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An accurate  representation  of  solute-water  interactions  is  necessary  for  molecular  dynamics

simulations  of  biomolecules  that  reside  in  aqueous  environments.  Modern  force  fields  and

advanced  water  models  describe  solute-solute  and  water-water  interactions  reasonably

accurately, but have known shortcomings in describing solute-water interactions, demonstrated

by the large differences between calculated and experimental solvation free energies across a

range of  peptide  and drug chemistries.  In  this  work,  we introduce  a  method for  optimizing

solute-water van der Waals interactions to reproduce experimental solvation free energy data,

and apply  it  to  the  optimization of  a  fixed charge  force field (AMBER ff99SB/GAFF)  and

advanced water model (TIP4P-Ew).  We show that with these optimizations, the combination of

AMBER ff99SB/GAFF and TIP4P-Ew is able  to  reproduce  the  solvation  free energies of  a

variety of biologically-relevant  small  molecules to  within 1.0 kBT. We further validate  these

optimizations  by  examining  the  aggregation  propensities  of  dipeptide-water  solutions,  the

conformational  preferences  of  short  disordered  peptides,  and  the  native  state  stability  and

dynamics of a folded protein. 
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INTRODUCTION

Over the last three decades, molecular dynamics (MD) simulations have emerged as an important

tool for investigating most aspects of biomolecular structure and function, and can be used to

both  directly  calculate  experimental  observables  and  analyze  properties  that  are  otherwise

inaccessible to experiment.  Currently, MD simulations offer the ability to observe the behavior

of biomolecules at an atomistic level of detail over timescales ranging from femtoseconds to

microseconds, thereby contributing valuable insights into such diverse areas as protein folding

and stability, ligand binding, protein-protein and protein-nucleic acid interactions, and enzyme

catalysis.1–3

The  vast  majority  of  MD  simulation  studies  performed  to  date  have  used  classical

pairwise fixed-charge force fields.  Many of the fixed-charge force fields currently in use were

first  developed  more  than  15  years  ago,4–6 and  their  continued  refinements  have  yielded

simulation results that are in qualitative and sometimes quantitative agreement with a wide range

of reference data.7–13 However, continued improvements in both simulation methodologies and

computer  hardware  have  allowed  for  more  complete  sampling  to  reveal  discrepancies  in

backbone  conformational  preferences,14,15 side  chain  conformational  preferences,10,16 and

solvation free energies17–19 when compared to quantitative experimental data. While developing

more sophisticated electrostatic models is undoubtedly a necessary component for improving

empirical biomolecular force fields,19,20 several studies have suggested that more advanced fixed-

charge,  polarizable,  or  even  hybrid  electrostatic  models  are  insufficient  on  their  own  to

systematically remedy solvation free energies for small organic molecules whose chemistries are

representative of those found in larger biomolecules.19–22

Historically, the commonly used van der Waals parameters for the atom types of organic

molecules were derived by matching the densities and enthalpies of vaporization of various neat

liquids.4,6 However,  when these parameters are used to calculate the solvation free energy of

methane in  liquid water,  for  example,  they result  in  solvation  free energies  that  are  0.3-0.6

kcal/mol less favorable than experiment – a significant amount given that methane is such a

simple  molecule.19,20,23 Calculations  with  more  complex  small  molecules  (e.g.,  amides  or

alcohols)  demonstrate  even  larger  errors  on  the  order  of  1-2  kcal/mol.17–19,24 (One  notable

exception to this trend is the GROMOS 53A6 force field, which was optimized specifically to

reproduce solvation free energies at the expense of neat organic liquid properties.25) Summed



over an entire protein with hundreds of such moieties, it becomes apparent how these sorts of

errors could lead to the observed quantitative discrepancies. Although this was probably the best

strategy for parameterizing van der Waals interactions at a time when there was more limited

parameterization and validation data, newer experimental data collected on biomolecules in the

presence of aqueous solvent is now available with the potential to yield a significant quantitative

advance in a new generation fixed charge force field. Such an “alternative” philosophy of force

field parameterization appears to be gaining traction within the biophysical community.11–13,26,27

This study is part of a larger goal to create a next generation fixed-charge force field

based on an advanced water model that could remedy the quantitative disagreement between

simulations  and  experimental  data  (e.g.,  NMR  scalar  couplings  and  fractional  helicities,

solvation free energies, and high temperature unfolding data). Such a force field would be more

accurate in the simulation of stable biomolecular structure and dynamics in aqueous solution, and

more  broadly  capable  of  describing  unfolded  protein  ensembles  and intrinsically  disordered

peptides and proteins. Any improvements in quantitative prediction via simulation would serve

to enable a truly fruitful interplay between simulation and experiment.  Here we develop new

solute-water van der Waals interactions between the popular AMBER ff99SB protein force field9

and the robust TIP4P-Ew water model28 which shows excellent agreement with many reference

experimental data over a large range of temperatures and pressures.  We demonstrate that the

combination of AMBER ff99SB and TIP4P-Ew with these optimizations to  the  solute-water

interactions is able to reproduce the solvation free energies of a variety of biologically-relevant

small  molecules to within 1.0 kBT. We further validate  these optimizations by examining the

aggregation propensities of dipeptide-water solutions, the conformational preferences of short

disordered peptides, and the native state stability and dynamics of ubiquitin. 

