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Abstract

In 1971, Meyer showed how one could use the compensator to rescale a multivari-

ate point process, forming independent Poisson processes with intensity one. Meyer’s

result has been generalized to multi-dimensional point processes. Here, we explore gen-

eralization of Meyer’s theorem to the case of marked point processes, where the mark

space may be quite general. Assuming simplicity and the existence of a conditional

intensity, we show that a marked point process can be transformed into a compound

Poisson process with unit total rate and a fixed mark distribution.
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1 Introduction.

Before other matters, both authors would like to express their appreciation to Daryl for his

stimulating and forgiving company, and to wish him a long and fruitful continuation of his

mathematical, musical, woodworking, and many other activities. In particular, it is a real

pleasure for the first author to acknowledge his gratitude to Daryl for his hard work, good

humour, generosity and continuing friendship throughout the development of (innumerable

draft versions and now even two editions of) their joint text on point processes.

The topic of the present paper was broached more than thirty years ago in papers by

Knight (1970) and Meyer (1971). Knight (1970) showed that for any orthogonal sequence of

continuous local martingales, by rescaling time for each via its associated predictable process,

one forms a multivariate sequence of independent standard Brownian motions. Then Meyer

(1971) extended Knight’s theorem to the case of point processes, showing that given a simple

multivariate point process {Ni; i = 1, 2, ..., n}, the multivariate point process obtained by

rescaling each Ni according to its compensator is a sequence of independent Poisson pro-

cesses, each having intensity one. Since then, alternative proofs and variations of this result

have been given by Papangelou (1972), Brémaud (1972), Aalen and Hoem (1978), Kurtz

(1980), and Brown and Nair (1988) . Papangelou (1972) gave the following interpretation

in the univariate case: “Roughly, moving in [0,∞) so as to meet expected future points at

a rate of one per time unit (given at each instant complete knowledge of the past), we meet

them at the times of a Poisson process.”

Immediately after the statement of his theorem, Meyer remarked “On peut se demander

si ce résultat est vraiment plus qu’une curiosité mathématique!” The result has nevertheless



Vere-Jones and Schoenberg. Rescaling Marked Point Processes 3

proven to be extremely useful for point process analysis, providing the basis for point process

residual analysis which is a very powerful model evaluation tool (Ogata, 1988; Ogata, 2001;

Schoenberg, 1997) and which has also been used for point process prediction (Ogata, 1988;

Ogata, 1993).

Generalizations of Meyer’s result to point processes on Rd have been established by

Merzbach and Nualart (1986), Nair (1990), and Schoenberg (1999). In each case, the method

used was to focus on one dimension of the point process, and rescale each point along that

dimension according to the conditional intensity.

Here, we explore the application of Meyer’s theorem to temporal marked point processes,

where the mark space may be quite general, but the mark distributions have densities with

respect to some reference measure. We show that, in this situation, a horizontal rescaling

analogous to that of Meyer (1971) results in a compound Poisson process with a ground

intensity of one and a stationary mark distribution equal to the reference measure. We follow

the informal treatment that appeared recently in Daley and Vere-Jones (2003, Chapter 7).

Alternative formulations and extensions to more general state spaces are discussed briefly in

the final section of the paper.

2 Preliminaries.

Given a measurable space (S,B), a point process N is a non-negative, integer-valued random

measure defined on B; that is to say, a measurable mapping from a probability space (Ω, E ,P)

into the space NS of integer-valued, σ-finite measures on (S,B). For any B ∈ B, N(B)

represents the number of points in B. Following Daley and Vere-Jones (1988), we shall
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assume that S is a complete separable metric space, with B the σ-algebra of Borel sets in

S. While in general N(B) is permitted to take the value +∞, it is required to be a.s. finite

for compact B.

For marked point processes, the space S is a product space G ⊗M, where G is called

the ground space and M the mark space. For instance, if S = G ⊗M where G is the real

line or a portion thereof, we call the process N a temporal marked point process (hereafter

abbreviated t.m.p.p.); if S = R2 ⊗M, then N is a planar marked point process, etc.

The essential distinction we shall make between a marked point process on G ⊗M and

a general point process on G ⊗M is that for every compact set G ∈ BG, the Borel sets in G,

N(G⊗M) < ∞ (a.s.)

