
Lawrence Berkeley National Laboratory
Recent Work

Title
AN INTRODUCTION TO BLIMP: A SYSTEMS PROGRAMMING LANGUAGE FOR THE CDC
6000/7000 CPUs

Permalink
https://escholarship.org/uc/item/5v72t5k4

Author
Vardas, Leo S.

Publication Date
1976-04-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5v72t5k4
https://escholarship.org
http://www.cdlib.org/

·~ I,

'' '

': i
' j ,,,

Presented at the VIM 24 Conference,
Jack Tar Hotel, San Francisco, CA,
ApriL6- 8, 1976

LBL-4828

(' . '

AN INTRODUCTION TO BLIMP A SYSTEMS PROGRAMMING
LANGUAGE FOR THE CDC 6000/7000 CPUs

Leo S. Vardas

Apri11, 1976

I=(ECE fVED
. 'l. \1'/'11:)•,i ·~ t

B!H<i'Jt •. t if.i! .~;r'h fORY

MA/ 1 '1 lf.Jl6

L.18F;:/ 1·t~; ,· /l,~'ID

r)('<;.,:;l,.Jf'li Et·.r:rs .Sf~C:T '()N

Prepared for the U. S. Energy Research and
Development Administration under Contract W -7405-ENG-48

For Reference

Not to be taken from this room

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

0 0 0

Session: 32B
Languages and ~rocessors Committee
An Introduction to BLIMP

5

A systems programming language for the CDC
600017000 CPUs
By Leo S. Vardas

ABSTRACT

BLIMP is a systems programming language for the
CDC 600017000 CPTJs. It was developed primarily for the
implementation of procedures which deal with data items,
or fields, in tables of the type typically found in
operating systems. The language incorporates the con­
cepts of structured programming both in its control
constructs and in the techniques of code generation and
optimization. This compiler is currently being used at
BKY. The 6000 System deadstart loader, the associated
HELP utility, a macro-processor, a meta-compiler, the
compiler itself, and an assortment of utilities have
been implemented in BLIMP.

INTRODUCTION

One of the features of BLIMP is the efficient
accessing of fields - data items which are contiguous
bit strings and subsets of a 60 bit word. Whereas
conventional procedural languages are word oriented
and, at best, provide an ad hoc bit or character access­
ing capability, BLIMP can treat the field as a
fundamental addressable unit. This is expecially true
of the code generator and optimizer. Field access is
not performed by a procedural utility; the compiler
generates inline instructions similar to those produced
by conventional handcoding techniques.

FIELD TEMPLATE

Consider the following abridgement of the File Name
Table (FNT) as it appears in the SCOPE Reference
Manual:

Word 0

Word

Word 2

59
logical file name

C.FNAME

18 11
link to

optional supplement
C. FLNKAD

52 36
FET address
C.FETAD

0

The mnemonic C.FNAME is associated with the leftmost
42 bits of the first word of the FNT. Now C.FNAME
refers to the logical-file-name field of~ FNT. The
mnemonic has not been bound to any specific FNT. It is
then, in a sense, an element of a based array. We can
think of the identifier C.FNAME as the name of a
template; by appropriately positioning this template,
the logical-file-name field of a specific FNT can then
be accessed.

The template C.FNAME in the example implicitly
establishes an operation ur function defined by the
characteristics of word offset and left and right. bit
positions. As such, the addition of an operand, namely
an address of a specific FNT, denotes a particular field
access. Syntactically, this is written in the classical
functional notation: C.FNAME (A.FNT) where A.FNT is
the name of a FNT table or array in the FORTRAN sense.
This syntax states that the template C.FNAME is "applied"
to the table A.FNT.

This form of the functional notation is adequate for
operands which are named tables. However, a typical
application will need to access tables which are dynamic
or nameless, and referenced only by an address. Such
tables are accessed indirectly through a pointer.
Borrowing from the practices of mini-computer assembly

1

language, an '*''preceding an operand is used to indi­
cate an indirection operation. For example, let
LC.FNT be the name of a cell whose contents is the

1 address of a FNT. Then C.FNAME (*LC.FNT) denotes the
application of the template to the FNT.