METHODS

Charge derivation for small molecules

Semi-empirical Merck-Frosst  AM1-BCC partial atomic charges29,30 for all 47 small molecules

were obtained from the Supporting Information of Mobley et al.18  AMBER-compatible ab initio

partial  atomic charges  for these  molecules were derived by optimizing their  geometries and

calculating electrostatic potentials at the HF/6-31G* level of theory and then fitting charges to

these potentials using the RESP method,31 as implemented with R.E.D. Tools III-4.32  We have



included mol2 files with the HF/6-31G* charges in the Supporting Information.  All  ab initio

calculations were performed using GAMESS-US.33  

Dipole-dipole polarization cost calculations

Recent work by Swope et  al.  has demonstrated a  straightforward method for calculating the

energetic cost of polarizing (fixed) charge distributions from the gas phase to the condensed

phase.34 Due to  known deficiencies in representing higher  order  multipoles  with only atom-

centered partial charges,19 we approximate this cost using just the dipole-dipole polarization cost:

 
Wpol  Wpol

dd 
1

2

aq 
gas  T

 1  T aq 
gas  (1)

where   
gas is  the  gas  phase  dipole,   

aq is  the  aqueous  phase  dipole  (note  that  Eq.  (1)  is

applicable for any condensed phase system although this work focuses on the aqueous phase),

and   is the molecular dipole-dipole polarizability tensor.  Aqueous phase dipole moments were

computed directly from the AM1-BCC or HF/6-31G*-derived charge distributions. Gas phase

dipole  moments  and dipole-dipole  polarizability  tensors  were  computed from the  geometry-

optimized structures (described above) at the MP2/aug-cc-pV(T+d)Z level of theory.34

Solvation free energy calculations

Molecules were solvated in truncated octahedral boxes with approximately 500-800 TIP3P35 or

TIP4P-Ew water molecules (depending on the size of the molecule) using the tleap module of

AmberTools  1.4.   Solvation  free energies  were calculated by a  simulated decoupling of  the

molecules from solvent using thermodynamic integration with softcore potentials for both van

der  Waals  and electrostatic  interactions  as  implemented in  AMBER 11.36 Differences  in  the

potential  energies were calculated at  12   values,  spaced according to  a  Gaussian-Legendre

quadrature between 0 and 1, and integrated to find the solvation free energy. For each  value,

the system first underwent 1000 steps of conjugate gradient (CG) minimization. The system was

then equilibrated in the NVT ensemble for 50 ps at 298 K using a Langevin thermostat with a

coupling constant of 1.0 ps-1, followed by an equilibration in the NPT ensemble for 100 ps at 298

K at 1.0 bar with a Langevin thermostat coupling constant of 2.0 ps -1 and a Berendsen barostat

coupling constant of 2.0 ps-1.  Production runs in the NPT ensemble of 2 ns were then carried out



using  the  same  thermostat  and  barostat  settings.  All  simulations  utilized  periodic  boundary

conditions with a 9 Å non-bonded cutoff for direct-space non-bonded interactions. Long-range

electrostatics were calculated using particle mesh Ewald (PME) with default parameters for grid

spacing and spline interpolation, and an analytic correction was employed for the van der Waals

interactions beyond the cutoff. Dynamics were conducted with a 2 fs time step, and all bonds

involving hydrogen atoms were constrained with SHAKE.  Representative dU/d curves for

these calculations are shown in SI Figure 1 to verify that the number of  values was adequate.

Simulations of dipeptide solutions

Solutions of 1.5 M N-acetyl-glycine-methyl-amide (NAGMA or glycine dipeptide) and 1.0 M N-

acetyl-leucine-methyl-amide (NALMA or leucine dipeptide) were constructed by building cubic

simulation  boxes  with  48  or  32  dipeptide  molecules  solvated  by  1760  TIP4P-Ew  water

molecules.  Each system first underwent 1000 steps of CG minimization with harmonic restraints

(10.0 kcal mol-1
 Å-2) on the NAGMA or NALMA molecules, followed by another 1000 steps of

CG minimization with no restraints.  The system was then equilibrated in the NVT ensemble for

50 ps at 298 K using a Langevin thermostat with a coupling constant of 1.0 ps -1, followed by an

equilibration in the NPT ensemble for 200 ps at 298 K at 1.0 bar with a Langevin thermostat

coupling constant of 2.0 ps-1 and a Berendsen barostat coupling constant of 2.0 ps-1.  During these

two equilibation simulations, the NAGMA or NALMA molecules were harmonically restrained

with force constants of 10.0 and 2.0 kcal mol-1
 Å-2, respectively.  A final equilibration in the NPT

ensemble with no restraints was performed for 2 ns, followed by a production simulation of 60

ns using the same thermostat and barostat settings.  Snapshots were saved every 1 ps for radial

distribution function analysis.   The non-bonded interactions,  time step,  and SHAKE settings

were the same as the solvation free energy calculations previously described.

Simulations of short peptides

Four independent  150 ns MD simulations were performed of the Gly3 peptide in  TIP4P-Ew

water.  Similarly, two independent 50 ns replica exchange MD simulations were performed of the

Val3 and Ala5 peptides in TIP4P-Ew water.  For all three peptides, simulations were performed

using the optimized solute-water van der Waals parameters developed in this work. The exact

methodology for both types of simulations is described in our previous work regarding optimized



backbone dihedral angle potentials for AMBER ff99SB with TIP4P-Ew water.11  NMR scalar (or

J) couplings were then calculated from the simulation snapshots, and an overall 2 value for the

resulting conformational ensemble was determined using: 

 2 
1

N

J i sim
 J i ,exp t  2

 i
2

i1

N


(2)

where N is the number of J-coupling constants measured,  J i simis the ith calculated J coupling

constant averaged over all structures in the simulated ensemble,   Ji,expt is the  ith experimental  J

coupling constant, and i  is the uncertainty in J i sim, which we expect to be dominated by the

uncertainty in the Karplus parameters in addition to the inherent experimental uncertainty in Ji,expt

and sampling uncertainty in J i sim, which we neglect.15

Simulations of ubiquitin

A 100 ns MD simulation of the folded ubiquitin protein (PDB ID: 1UBQ) in TIP4P-Ew water

was  performed  using  the  optimized  solute-water  van  der  Waals  parameters.  The  exact

methodology for this simulation is described in our previous work.11 Similar simulations were

also  performed using a  10-12 potential  for backbone hydrogen bonds within the  protein,  as

described further in Results.