In the case of a t.m.p.p., for example, this implies that the process can be represented as a

countable set of pairs (ti, mi) with the property that, almost surely, only a finite number of

such pairs have time coordinates ti falling within any bounded time interval (a, b]. Thus the

time points by themselves constitute a well-defined point process, the ground process, on R.

In what follows we focus on t.m.p.p.s where G = [t0,∞] consists of all times not before

some initial origin time, t0. We suppose throughout that M is a complete separable metric

space, equipped with its own Borel σ-algebra BM and reference measure π, which to facilitate

the statement of results in Section 3 is taken to be a fixed probability measure.

A point process is called simple if, with probability 1, all its points are distinct. In the

case of a t.m.p.p. N , simplicity means all the pairs (ti, mi) are distinct, while simplicity of

the ground process requires that no two points of N occur simultaneously.

Recall that an F -predictable process Y (t, w) is a process on R×Ω which is measurable



Vere-Jones and Schoenberg. Rescaling Marked Point Processes 5

with respect to the predictable σ-algebra ΨF generated by events of the form E × (s, t],

with E ∈ Fs. We extend this definition to the marked case by defining a marked-predictable

process as a process Y (t,m, ω) which is measurable with respect to the product σ-algebra

σ(ΨF × BM) on R×M× Ω. Equivalently, the marked-predictable processes are generated

by cross-products of sets generated by left-continuous temporal stochastic processes with the

Borel subsets of BM.

Now suppose N is an ordinary (unmarked) temporal point process and F is a filtration on

S ⊆ R to which N is adapted. If N has first moment measure µ with µ(B) = E[N(B)] < ∞

for bounded Borel sets B ∈ BG, the F -compensator A of N is defined as the unique F-

predictable process such that N −A is an F -martingale. This concept can be extended to a

t.m.p.p. N by defining A to be the collection, over every bounded M ∈ BM, of compensators

A(t,M) of the simple point processes N(t,M) ≡ N([t0, t)×M)) (Jacod, 1975). In this case

the defining equation of the compensator takes the form, for each M ∈ BM,

E[N(b, M)−N(a, M)|Fa] = E[A(b, M)− A(a, M)|Fa] , (1)

with A(t,M) ≡ A(t,M, ω) predictable. For fixed M , A(t,M) is a.s. monotonic increasing

in t, and for fixed t, A(t,M) defines a.s. a measure on (M,BM).

We say a t.m.p.p. N is non-terminating with respect to the reference measure π if with

probability one, lim A(t,M) = ∞ as t →∞ for all M ∈ BM with π(M) > 0.

Let ` denote Lebesgue measure on G. If, for each m ∈ M there exists an integrable,

non-negative, F -adapted process λ(t,m) ≡ λ(t,m, ω) such that, with probability 1, for all

t ∈ R and M ∈ BM,

∫
M

∫ t

t0
λ(s, m)`(ds)π(dm) = A(t,M), (2)
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then λ is called an F -conditional intensity of N.

Conditions for the existence of a conditional intensity can be phrased in terms of the

measure C induced by the point process on the product space R ×M × Ω, through the

equations,

C((a, b]×B ×G) = E{IG(ω)N [(a, b]×B]} (3)

where G ∈ E , B ∈ BM, t0 ≤ a < b. This measure represents a marked version of Campbell

measure (see e.g. Section 13.2 of Daley and Vere-Jones, 1988).

The existence of a conditional intensity is equivalent to requiring this measure to be

absolutely continuous with respect to the product measure `× π ×P . When this condition

is satisfied, the Radon-Nikodym derivative λ(t,m, ω) can be identified with a version of the

F -conditional intensity for the m.p.p. N .

If we are concerned with predictability, we restrict the event G in (??) to Fa , and require

the marked Cambell measure to be absolutely continuous with respect to the product measure

`×π×P on the σ-algebra ΨF×BM. The density then has a version which is measurable with

respect to this σ-algebra; that is to say, when the absolute continuity condition is satisfied

on ΨF × BM, we may suppose the conditional intensity to be itself a marked-predictable

function. Even if we start with a version of the conditional intensity that is not predictable,

it induces a measure on ΨF×BM which is absolutely continuous with respect to the product

measure, and so gives rise to a predictable version of the conditional intensity. Thus, there

is no loss of generality in assuming that the conditional intensity that we are dealing with is

predictable.

