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ABSTRACT OF THE DISSERTATION 

 
Enabling Techniques for Low Power, High Performance Fractional-N Frequency 

Synthesizers 

 

by 

 

Ashok Swaminathan 

 

Doctor of Philosophy in Electrical Engineering (Electronic Circuits and Systems) 

 

University of California, San Diego, 2006 

 

Professor Ian Galton, Chair 

 

Delta-sigma fractional-N phase-locked loops are used to generate high quality 

radio-frequency signals for use in wireless applications.  To reduce the phase noise 

inherent to these systems, a digital-to-analog converter is used to cancel the error in-

troduced by the fractional division process, however matching between the digital-to-

analog converter and the phase-locked loop circuitry place a limit on the amount of 

phase noise reduction that can be achieved.  Furthermore, circuit non-linearity results 



 

 

xiii

xiii

in the appearance of spurious tones in the phase-locked loop output. 

This dissertation outlines a calibration technique, and a digital quantization 

technique that provide solutions to these two problems.  The calibration technique re-

sults in improved phase noise performance by adjusting the digital-to-analog converter 

gain, and thus providing better matching between the phase-locked loop circuitry and 

digital-to-analog converter.  The digital quantization technique results in no spurious 

tones when specified non-linearity is applied to the quantizer output sequence and er-

ror.  The calibration technique was implemented in an integrated circuit, which 

achieves state-of-the-art performance when compared to currently published phase-

locked loops and allows for all circuitry to be integrated onto a single chip.  Chapter 1 

presents the calibration technique, as well as a theoretical analysis of the stability.  

Chapter 2 presents details on the digital quantization technique, and a mathematical 

proof of the absence of spurious tones.  In chapter 3, results from an implemented cir-

cuit are presented, which verify the behaviour of the technique presented in chapter 1.



 

   

Chapter 1 :  A Calibration Technique for Phase Noise 
Canceling Fractional-N Phase-Locked Loops 

ABSTRACT 

Phase-noise canceling phase-locked loops (PLL) are sensitive to the matching 

between the phase noise canceling and PLL circuitry.  Any mismatch places a limit on 

the quality of the phase noise cancellation, and as a result constrains the design of the 

PLL to accommodate the mismatch.  This paper presents a calibration technique which 

estimates the mismatch, and adjusts the equivalent gain of the phase noise canceling 

circuitry to improve the degree of phase noise cancellation, thus allowing for more 

PLL design choices, such as widening the PLL loop bandwidth.  The presented tech-

nique offers faster settling time over current solutions, which in turn enables its use in 

low power wireless systems. 

I.  INTRODUCTION 

Delta-Sigma Fractional-N Phase-Locked Loops (PLL) are widely used in ap-

plications requiring the generation of a periodic signal with fine frequency tuning [1], 

however noise from the delta-sigma modulator degrades the phase noise performance 

of the PLL.  This requires the bandwidth to be sufficiently narrow in order to attenuate 

the phase noise to acceptable limits dictated by the PLL requirements.  A recent en-

hancement to delta-sigma fractional-N PLLs is the use of a Digital-to-Analog Con-

verter (DAC) to reduce the phase noise induced by the fractional division process 

[2,3,4].  This technique facilitates the ability to widen the bandwidth of the PLL, the 

two main advantages of which are making it possible to integrate the passive loop fil-

1
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ter on chip, and reducing the sensitivity of the voltage-controlled oscillator (VCO) to 

pulling [5]. 

In order to ensure ideal phase-noise cancellation, the DAC gain must be 

matched to an equivalent gain in the PLL circuitry.  Any mismatch results in imperfect 

cancellation, leading to a limit on the phase noise performance that can be achieved 

for the PLL [6].  A calibration technique to reduce this gain mismatch has been pre-

sented in [7], and has been shown to result in phase noise cancellation of up to 30dB.  

However this calibration system has a low loop bandwidth, and therefore a long set-

tling time, constraining its use due to the fact that wireless transceivers often power 

the fractional-N PLL down when not receiving or transmitting in order to reduce 

power dissipation. 

This paper presents a calibration technique suitable for phase noise canceling 

fractional-N PLLs.  The presented technique has three advantages over the scheme in 

[7].  There is no sampling of the loop filter voltage that can result in an increased spu-

rious tone around the carrier at an offset of the reference frequency.  Calibration sig-

nals are used which result in improved performance of the calibration loop when non-

ideal factors are taken into account, such as DC offset.  Finally, the architecture of the 

calibration technique inherently has reduced offsets, and no quantization noise which 

allows for a much faster settling time than attainable with currently implemented 

methods.  The result is that the calibration technique presented is suitable for back-

ground calibration in wireless systems. 
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Section II outlines the phase noise canceling PLL matching problem, as well as 

discussing current methods of solving this.  Section III presents the new calibration 

technique.  Section IV presents a suitable signal-processing model, used to prove the 

stability of the calibration loop.  Section V presents a design example as well as simu-

lations that verify the normal operating behaviour. 

II.CALIBRATION IN PHASE NOISE CANCELING FRACTIONAL-N PLL 

A. The Problem 

A phase noise canceling fractional-N PLL is shown in Figure 1a, which con-

sists of a typical fractional-N PLL plus a feed-forward current DAC.  The operation of 

a delta-sigma fractional-N PLL is discussed at length in [1], so only the salient points 

necessary for understanding the calibration technique are discussed.  A fractional-N 

PLL is never locked every reference sample due to the integer nature of the divider, 

i.e. Vref(t) and Vdiv(t) are never locked in phase.  This results in the phase-frequency 

detector (PFD) and charge pump (CP) supplying an error charge each reference period 

into the loop filter.  If the PLL is locked in frequency, this charge can be well modeled 

by [6] 

 
1

0
[ ] [ ]

n

CP CP VCO Q
k

Q n I T e k
−

=
= ∑ , (1) 

where ICP is the nominal CP current, TVCO is the period of the PLL output under 

steady-state conditions, and eQ[n] is the shaped quantization noise from the Delta-
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Sigma (∆Σ) modulator1. 

