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Abstract

With the goal of building a model of the HVC nucleus in the avian song system, we discuss in 

detail a model of HVCRA projection neurons comprised of a somatic compartment with fast Na+ 

and K+ currents and a dendritic compartment with slower Ca2+ dynamics. We show this model 

qualitatively exhibits many observed electrophysiological behaviors. We then show in numerical 

procedures how one can design and analyze feasible laboratory experiments that allow the 

estimation of all of the many parameters and unmeasured dynamical variables, given observations 

of the somatic voltage Vs(t) alone. A key to this procedure is to initially estimate the slow 

dynamics associated with Ca, blocking the fast Na and K variations, and then with the Ca 

parameters fixed estimate the fast Na and K dynamics. This separation of time scales provides a 

numerically robust method for completing the full neuron model, and the efficacy of the method is 

tested by prediction when observations are complete. The simulation provides a framework for the 

slice preparation experiments and illustrates the use of data assimilation methods for the design of 

those experiments.

Keywords

Data assimilation; Parameter estimation; Dynamical systems; Spiking neuron models; Neuronal 
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1 Introduction

Biological neural circuits comprise collections of cells with distinct anatomical features 

interwoven via synaptic connections [1,2]. To build biophysically realistic models of 
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functional networks, one requires knowledge of individual ion channel responses and 

intracellular processes contributing to postsynaptic behavior. To then reliably place these 

nodes into a functional network, one must then establish the connectivity among different 

classes of neurons.

This paper and its companions are directed toward the construction of the network of the 

HVC nucleus in the song production pathway of zebra finch songbirds. Male zebra finches 

express a short, stereotyped song motif throughout their adult lifetime, following a several 

month sensorimotor period of learning and perfecting the song as juveniles [3]. The firing 

patterns of the neurons in the song production circuit are invariant through repeated 

renditions of this song [4]. Within this microcircuit, neurons which project from HVC to the 

robust nucleus of the arcopallium (RA), HVCRA neurons, exhibit short bursts at most once 

during a motif [3].

Here, we investigate the following:

• A model for HVCRA neurons that reproduces observed behavior and

• An experimentally realizable protocol for estimating and predicting the 

parameters and unmeasurable states of the model, utilizing improved methods of 

statistical data assimilation [5].

The data assimilation procedure is an estimation and validation method for unknown 

parameters and unobserved state variables in a physical model. It formulates the statistical 

problem as a high-dimensional path integral and has been explored both in its exact and 

approximate form on chaotic and neural models [6–13]. Here, we show that using simulated 

data one can accurately estimate the parameters and forward predict all states, measured and 

unmeasured, in an HVCRA neuron model using this procedure. Importantly, this procedure 

significantly expands previous work in parameter and state estimation in that we are able to 

determine the time course of several unobservable variables, as well as the precise value of 

dozens of parameters that enter the dynamical equations nonlinearly, including parameters 

describing the gating kinetics [14–16].

We begin with a discussion of the qualitative features of the model two-compartment 

neuron, in which a somatic compartment houses fast Na and K spikes, while the dendritic 

compartment contains slower Ca dynamics, illustrating how this model reproduces many 

observed features of HVCRA neurons. We then show that successful estimation of all 

unknown variables and parameters may be carried out to excellent accuracy via the proposed 

data assimilation protocol. Lastly, we discuss the role of model errors, model degeneracies, 

and applicability to data from HVCRA neurons in slice preparations.

In this work, we do not incorporate real data; rather, we perform numerical simulations 

known as twin experiments. In these simulations, we create a set of time series for each 

model variable xa(t); a = 1, 2, …, D by numerically integrating the model equations. We then 

add noise to a small subset of these time traces; this constitutes the sparse “data” one 

normally receives from neurophysiologists. These “data,” along with the model equations, 

are then incorporated into the assimilation procedure from which an estimate of all unknown 

parameters and all state variables is obtained.
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Twin experiments serve as a stress test for the data assimilation procedure: we know the 

actual parameter values and state variable time courses and so can compare those known 

values with the estimations. They are particularly valuable to neurophysiologists in that they 

inform the design of laboratory experiments by determining which stimulus waveforms and 

how many observations are required to estimate experimentally unmeasured model states 

and parameters.

This paper has companions. One will discuss the biophysics and data assimilation for 

models of HVC interneurons. Much less is known about the electrophysiology of these HVC 

components, yet we know they play a key role in the functioning of HVC [17,18], so we will 

devote some time to their structure and how laboratory experiments could uncover that. The 

broader goal is to incorporate what knowledge we have of the individual neurons in HVC to 

propose and test models of their connectivity in the functional HVC circuit.

2 Methods

2.1 HVCRA neuron model

We model the HVCRA neuron as a Hodgkin–Huxley (HH) neuron with appropriate currents:

Cm
dV (t)

dt = ∑Iion(t) + ∑Isyn(t) + ∑Iinjected(t) (1)

where V(t) is the membrane voltage, Cm is the membrane capacitance, Isyn(t) are the 

synaptic currents, Iion(t) are intrinsic ionic currents, and Iinjected(t) is a specified external 

stimulus. The ionic currents have the familiar HH form Iion(t) = gimi (t)khi (t)l (Ei −V(t)). Ei 

is the reversal potential for the channel, gi is the maximal conductance of the channel, mi (t) 
and hi (t) are gating variables that describe the opening and closing of the ionic channel 

based on the membrane voltage, and k and l are integers. As we discuss isolated cells, Isyn(t) 
= 0.

The nonlinear voltage dependence of ionic channels in HH neurons can produce a rich 

variety of spiking behavior, including spike rate adaptations, spike rebounds, bursting, and 

broad depolarizations in response to simple synaptic or injected currents [19–21]. Such 

behaviors can be intrinsic to the neuron, rather than arising through complex connectivity 

within the network. This permits stereotypy and robustness of neuron response, particularly 

in the presence of noise and network variability across populations within the same species. 

