model, and 1.2% for a neutral

model Under the SSV model, we estimate a selection coefficient of

0.035 (0.004–0.15), with selection having started 8,000 (1,000–

54,900) years ago, and the allele being 191 (50–698) thousand

years old. The fact that the mutation is distributed globally

supports our inference of a sweep based on standing variation.

TRPV6. TRPV6 is in the heart of a 115 kb region on

chromosome 7 that has been reported to be under selection

[10,89] and has been closely investigated by Akey et al. [90].

TRPV6 codes for a protein subunit that encodes cation pores,

particularly for calcium ions [90,91]. TRPV6 was found to be in a

region of accelerated evolution on the human lineage, as indicated

by an elevated ratio of non-synonymous to synonymous fixed

differences [90]. In particular, three non-synonymous mutations

segregating in humans were found, with a striking diversity

pattern; the derived allele was at an intermediate frequency in all

African population, but at frequencies of 90% and more in the rest

of the world. In addition, both Tajima’s D and Fay and Wu’s H

statistics were significantly negative for non-Africans and Europe-

an-Americans. For this reason, we restricted our analysis to the

CEU population, and used the first of the non-synonymous SNP

(rs4987682) as the focal site for our analysis, as it was the only one

that was in the N-terminal region of the TRPV6 protein, the

suggested target of selection [90].

While the neutral model could be rejected with a posterior

probability close to zero (8e-7), the separation of SSV and SDN

model remained inconclusive, with posterior probabilities of 0.55

and 0.45 respectively. The estimate of the selection coefficient was

very similar for both models sSSV = 0.032 (0.005–0.25),

sSDN = 0.023 (0.007–0.08), but the confidence interval is much

smaller under the SDN model, as expected. Furthermore, the

estimated age of the allele differed between models: Under the

SSV model, the mutation is inferred to be 211 (29–697) ky old, but

became selected only 7,600 (900–43,300) years ago. Under the

SDN model, the mutation arose and became selected 23,400

(6,400–70,400) years ago. These findings are in good concordance

with the patterns of diversity found previously [10,90], and in

particular the evidence that the signature of selection is shared

between all non-African populations and thus selection started

likely less than 100,000 years ago. Also, the estimate under the

SSV model that selection started less than 10,000 years ago is

concordant with the role of TRPV6 in absorbing calcium [90].

Neutral regions. In addition to these genes, we also analyzed

four putatively neutral regions that were 5 Mb away from our

candidate genes. This distance should be big enough that the

neutral region are not impacted by the selective sweep, but are

likely influenced by the same mutational processes as the selected

regions. For all these regions, the neutral model had the highest

posterior probability, with posterior probabilities of 0.758, 0.932,

0.994 and 0.999 for the four regions. This indicates we are indeed

able to discern selected from neutral regions.

Conclusions on data applications
The distribution of summary statistics in Figure S5 illustrates the

impact of choice of summary statistic for model inference [92].

Very high values of EHH are clearly indicative of the SDN model,

at both a 10 kb and 20 kb distance. Both the SSV and SDN

models are associated with low IHS values, whereas the neutral

regions have IHS values closer to zero. Tajima’s D and Fay and

Wu’s H are both very informative for model comparison, with

SDN genes having very low D values, SSV genes having D values

close to zero and neutral regions having positive D values. The

main exception is the LCT gene, however, which we inferred to be

selected from a de novo mutation, but which has a high D. The

signal for SDN apparently comes more from the high EHH and

low IHS values.

In general, our results are highly concordant with previous

studies of these genes. Our estimates tend to gene, G6PD, we

could not make any inferences, because we could not reproduce

the observed pattern of diversity using simulations of positive

directional selection. G6PD shows an extremely narrow region of

reduced diversity, surrounded by a region of high diversity. This

may be due to balancing selection between malaria resistance and

reduced efficiency oxygen transport introducing a signal that

cannot be reproduced by our simple model of directional selection.

Alternatively, the X-linked mode of inheritance of this locus is not

concordant with the assumptions of our model. This also

highlights one of the dangers of ABC: It is crucial that the models

investigated are able to reproduce the data observed; otherwise

false inferences may be drawn. This danger inherent to any ABC

approach is also highlighted by the fact that misidentification of

the selected site will bias model choice results towards SSV (Figure

S6). This can be explained by the fact that even if the neutral site is

closely linked to the selected site, it is likely to ‘‘escape’’ the sweep
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by recombining away from the selected haplotype, thus giving the

signal of selection from standing variation. Similarly, analyzing

data simulated under a population bottleneck under a constant

size model will bias the results towards stronger selection and SDN

(Figure S7), presumably due to the younger age of mutations being

taken as evidence of strong selection.