All phase noise canceling fractional-N PLL [2, 3, 4] operate on the principle 

that every reference period, the DAC supplies charge in the form of a pulse of current 

that nominally cancels the CP charge given by (1).  This is shown in Figure 1b where 

the charge from the DAC and CP completely cancel every reference period.  The DAC 

charge can be well modeled by [6] 

 
1

0

[ ] [ ] [ ]
n

DAC DAC DAC Q req
k

Q n I T e k e n
−

=

 = + 
 
∑ , (2) 

where IDAC is the DAC full-scale current, TDAC is the duration of the DAC cur-

rent pulse, and ereq[n] is the noise added by the digital requantizer.  The requantizer is 

dithered such that ereq[n] is uncorrelated from the quantization noise of the ∆Σ 

modulator [8].  For ideal cancellation, ICPTVCO is equal to IDACTDAC, therefore 

subtracting (2) from (1) results only in charge related to the requantization noise 

appearing at the input to the VCO.  However timing mismatches between TVCO and 

TDAC and current mismatches between ICP and IDAC result in a portion of the CP charge 

remains on the loop filter.  Neglecting the requantization noise term, this charge is a 

scaled version of (1).  The result is shown in Figure 1c, which imposes a limit on the 

degree of phase noise cancellation that can be achieved. 

                                                 
1 eQ[n] is the integer valued ∆Σ modulator quantization noise scaled by the quantization step size, and 
for a 2nd order ∆Σ modulator is bounded by 2 
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Figure 1: Phase Noise Canceling PLL; a) Block Diagram; b) Timing diagram, ideal matching; c) 
Timing diagram, DAC Gain mismatch 

Since eQ[n] is a known quantity, the charge error on the loop filter can be 

sensed and IDAC adjusted such that ICPTVCO equals IDACTDAC and the charge due to eQ[n] 

is completely cancelled.  A method of performing this is shown in Figure 2, equivalent 
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to the system presented in [7].  The loop filter voltage, Vctl(t) is buffered and then mul-

tiplied by a binary correlation signal, c[n].  This correlation signal must satisfy the 

following two requirements: 

•  The average of c[n] must be zero 

•  c[n] must be correlated with eQ[n] such that multiplying (1) by c[n] re-

sults in a signal which has a non-zero average value 
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z

−

−−
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1

11
z

z

−
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Digital
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1
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( )DACi t

( )refV t
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Figure 2: Previously Published Calibration Method for Phase Noise Canceling PLL 
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These requirements ensure that the dc component of Vctl(t) does not affect the 

calibration of IDAC, and that the mismatch between the DAC and CP can be extracted 

and used in the calibration loop.  The correlated signal is converted to a digital result, 

accumulated and filtered.  The DAC bias is adjusted by switching weighted current 

sources.  Since the correlated signal has a non-zero average value proportional to the 

CP and DAC mismatch, the calibration system adjusts IDAC until the mismatch be-

tween ICPTVCO and IDACTDAC is minimized and there is no dc remaining at the input to 

the accumulator. 
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Figure 3: Sign of Integrated Quantization Error for a 2nd order ∆Σ∆Σ∆Σ∆Σ Modulator 

This particular calibration system suffers from restrictive filtering require-

ments; the correlation signal multiplied by the dc component of Vctl(t) results in a sig-

nal proportional to c[n] modulating IDAC.  Moreover in the case where the correlation 
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signal is the sign of (1), spurious tones appear in c[n].  This is shown in Figure 3 for an 

input of 0.01 to the 2nd order ∆Σ modulator.  It has been observed, but not proven in 

[2,9] that these spurs appear at multiples of the constant input times the reference fre-

quency.  Thus, any offsets present before correlation will result in periodic behaviour 

in the adjustment of IDAC, which results in unwanted spurious tones at the output of the 

PLL. 

B. Calibration Signal Generation 

For the 2nd order ∆Σ modulator shown in Figure 1, the CP charge given in (1) 

can be expressed in terms of the quantizer error equant[n]2 

 ( )[ ] [ 1] [ 2]CP CP VCO quant quantQ n I T e n e n= ⋅ ⋅ − − − , (3) 

Thus a correlation signal can be generated which is related with the individual equant[n] 

terms in (3).  In particular, with sgn(x) defined as 1 when x≥0 and –1 when x<0, two 

correlation signals are given by 

 ( )sgn [ 1] , andquante n −  (4) 

 
( ) ( )sgn [ 1] sgn [ 2]

[ ]
2

quant quante n e n
s n

− − −
+ , (5) 

where s[n] is a zero-mean ergodic, 3-level, 1st order shaped random sequence uncorre-

lated with equant[n−1] and equant[n−2] that quantizes the three-level signal given by the 

first term in (5) into a binary signal [10].  If the ∆Σ modulator is properly dithered 

(e.g. according to the conditions in [11]), then equant[n] has an asymptotically uniform 
                                                 
2 The quantizer error is a digital number which has been normalized by the ∆Σ quantizer step size, and 
for a 2nd order ∆Σ modulator, eQ[n]=equant[n]-2 equant[n-1]+ equant[n-2] 
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distribution, and both (4) and (5) will be asymptotically zero-mean signals.  Multiply-

ing (3) by either correlation signal results in a signal that has a non-zero mean, there-

fore (4) and (5) satisfy the necessary requirements for c[n].  Simulations shown in 