RESULTS

Parameterization approach 

We developed a training set and a validation set based on high quality experimental solvation

free  energies  of  47  small  molecules  that  incorporate  all  of  the  chemical  functionalities  of

standard  protein  side  chains  and  backbone  groups.  The  47  small  molecules  were  further

separated into 12 categories based on their functional groups.   Each category contained four

molecules with the exception of the imidazoles, for which we had experimental solvation free

energies for only three molecules. Two molecules from each category were chosen as the training

set for solute-water van der Waals (vdW) parameter optimization detailed below. Finally,  the

optimized  parameters  were  validated  by  calculating  the  solvation  free  energies  of  the  two



molecules  in  the  given  category  not  used  for  optimization  (one  molecule  in  the  case  of

imidazoles). 
While  we  would  ideally  optimize  all  of  the  vdW parameters  simultaneously,  this  is

currently beyond the capabilities of our computational resources. As such, we elected to optimize

the parameters in a step-wise fashion, beginning with the simplest organic molecules alkanes

(atom types HC and CT) and progressing to more complex molecules containing other moieties

(Figure  1).  Additionally,  given  limited  experimental  data,  whenever  two  atom  types  were

involved for a given chemical moiety (e.g., HC and CT for alkanes) we elected to use the same

optimization constants (see below) for both atom types.  Although in principle better agreement

should be achievable with unique constants for each atom type, our approach reduces the chance

of overfitting the parameters to the available experimental data and limits the total number of

new  parameters  introduced  into  the  force  field.  Moreover,  as  we  demonstrate  below,  this

approach is sufficient to achieve kBT accuracy in calculated solvation free energies.

Recently Baker et al. used an approximate thermodynamic cycle to derive optimal pair-

specific Lennard-Jones parameters for the CHARMM polarizable force field.21  In this work we

employ a similar methodology and briefly review the formalism used.  In the thermodynamic

cycle shown in Figure 2, the solvation free energy using a new set of van der Waals parameters,

Gsolv
new, can be related to the solvation free energy using the original parameters, Gsolv

orig , and the

changes in free energy associated with the change in parameters in both the gas and aqueous

phases,            and            , respectively.  As this is a closed thermodynamic cycle, the following

is true: 

(3)

Because the new van der Waals parameters apply only to solute-water interactions:

(4)

From the polarization cost and solvation free energy calculations described above, we have: 

(5)

where  Gsolv
MD(orig)is the solvation free energy calculated from MD simulation using the original

vdW parameters and          is the polarization cost. We can then estimate           by evaluating the

energies  of  MD trajectory  snapshots  using  the  new vdW parameters.  In  the  limit  of  small

Ggas
 Gaq



Gsolv
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  Gsolv
new  Gaq

  0
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orig  Gaq



Gsolv
orig  Gsolv

MD(orig)  Wpol

 

Wpol Gaq


Gaq


Gsolv
newGsolv

new



perturbations to the solute-water vdW parameters, this is a valid method of estimating          and

therefore           .  The primary benefit of this formalism is that it enables the estimate of          

for many different possible vdW parameters without having to run a costly solvation free energy

calculation for each one. The energy analysis used to calculate          (and therefore              ) 

requires roughly 1/1000th of the CPU time necessary for a solvation free energy calculation.

For each training set molecule, we first performed a solvation free energy calculation, as

well as MD of the solvated system, using the initial AMBER/GAFF vdW parameters for the

interactions between the solute atoms and the oxygen atom of TIP4P-Ew water. (It is important

to note that GAFF vdW parameters are identical to those of AMBER ff99SB for the atom types

found in proteins.  We will therefore refer to AMBER ff99SB and GAFF interchangeably in this

work when discussing our small molecule results.)  The AMBER force fields use a Lennard-

Jones potential to describe van der Waals interactions:
(6)

where the potential well depth,     , and excluded volume,     , are defined by the Lorentz-

Berthelot mixing rules:
(7)

We then introduced an optimization constant to these parameters:
(8)

where  the  superscripts  s and  Ow denote  the  solute  atom  and  TIP4P-EW  oxygen  atom,

respectively, and the subscript  n indicates the  nth iteration of the optimization process (starting

from n = 1).  We chose an initial set of values for the optimization constants, with c1
opt  varying

from 0.8-1.2 and d1
opt varying from 0.9-1.1, respectively, leading to a set of 25 c1

opt,d1
opt  pairs –

or 25 different solute-water vdW interactions – “centered on” the original solute-water vdW

parameters.  We then conducted a free energy analysis of the MD trajectory snapshots of the

solvated  system,  using  each  one  of  these  pairs  to  estimate  Gaq
,n1

 and  therefore

Gsolv
new,n1  Gsolv

orig  Gaq
,n1

.  The  c1
opt,d1

opt  pair  that  minimized  the  root-mean-square  error

(RMSE) between Gsolv
new,n1 and the experimental solvation free energies for the two “training”

molecules was then selected as the starting point for the next iteration of optimization, and the

process of finding optimal parameters was repeated.  In other words, we generated a new set of

25 c2
opt,d2

opt  pairs (now centered on c1
opt,d1

opt ), conducted a new solvation free energy calculation

Gaq
 Gsolv

new

UvdW rij   ij Rij / rij  12
 2 Rij / rij  6





i j


 

 ij

 

Rij

 ij   i j , Rij  Ri  Rj

 ij
sOw  cn

opt  i j , Rij
sOw  dn

opt Ri  Rj 



to accurately determine Gsolv
new,n1, used free energy analysis to estimate  Gaq

 ,n2
 and therefore

Gsolv
new,n2  Gsolv

new,n1  Gaq
 ,n2

, and then selected the c2
opt,d2

opt  pair that minimized the RMSE to

the experimental  solvation free energies.   We repeated this  process of finding more optimal

cn
opt,dn

opt  pairs until we reached convergence to a RMSE of less than 0.15 kcal/mol (1/4 kBT),

which generally required 3-5 iterations of “new” solute-water vdW parameters.  In some cases, it

was  not  possible  to  reduce  the  RMSE  to  0.15  kcal/mol,  and  we  instead  terminated  the

optimization procedure when changes in RMSE from one iteration to the next were on the order

of  the  statistical  uncertainties  in  the  solvation  free  energies  (i.e.,  there  was  no  statistically

significant  improvement  with  further  iteration  of  the  parameters).   The  solute-water  vdW

parameter optimization procedure was applied to the various AMBER protein atom types in the

order described by Figure 1.