HVCRA neurons in particular are known to exhibit sparse, short bursts during vocalization 

[3,22]. One could envision patterns of synaptic connections that would produce sparse bursts 

as are observed experimentally, but this behavior is far more robust to changes in synaptic 

strengths and connective variability when the bursts are produced instead by specific 

combinations of ionic channels in the neurons themselves.

Following experimental evidence and previous modeling efforts [8,23–25], our model 

contains HH K+ and Na+ currents that produce fast spiking in response to injected or 

synaptic currents and a slow, calcium-gated channel responsible for spike termination. The 

latter is represented by a potassium channel activated by increased intracellular calcium 

concentrations, IK/Ca, with the concentration itself driven by the opening of an L-type 
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voltage-gated high-threshold calcium channel, ICa−L, and decreased by a slow decay back to 

a background concentration. Though pharmalogical data point to the possible existence of 

other channels in HVCRA neurons, such as T-type Ca, A-, and Na-dependent K currents, 

among others [25–27], we begin with this subset which appears in the work reported below 

to be largely responsible for the defining long depolarizations that eventually lead to burst 

excitability, as well as for the short bursts themselves [23,24].

Our model has somatic and dendritic compartments, connected ohmically, to enhance the 

robustness and stereotypy of the bursts in response to injected currents amplitudes and 

waveforms [23,24]. ICa−L is given by a Goldman–Hodgkin–Katz form, appropriate for ions 

with highly disparate extracellular and intracellular concentrations [1,19]. As it appears that 

most Ca2+ and Ca-gated channels are located in the dendritic tree [28], we locate the Ca-L 

and K/Ca currents in the dendritic compartment and the usual Na and K currents in the 

soma.

The dynamical equations defining this model have the following form:

Somatic compartment:

Cm
dV s(t)

dt = gL EL − V s(t)

+gNam(t)3ℎ(t) ENa − V s(t)
+gKn(t)4 EK − V s(t)
+gSD V d(t) − V s(t) + Iinj, s(t)

(2)

Dendritic compartment:

Cm
dV d(t)

dt = ICa−L(t) + IK/Ca(t)
+ gSD V s(t) − V d(t) + Iinj, d(t)

(3)

Dendritic Ca dynamics:

d[Ca](t)
dt = ϕICa−L(t) + C0 − [Ca](t)

τCa
(4)

Gating variables:

di(t)
dt = i∞(V (t)) − i(t)

τi(V (t)) (5)

Here, i (t) is any one of the gating variables {n(t), m(t), h(t), r(t)}, Vs(t) is the membrane 

voltage of the somatic compartment, Vd(t) is the membrane voltage of the dendritic 

compartment, and we have defined the following quantities:
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i∞(V (t)) = 1
2 1 + tanh V (t) − θi

2σi

τi(V (t)) = τi0 + τi1 1 − tanh2 V (t) − θτ, i
2στ, i

+ τi2
2 1 + tanh V (t) − θτ, i

2στ, i
ICa−L(t) = gCa−Lr(t)2ΦGHK(t)

IK/Ca(t) = gK/Ca
[Ca](t)η

[Ca](t)η + ks
η EK − V d(t)

ΦGHK(t) = V d(t) [Ca]exte−V d(t)/V T − [Ca](t)
e−V d(t)/V T − 1

(6)

The specific form of the time constant of gating functions, τ(V), reflects the combination of 

previously used functional forms found in the literature [7,23–25]. As we place the Na and 

K currents in the soma, i∞(V(t)) = i∞(Vs(t)) and τi(V(t)) = τi(Vs(t)) for i = {n(t), m(t), h(t)}, 

while the calcium dynamics is placed in the dendrite, whereby i∞(V(t)) = i∞(Vd(t)) and 

τi(V(t)) = τi(Vd(t)) for i = {r(t)}. Finally, we note that the behavior of the neuron appears to 

be relatively insensitive to the values of τi1, τi2, θτ,i, and στ,i.

2.2 Path integral methods of data assimilation

2.2.1 General procedure

The term “data assimilation” arises in the geophysical literature and refers to analytical and 

numerical procedures in which information in measurements is transferred to model 

dynamical equations selected to describe the processes producing the data. The goal of 

assimilating the data is to estimate the fixed parameters of the model and the time course of 

unmeasured state variables.

The difficulty of data assimilation arises not only from the possible complexity and high 

dimensionality of the system, nor just from inherent noise in the measurements, but also 

from the sparsity of actual observations. This sparsity is associated with physical limitations 

in performing the experiments themselves. In a neuronal system, for example, direct 

measurement of the time course of the gating variables and most ionic concentrations is not 

now possible. This leaves the subset of measurable state variables at only one out of several, 

namely the membrane voltage at the soma. The unobserved state variables are coupled to the 

measured variables through the model equations and may therefore be ascertained from the 

data. Nevertheless, the limitations of available numerical methods, paucity of measured 

components, and possible degeneracies of the system often render accurate predictions 

formidable.

We describe the problem in the following manner. The data presented to the model in 

response to a known external stimulus consist of noisy measurements made at times {t0, t1, 

…, tm} within a time period known as the estimation window, [t0, tm]. We seek to determine 

both the model state variables at the end of the estimation window x(tm) and the unknown 

model parameters p. This transfer of information from data to the model is the data 

assimilation procedure.
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Incorporating the estimated p into the model and beginning at the estimated state of the 

model at tm, we predict the response of the system for times t > tm by integrating the 

dynamical equations from that point onward or, when model errors are accounted for, 

projecting forward in time a probability distribution for the model state.