Figure 4 indicate that these choices of correlation signals have no spurious tones, 

hence the dc portion of Vctl(t) will not result in periodic modulation of IDAC. 
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Figure 4: Correlation signals based on equant[n] 

With this enhancement, there remain two problems in the calibration system 

from Figure 2.  The analog-to-digital converter (ADC) samples the buffered loop filter 

voltage, so the buffer must provide sufficient isolation from the sampling process to 

avoid causing a spurious reference tone at the output of the PLL.  Significant filtering 

is still required to filter the ADC quantization noise, as well as the noise introduced by 

multiplying the dc part of Vctl(t) with c[n].  This results in an effective reduction of the 
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bandwidth of the calibration loop, and hence longer settling time for calibration.  For 

the design presented in [7], the settling time is on the order of one second [12]. 

III.CONTINUOUS-TIME GAIN CALIBRATION TECHNIQUE 

To overcome these problems, a calibration technique implemented in a phase-

noise canceling fractional-N PLL is shown in Figure 5, with the calibration technique 

identified by the shaded parts in the figure.  The VCO input, and loop filter are split 

into two equal parts, each of which have the same frequency response as in the PLL of 

Figure 2.  The calibration circuitry consists of a continuous-time integrator and a volt-

age-to-current converter that controls IDAC.  To understand the system, consider the 

operation of the PLL from the CP and DAC to VCO as seen in Figure 6a.  The calibra-

tion signal generator produces c[n] given by (4) and (5), which switches the CP and 

DAC current, iCP(t) and iDAC(t), to either ip(t) or in(t) each reference period. 

Due to the equivalence of the VCO inputs, an equivalent change on either Vp(t) 

or Vn(t) will result in an identical VCO frequency change, and any differential change 

between Vp(t) and Vn(t) will result in no change.  In this manner, the same current 

pulse in either ip(t) or in(t) will result in the same VCO output change, therefore the 

correlation signal switching between ip(t) and in(t) is transparent to the VCO.  The ef-

fective loop filter voltage for controlling the VCO is the average of Vp(t) and Vn(t), 

given by Vctl(t) in Figure 6b.  If the DAC and CP charges were perfectly matched, the 

net charge delivered to each loop filter would be zero each reference period, therefore 

Vp(t) and Vn(t) would settle to constant values and Vctl(t) would be at the correct value 
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required by the PLL.  However, there are an unlimited number of possible choices for 

Vp(t) and Vn(t) that result in the correct value of Vctl(t) so it is impossible to predict the 

steady-state loop filter voltages by only considering the operation of the PLL. 
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Figure 5: High-level Functional Diagram of Calibrated Fractional-N PLL 

Next, consider the operation of the calibration loop.  As an example, if the cor-

relation signal is the sign of the accumulated quantization noise given in (1) [7], the 

result is the accumulation of positive CP charge on Vp(t) and negative CP charge on 

Vn(t).  For the case where the DAC gain is smaller than the CP gain, Vp(t) increases 
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and Vn(t) decreases, causing the loop filter voltages to drift away from one another.  

The differential voltage change on Vp(t) and Vn(t) also results in a differential voltage 

between Vcalp(t) and Vcaln(t) which is accumulated through the continuous-time integra-

tor, and used to adjust IDAC.  The DAC current is adjusted such that the average differ-

ential voltage between Vcalp(t) and Vcaln(t), and hence Vp(t) and Vn(t), is zero.  There-

fore the DAC and CP gains are matched.  So, the calibration loop operating in con-

junction with the PLL will cause Vp(t) and Vn(t) to each converge to unique values de-

termined by the PLL output frequency and offsets within the PLL and calibration 

loops. 
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Figure 6: PLL Loop Modification for Calibration; a) Modified LF and VCO; b) Equivalent circuit 
for PLL 
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The PLL and calibration locking behaviour are shown in Figure 7 for a 10% 

mismatch between CP and DAC.  Under ideal circuit behaviour, the operation of the 

loop is such that Vp(t) and Vn(t) converge to the same average voltage as the calibra-

tion loop converges.  However, non-idealities in the circuit can result in incorrect set-

tling or variation of the calibration loop output, as well as cause instability if the loop 

parameters are not chosen properly.  The following section presents a signal process-

ing model, and conditions that guarantee the stability of the system. 
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Figure 7: Loop Filter Voltages and Calibration Control Voltage 
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IV.SIGNAL PROCESSING DETAILS 

A. Signal Processing Model 
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Figure 8: a) Calibration Loop Circuit; b) Continuous-time Model; c) Equivalent Discrete-time 
Signal Processing Model 

The required continuous-time circuitry to implement the calibration technique 
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is shown in Figure 8a, consisting of a switch and passive filter followed by an ideal 

differential integrator3 and voltage-to-current converter with a trans-conductance of 

gm.  The correlation signal c[n] is held constant for the duration of iCP(t) and iDAC(t) 

and steers the currents to either the positive or negative input of the integrator each 

reference cycle.  The equivalent continuous-time signal processing model of the cali-

bration loop is shown in Figure 8b, where c[n] is converted to a continuous-time sig-

nal, and the switch is replaced by a multiplication of the correlation signal with iCP(t) 

and iDAC(t), and w(t) is the gain adjustment signal for the DAC. 