Benchmark calculations
To validate the use of softcore potentials for both electrostatic and van der Waals interactions, as

well  as  the  single-step  decoupling of  solute  molecules from solvent,  we first  calculated  the

solvation free energy of 47 small molecules in TIP3P water using the Merck-Frosst AM1-BCC

charges  used  by  Mobley  et  al.18 When comparing  our  results  to  their  previous  free  energy

calculations  using  TIP3P we  achieve  excellent  agreement,  with  an  RMS difference  of  0.13

kcal/mol, in spite of the different MD software packages, different solvent box geometries and

numbers  of  solvent  molecules,  single-step  decoupling  vs.  the  more  traditional  three-step

transformation, and the use of TI vs. BAR.  Relative to experiment, we achieve an RMS error of

1.43 kcal/mol when using TIP3P, as compared to Mobley et al.’s 1.49 kcal/mol (Figure 3,  SI

Table 1). RMS errors are unsigned, however, and therefore do not reflect if the error is due to

solute-solvent interactions being too favorable or too unfavorable.  Thus it is worth noting that

the  calculated  solvation  free  energies  of  these  molecules  are  all  too  unfavorable relative  to

experiment – the mean signed errors are 1.21 (our work) and 1.28 kcal/mol (Mobley et al.) –

with the exceptions of naphthalene and 3-methylindole (Figure 3).  Due to the shorter simulation

lengths used, our sampling errors are 2-3x greater than that of Mobley et al., but are still less than

0.06 kcal/mol (1/10 kBT).  These data suggest that the protocol we use to calculate solvation free

energies is sufficiently robust and accurate for the purposes of parameterization.



To compare the performance of semi-empirical vs.  ab initio-derived charge models, we

next calculated the solvation free energies for the same molecules using 6-31G*/RESP charges

(i.e., the same charge model used in the AMBER ff99SB force field).  Overall, the RMS error to

experiment is 1.53 kcal/mol, and in most cases, the solvation free energies are again generally

unfavorable relative to experiment (mean signed error of 1.24 kcal/mol) (Figure 3, SI Table 1).

While there is little difference in the solvation free energies computed for the alkanes, there is an

immediate difference for purely hydrocarbon aromatic compounds, which become less favorable

than the AM1-BCC benchmark.  Another interesting difference between the two charge models

is that primary amine compounds become more favorable with 6-31G*/RESP relative to AM1-

BCC, but secondary amine compounds become less favorable. Simple alcohols become more

favorable with 6-31G*/RESP, whereas phenols – like simple aromatics – become less favorable.

Of particular interest among the phenols, the solvation free energies for o-cresol and p-cresol

become “reversed” relative to the experimental and AM1-BCC results.  This observation has

been corroborated in previous studies (with more sophisticated ab initio methods) and suggests a

possible  deficiency in the  use of gas-phase  ab initio calculations for deriving partial  atomic

charges  for such molecules.20  Thiols and thioethers are  generally  similar,  although it  worth

noting the anomalously high solvation free energy of dimethyl disulfide with the Merck-Frosst

AM1-BCC charges; interestingly, AM1-BCC charges computed using antechamber do not show

the same anomaly (data not shown). While there is little difference between the charge models

for ketone/amide and imidazole compounds, other nitrogen-containing aromatic molecules (e.g.,

3-methylindole or pyrrole) show large changes in solvation free energy.  In particular, three of

these compounds are much less favorable with 6-31G*/RESP charges, with the noted exception

of  pyrrole,  which  becomes  significantly  more  favorable.  Further  studies  with  other  five-

membered heterocyclic  aromatic  rings  (e.g.,  thiophene) confirm this  specific  trend (data  not

shown).
Finally, we compare the performance of the TIP3P and TIP4P-Ew water model for this

set of molecules using the 6-31G*/RESP charges (Figure 3, SI Table 1), as our ultimate goal is

optimize the combination of the AMBER ff99SB force field and TIP4P-Ew water.  While TIP4P-

Ew has been optimized to reproduce many properties of liquid water more accurately than TIP3P,

it of course has not been optimized to combine with any standard protein force field.  Overall,

the RMS error to experiment increases to 1.75 kcal/mol with most of the molecules being more



unfavorable in TIP4P-Ew water relative to TIP3P.  Specifically, the alkanes are 0.1-0.4 kcal/mol

less favorable and the hydrocarbon aromatics are 0.3-0.6 kcal/mol less favorable in TIP4P-Ew

water relative  to  TIP3P.   Interestingly,  the  primary amine compounds are  more favorable  in

TIP4P-Ew by roughly 0.6 kcal/mol, while secondary amine compounds are only slightly more

favorable.  The alcohols are only slightly more favorable (0.1-0.2 kcal/mol), whereas the phenols

are strongly less favorable (0.5-0.7 kcal/mol) – consistent with the trends observed with the

aromatic compounds.  Thiols and thioethers are both less favorable in TIP4P-Ew water (0.3-0.7

kcal/mol and 0.2-0.6 kcal/mol, respectively).  As before, we do not observe any differences for

the imidazole  and ketone/amide  compounds,  with the noted exception of ethanamide,  which

contains a primary amine group and is 0.5 kcal/mol more favorable in TIP4P-Ew.  Finally, the

heterocyclic aromatic compounds are also less favorable in TIP4P-Ew (0.2-0.7 kcal/mol), with

the exception of pyrrole, which becomes slightly more favorable.

Optimization of solute-solvent van der Waals interactions
Our  benchmark  calculations  suggest  that  the  solvation  of  nearly  every  chemical  moiety

encountered in proteins is too unfavorable using the combination of AMBER ff99SB and TIP4P-

Ew water, with the exception of primary amines.  As previously mentioned, this has far-reaching

consequences  for  solvation  free  energy  calculations,  simulations  of  intrinsically  disordered

peptides and proteins, as well as protein folding.  Using the methodology described above, we

proceeded to optimize the van der Waals (vdW) interaction of each chemical moiety with TIP4P-

Ew water by iteratively determining the combined vdW radius and well depth that result in the

lowest  RMS error  in  the  solvation free energies for two different  molecules containing that

moiety  (e.g.,  methane  and  n-butane  for  alkanes).   We  then  validated  these  parameters  by

calculating the solvation free energies for a separate set of two different molecules containing the

same moiety (e.g., propane and isobutane for alkanes). These results are summarized in Figure 4

and SI Table 2, but analyzed in more detail below.
As  shown in  Figure  1,  we  began  our  optimization  with  the  nonpolar  alkanes  –  the

simplest building block of organic molecules.  Our benchmark calculations had an RMS error in

solvation free energies of 0.72 kcal/mol, but after optimizing the parameters for the HC and CT

atom types, this error was reduced to 0.12 kcal/mol.  The mean signed error was also reduced

accordingly.  Even greater improvements were obtained for the hydrocarbon aromatics (atom

types HA and CA), which saw a decrease in RMSE from 1.35 kcal/mol to 0.28 kcal/mol.