It is well known that if an F -conditional intensity λ exists, a version of it obeys, almost
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surely and for almost all fixed t ∈ G and M ∈ BM,

∫
M

λ(t,m)π(dm) = lim
∆t↓0

E [N(t + ∆, M)−N(t,M))|Ft] /∆t , (4)

where we have again dropped the explicit dependence on ω for brevity (see e.g. Papangelou,

1972; chapter 2.4 of Karr, 1986). Provided λ exists, one may also define the compensator-

type quantity

a(t,m) =
∫ t

to
λ(s, m) `(ds). (5)

We have then, for M ∈ BM,

A(t,M) =
∫
M

a(t,m)π(dm). (6)

If, for π-almost all m, a(t,m) → ∞, we shall say that N is π-essentially non-terminating;

clearly this implies that N is non-terminating as defined below (??).

Frequently in applications one takes for F the filtration H generated by the history of

the process N from a given origin time t0, usually set at 0. We shall call this the internal

history of N .

A fundamental result for this set-up is that the conditional intensity uniquely determines

the finite-dimensional distributions of any simple point process (e.g. Chapter 13 of Daley and

Vere-Jones, 1988). If, in particular, N is a simple, ordinary (unmarked) point process, and

the H−conditional intensity λ of N is deterministic - that is, a fixed, non-random function,

which does not depend on the history - then N is a Poisson process. The name stems from

the fact that for such a process, the number of points occurring in the time interval (a, b) is

a Poisson random variable whose mean is the integral

E {N [(a, b)]} =
∫ b

a
λ(t) `(dt) (7)
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(see e.g. Chapter 2 of Daley and Vere-Jones, 1988). The assumption that the conditional

intensity and the compensator are deterministic means that the past of the process has

no influence on its present or future, and so the process has the lack of memory property

characteristic of a Poisson process.

For marked point processes, if the ground process of N has conditional intensity λg(t),

then λg is called the ground intensity of N . When λ(t,m) exists, a version of the ground

intensity is given by

λg(t) =
∫
M

λ(t,m)π(dm). (8)

Note that by definition the ground intensity obeys

t∫
t0

λg(s)d`(s) = A(t,M). (9)

In this case, if λ(t,m) is deterministic, then N is a compound Poisson process, with the

property that for every time interval (a, b] and mark set M ∈ BM, the number of events in

(a, b)×M is Poisson with mean

E {N [(a, b)×M ]} =
∫ b

a

∫
M

λ(t,m) `(dt)π(dm). (10)

Note that we do not require here that the mark be integer-valued. If, for example, λ(t,m) =

λ f(m), where λ is a constant and
∫
M f(m) π(dm) = 1, then N is called a stationary com-

pound Poisson process. The ground process is then a stationary Poisson process with rate

λ and the marks are i.i.d. with density f with respect to the reference measure π.

More generally, we say N has separable conditional intensity λ if both the conditional

intensity and ground intensity of N exist, and obey the relation

λ(t,m, ω) = λg(t, ω) f(m), (11)
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where f(m) is a fixed probability density with respect to π. This corresponds to the situation

where the successive marks are chosen independently of the evolution of the process in time,

although the size of past marks may influence the future ground intensity of the process. In

the terminology of Daley and Vere-Jones (2003), such a process has ‘unpredictable marks’.

In general, the ratio λ(t,m)/λg(t) might depend on t, and on the history of the process N

up to time t, as well as potentially other information contained in Ft. For a general (possibly

non-separable) t.m.p.p. N , we say N has conditional mark density f ≡ f(t,m, ω) if N has a

conditional intensity λ and ground intensity λg obeying f(t,m, ω) = λ(t,m, ω)/λg(t, ω) for

λg(t, ω) > 0; when λg(t, ω) = 0 we set f(t,m, ω) = 1.

We note that the definitions for t.m.p.p.s extend to the case where G = Rd instead of

R, just as the definitions of unmarked point processes extend from R to Rd; see e.g. Nair

(1990) or Schoenberg (1999). In such extensions some care needs to be taken in selecting

the family of σ-algebras to mimic the role of the history when G represents time.

3 The Rescaling Theorem

In this section we investigate ways to rescale a t.m.p.p. N with conditional mark density f ,

so that the rescaled version of N is a compound Poisson process. We restrict ourselves to the

case where rescaling is achieved by moving each point of N parallel to the time axis. That

is, we refer to transformations where each point {t,m} of N gets shifted to a new time, but

its mark remains m. We refer to this as horizontal rescaling to distinguish it from the case

where the marks are rescaled but the time points are left invariant (vertical rescaling).