Using (1) and (2), the CP and DAC current pulses can be well approximated by 

[6, 13] 

 
0

( ) [ ] ( )CP CP
n

i t Q n t nTδ
∞

=
= −∑  (6) 

 
0

[ ]( ) ( ) ( )
DAC

DAC
DAC T

n DAC

Q ni t t nT p t
T

δ
∞

=

 
= − ∗ 
 
∑  (7) 

where T is the reference period, δ(t) is the impulse function, * is the convolution op-

erator and ( )
DACTp t  is a rectangular unit-amplitude pulse of width TDAC.  Taking the 

feedback signal w(t) into account, the input to the calibration loop, i(t) is 

 
0 0

[ ]( ) [ ] ( ) ( ) ( ) ( )
DAC

DAC
CP T

n n DAC

Q ni t Q n t nT t nT p t w t
T

δ δ
∞ ∞

= =

  
= ⋅ − − ⋅ − ∗ ⋅   

  
∑ ∑  (8) 

Since the output of the calibration loop, w(t) varies during the duration of a 

DAC pulse, it is impossible to maintain a constant w(t) for all DAC pulses which re-
                                                 
3 A non-ideal integrator results in the addition of extra poles and zeros in the calibration loop, and with 
proper amplifier design, can be made negligible. 
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sults in perfect calibration of the DAC gain.  However in all applications, a minimum 

level of gain matching performance, ∆, can be specified such that 

 (1 ) (1 )CP VCO DAC DAC CP VCOI T I T I T− ∆ < < + ∆  (9) 

Appendix A outlines the necessary conditions on the calibration loop parameters to 

ensure that the variation in w(t) is small with respect to ∆, which can be given as 

 
1

1

/

/

1
1

DACT RC
CP VCO m

T RC
int DAC

I T g e
C I e

−

−

− < ∆
−

, (10) 

therefore w(t) can be assumed to be constant for the duration of a DAC pulse. 

Sampling w(t) uniformly at intervals of T, the system can be modeled as a dis-

crete-time system with charge inputs defined in (1) and (2), and the impulse response 

of the discrete-time filter is simply the continuous-time impulse response of the filter 

and integrator in Figure 8b sampled at t = nT.  This model is shown in Figure 8c, 

where the mismatch between CP and DAC paths is explicitly represented by the pa-

rameter β, ICPTVCO = IDACTDAC, and the corresponding discrete-time impulse responses 

are also shown.  The parameter G can be readily derived from Figure 8b as 

 m

int DAC

gG
C I

=
⋅

. (11) 

B. Calibration Loop Performance 

The two equations used to describe the calibration loop are 

 { }[ ] [ ] [ ] ( [ ]) [ ]CP DACx n c n Q n w n Q nβ= ⋅ − +  (12) 
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 ( ){ }1/[ ] [ ] [ ] 1 nT RCw n G x n u n e−= ⋅ ∗ −  (13) 

where u[n] is the unit step function. Since (12) and (13) represent a non-linear feed-

back system, a closed-form expression for w[n] can be derived, and then used to 

evaluate the conditions under which bounded-input, bounded-output (BIBO) stability 

holds.  Define 

 0 [ ] [ ] [ ],      and
[ ] [ ] [ ],

CP CP

R req DAC DAC req

C C n Q n c n
C C n I T e n c n

+ ⋅
+ ⋅ ⋅ ⋅

�

�
 (14) 

where C0 and CR are the sample averages of QCP[n]⋅c[n] and IDAC⋅TDAC⋅ereq[n]⋅c[n] re-

spectively.  Claim 1 in Appendix B shows that for the choices of c[n] given in (4) and 

(5), C0 exists, and furthermore is given by 

 
22 1

2

N

CP VCO NI T
− −⋅ ⋅  (15) 

To prove the calibration loop is stable, the equations (12) and (13), and the result in 

(15) can be used in Claim 2 in Appendix B.  The stability condition required is that 

 ( )1/1 [ ] 1T RC
DACG e Q n−− <  (16) 

for all DAC charge samples.  From (11), (16) and the fact that |QDAC[n]| ≤ IDACTDAC 

reduces to 

 ( )1/1 1T RCm
DAC

int

g e T
C

−− <  (17) 

The following section outlines a practical example which shows that for typical values 
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for calibration loop parameters, (17) is satisfied and the loop is stable. 

V.SIMULATIONS AND LIMITATIONS 

Suppose that a calibration loop is to be designed for a Bluetooth compliant 

fractional-N PLL with a block diagram shown in Figure 5 and component values given 

in Table 1.  The component requirements for the PLL and phase noise cancellation 

system are determined independently of the calibration technique, and will not be dis-

cussed as they are presented in [6].  The PLL parameters from Table 1 yield a PLL 

loop bandwidth of approximately 443kHz.  In the absence of phase noise cancellation, 

the phase noise at a 3MHz offset can be calculated from [1] as –84dBc/Hz.  To meet 

the Bluetooth specification of less than –120dBc/Hz at a 3MHz offset, the DAC gain 

matching must be accurate to 0.01.  Furthermore, since transmission packets for Blue-

tooth are less than 625µs, the calibration loop must settle within a fraction of that time.  

For adequate noise performance, a settling time of 50µs to 0.01 accuracy is required. 