In the AMBER/GAFF force field, there is a special atom type (H1) for hydrogen atoms

bound to carbons with other electron-withdrawing neighbors (e.g., nitrogen).  This presented a

challenge for our parameterization because H1 is necessary for describing molecules that contain

anything other than carbon and hydrogen, but by virtue of its very nature, it is impossible to find

molecules that contain only H1 and the HC and CT (or HA and CA) atom types.  As such, we

chose four molecules in which there are a large number of H1 atoms and only one non-carbon

(i.e., non-CT) electron-withdrawing atom: dimethyl ether, fluoromethane, dimethyl sulfide, and

chloromethane.  For the two molecules used for optimization, we chose the two which had the

lowest discrepancy in experimental vs.  calculated solvation free energy – dimethyl ether and

fluoromethane.  We then assumed that the H1 atoms were responsible for most (6/7 and 4/5,

respectively), but not all of the error in the solvation free energies, as the oxygen and fluorine

atom vdW parameters are also likely non-optimal.  Using this approach, we were able to reduce

the RMSE in solvation free energies from 1.68 to 0.54 kcal/mol, again recognizing that the non-

carbon heavy atoms were no doubt contributing significantly to the overall error.
During our benchmark calculations, we observed that primary and secondary amines had

different solvation properties,  with the  solvation of primary amines being significantly more

favorable. As such, we elected to create a separate nitrogen and hydrogen atom type for the

primary amines and treat primary and secondary amines separately in our optimization. We were

only able to improve the primary amines slightly – a reduction in RMSE from 0.92 to 0.68

kcal/mol.  By contrast, we were able to greatly improve the solvation of the secondary amines

from a RMSE of 2.37 kcal/mol to 0.46 kcal/mol.  We noticed a similar trend with alcohols and

phenols – alcohols were much more favorable than phenols – and elected to  again  create  a

separate atom type (for the oxygen atoms of phenols) and optimize the related oxygen atoms for

these moieties separately as well.  Doing so enabled a small reduction in RMSE for alcohols

(0.54 to 0.26 kcal/mol) and a larger one for phenols (2.32 to 0.91 kcal/mol).  It is worth noting

that the hydroxyl group hydrogen atom typically has zero vdW radius and well depth in the

AMBER force  fields.   We experimented  with  non-zero  vdW parameters  for  the  interaction

between this atom and TIP4P-Ew water, but were unable to significantly improve the solvation

free energy results.  Therefore, we elected to keep the zero parameters for this atom type.
Sulfur-containing compounds have long been known to have poor agreement between

computed  and  experimentally  measured  solvation  free  energies.7,18,19,37,38 Our  TIP4P-Ew

benchmark  data  indicated  RMSEs  of  1.71  and  2.40  kcal/mol  for  thiols  and  thioethers,



respectively.  Optimizing these categories separately, we were able to obtain excellent agreement

with experiment  with RMSEs of  0.38 and 0.19 kcal/mol.   We had similar  success  with the

amides/ketones (1.44 to 0.40 kcal/mol) and imidazoles (2.12 to 0.65 kcal/mol).  Unfortunately,

our optimization of the H4 atom type for heterocyclic aromatics (e.g., tryptophan analogues) was

not as successful – the RMSE decreased from 2.09 to 1.35 kcal/mol – but it is worth noting that

the majority of the error is due to a single molecule (pyrrole) being overly soluble.  As briefly

described in the benchmark results,  we investigated this further by performing solvation free

energy  calculations  on  other  five-membered  ring  heterocyclic  compounds  (thiophene,  1-

methylpyrrole, and 2-methylthiophene) and found that their solvation was also more favorable

than expected (data not shown), pointing to a possible deficiency in the fixed charge model for

these compounds or the need for explicit polarizability.
Overall, the results of the solute-solvent vdW parameter optimization process were quite

encouraging. We were able to reduce the RMS error in solvation free energies of the 47 molecule

set from 1.75 kcal/mol to only 0.61 kcal/mol (i.e., on the order of 1.0 kBT at 300 K), equivalent

to  the  accuracy  of  current  water  models  and  polarizable  force  fields  such  as  AMOEBA.39

Moreover,  the mean signed error of the  solvation free energies – an indicator of systematic

under- or oversolvation – was reduced from 1.40 kcal/mol to 0.00 kcal/mol, suggesting that the

optimizations result in a balanced solvation of these various moieties by TIP4P-Ew water.  The

optimized copt and dopt coefficients for the radius (Rij) and well depth (ij) of the vdW interaction

between each AMBER ff99SB protein atom type and the oxygen atom of TIP4P-Ew water are

included  in  the  Supporting  Information  (SI  Table  3).   In  addition,  we  have  included  the

corresponding van der Waals A and B coefficients (where A  ijRij
12

and B  2ijRij
6
, respectively)

for  these  protein-water  interactions,  as  these  are  the  numbers  found  in  AMBER  prmtop

(parameter/topology) files (SI Table 3).

Validation: Dipeptide solutions
Previous work by Johnson et al. examined the properties of concentrated (> 1.0 M) solutions of

glycine and leucine dipeptides (also called NAGMA and NALMA, respectively).40 Using the

AMBER ff03 force field,41 which employs a somewhat different charge model but the same van

der Waals parameters as ff99SB, and TIP4P-Ew water, they observed significant aggregation of

the  dipeptides  at  concentrations  for  which  these  molecules  are  experimentally  known to  be



soluble.42  Conversely, using the AMOEBA force field and water model, Johnson et al. found that

the dipeptide molecules remained soluble, with no discernible aggregation.40

We performed similar calculations using AMBER ff99SB (instead of ff03) and TIP4P-Ew

water  and  likewise  observed  significant  aggregation  for  both  1.5  M  NAGMA and  1.0  M

NALMA solutions.  This can be demonstrated by calculating a carbon-carbon radial distribution

function and observing that g(r) is significantly greater than 1.0 at short distances (e.g., less than

10 Å), as opposed to being roughly 1.0 for all distances, which would indicate a roughly even

distribution of the molecules throughout the solution (Figure 5).  By contrast, when we simulated

these solutions using the optimized solute-water van der Waals parameters, we found that g(r)

stays nicely around 1.0 for all distances (Figure 5); moreover, these data are nearly identical to

the AMOEBA results obtained by Johnson et al. for the same solutions.  These data suggest that

the  optimized  van  der  Waals  parameters  not  only  enable  the  accurate  solvation  of  small

molecules in TIP4P-Ew, but of short peptides as well.