We recall that the reference measure π on (M,BM) is taken to be a probability mea-
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sure. When the process is separable, rescaling is a straightforward corollary of the rescaling

theorem for the unmarked case.

Theorem 3.1. Suppose N is a non-terminating t.m.p.p. with simple ground process

and a separable conditional intensity, as in (??). Rescale each point of N via {t,m} −→

{A(t,M), m}. Then the rescaled point process Ñ is a stationary compound Poisson process

with unit ground rate and stationary mark density f(m) relative to π. Equivalently, if

we transform each point via {t,m} −→ {A(t,M)f(m), m}, the rescaled process is still

a stationary compound Poisson process with unit ground rate, but the stationary mark

distribution is now given by π.

Proof. From the 1-d random time change theorem (Meyer, 1971) it follows that the

marginal point process N(t) gets transformed into a Poisson process with ground rate λ̃g(τ) =

∫
M f(m)π(dm) = 1, and as the marks m do not get transformed and are independent of N ,

the first result follows immediately. For the second result, note that the transformed ground

process still has conditional intensity λ̃g(τ) =
∫
M π(dm) = 1 and therefore still corresponds

to a unit rate Poisson process. In the second case, points with different marks get rescaled

differently, whereas in the first case they all get rescaled in the same way. 2

Now we suppose that N has simple ground process and a conditional intensity λ, but

we do not assume that λ is separable. Throughout the discussion a(t,m) refers to the

compensator-type function (??).

For a general t.m.p.p., assuming the conditional intensity exists, we define a family of

time transformations, one for each mark value, through the equations

(t,m) → (a(t,m), m). (12)
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Under these transformations, the original point process N , consisting of the family of

points {ti, mi}, is transformed into the point process Ñ , consisting of the family {τi, mi} ≡

{a(ti, mi), mi}. Consistently with this definition, we define the rescaled σ-field F̃τ to be the

σ-field generated by events of the form

{Ñ [(α, β)×M ] = k}, (0 ≤ α < β , M ∈M , k ∈ {0, 1, 2, . . .}). (13)

Observe that, by construction, Ñ is F̃ -adapted.

The following is the main result of this section. To our embarrassment, it came to our

attention just before the paper was due to be printed that our original proof rested on a

false lemma. In fact, the truth of the Theorem in the case of discrete marks (multivariate

point process) follows from well-known results, which can then be used to approximate the

continuous case. In the amended discussion below we outline our original argument, point

out the error, and sketch a possible resolution, perforce leaving a more adequate discussion

to Schoenberg and Vere-Jones (2003).

Theorem 3.2. Suppose that the marked point process N is F -adapted and π-essentially

non-terminating, with simple ground process and F -conditional intensity λ(t,m). Let Ñ

denote the rescaled point process defined by the mapping (t,m) −→ (a(t,m), m), so that Ñ

is {t,m}, and Ñ is F̃ -adapted, where F̃ is defined as in (??). Then (Ñ , F̃) is a stationary

compound Poisson process with unit ground intensity and stationary mark density π.

Proof. As in earlier treatments (Meyer, 1971; Papangelou, 1972; Brémaud, 1972; Aalen

and Hoem, 1978; Kurtz, 1980; Merzbach and Nualart, 1986; Brown and Nair, 1988; Nair,

1990; Schoenberg, 1999), our proof hinged on the fact that the compensator determines the

process uniquely. Since this in turn requires the ground process to be simple, we first observe
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that this property holds for the transformed time process Ñ .

Simplicity of the ground process for Ñ means that the probability is zero that Ñ has

any two points (τ, m1) and (τ,m2) with the same first coordinate. Consider the event where

two such points exist, i.e. where N has two distinct points (t1, m1) and (t2, m2) such that

a(t1, m1) = a(t2, m2). Assume without loss of generality that t1 < t2. (The case t1 = t2 can

be excluded by our assumption that N ’s ground process is simple.) Let z = (t1, m1), and

let Dz = {(t,m) : t > t1; a(t,m) = a(t1, m1)}. Since a(t,m) is F -predictable and ΨF
t1
⊆ ΨF

t

for t ≥ t1, Dz is an F -predictable set, i.e. the indicator of this set 1Dz is an F -predictable

process. Hence the expected number of points in Dz is given by E
∫
1DzdN = E

∫
1DzdA = 0,

and since 1Dz is non-negative this implies that N(Dz) =
∫
1DzdN = 0 a.s. Since N contains

only countably many points, so does Ñ . As Dz is a null set (i.e. P{N(Dz) > 0} = 0), so is

the countable union ∪
z

Dz, i.e. P{N(∪
z

Dz) > 0} = 0. Thus Ñ is simple.