Data assimilation often involves at some level the minimization of a cost function, 

quantifying the deviation of the model output from the observed data in some estimation 

window. In many cases, once this optimization procedure is carried out, it is found that the 

trajectory of the measured variables coincides quite well with the data within in this window. 

However, the quality of the estimation of parameters and unobserved state variables cannot 

be ascertained without further tests; the true test of the assimilation procedure is comparison 

of the predictions of the state variables for t > tm. It is often found that excellent estimations 

lead to unsatisfactory predictions of the measured states. In all estimations carried out in the 

present work, we base the validity of our estimation entirely on comparisons of the 

corresponding predictions.

Here, we define our problem as a path integral realization of a statistical data assimilation 

procedure [5]. It can be shown that the conditional probability of the final state x(tm) at the 

end of a measurement window, conditioned on the observations Y = {y(t0) … y(tn) … y(tm)} 

within that window, equals an integral of the conditional probability P(X|Y) = exp[−A0(X, 

Y)] over intermediate states Xm = {x(t0) … x(tn) … x(tm)} [5]:

P x tm ∣ Y = ∫ dxexp −A0(x, Y)
A0(x, Y) = − ∑

n
log P Y tn ∣ xn, Yn − 1

−∑
n

log P x tn + 1 ∣ x tn
−log P x t0

(7)

The conditional probabilities incorporate the measurement uncertainty and the model 

dynamics, the latter of which is expressed through the state- and parameter-dependent 

discrete time maps (the discretized form of the dynamical equations),

xa tn + 1 = fa x tn , p (8)

Due to the analogy of this path integral formulation to that in Lagrangian dynamics, A0(X) 

is referred to as the “action.” If the model errors and measurement noise are Gaussian, 

A0(X) assumes a simple form [5]:

A0(x) = ∑
n = 0

m Rm tn
2 ∑

l = 1

L
xl tn − yl tn 2

+ ∑
n = 0

m − 1
∑

a = 1

D Rf(a)
2 xa tn + 1 − fa x tn , p 2

(9)
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Here, Rm and R f are the inverse variance of the measurement errors and model errors, 

respectively. L is the number of measured variables; D is the number of state variables; and 

the number of time points at which observations are made is m +1. The term − log[P(x(t0))] 

reflects prior knowledge of the state of the system at the onset of the estimation window. 

However, in a practical sense we often have no information about the distribution of the state 

variables when measurements begin and therefore represent this term by a uniform 

distribution over the model dynamical range. This presents us with a constant in the action 

which can be ignored [5].

Previous work has utilized a Metropolis–Hastings Monte Carlo (MHMC) method for 

evaluating the path integral and has been successful in various models with acceptable 

computational efficiency [7]. But while the MHMC method has the advantage that it can be 

implemented computationally in a parallel architecture, evaluating the full path integral can 

prove a formidable numerical challenge for most physically practical problems. In the spirit 

of Lagrangian dynamics and perturbative field theory, one may more systematically 

approach the problem by expanding around stationary paths, that is, utilizing Laplace’s 

method [29,30]. One may then work to higher orders in this expansion to the accuracy 

desired.

The computational difficulty of the problem is thus shifted to one of nonlinear optimization

—to finding the minima of A0(X) [5]. The form of the action given in Eq. (9) is identical to 

the cost function used in optimization processes known widely in the geophysics community 

as “Weak 4DVar,” as the model constraints are not enforced strictly, but in proportion to the 

magnitude of R f. This indicates that the 4DVar approach is in fact an approximation to the 

path integral formulation of the statistical problem, to which higher-order corrections can be 

systematically calculated [5].

2.2.2 Annealing in a variational approximation of the path integral

The fact that the dynamical equations of biological neuron models are highly nonlinear 

implies that the action can be nonconvex, exhibiting many local minima. In Laplace’s 

approximation, the global minimum is the most relevant, contributing most strongly to the 

path integral; however, it is difficult to both detect such a minimum and prove it is the 

lowest. Here, we will employ an extension to Laplace’s approximation to the data 

assimilation path integral, incorporating an iterative annealing-like procedure in which R f is 

not held fixed, but changed successively. This method has been shown to be effective in state 

and parameter estimation in archetypal chaotic models such as the Lorenz96 model [12] as 

well as in simple neuron models. Here, the nonlinear optimization is first carried out for a 

relatively small (possibly zero) value of R f, R f 0. As R f 0 is small, the model constraints at 

the first step of the annealing procedure are enforced weakly if at all. The set of all solutions 

is thus quite degenerate, consisting of all paths whose measured components match the data 

and whose unmeasured components are unrestricted.

The result of the optimization is then used as the initial guess for a subsequent optimization 

of the same A0, but with R f 0 increased by some factor, αβ; α > 1. This procedure is then 

repeated for a number of steps, the (m + 1) · D-dimensional action surface changing as the 

model equations is more heavily enforced with increasing β. If several of these procedures 

Kadakia et al. Page 7

Biol Cybern. Author manuscript; available in PMC 2021 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



are carried out in parallel, then as β is increased, the degenerate surface for R f ≈ 0 splits into 

various local minima that may or may not individually coincide with the lowest minimum 

(see Fig. 1).

The advantages of this annealing procedure are discussed in detail elsewhere [12]; here, we 

note only that (a) the procedure confronts the problem of ill-conditioning of the Hessian 

provided by strong model constraints, i.e., when R f is large, and (b) the existence of a 

consistent lowest minimum of the action, and therefore the consistency of the model with 

the data, can be checked by comparing the limiting action value with [12]:

A0 x0 = Rmσ2

2 L(m + 1), (10)

where σ2 is the variance of the measurement noise. This value is indicated by the horizontal 

line in Fig. 1. A comparison of this value with those in the action level plots at high β readily 

allows identification of incongruities between the model equations and the measured data.