Validation: Short disordered peptides
To  follow  up  on  our  dipeptide  solution  results  and  further  test  the  applicability  of  these

parameters to larger biomolecules, we turned to simulations of short (3-5 residue) peptides.  In

particular,  we  simulated  the  Gly3,  Val3,  and  Ala5 peptides,  which  have  previously  been

characterized extensively using NMR spectroscopy by Graf  et al.43 and which we utilized in

optimizing and validating a change to the ’ backbone dihedral angle potential in ff99SB.11  (In

this previous work, we modified just the n=2 term of the ’ backbone dihedral angle potential in

AMBER ff99SB to increase sampling of the PPII conformation and consequently obtain better

agreement with experimental NMR scalar coupling data for a variety of short peptides.)  Similar

to our previous work, we assessed the effect of the new solute-water van der Waals parameters

by calculating NMR scalar couplings (using the Karplus equation) and comparing them with

experimentally measured couplings via the 2 metric (see Methods).  If 2 is less than or equal to

1.0, this indicates that the conformational ensemble of the simulation is essentially the same as

the experimental ensemble, within the limitations of the Karplus equation parameters.15

For Gly3 we obtain 2 values of 2.93  0.04 with ff99SB and 2.79  0.03 with the new

solute-water van der Waals parameters (Table 1).  However, in our previous work we noted that

the Karplus equations for at least one of the couplings, 2J(N’,C), has parameters that are likely

insufficient for describing glycine accurately.11  In addition, another coupling, 3J(C,C’), is subject



to considerable measurement uncertainty due to spectral crowding.43  If we exclude these two

couplings, we obtain 2 values of 0.47  0.05 and 0.48  0.04, respectively, indicating that both

ff99SB and ff99SB with the optimized van der Waals parameters are sufficiently accurate to

capture the conformational ensemble of Gly3 (Table 1).  In addition, these data suggest that there

are no substantial differences between the two conformational ensembles and therefore that the

simulated  conformational  ensembles  of  very  short  peptides  do  not  depend  strongly  on  the

solvent-solute van der Waals interactions, at least within the regimes sampled by our work.
For the Val3 peptide, we compared our results with ff99SB, ff99SB with the optimized ’

potential  (which applies to  all  non-glycine residues),  and ff99SB with both the optimized  ’

potential and solute-water van der Waals parameters.  For these three different simulations, we

obtain 2 values of 1.98  0.10, 1.63  0.02, and 1.63  0.04 (Table 2).  Once again these data

demonstrate  no  major  differences  in  simulations  with  the  optimized  solute-water  vdW

parameters,  as  well  as  a  small  improvement  using  the  optimized  dihedral  potential.   If  we

exclude the 3J(C,C’) coupling, we obtain 2 values of 1.30  0.06, 1.19  0.18, and 1.24  0.06,

again echoing the first result (Table 2).
Lastly,  we performed simulations of the Ala5 peptide using the same three simulation

conditions.  For this peptide we obtain 2 values of 2.44  0.10, 1.33  0.04, and 1.15  0.03, or

if we exclude the 3J(C,C’) coupling, 1.73  0.09, 0.86  0.05, and 0.71  0.04 (Table 3).  These

data suggest that the optimized backbone potential is indeed a significant improvement for the

Ala5 peptide, but also that the optimized solute-water vdW parameters have a greater effect as the

length of the peptide chain increases.  For Ala5, these parameters actually result in a lower  2

value, suggesting a more accurate conformational ensemble. 

Validation: Stability and dynamics of the folded ubiquitin protein
All of our previous validation studies examined relatively small biomolecules that are highly, if

not completely solvent-exposed.  We were therefore motivated to investigate how our optimized

solute-water van der Waals parameters might apply to a larger folded protein with a hydrophobic

core.  Several  MD force fields,  including AMBER ff99SB,  have  been validated  (in  part)  by

simulating  ubiquitin,  and  we  likewise  previously  used  this  protein  in  validating  the

aforementioned ’ backbone dihedral angle potential.9,11,12  
We found that within the first 20 ns of a 100 ns simulation, ubiquitin began to unfold

when simulated with the optimized vdW parameters (Figures 6a and 6b). We observed, however,



that  the unfolding was not the result  of an exposure of the hydrophobic core, but rather the

breaking of certain hydrogen bonds between secondary structure elements.  Moreover, replica

exchange MD simulations of two folded peptides, GB1 hairpin and (AAQAA)3, using these new

parameters yield conformational ensembles with noticeably smaller folded populations than the

experimental data suggest (data not shown).  These observations make sense in light of the fact

that  with the  new solute-water  vdW parameters,  protein-water  hydrogen  bonds  (H-bonds)  –

specifically  those  involving  the  backbone  amide  group  –  might  become more  energetically

favorable than protein-protein hydrogen bonds.  Previous studies have also suggested that the

protein-protein backbone H-bonds in AMBER ff99SB might not be sufficiently energetically

favorable,12 and therefore that the more favorable solvation properties of the backbone might

further exacerbate the issue.
To test if this was indeed the case, we added a 10-12 potential (i.e., A/r12 - B/r10) to the

force field to model the non-electrostatic component of H-bonds between the backbone carbonyl

oxygen and amide protons of the protein.44,45  We note that this potential  replaces the regular

vdW potential for the atoms in question and can be considered as a modified vdW interaction

rather than an altogether new interaction. Such potentials were commonly used in MD force

fields of ~25 years ago,46 but were phased out because it was believed that the electrostatic and

regular (i.e., 6-12 or Lennard-Jones) van der Waals potentials were sufficient to accurately model

these interactions.6  Using the A and B coefficients from the AMBER ff86 force field, which

yield a well depth of 0.5 kcal/mol per hydrogen bond, we observed some unfolding of ubiquitin

after ~50 ns (data not shown).  We then proceeded to double the well depth of the potential (i.e.,

doubled the A and B coefficients) so as to further stabilize protein-protein H-bonds relative to

protein-water  H-bonds.   With  this  modification  to  the  potential,  we  observed  a  near  total

avoidance of the unfolding observed with the optimized solute-water vdW parameters (Figure