Consider now an unmarked, simple point process N , with transformed process Ñ(τ) =

N(A−1(τ)). A proof of the main theorem in this case can be based on the following observa-

tion. Let Y (τ, ω) be bounded and F̃ -predictable. Then Y (A(t), ω) is F -predictable. Indeed,

if Y has the form of the indicator function of a basic predictable set IE(ω) × I(α,β](τ), for

E ∈ Fα, then S := A−1(α) = inf{t : A(t) = α} and T := A−1(β) are F -stopping times,

since under our assumptions, A(t) is even a continuous function. For this special case, the

predictability of Y follows from the result (presumably well-known) that if S, T are two

F -stopping times with S < T (a.s.), and if E ∈ FS, then

Y (t, ω) = IE(ω)I(S,T ](t) (14)

is F -predictable. The case of general predictable Y follows from straightforward extension
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arguments.

The theorem itself, still for the unmarked case, now follows from the following equalities

E
[∫

Y (τ)Ñ(dτ)
]

= E
[∫

Y (A(t)) N(dt)
]

(15)

= E
[∫

Y (A(t)) dA(t)
]

(16)

= E
[∫

Y (s) ds
]

(17)

= E
[∫

Y (τ) dτ
]
. (18)

Step (??) follows from the definition of the transformed process. Step (??) follows from

the martingale property of the original process as in (??), and the observation above that

Y (A(t)) is F -mark-predictable. Step (??) is the substitution s = A(t). It requires the

assumption of the Theorem that A(t) increases without bound for each m in the support

of π. Step (??) is just the replacement of s by τ . Taken together, they imply that the

F̃ -compensator for Ñ is the deterministic process

Ã(τ) = τ

and hence that λ̃(τ,m) ≡ 1 is an F̃ -conditional intensity for Ñ . Thus Ñ is a stationary

Poisson process.

The corresponding equalities for a marked point process take the form

E
[∫

Y (τ,m)Ñ(dτ × dm)
]

= E
[∫

Y (a(t,m), m) N(dt× dm)
]

(19)

= E
[∫

Y (a(t,m), m) a(dt, m) π(dm)
]

(20)

= E
[∫

Y (s, m) ds π(dm)
]

(21)

= E
[∫

Y (τ,m) dτ π(dm)
]
. (22)
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for Y any marked F̃ -predictable process. These are the equations which formed the basis of

our original proof, and the resulting equation (??) appears to be still true, certainly for the

discrete marked case, as the assertion follows from the known results for multivariate point

processes. However, it is certainly not still true that Y (a(t,m), m) is F -predictable when Y

is marked F̃ -predictable. This is readily seen even for a bivariate process, by taking the two

components to increase at different rates, and choosing e.g. Y (t,m) = Ñ1(0, τ) + Ñ2(0, τ).

The resulting process Y (a(t,m), m) is not even F -adapted. Thus the proof cannot be based,

as we originally supposed, on a simple extension of the univariate argument, but requires a

more careful analysis of the interweaving of the a(t,m) for different m.

**

A heuristic argument for the marked case may be outlined as follows.

Fix disjoint Borel mark sets M1 and M2 and transformed time intervals B1 and B2.

Suppose F is a set in the σ-field generated by sets of the form ÑM1(B), where B is in B1.

Let Q12 denote the event that sup
m∈M1,τ∈B1

a−1(τ,m) < inf
m∈M2,τ∈B2

a−1(τ,m).

Then for (τ1, τ2) ∈ B2,

E [
∫

M2

τ2∫
τ1

dÑ(τ,m)|F, Q12] (23)

= E[
∫

M2

a−1(τ2,m)∫
a−1(τ1,m)

dN(t,m)|F, Q12] (24)

= E[
∫

M2

a−1(τ2,m)∫
a−1(τ1,m)

dA(t,m)|F, Q12] (25)

= E[
∫

M2

τ2∫
τ1

d`(t)dπ(m)|F, Q12]. (26)

Note that the above is true for all τ1 and τ2 in B2. It follows that conditioned on F and
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Q12, the compensator Ã of ÑM2 is equivalent on B2 to ` × π, regardless of F . Thus given

Q12, Ã is independent of F ; i.e. conditional on Q12, ÑM2(B
′
2) is independent of ÑM1(B

′
1), for

all B′
1 ∈ B1 and B′

2 ∈ B2.