Examples

C.FNAME (TABLES (I)) accesses a FNT which is
located at the I-th word
of TABLES.

C.FNAME(*X+lOOB) evaluates X+lOOB. The
result is the address of
the desired FNT.

One of the advantages of the template mechanism is
that structurally identical fields from different
tables can be referenced by the same mnemonic. For
example, if the logical-file-name fields of two
distinct FNTS were to be compared, it could be done by

lF C.FNAME(*FNT.l)>C.FNAME(*FNT.2) etc.

FIELD TEMPLATE DEFINITION

The format for a simple field template definition
is FIELD name I W, L, R [,~TTJI

where
w is word offset =0,1,2, --
L is left bit position =59, 58,--- ,rp
R is right bit position =59, 58,--- ,rp

ATT is an optional 3 letter mnemonic whose com­
ponents are memory, sign-type, and address-type where

memory is S for SCM
L for LCM

sign-type is N for numeric (leading bit is a sign
bit)

T for type less
address-type is w for arbitrary word

A for address implying 17 bit
address.

The A address-type is useful for efficiently
extracting a 17 bit address pointer without masking.
It is accomplished by a SX X. STW is the default ATT.

Examples

FIELD C.FNAMEI 0, 59, 18 I
FIELD C.FETADI 2, 53, 36, STA I
FIELD C.FLNKADI 0, 11, 0 I
FIELD F.FET.NAMEI 0, 59, 18 I

CFNAME(*LC.FNT)=F.FET.NAME(*C.FETAD(*LC.FNT))
copies the FET file name field into the file name field
of the associated FNT.

It often is the case that a field identifier should
be bound to a specific table rather than be a "floating"
template. This facility is available in BLIMP through
an extended field declarative. For example

FIELD FBOUNDI0,43,38I$(* B7) $ binds FBOUND
so that the template will be applied to the
table whose address is in B7. This definition
is, in essence, a macro extension to the field
template.

VALUE = BOUND
executes exactly as the following:

FIELD FBOUND IO, 43, 38 I
VALUE = FBOUND (*B7)

The following example defines a parameterized
template-macro with one parameter, REL, a relative
offset:

FIELD FBASED (REL)/1,47,47/$(BASE+REL)$

This definition would be used for accessing a
field of a table at some to-be-specified offset from a
position specified by the address in BASE.

BASE (O)

(J)

FBASED (J) references a field in the word whose
location is the value of BASE+J+1. This mechanism
is provided for referencing fields of dynamic tables.
Note that the indirection operation allows an arbitrary
expression and uses the low order bits of the result
as an address.

STATEMENT FORMAT AND ELEMENTS

Most BLIMP statements are free field and text may
start in column one. Only one statement per line
is permitted. A plus sign in col. 1 indicates a
continuation line. Although 90 col. card images are
accepted, only the first 72 columns are used.

There are two kinds of comments. An asterisk
in col. 1 indicates a comment line. A string starting
with a period indicates the end of the statement
and the remainder of the line is interpreted as a
comment. The compiler will then automatically right
justify the second form of the comment when the
output listing is created.

A label is a lone identifier appearing anywhere
on a line. It must be the only character string on the
line excep·t for a comment.

Examples

A. LABEL .A COMMENT
LBL X = 1 . incorrect statement

Identifiers may be up to 63 alphanumeric charac­
ters starting with a letter. Embedded periods are
permitted except as the first chr. Embedded blanks are
not permitted.

Examples

F.TABLE.FIELD
Q •• WEIRD ..

Numeric constants are the usual decimal and octal
digit sequence with the restriction that octal con­
stants must be suffixed by a 'B'without any blanks
following the last digit.

The hollerith constants are of the type H,L,R,C
and Z as in COMPASS. Two forms are available:
chr count preceding the type and string (as in FORTRAN);
type followed by quoted string.