6b).  Moreover, we found through multiple metrics – RMSD, radius of gyration, and S2 order

parameters – that the H-bond potential appears to yield results that are significantly closer to the

unmodified AMBER ff99SB result, or even closer agreement with the NMR experiment (Figure

6c). Nonetheless, this is not the final say on anisotropic short-ranged interactions. We found that

residues 54 (an arginine), 48 (a lysine), and 23 (an isoleucine) are more disordered with respect

to experimental S2 values (Figure 6c) and were more solvent exposed (data not shown). These

residues were found to have a significant reduction in the percentage of trajectory frames in



which backbone hydrogen bonds were formed. In fact, statistically, the overall 10-12 potential is

just a little too weak overall, but it is remarkable that pulling the hydrogen bond potential “off

the shelf” with no optimization worked as well as it did. 

DISCUSSION AND CONCLUSION

While most previous biomolecular force field development efforts have focused on improving

the agreement between gas phase ab initio and molecular mechanics calculations for substituent

amino acid chemistry,7,9,10 the resulting parameters are often “transferred” to describe these same

molecules in aqueous solution, where success is (not surprisingly) more limited.  In fact, it is

generally well appreciated that most protein-water force fields are under-solvated, meaning that

solute-solute  and  water-water  interactions  are  systematically  more  favorable  than  the

corresponding  solute-water  interactions.13,18,19 This  in  turn  limits  the  predictive  capacity  of

simulations for properties such as small molecule solvation free energies, NMR observables that

are collected in solution, and conformational equilibria involving secondary structure or even

folding/unfolding populations.  For example, Best and Mittal recently analyzed the folding of

several small peptides and found that their unfolded states are typically too collapsed,13,47 which

in  turn  gives  poor  qualitative  agreement  with  FRET  efficiencies  at  higher  temperatures. 47

Limitations  on  accuracy  are  exacerbated  further  by  the  use  of  newer  non-bonded  Ewald

interaction schemes for solvated biomolecules,48 which are different from the energy and force

truncation schemes used in the original parameterization of the water models themselves.35  

Given the current acceptance in the biomolecular simulation community of treating long-

ranged electrostatics under Ewald conditions, we felt it was time to consider a new standard

default water model such as TIP4P-Ew, which was parameterized specifically for use with Ewald

as well as long-range van der Waals corrections.28 Nonetheless, the more current ff99SB protein

force  field  and  TIP4P-Ew  water  model  required  further  optimization  to  be  well  utilized  in

predicting  condensed  phase  properties.  We  have  used  a  hybrid  strategy  of  relying  on  the

“original” parameterization that was more focused on either neat organic liquid or gas phase ab

initio data (which has been central to subsequent refinements of both the bonded interactions and

the  electrostatic  models)  and further  fine-tuning of  only  the  solute-water  parameters  against

condensed phase experimental data.  Although there are now additional parameters in the new

protein-water force field we have developed here, the potential problem of overfitting is reduced



by our relatively restrained optimization approach and the fact that  there are more abundant

solution phase data than in the past that make this parameterization strategy possible.  This is a

credit  to  the  much  appreciated  engagement  from  the  experimental  small  molecule,  protein

folding, and NMR communities that have contributed data and analyses of small but complex

biomolecular systems that operate on timescales that are accessible to MD simulation, allowing

for a one-to-one comparison of simulated and experimental observables.

Finally, to maintain a force field that works not only for solvent-exposed small molecules

or peptides, but folded globular proteins as well, we found a need to restore some balance by

strengthening the protein-protein interactions given that the favorable enhancement of solute-

water  interactions  resulted  in  the  partial  unfolding  of  ubiquitin.   One  of  the  important

vindications  of  the  parameterization  approach  taken  here  was  that  the  hydrophobic  core  of

ubiquitin remained intact under the new force field, suggesting that the protein-protein van der

Waals  interactions  are  still  relatively  well-balanced  with  the  protein-water  van  der  Waals

interactions.  We did, however, observe a degradation of ubiquitin’s secondary structure that may

be caused by a relative weakening of protein-protein hydrogen bonds with respect to protein-

water hydrogen bonds.  By re-introducing the 10-12 hydrogen bonding potential  for protein-

protein backbone H-bonds, we were able to show that ubiquitin remained stable over a 100 ns

trajectory and significantly improved its fidelity to experimentally measured Lipari-Szabo (S2)

order  parameters  relative  to  ff99SB with  only  the  modified  protein-water  vdW interactions.

However, we do not believe this is the final say on hydrogen bonding potentials or even relevant

functional forms that are trying to capture short-ranged directionality and cooperativity. It is our

view that force fields such as AMOEBA,39 although often classified as a polarizable force field

(which is true), derive much of their accuracy from more robust representation of short-ranged

electrostatics through the use of permanent multipoles.49,50  This elegant approach, requiring a

factor  of  3-4 in  additional  computational  cost,  would need to  be  weighed against  a  simpler

geometric  definition of hydrogen bonding,  which would be  cheaper  to  evaluate  but  may be

inherently  limited  in  accuracy.   We  hope  to  report  on  a  final  parameterization  phase  that

incorporates short-ranged directional protein-protein interactions to complete a force field that

operates across a diversity of biomolecules.  At present, the force field presented here is certainly

reliable for aqueous solution studies involving small molecules and peptides.  
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Table 1. 2 values for calculated scalar couplings of Gly3 at 300 K in TIP4P-Ew water using

unmodified ff99SB and ff99SB with optimized solute-water van der Waals parameters.  Values

are given as the means over four independent MD simulations, with the standard error of the

means given in parentheses.   Only the Orig.  Karplus equation parameters are  used for these

calculations.11,15

Force Field All couplings No 2J(N’,C) or 3J(C,C’) coupling

ff99SB 2.93 (0.04) 0.47 (0.05)

opt. vdW 2.79 (0.03) 0.48 (0.04)