Similarly, conditional on Q21, ÑM2(B
′
2) is independent of ÑM1(B

′
1), for all B′

1 ∈ B1 and

B′
2 ∈ B2.

To complete the proof, two further steps are needed. First, by varying M1, M2, B1 and

B2, and using the simplicity of Ñ , we show that whenever M1 , M2 are disjoint, ÑM2(B2) is

in fact independent of ÑM1(B1) for all Borel B1 and B2.

Second, for any Borel M ∈ M, any transformed time interval (τ1, τ2) and any F ∈ F̃τ1 ,

we decompose F into parts Fm in σ({Ñ [(α, β) × {m}] = k; 0 ≤ α ≤ β ≤ τ1; k = 1, 2, . . .}),

and a remainder, so that

E

∫
M

τ2∫
τ1

dÑ(τ,m)|F

 =
∫
M

E

 τ2∫
τ1

dÑ(τ, m)|Fm

 dπ(m) (27)

=
∫
M

E

 a−1(τ2,m)∫
a−1(τ1,m)

dN(t,m)|Fm

 dπ(m) (28)

=
∫
M

E

 a−1(τ2,m)∫
a−1(τ1,m)

dA(t,m)|Fm

 dπ(m) (29)

=
∫
M

E

 τ2∫
τ1

d`(t)

 dπ(m) (30)

= π(M)× `(τ1, τ2), (31)

from which the desired result follows. The key to the proof is that since Ñ(τ,m) is inde-

pendent of all other marks, conditioning on F amounts to conditioning on Fm, which is a

predictable set just as in the unmarked case. **

We hope to develop this argument more rigorously in Schoenberg and Vere-Jones (2003).
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Theorem 3.2 subsumes many well-known results. In the case of discrete marks (a multi-

variate point process), for example, we have (cf. Meyer, 1971; Brown and Nair, 1988):

Corollary 3.3. Let N denote a non-terminating multivariate point process with compo-

nents Nk, k = 1, 2, . . . , K with reference measure π = {π1, π2, . . . πK} satisfying πk > 0 , k =

1, 2, . . . , K,
∑K

1 πk = 1. Suppose N has a simple ground process and an F -conditional in-

tensity λ. Let Ñ denote the rescaled point process defined to have a point at {a(t, k), k} iff.

the k-th component of N contains a point at t. Then Ñ is a stationary compound Poisson

process with unit intensity and stationary mark distribution π. Alternatively, if the rescaling

is performed so that Ñ has a point at (a(t, k)πk, k) whenever the original process has a point

at (t, k) (or equivalently, if the reference measure π assigns unit mass to each component),

then the resultant process consists of K independent, unit rate Poisson processes, one for

each mark.

Suppose next that the mark space is the real line. Let Fπ ≡
∫

m′<m
π(dm′) be the cumula-

tive measure corresponding to the probability measure π, and suppose that Fπ is continuous

as a function of m. Then a simple rescaling of the mark space, taking m∗ = Fπ(m), converts

the stationary mark distribution for the transformed process into the uniform distribution

on [0, 1]. Since a compound Poisson process with constant rate and uniform mark distribu-

tion can equally be interpreted as a 2-dimensional Poisson process on a strip, we obtain the

following result.

Corollary 3.4. Suppose that the t.m.p.p. N has real marks, that the conditions of

Theorem 3.2 hold, and that the reference probability measure π admits a continuous cu-

mulative version Fπ. Then the doubly transformed process Ñ∗, defined to have a point at
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(a(ti, m), Fπ(mi)) when the original process has a point at (ti, mi), is a 2-dimensional Poisson

process with unit rate over the strip R× [0, 1].

4 Discussion and extensions

The results of the previous Section generalize in several directions, of which we briefly men-

tion a few. A more general review is in preparation (Schoenberg and Vere-Jones, 2003).

First, although the results of Section 3 extend those of Brown and Nair (1988) to more

general mark spaces, it is an open question whether the absolute continuity condition (exis-

tence of a conditional intensity) is essential to the formulation and proof of the main theorem.