Table 1: Parameters for Fractional-N PLL from Figure 2 

PLL Parameters 
Reference Frequency, T 12 MHz 
Output Frequency 2.4 – 2.5 GHz 
∆Σ Quantizer step, 2N 216 

Charge Pump Current, ICP 2mA 
Nominal DAC Current, IDAC 1mA 
VCO gain, KVCO 120MHz/V 
Loop Filter Resistor, R 2.5 kΩ 
Loop Filter Capacitor, C1 36 pF 
Loop Filter Capacitor, C2 564 pF 
DAC resolution 9 bit 
DAC pulse duration, TDAC 4TVCO 
Required gain matching, ∆ 0.01 
Required settling performance 50µs 
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The validity of the discrete-time model, as well as the stability is verified by 

substituting the parameters in Table 1 into the left sides of (10) and (17), which results 

in respective bounds on the calibration loop parameters, gm and Cint of 

 8 94.0 10 , and 1.0 10m m

int int

g g
C C

< × < × . (18) 

Clearly the most stringent requirement is satisfying the continuous-time to dis-

crete-time model approximation.  The appropriate choice of parameters to meet the 

settling time requirements can be found through simulations.  Simulation results are 

shown in Figure 9 for a Cint of 10pF and a gm of 0.2mS and 66µS.  The simulator is 

similar to Hspice, and all blocks are implemented with ideal behavioral components.  

While both choices of parameters meet the bound given in (18), the settling time re-

quirement is achieved when gm is 200µS. 
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Figure 9: Settling Time for Calibration Technique 
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The phase noise of the calibrated fractional-N PLL is shown in Figure 10 and 

compared with that of an ideally matched PLL.  As shown, the phase noise resulting 

from calibration is negligible compared to the case where there is no gain mismatch.  

The calibration technique results in a phase noise cancellation improvement of more 

than 20dB over the uncalibrated case with a 10% gain mismatch. 
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Figure 10: PLL Phase Noise; a) Without Calibration; b) Calibration enabled for ββββ=0.9 

105 106 107-160

-150

-140

-130

-120

-110

-100

-90

-80

Frequency

dB
c/

H
z

 
Figure 11: Calibration enabled for random mismatches in PLL loop 
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In practice, component mismatches could result in errors in the calibration 

technique.  With mismatches in the component values of approximately 5%, the phase 

noise at the output of the PLL remains well behaved as shown in Figure 11, demon-

strating the robustness of the calibration technique.  It can be shown that component 

mismatches simply result in a replica of the CP and DAC charges appearing at the in-

tegrator input.  Since these charges have zero dc content due to the PLL loop, this re-

sults in noise on the calibration signal, not misalignment.  This demonstrates the vi-

ability of this calibration technique for phase-noise canceling delta-sigma fractional-N 

PLL. 

VI.CONCLUSIONS 

An analysis of a calibration technique applied to a phase-noise canceling frac-

tional-N PLL has been presented.  Conditions have been presented to ensure the stabil-

ity of the technique, as well as an approximation for the settling time, which is also 

used to determine the calibration technique parameters.  These results enable the cus-

tomization of this calibration technique in response to target PLL specifications. 
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APPENDIX A 

Consider the continuous-time calibration loop model shown in Figure 8b.  The 

impulse response, g(t), from the input of the filter to w(t) can be derived as 

 { }1/( ) ( ) 1 t RCm

int DAC

gg t u t e
C I

−= ⋅ − . (19) 

The worst-case variation of (19) during a DAC pulse event occurs when the DAC gain 

is zero.  Using (6) and (19), the deviation of w(t) over a duration of TDAC during the nth 

DAC and CP event can be expressed as 

 { }1 1( ) / /

0

( ) ( ) [ ] DAC

n
kT T RC kT RCm

DAC CP
kint DAC

gw nT w nT T Q n e e
C I

− + −

=

− + = −∑  (20) 

Recalling from (3) that |QCP[n]| ≤ ICPTVCO, the right side of (20) can be bounded by 

 
{ } { }

1
1 11

1

1

1

( 1) /
/ //

/
0

/

/

11 1
1

1
1

DAC DAC

DAC

n T RCn
T RC T RCkT RCCP VCO m CP VCO m

T RC
kint DAC int DAC

T RC
CP VCO m

T RC
int DAC

I T g I T g ee e e
C I C I e

I T g e
C I e

− +
− −−

−
=

−

−

−− = −
−

−<
−

∑
 (21) 

In order to ensure that w(t) does not change over the duration of a DAC pulse, it is 

necessary to keep (21) small.  This leads to 

 
1

1

/

/

1
1

DACT RC
CP VCO m

T RC
int DAC

I T g e
C I e

−

−

− < ∆
−

 (22) 

where ∆ is the specified level of gain calibration required for w(t). 
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APPENDIX B 

This appendix provides the claims necessary to prove the convergence of the 

calibration loop.  Consider the signal-processing model shown in Figure 8c.  With c[n] 

given by (5), Claim 1 proves that the charge supplied by the CP and DAC are ergodic, 

i.e. C0 exists, and Claim 2 provides an intermediate claim to prove the stability of the 

calibration loop. 

Definition: Equant[n] is an integer-valued sequence representing the quantizer noise 

from the ∆Σ modulator such that 

 
[ ]

[ ]
2

quant
quant N

E n
e n � , 

where 2N is the quantizer step size of the ∆Σ modulator.  This definition is provided to 

ensure congruency with the theorems outlined in [14]. 

Claim 1: Suppose that the correlation signals given by (5) are generated in conjunc-

tion with a 2nd order ∆Σ modulator designed to satisfy the conditions of Theorem 3 in 

[14] with a quantizer step size of 2N.  Then C0 is given by 

 
2

0
2 1

2

N

CP VCO NC I T
− −= ⋅ ⋅ . 