In our work, optimization was performed using the interior-point algorithm provided by the 

open source software IPOPT [31], utilizing the ma57 linear solver library, on a standard 

desktop computer. The dynamical equations were discretized in the action using a Runge–

Kutta fourth-order approximation. Data were sampled at 0.02 ms, the same as the timestep 

of the discretization of the model, for 600 ms, or 30,001 timepoints. Hard bounds on the 

parameters and state variables during the optimization must also be supplied to IPOPT; the 

bounds for the voltages are between −120 and 50 mV, intracellular calcium concentration 

between 0 and 10.0 μM, and the gating variables between 0 and 1.

2.2.3 Twin experiments in data assimilation

Due to the difficulties and complexities involved in successful data assimilation of high-

dimensional, chaotic systems, it is often instructive to perform “twin experiments” before 

handling actual data. In such simulations, “data” are generated from the model equations 

themselves [5]. A subset of these solutions to the model is then chosen, and noise is added to 

them to act as the “measured data” to be used in the action. Since the data are generated by 

simulation, rather than extracted from experiments, the true trajectories of both measured 

and unmeasured variables are already known. One can unambiguously test the performance 

of the data assimilation procedure by comparing estimations and predictions of all variables 

and parameters. While twin experiments do not provide incontrovertible proof that data 

assimilation will be successful for the given combination of model equations and actual 

measured data, they nevertheless give a strong indication that the data set used in the 

assimilation is sufficiently complete to accurately estimate the unknown states and 

parameters: this is the central question of data assimilation.

Traditional currents such as steps, saws, and pulses are unable to adequately sample the full 

phase space of the system. As such, we use complex currents to generate the “data” used in 

the twin experiments. In particular, we use a somatically injected current whose waveform is 

generated from a combination of pseudo-noisy uniform sampling and the output of the 

Lorenz63 system in its chaotic regime (Fig. 2). Following anticipated experimental 
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limitations, we treat soma membrane voltage as the only measured variable. Therefore, this 

voltage trajectory, to which Gaussian noise is added at each time point, is the only 

measurement presented to the action. The assimilation routine is then carried out, and the 

results of the estimated parameters and unobserved states are compared to the true 

trajectories determined from the forward integration of the known model.

3 Results

3.1 Qualitative behavior of HVCRA model

With a particular choice of parameters, of which one example set is shown in Table 1, the 

proposed model reproduces many qualitative features of HVCRA neurons uncovered by 

experiment. The most conspicuous feature of the HVCRA neurons is the sparse, stereotyped 

bursting they display during vocalization and sleep [3]. These bursts themselves are generic, 

with a relatively small variance in length and number of spikes per burst. We reproduce such 

bursts in Fig. 3, in which we simulate the response of the neuron with respect to pseudo-

noisy dendritic currents. The burst waveforms are largely insensitive to the temporal 

resolution and magnitude of this noisy current.

Bursting can be understood as arising from the interplay of fast and slow currents [21]. The 

fast Na and K currents in the somatic compartment produce the spikes, and the slow Ca and 

Ca/K currents in the dendrite modulate the behavior of the soma periodically from spiking to 

quiescence. Bursting, as opposed to tonic spiking, occurs because the slow Ca concentration 

modulates the system slowly between spiking and resting. In particular, at the onset of 

bursting, injected dendritic currents open calcium channels, eliciting a dendritic voltage 

spike. As the dendrite voltage is high, its coupling via gSD therefore effects fast spiking in 

the soma: this is the burst. The spiking then terminates because the now raised [Ca] 

concentration opens the outward K/Ca current, now driving the dendritic voltage back to 

baseline. The key point is that slowly moving calcium takes time to leave the cell, so while 

the dendritic voltage has been terminated, the K/Ca channel is not yet fully closed. This 

suppresses somatic spiking for some time after the burst. Only when [Ca] has returned to a 

sufficiently low level does this channel close, then allowing the process to repeat.

Bursting is thus caused by appropriate combinations of the parameters in the calcium 

current, the K/Ca current, and the calcium dynamics. In fact, as we will see later, this 

combination of parameters may not be unique.

Next, we investigated the effect of calcium channel changes. It has been reported that 

calcium channel enhancers and blockers can lead to changes in burst incidence during 

sleeping; in particular, the presence of antagonists causes lower burst incidence and longer 

interburst intervals, while the presence of agonists brings about the opposite effect [24]. We 

simulate this by comparing the somatic voltage trace again in response to the same noisy 

dendritic currents, with gCa−L is varied. As shown in Fig. 4, as gCa−L is decreased, calcium-

mediated depolarizing events are less likely to bring about bursts, resulting in longer 

interburst intervals.
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It was further reported that current injection into the soma (as opposed to dendritic injections 

arising from synaptic currents) cannot produce all-or-none bursting [24], a feature we next 

investigated in our model. Step currents of increasing magnitude evoke progressively higher 

frequency somatic spiking, failing to elicit dendritic calcium spikes that lead to somatic 

bursts (Fig. 5). However, when the gCa−L is increased—simulating the presence of a calcium 

agonist—dendritic calcium spikes and their accompanying all-or-none somatic bursts are 

evoked, again in line with experimental results [24]. This is shown in Fig. 6.

Our model thus reproduces a large variety of qualitative features for this particular choice of 

parameters. We stress that this is no indication that these parameters are in any way correct 

for HVCRA neurons in the intact biological network or individual neurons in vitro. On the 

contrary, the main point is that the parameters will instead be determined by data 

assimilation. We only strive to demonstrate the plausibility of the model in that some chosen 

set of parameters qualitatively reproduce experimental findings.

3.2 Data assimilation in a reduced model of HVCRA neurons

We have found that the annealing data assimilation methods developed above do not 

correctly estimate all of the parameters and unmeasured state variables in the HVCRA model 

when required to do so all at the same time. We attribute this to the difference in time scales 

of the fast spiking processes and the slower Ca dynamics. As such, we propose an alternate, 

feasible experimental protocol which allows the separation of these fast and slow processes. 