Model choice accuracy
We have shown that it is much more difficult to estimate the

model parameters a, and t1 from the SSV model than from the

SDN model. This is unsurprising, as the SSV model has been

shown to have a higher variance in allele age, which results in a

higher expected variance for most summary statistics [8]. We

further show that there is not enough information to estimate the

initial frequency of the sweep f1. This is unsurprising, as the exact

position of the switching point has likely only a minor effect on the

data, especially as the effect of selection on the trajectory is weak

when the allele frequency of the beneficial allele is low [27].

We further notice that the accuracy of our model choice

procedure decreases when the signal of selection is weak.

Consistent with previous findings, selection is very hard to detect

if a is below about 100 [5,11,45]. This is also the point where our

method gains power to distinguish between SVN from SDN. The

initial frequency required to detect standing variation is moderate

at around 3% for weak selection and 2% for stronger selection.

However, selection has to be rather strong, at around a = 1,000

and initial frequencies have to be above 5% to allow accurate

inference. Presumably, this is because below this threshold, the

stochasticity of the trajectory is very large even under selection,

and the difference between the two scenarios is small (see also

Figure 1c). These findings are not particularly surprising, as

selection scans based on summary statistics have been shown in

general to have low power under these conditions [45].

These findings certainly limit the scope of our approach. Could

we do better with a different strategy? As discussed in the

introduction, the ABC approach simplifies data in two ways. First,

instead of using the full data, we use an array of summary statistics.

Second, we substitute an exact match between observation and

simulations with an approximate match, depending on ‘‘close’’

simulations. Regarding the use of summary statistics, we note that

summary statistics have been widely used to detect selection from

genetic data [9–11,14,19], and currently provide the only way to

detect selection from DNA sequence data. No full likelihood based

method is available to detect selection from DNA sequence data

that could be adapted to distinguish between the two sweep

models entertained here.

The second simplification step is based on the number of

simulations performed and the tolerance interval and is imposed

by computational constraints. We examine the effect of different

numbers of simulations and tolerance cutoffs on our results by

calculating relative error rates of the posterior mean and the false

negative rate of the model choice. We show in Table S1 that

increasing the number of simulation by a large amount or

changing the rejection parameter does not significantly improve

our results, indicating that we do not lose a lot of information at

this stage. This shows that the ABC approach reliably estimates

the posterior based on the summary statistics, and as such use all

the information available in these statistics. Statistics such as EHH,

iHS, Tajima’s D, etc, do not contain information that will allow us

to provide more reliable estimates. It the light of this, it may

appear disappointing that our method does not provide more

accurate parameter estimates and more power to distinguish

between models. However, it is important to realize that as

previously argued, all information regarding selection is in the

frequency path of the selected allele [26,27]. For relatively small

selection coefficients and/or small initial frequencies of the

selected allele, the paths are very similar for the SSV and SDN

models. Even if a full likelihood method could be developed, it is

unlikely that it had much more power to distinguish between

models.

A further simplification in our method is the restriction to a

single population. Population differentiation measures, such as

FST, are one of the most successful ways to detect sweeps from

standing variation [24,86], and the inclusion of more realistic

models of demography may improve our accuracy. Such models,

however, require an additional estimation of multi-population

demographic history, which greatly increases the complexity of the

model.

While we applied our method only to human candidate loci, it

should be possible to easily translate it to other species. In

particular, as our simulation results suggest that we have more

power to distinguish SDN and SSV if selection is strong, species

with large population sizes, such as e.g. Drosophila or many

microorganisms may be very promising targets for a similar study.

Another possible target might be species with very strong artificial

selection, such as domesticated animals or plants, where we may

gain valuable insights on the domestication history of these species.

Of course, our approach could also be combined with ancient

DNA (e.g. [83]), which could provide much narrower confidence

intervals on time estimates and also help improve estimates of

selection coefficients.