Proof: Consider the case where c[n]=sgn(equant[n−1])= sgn(Equant[n−1]).  Then from 

(3), 

 ( )( )0 [ ] [ ] [ ] [ 1] sgn [ 1] [ 2]
2

CP VCO
CP CP quant quant quantN

I TC C n Q n c n E n E n E n+ = ⋅ = ⋅ − − − ⋅ − .(23) 
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From (14), C0 is defined as the sample average of (23).  First consider the sam-

ple average of |Equant[n]|.  Theorem 1 in [14] proves that Equant[n] asymptotically ap-

proaches a uniform random distribution as n→∞ given by 

 1 1( ) 2 ,   2 1 2N N N
UP u u− − −= − + ≤ ≤ . (24) 

And therefore, 

 2lim E [ ] 2N
quantn

E n E u −

→∞
  =   =   . (25) 

For any postive number m, define 

 2[ ] 2N
n quantX E n m −= + − , (26) 

and Lemma 3 from [14] shows that E[Xn]→0 is sufficient to prove that the sample av-

erage of |Equant[n]| converges in probability to 2N-2, or in other words 

 
211 2lim [ ]

2

Nn m

quant Nn k m
e k

n

−+ −

→∞ =

=∑ . (27) 

Now consider the second term in (23).  Theorem 2 in [14] also proves that the 

joint pmf of any two samples of the quantizer error converges in distribution to a 

jointly uniform random variable given by 

 2 1 1
, ( , ) 2 ,   2 1 , 2N N N

U VP u v u v− − −= − + ≤ ≤ , (28) 

and therefore 

 ( ) [ ]lim E sgn [ ] [ 1] E sgn( ) 1quant quantn
E n E n u v

→∞
 ⋅ − = ⋅ =  . (29) 
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For any positive number m, let 

 ( )sgn [ ] [ 1] 1n quant quantX E n m E n m= + + − − , (30) 

and Lemma 3 from [14] shows that E[Xn]→0 is sufficient to prove that the sample av-

erage of sgn(Equant[n])⋅Equant[n−1] converges in probability to 1.  Therefore due to the 

linearity of the sample mean operator, 

 ( ){ }
211 2 1lim [ ] sgn [ ] [ 1]

2

Nn m

quant quant quant Nn k m
e k e k e k

n

−+ −

→∞ =

−− ⋅ − =∑ , (31) 

which proves Claim 1 for c[n]=sgn(equant[n]), and the convergence is irrespective of 

the initial start index, m.  Now consider the second correlation signal given by 

 
( ) ( )sgn [ ] sgn [ 1]

[ ] [ ]
2

quant quante n e n
c n s n

− −
= + , 

where s[n] is by definition a zero-mean ergodic sequence.  For this correlation signal, 

(23) can be expressed as 

 
( ){

( ) ( )}
0

1[ ] [ ] [ 1] sgn [ ] [ 1]
2 2

sgn [ 1] [ ] 2 [ ] [ ] [ 1]

CP VCO
CP quant quant quant quantN

quant quant quant quant

I TC C n E n E n E n E n

E n E n s n E n E n

⋅+ = ⋅ + − − ⋅ −

− − ⋅ + ⋅ ⋅ − −
. (32) 

The first 4 terms have already been shown to converge to (31), and since s[n] is a 

zero-mean ergodic sequence uncorrelated from the quantization error, C0 is given by 

 
2

0
2 1

2

N

CP VCO NC I T
− −= ⋅ ⋅  

Therefore Claim 1 is proven for both correlation signals. 
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For the following stability claim, consider a system of non-linear difference equations 

defined by 

 1 2[ ] [ ] [ ] [ ]x n u n w n u n= − ⋅  (33) 
 [ ] [ ] [ ]w n x n h n= ∗  (34) 

where u1[n] and u2[n] are bounded inputs, and h[n] is a filter with the following char-

acteristics 

 ( 1)[ ] 0 for 0, [1] 0, and [ ] [ 1] nh n n h h n h n Ke α− −= ≤ > − − =  (35) 

where K and α are positive constants.  Without loss of generality, the system is as-

sumed to start at n = 0 such that u1[n] = u2[n] = 0 for n < 0. 

Claim 2: Suppose that 

 2[1] [ ] 1h u n⋅ <  (36) 

Then the system of equations defined by (33) and (34) are BIBO stable if for any posi-

tive integer m, 

 
1

2
1lim [ ] 0

N m

N n m
u n U

N

+ −

→∞ =
= >∑  (37) 

Proof: First, consider the product given by 

 ( )2
1

1 [1] [ ]
n

l k
h u l

= +

−∏  (38) 

It follows from (36) and the fact that |1 − x| ≤ e−x that 
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 ( )
2

1

[1] [ ]

2
1

1 [1] [ ]

n

l k

n h u l

l k
h u l e = +

−

= +

∑
− ≤∏  (39) 

(37) implies that for any index m, and positive number ε, there exists an Nε,m such that 

for all N > Nε,m, 

 ( )
1

2[ ]
N m

n m
u n U Nε

+ −

=
− <∑  (40) 

For all m and ε, Nε,m is finite.  Therefore, for some ε < U, define 

 { }, 0
' max m m

N N ε
∞

=
= , (41) 

and for n − k > N’, the right side of (39) is bounded by 

 ( )
( )

( )( )2
1

[1] [ ]
[1] [1]

n

l k
h u l U

h n k U h n k Ue e e ε= +

 
 − −
 − − − − − 
∑

≤  (42) 

Therefore, there exists positive numbers D, and β such that for all n and k, 

 ( ) ( )
2

1

1 [1] [ ]
n

n k

l k
h u l De β− −

= +

− ≤∏ , (43) 

and therefore (38) is bounded by an exponentially decreasing function.  The non-linear 

difference equations given by (33), (34) and (35) can be expressed as  

 

( )

( ) ( )

( )