Discontinuity of the compensator at a location u = (t,m) in the time-mark domain means

that there is nonzero probability of a point occurring arbitrarily near u, conditional on the

prior history of the process, and this in turn generally leads to similar discontinuity in the

compensator of the transformed process. However, additional randomness may be intro-

duced to smooth out such discontinuities; for instance, for the case of a simple point process

N on the line with possibly discontinuous compensator, one may obtain a rescaled Poisson

process of unit rate by introducing a sequence of independent uniform random variables, in-

dependent of the filtration F to which N is adapted, as proven in Theorem 5.1 of Kallenberg

(1990).

Relatively little attention has been paid to the situation where the marked point process

N is not simple, or where its ground process is not simple. To see that results such as

Theorem 3.2 are not then directly obtainable, consider N the combination of two point

processes N1 and N2, where N1 = N2. In other words let N be a marked point process
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with mark space {1, 2}, where N has a point at (t, 2) iff. there is a point at (t, 1). In this

case a(t, 1) = a(t, 2), and the transformation in Theorem 3.2 does not result in a stationary

compound Poisson process since the rescaled point process inherits from N the property of

having a non-simple ground process.

In some situations, a non-simple marked point process N may be simplified by changing

the form of the mark space. For example, if N has either one or two points at times ti,

with possibly different marks mi and m∗
i , then one may redefine the mark space, letting

M2 = M∪M2, and N will be simple when viewed as a point process on G ⊗M2. If the

marks are necessarily identical, mi = m∗
i , then it may be enough to take as the modified

mark space M⊗ {1, 2}. If N may have triple-points or point of higher valency, one may

similarly simplify N by changing the mark space to MK =
K
∪

k=1
Mk, or M∞ =

∞
∪

k=1
Mk.

In the previous Section, the independence and i.i.d. properties of a compound Poisson

process were achieved by distorting the relative time positions of points with different marks.

The extent of this distortion depends on how close the original process was to being separable,

for in Theorem 3.1 we saw that in that case a suitable rescaling can be achieved such that

the dislocation of each point is entirely independent of its mark. An alternative possibility

is that the reduction to a Poisson process can be achieved by rescaling the marks (vertical

rescaling). Merzbach and Nualart (1986) analyzed the case where M and G are the real

half-line [0,∞], showing that the rescaling

(t,m) −→ (t,
∫ m

0
λ(t,m′)dm′) (32)

transforms N into a stationary Poisson process with rate 1 on the planar quadrant S, under

certain conditions which were later relaxed by Nair (1990) and Schoenberg (1999). This
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result is summarized in the following Theorem.

Theorem 4.1. Suppose N is a t.m.p.p. withM = [0,∞]. Suppose N has simple ground

process and F -conditional intensity λ, and that the ground intensity
∫∞
0 λ(t,m)dm = ∞ for

all t ∈ G. Then the rescaling in (??) results in a stationary Poisson process with unit rate

on S = G ×M.

If the mark space is a subset M = [m0, m1] of R+ rather than the entire real half-line,

and the ground intensity
∫∞
0 λ(t,m)dm < ∞, the result in Theorem 4.1 applies nevertheless,

as described in Schoenberg (1999). The resulting rescaled process Ñ is a stationary Poisson

process with rate 1 with respect to Lebesgue measure on the randomly-shaped region T =

{(t,m); t ∈ G; 0 ≤ m ≤
∫ m1
m0

λ(t,m′)dm′)}.

Finally, let us refer to a few questions where further research seems needed.

(i) As we have indicated above, rescaling a marked point process can be achieved in

several different ways, e.g. horizontally, vertically, or possibly by some combination of both.

If the aim is to detect some departure from a standard model, which methods work best

when?

(ii) In Theorem 4.1, a special role is played by the form of the mark-space; how should

the results of that theorem be generalized to more general mark spaces?

(iii) Throughout the paper, it has been assumed that the model is fully known; in practice,

however, it will commonly depend on one or more estimated parameters. How can the results

of this paper be accommodated to allow for the additional uncertainty introduced by the

estimation? Schoenberg (2002) exhibits a simple point process example where, if the fitted

model is used in place of the true model, the conditional intensity of the transformed time
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process differs significantly from unity. Hjort (1990), Andersen et al (1993, Section VI.3.3)

and Maglaperidze et al (1998) outline some alternative approaches to goodness-of-fit tests,

based on ideas of Khmaladze(1981, 1988,1993), which can be used in such situations.
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