Table 2. 2 values for calculated scalar couplings of Val3 at 300 K in TIP4P-Ew water 2 using

unmodified ff99SB, ff99SB with the optimized ’ backbone dihedral angle potential, and ff99SB

with both optimized dihedral potential and solute-water van der Waals parameters.  Values are

given as the means over two independent REMD simulations, with the differences between the

two simulations given in parentheses.  Only the Orig. Karplus equation parameters are used for

these calculations.11,15

Force Field All couplings No 3J(C,C’) coupling

ff99SB 1.98 (0.10) 1.30 (0.06)

opt. dihed 1.63 (0.02) 1.19 (0.18)

opt. dihed + vdW 1.63 (0.04) 1.24 (0.06)



Table 3. 2 values for calculated scalar couplings of Ala5 at 300 K in TIP4P-Ew water using

unmodified ff99SB, ff99SB with the optimized ’ backbone dihedral angle potential, and ff99SB

with both optimized dihedral potential and solute-water van der Waals parameters.  Values are

given as the means over two independent REMD simulations, with the differences between the

two simulations given in parentheses.  Both the Orig. and DFT2 Karplus equation parameters are

used for these calculations.11,12,15

Force Field All couplings No 3J(C,C’) coupling

Orig. DFT2 Orig. DFT2

ff99SB 2.44 (0.10) 2.14 (0.11) 1.73 (0.09) 1.37 (0.08)

opt. dihed. 1.33 (0.04) 1.26 (0.02) 0.86 (0.05) 0.86 (0.02)

opt. dihed + vdW 1.15 (0.03) 1.12 (0.01) 0.71 (0.04) 0.78 (0.02)



FIGURE CAPTIONS

Figure 1.  Schematic order of parameter optimization by atom type.  Van der Waals parameters

were first  optimized for alkanes (HC/CT),  followed by hydrocarbon aromatics (HA/CA) and

polar molecules (H1).  With optimized parameters for HC/CT and H1, it was then possible to

optimize  the  primary  amines  (H/Npri),  secondary  amines  (H/Nsec),  alcohols  (HO/OH),  thiols

(HS/SH), and thioethers (S).   Together with the HC/CT and HA/CA parameters, it was then

possible  to  optimize  atom  types  for  heterocyclic  aromatics  (H4),  imidazoles  (H5),  and

amides/ketones (O/C).  Similarly, with optimized parameters for HC/CT, HA/CA, and H1, it was

possible to optimize the oxygen atoms in phenols (HO/OHaro).

Figure 2.  Thermodynamic cycle used to calculate Gsolv
new. U1

ncorresponds to the solvated system

using nth iteration solute-water vdW parameters,  U0
n corresponds to desolvated system at using

nth iteration parameters, etc.  From this cycle, we can conclude that Gsolv
new  Gsolv

orig  Gaq


, since

Ggas
  0 .

Figure 3.  (a) Root mean square and (b) mean signed errors in calculated solvation free energies

for the 12 categories of small  molecules used for benchmarking.  Results are shown for the

AM1-BCC charge model with TIP3P water (green), HF/6-31G* charge model with TIP3P water

(light green), and HF/6-31G* charge model with TIP4P-Ew water (yellow), along with AM1-

BCC/TIP3P results from Mobley et al. (dark green).

Figure 4.  (a) Root mean square and (b) mean signed errors in calculated solvation free energies

for the 12 categories of small molecules used for optimization and validation.  Results using the

HF/6-31G* charge model with optimized solute-water (TIP4P-Ew) van der Waals parameters

(magneta) are compared with benchmark results for the AM1-BCC charge model with TIP3P

water (light blue) and HF/6-31G* charge model with TIP4P-Ew water (purple).

Figure 5. Carbon-carbon radial  distribution functions for (a) 1.5 M NAGMA and (b) 1.0 M

NALMA solutions.   AMBER ff99SB/TIP4P-Ew results  are  shown in blue;  results  using the

optimized solute-water van der Waals parameters are shown in red.  For both cases, there is a

marked decrease in aggregation using the optimized vdW parameters.



Figure 6.  Native state stability and dynamics of ubiquitin for the unmodified AMBER ff99SB

force field (black), the optimized solute-water van der Waals parameters (red), and the optimized

solute-water  vdW  parameters  with  an  added  10-12  potential  for  protein-protein  backbone

hydrogen bonds (green).  (a) The root mean square deviation (RMSD) for backbone heavy atoms

of residues n1-n2 with respect to the crystal structure 1UBQ.  (b) Radius of gyration of backbone

Cα atoms.   (c)  Lipari-Szabo (S2)  order parameters with the  experimentally  derived isotropic

values shown in blue.  For all three simulations, the TIP4P-Ew water model was employed.



Figure 1. Nerenberg et al

Figure 2. Nerenberg et al



(a)

(b)

Figure 3. Nerenberg et al.



(a)

(b)

Figure 4. Nerenberg et al.



(a)

(b)

Figure 5. Nerenberg et al.



(a)     

(b)

(c)

Figure 6. Nerenberg et al.

 


	Paul S. Nerenberg1,*, Brian Jo2, Clare So2, Ajay Tripathy2, and Teresa Head-Gordon1,2
	INTRODUCTION
	METHODS
	Charge derivation for small molecules
	Dipole-dipole polarization cost calculations
	Solvation free energy calculations
	Simulations of dipeptide solutions
	Simulations of short peptides
	Simulations of ubiquitin
	RESULTS
	Parameterization approach
	Benchmark calculations
	Optimization of solute-solvent van der Waals interactions
	Validation: Dipeptide solutions
	Validation: Short disordered peptides
	Validation: Stability and dynamics of the folded ubiquitin protein
	DISCUSSION AND CONCLUSION
	REFERENCES
	FIGURE CAPTIONS
	Figure 1. Nerenberg et al
	Figure 2. Nerenberg et al
	Figure 3. Nerenberg et al.
	Figure 4. Nerenberg et al.
	Figure 5. Nerenberg et al.
	Figure 6. Nerenberg et al.