1 2
0

2

1 1 2
0

2

2
0

[ ] [ ] [ ] [ ] [ ]

[1] [ 1] [ ] [ 1 ] [ ] [ 1] 1 [1] [ 1]

[ ] [ 1 ] [ ] [ ].

n

k
n

k
n

k

w n h n k u k w k u k

h u n h n k h n k u k w n h u n

h n k h n k w k u k

=

−

=
−

=

= − −

= − + − − − − + − − −

− − − − −

∑

∑

∑

 (44) 
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Recursively substituting (44) into itself to eliminate w[k], k = 0, …, n − 1 yields 

 
( )

( ) ( ) ( )

1 2

1 1
0 0

1

2 2 2
21

[ ] [1] [ 1] [ ] [ 1] [ ]

1 [1] [ ] [ ] [ ] [ 1] 1 [1] [ ] .

n n k

k l

k kk

mm o m

w n h u n k h n l h n l u l

h u n m u n k h m h m h u n k o

− − −

= =

−

== =

 = − − + − − − − 
 

 ⋅ − − − − − − ⋅ − − + 
 

∑ ∑

∑∏ ∏
 (45) 

The above equation consists of four separate terms.  For a bounded input, there 

exists a B such that u1[n] and u2[n] are bounded by B in magnitude.  From (43), the 

first term can be bounded by 

 
( )

1 1

1 2
0 01

[1] [ 1] 1 [1] [ ] [1]

1 [1][1]
1 1

kn n
k

k km

n

h u n k h u n m h B De

e h B Dh B D
e e

β

β

β β

− −
−

= ==

−

− −

− − − − <

− ⋅= ⋅ <
− −

∑ ∑∏
 (46) 

Using (35) the second term can be expressed and bounded by 

 
( ) ( )

( )

1 2

1 2
0 0 1

1 2 1
1 ( 1)

0 0 0 0

[ ] [ 1] [ ] 1 [1] [ ]
kn n k

k l m

n n k n n k
n l k k k l

k l k l

h n l h n l u l h u n m

B Ke De KBD e e eα β β α α

− − −

= = =

− − − − −
− − − − − − + −

= = = =

− − − − − −

≤ ⋅ = ⋅

∑ ∑ ∏

∑ ∑ ∑ ∑

. (47) 

The expression on the right side of (47) can be further reduced resulting in 

 

( )( )

( 1) ( )1
( 1)

( )
0

( )

1 1
1 1 1

1 1

n k nn
k k

k

e e eB De Ke KBD
e e e

KBDe
e e

α α α β
β α

α α α β

α

α α β

− − + − − +−
− − +

− − − +
=

−

− − +

− −⋅ ≤
− − −

≤
− −

∑
 (48) 

The third term from (45) can be expressed and bounded by 



 

 
 

29

 

 
( ) ( )
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1 2 2
0 2

1
2 ( 1) ( )

0 2

[1] [ 1] [ ] [ ] [ 1] 1 [1] [ ]

[1]

kn k

k m o m

n k
m k m

k m

h u n k u n k h m h m h u n k o

h B Ke Deα β

−−

= = =

−
− − − −

= =

− − ⋅ − − − ⋅ − − +

≤ ⋅

∑ ∑ ∏

∑∑

 (49) 

The expression on the right side of (49) can be bounded by 

 

( 1)( )1 1
2 ( 1) 2 2( )

( )
0 2 0

2 2( ) ( )
( )

( )
2 2( )

( )

1[1] [1]
1

1 1 1[1]
1 1 1
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n n

eh B KD e e e h B KDe e e
e

e eh B KDe e e
e e e

eh B KDe e
e e e

α β
β α β α α β β

α β
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α α β α β

α β β α

α β
α α β

α β β α

− − −− −
− − − − − −

− −
= = =

− −
− − −

− − − −

−
− −

− − − −

−⋅ =
−

 − −= − − − − 

≤ −
− − −

∑ ∑ ∑

 
 
 

 (50) 

 

Finally, the fourth term in (45) can be expressed and bounded by 
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 (51) 

Solving the right side of (51) yields 
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which proves the BIBO stability of (33) and (34). 
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Chapter 2 :  A Digital Quantizer with Shaped Quanti-
zation Noise that Remains Well Behaved after Non-

linear Distortion 

ABSTRACT 

A major problem in oversampling digital-to-analog converters and fractional-N 

frequency synthesizers, which are ubiquitous in modern communication systems, is 

that the noise they introduce contains spurious tones.  The spurious tones are the result 

of digitally generated, quantized signals passing through non-linear analog compo-

nents.  This paper presents a new method of digital quantization, called Segmented 

Quantization, special cases of which avoid the spurious tone generation problem.  Suf-

ficient conditions are derived that ensure certain statistical properties of the quantiza-

tion noise, including the absence of spurious tones after non-linear distortion.  A prac-

tical example is presented and shown to satisfy these conditions. 

I.  INTRODUCTION 

Oversampling digital-to-analog converters (DACs) and fractional-N phase-

locked loops (PLLs) are each enabling components in modern communication systems 

[15, 16, 17].  In both components a digital delta-sigma (∆Σ) modulator, i.e., a ∆Σ 

modulator implemented with digital logic, is used to coarsely quantize a constant or 

slowly-varying digital sequence.  The quantized sequence can be viewed as the sum of 

the original sequence plus spectrally shaped quantization noise that has most of its 

power outside of a given low-frequency signal band.  Ultimately, the quantized se-

quence is converted to an analog signal and further processed by analog circuitry in-
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cluding a lowpass filter to suppress quantization noise outside of the signal band. 