This is described in the following manner.

One can envision the two-compartment model as containing fast spiking currents, K and Na, 

periodically modulated on a slower scale by the Ca-dependent K/Ca current. The time 

constant of intracellular Ca relaxation is likely between 15 and 50ms, three to ten times the 

spiking time in the soma. If we decouple the neuron into fast and slow terms by setting the 

Na and K conductances to zero, effectively shutting off the fast currents, it may be possible 

in the nonlinear optimization routine to estimate the parameters governing the slow variation 

alone. Then, setting these parameters for the slow variation (the Ca dynamics) fixed in the 

full model, the remaining parameters governing the fast variables can be estimated through a 

second optimization.

The data assimilation is thus carried out with a pair of incremental steps, each of reduced 

dimensionality. Experimentally, this two-step procedure can be realized by measuring the 

soma voltage trace of HVCRA neurons in vitro, in response to a user-defined somatically 

injected current, and then repeating the same measurement but now in the presence of Na 

and K channel blockers. These two data sets are then used in succession to determine first 

the slow parameters and then the fast ones.

To carry out the first step of this procedure, we generate data using the parameters listed in 

Table 1, with gNa and gK set to zero, using the injected somatic current shown in Fig. 2. 

Since n(t), m(t), and h(t) are therefore decoupled from the system, they will not be 

considered, leaving one measured variable, Vs(t), and three unmeasured state variables, 

Vd(t), r(t), and [Ca](t). We add the caveat that we must hold C0 fixed for the assimilation 

procedure to succeed. We stress that this does not imply that experimentally inaccessible 
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information such as intracellular background [Ca] must be known. In fact, as will be 

illustrated below, even if C0 is held at some incorrect value, the optimization succeeds. As 

will be explained later, we attribute this to a partial degeneracy of the system and in practice 

will pose no negative ramifications for the data assimilation procedure.

The generated data to be used in the data assimilation twin experiment (true voltage plus 

added Gaussian noise) are shown in Fig. 7; the signal-to-noise ratio of the data is about 30 

dB. The true path, estimation and prediction for the measured variable and three unmeasured 

variables are shown in Fig. 8, and the corresponding action level plot is shown in Fig. 9. The 

true and estimated parameters, along with the search bounds for the nonlinear optimization, 

are listed in Table 2.

As is verified by the predictions of both unmeasured and measured state variables, the 

parameters are estimated to excellent accuracy. This is true despite the relatively lax bounds 

on the parameter search space, reflecting a relatively agnostic prior. We therefore expect the 

procedure to be robust to actual data, in which parameters such as conductances may indeed 

vary over several orders of magnitude.

We note that a few of the parameters were estimated incorrectly, despite the accurate 

predictions. This indicates that these parameters are degenerate, that is, different values may 

result in similar predicted trajectories. In particular, gCa−L and Caext are far from their actual 

values, but their product, which appears as the dominant term in the calcium current, is still 

the same (2500×.06 = 1000×.15). The same situation appears with ks and gCa/K, which 

appear only in the products 
ks2

ks2 + [Ca](t)2
gCa/K. Thus, compensating shifts in these parameters 

can produce the same behavior to high precision. This implies that it may be difficult or 

impossible to determine the individual parameters exactly in practice.

The requirement that C0 be fixed to its correct value may be relaxed. For example, fixing 

both C0 and Caext at the incorrect values of 0.285 and 1000 μM, respectively, again results in 

excellent predictions, as shown in Fig. 10. Only [Ca](t) results a qualitatively similar but 

shifted trace, due to the lowered background concentration. The estimated parameter values 

are excellent, with discrepancies only in gCa−L and ks for the reasons indicated above, and in 

a reduced ϕ value to balance the smaller [Ca] decay term 
C0
τCa

 in the [Ca] dynamics (Table 3). 

As in the previous case, many but not all of the initial runs achieve the global minimum. 

This is shown in Fig. 9.

3.3 Data assimilation in an HVCRA neuron, using estimated dendritic parameters

We now illustrate how the estimates gathered from the reduced model with no Na or K 

channels can be used in determining the parameters and states of the full HVCRA neuron. 

The parameter estimates from the reduced model are now set fixed in the dynamical 

equations of the full model. For more generality, we used the values in Table 3, with the 

erroneous values of C0 and Caext. The parameters gNa and gK are no longer held at zero, and 

there are six unmeasured state variables and one measured state variable. Action level plots 

for 50 runs are shown in Fig. 11, indicating that most of the runs have achieved the lowest 
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minimum. Parameter estimates corresponding to runs that found the lowest minimum are 

listed in Table 4, and the corresponding estimations and predictions are shown in Fig. 12. 

Most parameters are estimated to high accuracy, and the predictions are excellent for all 

state variables.

4 Discussion

In developing the model of the HVCRA neuron, we strove for the preservation of some 

features such as dendritically stimulated bursting and burst excitability dependence upon Ca 

channel strength, while other features such as hyperpolarization sag and spike rate 

adaptation are neglected. When carrying out this procedure with actual HVCRA data, 

inspection of the action level plots can expose these model deficiencies. Missing or incorrect 

current terms in the model are indicated by action levels that rise precipitously with 

increasing β for large β values, rather than converging on a limiting value. This mark of 

inconsistency is one of the advantages of the annealing method in the stationary path 

approximation to the path integral.

It has been shown that a combination of pharmalogical manipulation and data assimilation 

can be used to determine a large number of parameters and unmeasurable state variables in 

HVCRA neurons, given somatic voltage measurements alone. One could certainly propose a 

similar experiment in which, instead, the L-type Ca channels are blocked and the fast, soma 

parameters are determined via data assimilation—these estimated parameters are then held 

fixed in the assimilation of the full model. We have found similarly excellent estimations and 

predictions for this twin experiment, not shown here, indicating that the success of this joint 

procedure is not specific to the particular combination of chemical manipulation and 

assimilation illustrated above.