The two selection models we consider here, the SSV and the

SDN models, are nested models, Setting f1 = 1/2N in the SSV

model recovers the SDN model. To facilitate Bayesian model

choice we assign positive probability to f1 = 1/2N, and base our

inferences on a choice between f1 = 1/2N and f1 , U(0,0.2) (See

Methods). ABC based model choice has recently been criticized

and been shown to be biased in some cases where the statistics

used are not sufficient [93,94]. While some of the specific issues

raised by [91] are not applicable in our setting because we

consider nested models, we do not base our inference on sufficient

statistics and the statistical properties of our model choice

procedure are, therefore, largely unknown. To address this issue,

and in general to validate our approach, we use a method

introduced in [95]. We show in Figure S8 that our estimated

probabilities only show bias for very small values of the Bayes

factor, where there appears to be a bias towards inference of the

SDN model for simulations generated under the SSV model with

very low values of f1.

Methods

Models
In order to keep our problem simple, we condition on two

important parameters: We assume that the exact site under

selection is known from extraneous information, and we further-

more assume that the allele frequency fcur of that site at the time of

sampling, tcur = 0 is known. The interpretation of the parameters is

depicted graphically in Figure 1a.

Unless noted otherwise, we assume a panmictic diploid

population of size N with an additive selection model where the

ancestral homozygous, heterozygous and derived homozygous

genotypes have fitness 1, 1+ s/2 and 1 + s, respectively. However,

the methodology applied here can easily be adapted to more

complex scenarios, e.g. models involving multiple populations,

more sophisticated demographic models, and other models of

selection. For most simulated data sets, we will report the

population scaled mutation rate a = 4Ns, as the shape of the allele
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frequency trajectory depends only on that compound parameter

[25]. However, for most of the genes we analyze previous

estimates were made directly on s rather than the compound

parameter. To facilitate comparisons, we report s for the genes we

analyzed.

Sweep from a de novo mutation model. The sweep from a

de novo mutation (SDN) models a single selective sweep and has two

parameters: the mutation rate m, and the selection coefficient s. For

all simulations, we follow [80] and record the time t0 when the

mutation arose, as t0 depends stochastically on s. The prior

distributions we use for this model were m , U(0.5e-8,6e-8) and

log10(s) , U(23,20.5), where U is a uniform distribution.

Sweep from standing variation model. The sweep from

standing variation (SSV) model is identical to the de novo mutation

model, with the exception that we define a frequency f1 at which

the mutation becomes selected. Unless noted otherwise, the priors

for m and s are the same as in the SDN model, and the prior for f1
is f1 , U(0,0.2). In addition to t0, which is defined analogous to the

SDN model, we are also interested in t1, the time when the

mutation becomes selectively advantageous (i.e. the time when the

mutation reaches frequency f1).

Neutral model. We also consider a neutral model (NT),

without any selection. The only free parameter in this model is the

mutation rate m, with the same prior distribution as described

under SDN model. As under the selection model, however, we still

condition on one site having reached a final allele frequency of fcur,

so this model does not correspond to the classical neutral

coalescent.

Approximate Bayesian Computation
We use a standard ABC approach [31,32], using a post-

sampling adjustment in the form of a GLM [96]. We used the

ABCToolbox package [40], for specifying priors, rejection sampling

and post-sampling adjustment. Unless specified otherwise, we

perform 105 simulations per model, and retained the 100 (0.1%)

simulations with associated Euclidean distance between observed

and simulated summary statistics closest to zero. To assess how the

number of simulations and acceptance rates influence our results,

we analyze 10,000 random data sets with up to 107 simulations

and varying acceptance rates. We show that these parameters have

very little impact on the relative error for both the model choice

and parameter estimates in Table S1.

Details of statistics used. We use a diverse array of

summary statistics, with the goal of maximizing the information

captured, while not incluing any statistics that just add noise. The

statistics we used may be broadly classified into statistics based on

haplotype patterns, and statistics based on the site frequency

spectrum. The haplotype based statistics we used were iHS [19]

and EHH [9]. We recorded EHH in a 10 kb, 20 kb and 50 kb

window, centered on the selected site. For the SFS based statistics,

we used Tajima’s D [20], Fay & Wu’s H [23], the average number

of pairwise differences p, and the number of segregating sites S as

statistics. All these statistics are calculated for three regions: A

central region of 20 kb around the selected site, an intermediate

region consisting of all sites 20–50 kb away from the selected site,

and a faraway region consisting of all sites further than 50 kb away

from the selected site. Following [97], we linearize all statistics

using a Box-Cox-transformation [98]. To choose a set of

informative summary statistics, we used a Partial Least Squares

Discriminant Analysis (PLS-DA) [99,100]. PLS-DA is a variant of

Partial Least Squares regression, that, similarly to principal

component analysis, extracts orthogonal components from a

high-dimensional data set (in this case the summary statistics). In

contrast to PCA, in PLS-DA these components are chosen such

that the covariance between summary statistics and models is

maximized [see e.g. 101]. We did our computations using the

‘plsda’ function of the mixOmics package for R, and kept the five

first PLS-DA axes [100].