Examples

1249
3HABC
9CTWO-WORDS
'TWO-WORDS'

CONTROL STRUCTURES

37 77 77B
H'ABC'
C'TWO-WORDS'
.defaults to £type

In many ways BLIMP follows the conventions of
FORTRAN. Its storage allocation is static, recursion
is not available, and the relocatable subroutine
structure is similar. However, despite these simi­
larities, the two languages are really quite different,
particularly with respect to the control structures.

2

Six block oriented control structures are provided.
These are block oriented in the sense that a sequence
of statements - a code block - is preceded by a
keyword statement and delimited by a matching end
statement. The body of the block itself may consist of
any executable statements including nested blocks.

For brevity, the descriptions of the structures
are provided as comments in the following examples.

IF X <0 THEN
X=O

.If block; no further text after THEN

.Set X=O and call if condition
CALL SUB(Z)

ELSE
.is true
.ELSE block is optional

RETURN
END IF .Both paths join at ENDIF

IF (X LT 0)(Y=X)THEN .Compound/Boolean conditional
X=O
IF Z>O THEN .Nested IF block
Y=O
CALL EXIT
END IF

ELSE

IF Z GT 0 .THEN
Z=O
ELSE
Z=l
END IF
RETURN

END IF

IF X=O THEN RETURN

IF CHR = lRA THEN
CALL SUBA

.W/0

.ELSE block

.ELSE block,part of outer block

.Another nested IF block

.With a corresponding ELSE

.Ends inner block

.Ends outer

.A simple statement (non-block)

.After THEN

.Analogous to FORTRAN IF.

ELSEIF CHR = lRB THEN.Combined ELSE and NEW IF
CALL SUBB .Avoids excessive nesting

ELSEIF KEY>'AB 1THEN .And multiple
CALL STUFF .ENDIFS .

ELSE .ELSEIF is one word
CALL NONE .ELSE can only follow

.ELSEIF blocks (if any)
END IF

WHILE X < 100 DO
X=X+l
CALL PRO

ENDWHILE
REPEAT

CALL PRO(X)
IF X=O THEN RETURN

ENDREPEAT

REPEAT
CALL PRO(X)

UNTIL X=O
RETURN

EMDRE~EAT

.Like IF with backward

.Branch

.Indefinite loop

.Between REPEAT

. And

.ENDREPEAT

.Like above.

.UNTIL condition

.Imposes condition and delimits

.Loop. Any statements between

.UNTIL and ENDREPEAT executed

.Once

LEAVE and RESTART are special forms of branching
from within blocks. LEAVE exits the block and transfers
control to just beyond the end of the block. It is
possible to exit from within nested blocks by associa­
ting a name (i.e., a label) with the block. The RESTART

is somewhat similar. It is a backward branch and
its effect is ·to re-enter the block.

!..

•.

•

,.
~

0 0 '

REPEAT
CALL SUB(X)
IF X = 0 THEN RESTART
CALL POST(X)
IF X~l THEN LEAVE

END REPEAT

LBL

REPEAT
N=READC(INPUT,BUFFER,MX)
IF N>O THEN

CALL PROCESS (FLAG)
IF FLAG = 0 THEN LEAVE
IF FLAG = 1 THEN LEAVE

CALL POST
RESTART LBL

END IF
* LEAVE DESTINATION
ENDREPEAT
* LEAVE LBL DESTINATION

CASE I + J

1, 13

12

c::l

CALL ONE
RESTART

CALL EXIT

CALL LOW

6 THRU 10, 4
X = 6
z = 10

ELSE
*OPTIONAL CODE BLOCK HERE
ENDCASE

MATCH KEYWORD(J)

'IF', 'WHILE'