In fact, this method could be further extended to a systematic study in which one probes, one 

by one, restricted subspaces of the full model by blocking many other ion channels. The 

accuracy of the estimates is highly dependent on the dimension of the state and parameter 

space and on the associated action surface manifold, and so, the data assimilation would 

likely be more successful in these restricted subspaces.

On this note, we stress that the twin experiments in this study are theoretical, and the actual 

success of these methods using real data is still being assessed. We anticipate that difficulties 

will arise. For one, chemical manipulants, while highly targeted, are not perfect; K and Na 

channel blockers, for example, can have nonnegligible effects on other currents such as leak 

and calcium channels. The ideal situation is one in which only a single measurement of the 

neuron, without chemical manipulation, is needed to determine all unknown parameters and 

unobserved states. Without more refined data assimilation techniques, the success of this 

procedure is uncertain, especially as the baseline model is extended to more added currents. 

Nevertheless, some methods may prove promising, such as the inclusion of time-delayed 

measurement terms in the action, a technique we are currently studying [11].

Currently, much experimental work is being done in utilizing two-photon calcium 

fluorescence measurements of HVC neurons [32,33]. These measurements could prove 
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enormously useful in state and parameter estimation, despite the fact that they are still 

qualitative in nature and do not reflect great precision in actual intracellular [Ca] 

concentrations. From the opposite viewpoint, this method could provide a quantitatively 

precise correspondence between measured soma voltage and absolute [Ca]; simultaneous 

recordings of voltage traces and fluorescence signals coupled with the assimilation 

procedure outlined here would permit a precise quantification of these signals in terms of 

absolute calcium concentrations. This map would make fluorescence measurements 

particularly useful for future data assimilation procedures, expanding the set of measurable 

variables to also include [Ca](t).

The possibility remains that the particular stimulus used in these estimations has failed to 

adequately probe the phase space of the full system and that the discrepancies in the 

parameter estimates shown in Table 3 (such as gNa) will manifest themselves in response to 

other stimuli. For example, predictions may degrade in the response of the neuron to 

dendritic rather than somatic currents. We test this proposal by stimulating the neuron with a 

noisy dendritic current; a comparison of the system with the true parameters versus the 

estimated parameters is shown in Fig. 13. The traces are identical, indicating that the 

discrepancy in the kinetics and conductances of the Na current may be the result of either 

degeneracy in the model description or relative model insensitivity to these parameter 

values, rather than an underlying failure in the data assimilation itself.

We also elucidate the apparent reproducibility of the voltage traces with respect to erroneous 

background calcium concentrations C0 and Caext by analysing the bifurcation diagram of the 

full model without Ca dynamics. In particular, we set d[Ca]
dt = 0 and then use [Ca] as a 

bifurcation parameter to probe the existence and character of limit cycles and fixed points as 
a function of [Ca]. The bifurcation diagram of the 2D projection onto the Vs-[Ca] plane is 

shown in the upper panel of Fig. 14, using the parameters in Table 2. For [Ca] between 0.8 

and 1.7 μM, the system is multiply stable: stable fixed points (red) coexist with stable limit 

cycles (green). There is also a large region in which unstable fixed points exist (blue).

To achieve bursting behavior, one needs calcium dynamics that modulates [Ca] periodically 

from below 0.8 μM, where the system only exhibits stable spiking, to above 1.7 μM, where 

the system exhibits only stable resting at Vs ≈ −80 mV. This will occur for specific 

combinations of the parameters dictating calcium dynamics: ϕ, gCa−L, gCa/K, τCa, ks, [Ca]ext, 

C0. One set of parameters which produces such behavior corresponds to the those chosen in 

this paper to produce the measured data.

Unsurprisingly, the bifurcation diagram using the estimated rather than actual parameters is 

nearly identical, but instead with the calcium concentration shifted (Fig. 14; lower panel). 

Identical behavior can be achieved by in this case modulating the [Ca] between about 0.5 

and 1.1—this is what is exhibited in the shifted [Ca](t) traces in Fig. 10 and Fig. 12. Thus, 

one can match the voltage traces to the model with the true parameters by compensating 

adjustments in the calcium dynamical parameters. This explains the discrepancies in the 

estimates of gCa−L and ks when [Ca]ext and C0 are fixed to erroneous values. The model is 

therefore highly degenerate in the subspace of these parameters, and fixing some of these at 

possibly incorrect values will cause the others to adjust accordingly to match the measured 
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voltage traces, with little error. Importantly, it is not crucial that the guesses are precisely 

correct, with the understanding that the calcium concentration trace cannot be presumed to 

be absolute. As one is typically interested in seeing the qualitative behavior of the calcium 

concentrations throughout neuronal stimulation, preserving this behavior—along with the 

quantitative precision of the voltage traces—is satisfactory.

Finally, we note that the signal-to-noise ratio of the voltage trace (about 30 dB) is chosen to 

reflect a typical in vitro membrane voltage recording. It is not intended as a lower limit of 

the acceptable SNR for the methods outlined here, and indeed, we have found similarly 

accurate results for noisier signals, 25 dB and lower. In general, the acceptable noise for 

precise estimations and predictions will be a sensitive function of the model being 

considered and so will vary from neuron to neuron. In addition, nonadditive non-Gaussian 

noise, arising from effects such as synaptic input currents, would complicate this procedure. 

The method presented here is intended largely for in vitro measurements in which synaptic 

currents can be effectively set to zero. Adapting our methods for in vivo recordings is an 

ongoing avenue of exploration.