ABC has two crucial parameters independent of the model it is

applied to: The number of simulations nS and the acceptance rate

e. To assess the effect of these parameters on inference, we

calculate the accuracy of our model choice estimates for various

values of nS and e (Table S1).

Simulations
All our data sets used for both the ABC inference and the

assessment of our procedure are simulated using a modified

version of the coalescent simulator mbs [102]. Mbs allows

simulation of genetic data sets with a single selected site using

the structured coalescent [26]. mbs first simulates the allele

frequency trajectory of the site under selection, and then generates

a data set conditional on that trajectory. We simulate allele

frequency trajectories using Euler’s method on the unscaled

backwards diffusion equation with selection (eq 7.1 in [103]). This

equation makes it very easy to incorporate population size changes

by just changing the variance term. To simulate sweeps from

standing variation, we set the selection coefficient (s) to zero the

first time the trajectory reaches f1. To analyze simulated data sets,

we generally simulate a 100 kb region with a recombination rate

of 1.5 cM/Mb. For the human genes, we simulate the gene and a

50 kb flanking region on both sides, resulting in regions that are

usually between 100 kb and 150 kb wide. Recombination rates

and hotspots are modeled by using the HapMap recombination

map [104] in the application to selected genes. For all simulated

data sets we assume a constant-sized population. For the analysis

of human genes, we use the population history estimated by [105].

Specific regions and details of the used regions are given in Table

S2. To ensure that our method does not suffer from a high false

positive rate, we also analyze regions 5 Mb downstream from the

candidate genes, as they are presumably neutral. For three of

genes (ASPM, G6PD, and PSCA), no data was available for these

downstream regions, so we analyzed the remaining loci. Candidate

loci for selection were chosen using the following criteria: i) they

were required to have a derived allele frequency between 0.7 and

0.9 and ii) to be as closely to 5 Mb away from the actual candidate

locus in the upstream gene as possible.

We estimate parameters from our models using the standard

ABC procedure described above. The parameters we estimate are

the mutation rate m, the age of the sweep t1 the selection coefficient

s and, only under the SSV model, the initial frequency f1 for the

SSV model. In particular we want to determine if our posteriors

are unbiased, and if we were able to get reasonable confidence in

our estimates. To do this, we simulate data sets with fixed

parameters and plotted the average posterior distribution for all

parameters in Figure 2.

Model choice
For model choice, our main goal is to calculate the relative

probabilities of the models given the data, i.e. Pr(SSV | data),

Pr(SDN | data) and Pr(NT | data), which we calculate using the

marginal densities as proposed by [96]. To identify parameter

regions where there is power to distinguish between the models,

we simulate 1,000 data sets each under 30 different scenarios in

three series, corresponding to three parameters of interest: The

strength of selection a, the frequency when the mutation became

selective advantageous f1 and fcur, the frequency at which the

mutation is observed.
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To test the algorithm for approximating Bayes factors, we also

use a simulation approach. The estimator of the posterior

probability from k simulations, p̂pk(mDx), should have the property

lim
k??

p̂pk(mDx)~p(mDx) where m is a model indicator functions for a

specific model. Also, for a particular draw from the posterior, m(0),

we expect p(m(0)~mDx)~p(mDx), if the simulation algorithm

works properly. In other words, p̂pk(mDx), should asymptotically

equal p(m(0)~mDx), i.e. if p̂pk(mDx) = c, we expect a proportion c of

simulations to have been obtained from model m. Equivalently, for

an estimated log Bayes factor, log10 = c, we expect a proportion

10c/(1+10c) of draws to be from model m. This prediction is tested

in Figure S8, based on 10,000 random data sets from both the

SDN and SSV model.

Supporting Information

Figure S1 ROC plots. This figure gives ROC plots for the same

data as in Figure 3. As we have three models, the first two columns

compare both selection models with a neutral model, and the last

two columns compare the two selection model, with the model

better characterized as the null model plotted on the x-axis. The

lines give the percentage of simulation assigned to the model on

the y-axis (sensitivity), given a proportion of models assigned to the

x-axis (specificity). Parameters used for the simulations are given

above the plot and in the legend box.