CALL RELAT

'REPEAT'
CALL REPEATS

'CASE', 'MATCH'
CALL TABLE
MATCH KEYWORD(J)
'CASE'
CALL CASES

'MATCH'
CALL MATCHS

END MATCH
3LABC,425,1R*,377B

KEYWORD(J)=O
RESTART

ELSE
CALL NONSENSE
GO TO FAIL.EXIT

ENDMATCH

u

.Start loop over

.terminate by exiting loop

• .a label inunediately
.preceding a block.
.conunents,blanks ignored

LBL. t·erm~nate entire loop
.exit the IF block

.start entire loop over

.ends IF N~o block

.Jump table construct,e.g.,

.computed GO TO

.a 'label'. Block is

.selected if I+J= 1 or 13

.order is inunaterial

.optional test block. No

.bounds check unless ex­
plicitly

.requested

.6,7,8,9,10 and 4 block

.2,3,5,11

.no test for >13

.all code blocks of CASE

.rejoin at ENDCASE

.A search construct against

. table of'constants

.Any 60 bit constant
qualifies

.Keyword (J) is compared with

.each 'label' for a match

.A linear search is performed

.Starting with 'IF', then
'WHILE'

.etc.

.nested MATCH Block

.ridiculous 'labels' but here

.to demonstrate constants

.call a local(not external)
subroutine

.GO TO is alive (and well?)

3

0

FOR I = M THRU K+J BY -2
FOR J = LOW UNTIL LIMIT

END FOR
END FOR

FOR I THRU MXTAB

' IF TAB (I) =KEY THEN LEAVE
THEN

MXTAB=MXTAB+l
TAB(MXTAB) =KEY

END FOR

ADDITIONAL FEATURES SUMMARY

.A DO loop construct

.THRU is inclusive

.UNTIL is 'up to but

.not including'

.lower limit

.defaults to 0 or 1

.depending on whether

.subscripting zero or
base.

.optional block-ends

.loop

.handle exception condition

.w/o labels

BLIMP modules may have embedded local subroutines.
These routines may optionally be global - like FORTRAN's
ENTRY. The DIMENSION and DATA statements are incorpo­
rated into a composite DECLARE statement. COMMON blocks
via a GLOBAL block declarative are available in con­
junction with the DECLARE. An intrinsic function which
permits access to an absolute memory location is provid­
ed for both fetching and storing.

The implementation of BLIMP reflects the philos­
ophy that progranuning languages should, when possible,
be complementary, not competetive. Therefore, sub­
routine linkage is compatible with FTN. More important­
ly, inline COMPASS statements may be inserted within a
subroutine. This feature essentially makes available
the whole spectrum of COMPASS system macros for, as an
example, specialized I/0, initialization, and system
calls. Since BLIMP produces COMPASS modules as its
object code, it merely transliterates any embedded COM­
PASS statements referencing a BLIMP identifier.

A declarative is available for reserving and ac­
cessing machine registers. This is especially useful
for creating a replacement module for an existing system
routine or overlay which employs a special parameter
communication convention .

The compile time facility of BLIMP has been modeled
after COMPASS. Compile time variables may be defined
and given numeric values analogous to the SET operation
in COMPASS. Conditional compilation is provided and
an extended MACRO capability provides a parameterized
MICRO facility as well.

Finally, the compiler edits the original source
code; statements are automatically indented, conunents
right justified and a profile of the nesting of the
various blocks and sub-blocks is indicated. Extensive
cross referencing of all symbols including macros and
system text identifiers is optionally available.

Although BLIMP does not incorporate any special I/0
statements, a run-time library has been developed. It
is primarily an interface to the many KRONOS and 7600
SCOPE 1 I/0 and system macros. In addition a utility
for composing formatted output text with automatic line
counting, titling and heading control is available.

LAWRENCE BERKELEY LABORATORY
SYSTEMS PROGRAMMING GROUP

Bldg. SOA, Room 1121A
Berkeley, Ca. 94720

Work done under the auspices of the U.S. ERDA.

0 u

.---------LEGAL NOTICE----------.,

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Energy Research and Development Administration, nor any of
their employees, nor any of their contractors, subcontractors, or
their employees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy, completeness
or usefulness of any information, apparatus, product or process
disclosed, or represents that its use would not infringe privately
owned rights.

'

.) ~ • ~·..:.X

TECHNICAL INFORMATION DIVISION

LAWRENCE BERKELEY LABORATORY

UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94720

.-:• r .~·