Similarly, the length of necessary voltage data can be kept within the limitations of typical 

voltage recordings, at most a few seconds. Since the injected current is chosen precisely to 

densely explore the model phase space, one can always tune the injected current further to 

allow more adequate exploration of the phase space in less time if shorter recordings are 

desired.

5 Conclusion

We have outlined a general theoretical procedure to determine a large set of parameters and 

state variables in RA-projecting neurons in the HVC nucleus of the avian song system, using 

only a somatically injected current and a measurement of the soma membrane voltage. 

Neither dendritic currents, calcium concentrations, or any information of channel gating 

variables is needed, aside from an ansatz of their functional forms. We first proposed a 

baseline model of HVCRA neurons that reproduces a host of qualitative spiking features 

indicated by experiment, including the effects of calcium antagonists and agonists. We then 

used a variational approximation of path integral data assimilation, combined with a recently 

described iterative annealing procedure and some straightforward experimental 

modification, to show that 42 unknown parameters and six unmeasured states in the model 

can be accurately estimated, with considerably lax constraints on the ranges of the unknown 

parameters. Importantly, this work extends previous results in that it includes the estimation 

of parameters that enter the model nonlinearly, such as gating time constants and threshold 

voltages, and it accurately predicts the time trajectory of all relevant state variables. 

Furthermore, we show that when this procedure is presented with actual measured data, the 

structure of the action level plots can readily indicate whether or not the model is 

incomplete. This work is an important first step in a systematic procedure to determine the 

fine structure of neurons, both in zebra finch HVC and elsewhere, while respecting the often 

stringent limitations of experiments themselves.
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Fig. 1. 
An illustrative action level plot for the annealing method of statistical data assimilation. 

Many degenerate action levels at low β split as β is increased, indicating the removal of 

degeneracies of local minima. In this example, the lowest minimum is at log10(A0(X0) ≈) 

0.6, which is indicated by the heavy horizontal line. The calculation presented is for the full 

HVCRA model. It shows that the lowest action level does not split off substantially from the 

other levels and does not go to the consistent lowest minimum action level. This feature led 

us to seek a different protocol for estimating the fast and slow dynamical variables 

separately
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Fig. 2. 
Applied soma current waveform used in the data assimilation procedures is a combination of 

pseudo-noisy currents and the output of a chaotic model. The pseudo-noisy currents, for the 

time segment 0 ms ≤ t ≤ 200 ms, are created by uniformly sampling current values between 

−200 and 600 pA every 10 ms and linearly interpolating between those times. For 200 ms ≤ t 
≤ 600 ms, a waveform produced by the output of the chaotic Lorenz63 model is used as the 

stimulating current. The first 600 ms is used in the data assimilation routine to estimate the 

parameters and time courses of the state variables. The last 600 ms of stimulating current, 

also from the Lorenz63 model, is then used within the prediction window where the validity 

and accuracy of the parameter and state estimation are ascertained
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Fig. 3. 
Two-compartment HVCRA model reproduces stereotyped bursts in response to pseudo-noisy 

dendritic currents. The currents are created by uniformly sampling values between −200 and 

600 pA every 5 ms, and linearly interpolating between (upper graph). Varying the temporal 

resolution of the noise from 5 to 10, 20, or 40 ms changes neither the average duration of the 

burst nor the average spike frequency within the burst (lower graph)
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Fig. 4. 
Effect of changing the strength of the ICa−L currents on the burst incidence. As gCa−L is 

scaled from gCa−L = 0.24 nS (40% of its original value) to gCa−L = 0.96 nS (160% of its 

original value), somatic burst incidence increases, and interburst intervals decreases, in 

accord with experimental observations [24]. Despite the increased burst incidence, the 

stereotypy of the bursts is preserved
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Fig. 5. 
Increased injected current into the soma fails to elicit calcium spikes (left column). As the 

magnitude of a 20 ms step current pulse is increased from 150 pA (top graph) to 350 pA 

(bottom graph), the number of spikes increases steadily, rather than in an all-or-none fashion 

evoked by dendritic current stimulation
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Fig. 6. 
In the presence of calcium agonists increased injected current into the soma can elicit 

bursting in the soma. As the magnitude of a 20ms step current pulse is increased from 150 

(top graph) to 350 pA (bottom graph), an all-or-none burst, coincident with a calcium spike, 

is invoked with sufficient current injection. This is in accord with experiment [24]
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Fig. 7. 
Noisy data used in the data assimilation twin experiment
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Fig. 8. 
Estimation and prediction for the reduced model, with C0 fixed at its correct value of 0.48. 

The estimated parameters are shown in Table 2
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Fig. 9. 
Action level plots for the dendrite only. Top panel. C0 fixed at its correct value. Bottom 
panel. Both C0 and [Ca]ext fixed at incorrect values. The horizontal line shows the action 

level of the lowest minimum of the action, which is achieved by a subset of the runs
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Fig. 10. 
Estimation and prediction for the reduced model, with parameters listed in Table 3. Two 

parameters are fixed at incorrect values but the same order of magnitude as the correct 

values. The predictions are excellent for all variables, except [Ca](t), which is qualitatively 

correct but shifted lower, due to the erroneous background concentration. Despite this, the 

predictions for the other variables (voltages and gating variables) are excellent
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Fig. 11. 
Action levels from the annealing process when dendritic parameters are fixed to the values 

listed in Table 3, and the remaining parameters of the full model are estimated
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Fig. 12. 
Estimation and prediction for the full model, with estimated parameters listed in Table 4 and 

the remaining parameters (the fast variables in the soma) fixed according to the estimations 

given in Table 3. The predictions are excellent for the five state variables shown. Estimations 

and predictions for states not shown (r(t) and m(t)) are similarly accurate
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Fig. 13. 
Prediction for the full model with a noisy dendritic current injection (top plot). Excellent 

predictions arise for all state variables, of which only the voltages and calcium are shown 

here. Since C0 was held at an erroneous lower value, [Ca](t) is lower in the prediction, but 

still exhibits bursts. There is excellent agreement in the voltage traces
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Fig. 14. 
Upper panel The parameters of the true trajectory, with calcium dynamics shut off, produce 

a bifurcation diagram in the Vs–[Ca] plane that exhibits regimes of stable (red) and unstable 