(EPS)

Figure S2 Joint posteriors of f1 and t1 of simulations under the

SDN when analyzed under the SSV model. Inferred joint

posterior distribution of nine replicate simulation with parameters

of a = 400, m = 2.5e-8 are shown. Red and blank areas correspond

to areas with zero probability, yellow areas indicate high

probability densities. Notice that for most simulation the inferred

initial frequency is below 2%.

(EPS)

Figure S3 Joint posteriors of f1 and t1 of simulations under the SSV

when analyzed under the SSV model. Inferred joint posterior

distribution of nine replicate simulation with parameters f1 = 0.1, of

a = 400, m = 2.5e-8 are shown. Red and blank areas correspond to

areas with zero probability, yellow areas indicate high probability

densities. Notice that for most simulation the inferred initial frequency

is above 5%, but the inferred probability of f1 is often very inaccurate.

(EPS)

Figure S4 Joint posteriors of f1 and t1 for analyzed genes.

Inferred joint posterior distribution of all seven genes analyzed in

this paper. Red and blank areas correspond to areas with zero

probability; yellow areas indicate high probability densities.

(EPS)

Figure S5 Observed summary statistic distributions. We show

the observed untransformed summary statistics for all genes and

genomic regions we analyzed in this study (see Table S2). Colors

indicate the most likely mode of evolution: neutral evolution (grey),

SDN (blue), SSV (orange) and undetermined (black). TD = Taji-

ma’s D, FWH = Fay and Wu’s H. The suffix ‘‘global’’ indicates

that the statistic was calculated for the entire gene, the suffix

‘‘close’’ indicates the statistic calculated on a 20kb window around

the selected site.

(EPS)

Figure S6 Effect of misidentification of selected site: We show

the posterior probabilities for SSV (orange), SDN (blue) and NT

(grey) for simulations done from a de novo mutation(left panel) and

standing variation (right panel), if we misidentify the selected allele.

Simulations were done with selection strength a= 1,000, sample

size n = 100, mutation rate m = 2.5e-8 and recombination rate

r = 3e-8. For the SSV simulation, f1 was set to 0.1 X-axes give the

distance between the ‘‘true’’ selected allele from the site for which

the summary statistics were calculated. If the distance is larger

than 50 kb, we find a bias towards inferring SSV.

(EPS)

Figure S7 Bias in model choice due to a population bottleneck.

We show the inferred posterior probabilities for SSV (orange),

SDN (blue) and NT (grey) under a constant size model for

simulations done under a bottleneck model. The bottleneck started

400 generations ago and lasted for 2,000 generations, which might

be similar to the human out-of-Africa bottleneck Simulations were

done with selection strength a= 1,000, sample size n = 100,

mutation rate m = 2.5e-8 and recombination rate r = 3e-8. For

the SSV simulation, f1 was set to 0.1 X-axes give the strength of

the bottleneck as a proportion of the current effective population

size. Unaccounted demographic history results in a bias towards

estimates of stronger selection.

(EPS)

Figure S8 Model choice bias. B denotes the Bayes factor in favor

of the SSV model, B = Pr(SSV)/Pr(SDN). We simulated 10,000

data sets under both the SSV and SDN model, and performed our

model choice procedure on each data set, and divided the

distribution into discrete bins. The figure gives the observed (bars)

and expected (red line) proportion of simulations from the SSV in

each bin. As can be seen, there is a slight excess of simulations

from the SSV on the lower end of the graph. The leftmost bin

contains only 28 simulations, two of which were simulated under

the SSV model. Both of these simulations had a f1 below 0.005,

corresponding to a parameter region where the SSV and SDN

models are very similar. The first and second row of numbers

below the figure denote the number of simulations simulated

under the SSV and SDN model, respectively.

(EPS)

Table S1 Relative Error for different numbers of simulations

and acceptance rates. In this table, we give the relative error of the

mean and the false negative rate of the model choice for 1000 data

sets randomly simulated under the SSV model with varying

number of simulation nSim and proportion of accepted simula-

tions d. FN = False negative rate in model choice. Chr:

chromosome, pop: population we analyzed. All positions given

are on the hg19 build of the human genome.

(DOCX)

Table S2 Details of genes and neutral regions analyzed in this

study.

(DOCX)
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