(blue) fixed points, as well as stable limit cycles, whose voltage bounds are indicated by the 

green lines. Lower panel The same bifurcation diagram, again with calcium dynamics turned 

off, but instead using the estimated parameters rather than the true ones. The diagram is 

identical to the first, aside from an overall horizontal shift, indicating that identical bursting 

behavior can result in different parameter regimes, compensated by differences in [Ca](t)
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Table 1

Parameter values for the two-compartment model with tuned calcium dynamics and intercompartment 

coupling

gK 120 nS gL 3 nS

gNa 1050 nS gSD 5 nS

gCa−L 0.06 nS/μM gCa/K 240 nS

EK −90 mV EL −80 mV

ENa 55 mV VT 13.5 mV

θn −35 mV σn 10 mV

στ,n −15 mV τn0 .1 ms

θτ,n −27 mV τn2 .5 ms

θm −30 mV σm 9.5 mV

στ,m 0 mV τm0 .01 ms

θτ,m 0 mV τm2 0 ms

θh −45 mV σh −7 mV

θτ,h −40.5 mV τh0 .1 ms

στ,h −6 mV τh2 .75 ms

θr −40 mV σr 10 mV

στ,r 0 mV τr0 1 ms

θτ,r 0 mV τr2 0 ms

φ 8.67e-5 μM/pA/ms τCa 33 ms

η 2 — C0 0.48 μM

Cm 21 pF ks 3.5 μM

[Ca]ext 2500 μM

Parameters listed in Eqs. (2)–(6) which are not shown here are set to zero

Biol Cybern. Author manuscript; available in PMC 2021 May 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kadakia et al. Page 32

Table 2

Estimated and true parameters, along with parameter bounds of the optimization, for the run with C0 fixed at 

0.48 and the Na and K channels shut off

Parameter Lower Upper Actual Estimated

EL −110 −70 −80 −80.08

EK −100 −75 −90 −89.91

gL 0.1 10 3 3.03

gCa−L 0 10 0.06 0.1549

gCa/K 0 5000 240 250.35

gSD 1 50 5 4.96

ks 1 100 3.5 3.59

Cm 1 100 21 21.02

[Ca]ext 1000 10,000 2500 1000.0

φ 1e-5 1e-2 8.7e-5 8.73e-5

θr −50 −10 −40 −39.97

σr 5 25 10 10.00

θτ,r −50 −10 – −50.00

στ,r 5 25 – 5.00

τr0 0 1 1 1.000

τCa 20 50 33 32.53

τr1 0 1 0 0.0746

τr2 0 1 0 0.000

The parameters θτ,r and στ,r are not relevant since the coefficient for the terms that involve them (τr1 and τr2) is zero for the generated data; the 

data are insensitive to their value. For this reason, their “actual values” are blank, and it is not surprising that their estimated values lie at the 
parameter bounds. The parameter units are as follows: mV for all θi, σi, and Ei; ms for all τi; nS for gL, gCa/K, and gSD; μM/pA/ms for gCa−L; 

pF for Cm; μM for ks and [Ca]ext
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Table 3

Estimated and true parameters, along with the search bounds in the optimization procedure, for the reduced 

model

Parameter Lower Upper Actual Estimated

gL 0.1 10 3 3.03

gCa−L 0 10 0.06 0.155

EL −110 −70 −80 −80.10

ks 1 100 3.5 2.10

EK −100 −75 −90 −89.91

gSD 1 50 5 4.96

θr −50 −10 −40 −39.90

Cm 1 100 21 21.01

σr 5 25 10 10.00

τCa 20 50 33 33.13

θτ,r −50 −10 — −50.00

gCa/K 0 5000 240 242.51

στ,r 5 25 – 5.00

φ 1e-5 1e-2 8.7e-5 5.22e-5

τr0 0 1 1 .99

τr2 0 1 0 0.000

τr1 0 1 0 0.08

Here, C0 and Caext were held fixed at the incorrect values of 0.285 and 1000 μM, respectively. The units are the same as those of Table 2
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Table 4

Estimated and true parameters, along with the search bounds in the optimization procedure, in the full model

Parameter Lower Upper Actual Estimated

gK 0 5000 120 123.36

gNa 0 5000 1050 757.81

ENa 50 60 55 60.00

θm −50 −10 −30 −30.44

σm 6.25 16.67 9.5 9.68

θτ,m −40 −20 – −29.92

στ,m −50 −5 – −8.24

τm0 0 1 .01 7.23e-4

τm1 0 1 0 5.46e-3

τm2 0 1 0 0.000

θn −50 −10 −35 −34.28

σn 6.25 16.67 10 10.82

θτ,n −40 −20 −27 −32.41

στ,n −50 −5 −15 −12.41

τn0 0 1 0.1 0.104

τn1 0 1 0 0.100

τn2 0 1 0.5 0.42

θh −50 −10 −45 −43.43

σh −16.67 −6.25 −7 −7.05

θτ,h −50 −20 −40.5 −41.30

στ,h −50 −5 −6 −5.00

τh0 0 1 0.1 0.12

τh1 0 1 0 0.04

τh2 0 1 0.75 0.69

The parameters not listed here were fixed to the estimated values in the first assimilation step (Table 3), along with the C0 and Caext held fixed at 

the incorrect values of 0.285 and 1000. μM, respectively. The units for all τi are ms; all other parameters have units of mV
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