In most communications applications it is critical that any spurious tones in the 

noise introduced by DACs and fractional-N PLLs have very low power [16, 18].  In 

principle, dither applied to a ∆Σ modulator can prevent the quantization noise from 

containing any spurious tones whatsoever [19, 20].  Nevertheless, in practice digital 

∆Σ modulators are major sources of spurious tones in oversampling DACs and frac-

tional-N PLLs [21, 22].  Regardless of how dither is applied, all ∆Σ modulator archi-

tectures known to the authors give rise to spurious tones when their quantization noise 

is subjected to non-linear distortion.  This is particularly problematic in fractional-N 

PLLs wherein the input to the ∆Σ modulator usually is a constant and the output se-

quence from the ∆Σ modulator is converted to analog form and subjected to a various 

non-linear operations because of non-ideal circuit behavior.  Heretofore, the only 

known solution was to make the analog circuitry very linear so that the spurious tones 

have sufficiently low power for the given application.  Unfortunately, this limits de-

sign options and results in higher analog circuit power consumption than would be re-

quired if less linear analog circuits could be tolerated. 

This paper presents a new type of digital quantizer, referred to as a Segmented 

Quantizer (SQ), that addresses this problem.  The paper presents sufficient conditions 

on the segmented quantizer’s design parameters to ensure certain statistical properties 

of the quantization noise and the running sum of the quantization noise.  These proper-

ties include the absence of spurious tones under application of non-linear distortion.  

An example is presented that satisfies the conditions and is demonstrated via computer 
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simulation.  The work borrows ideas from dc-free codes [23, 24] and dynamic element 

matching tree structured encoders [25, 26]. 

The paper consists of three main sections.  Section II presents the principle of 

segmented quantization, as well as an example that illustrates the appearance of spuri-

ous tones when the quantized sequence is subjected to non-linear distortion.  Section 

III presents the sufficient conditions mentioned above.  Section IV presents an exam-

ple segmented quantizer that satisfies the sufficient conditions. 

II.SEGMENTED QUANTIZATION 

A. Spectral Properties of Interest 

As outlined above, fractional-N PLLs and delta-sigma DACs ultimately gener-

ate analog waveforms.  Each such waveform contains components corresponding to 

digitally generated quantization noise, s[n], and, in the case of fractional-N PLLs, its 

running sum, 

 
0

[ ] [ ]
n

k
t n s k

=

=∑ . (53) 

Moreover, inevitable non-ideal analog circuit behavior generally causes non-linear dis-

tortion.  The distortion can be any non-linear function, but for almost all practical ap-

plications can be represented by a memory-less, truncated power series.  This gives 

rise to components in the output waveform corresponding to sp[n] for p = 1, 2, 3, …, 

hs, and tp[n] for p = 1, 2, 3, …, ht, where hs and ht are the highest significant orders of 

distortion for the given application applied on s[n] and t[n] respectively. 
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Most communication system standards specify the required performance of 

such systems in terms of quantities that can be measured using spectrum analyzers, so 

the properties of the waveforms typically are quantified in the laboratory using spec-

trum analyzers.  Although the waveforms themselves are considered to be random 

processes in most cases, spectrum analyzers can only average over time, not over en-

semble.  Therefore, in such applications the properties of the periodograms of sp[n] 

and tp[n] given by 
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and 
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−

−

=

= ∑  (55) 

are of particular interest, rather than traditional power spectral density (PSD) functions 

[27].  It is well known that in certain cases the expected values of the periodograms 

converge to the true PSD functions in the limit as L→∞, but in the applications men-

tioned above this is not a requirement, or even relevant to the measured performance. 

Hence, the results presented in this paper focus on the properties of the periodograms 

given by (54) and (55).    

B. Signal Processing Model of the Segmented Quantizer 

The proposed segmented quantizer architecture is shown in Figure 12a.  Its in-

put is a sequence of B-bit numbers, x0[n], and its output is a sequence of B−K-bit 
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numbers, xK[n], where n = 0, 1, 2, …, is the time index of the sequences.  The seg-

mented quantizer consists of K quantization blocks, each of which quantizes its input 

by one bit, so the segmented quantizer quantizes K bits overall.4 

a)

b)

Sequence
Generator

LSB of
xd[n]

B-d

B-d bit
Adder

1

B-d-1

Discard LSB of
xd[n]+sd[n]1

B-K

xK[n]
Quantization

BlockB-1

x1[n]
Quantization

BlockB

x0[n]
Quantization

BlockB-K+1

xK-1[n]

xd[n]

sd[n]

xd+1[n]

c)

Sequence
Generator2

1 2
xd[n] xd+1[n]

sd[n]od[n]

 

Figure 12: a) High-level block diagram of the segmented quantizer; b) quantization block details; 
c) signal processing model 

The high-level details of each quantization block are shown in Figure 12b and 

                                                 
4 Quantization blocks that quantize their input sequences by more than one bit could be used.  However, 
it is straightforward to show that this is a trivial extension of the one bit-per-stage case. 
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the signal-processing model is shown in Figure 12c.  Each quantization block gener-

ates a quantization sequence, sd[n], with the property that xd[n]+sd[n] is an even num-

ber for each n, where xd[n] is the quantization block’s input sequence.  The quantiza-

tion block adds sd[n] to xd[n] and discards the least significant bit (LSB) to implement 

the 1-bit quantization.5  Since xd[n]+sd[n] is an even number for each n, its LSB is 

zero, so discarding the LSB does not incur a truncation error.   Hence, the quantization 

noise of the segmented quantizer is a weighted sum of the sd[n] sequences: 

 
1

0
[ ] 2 [ ]

K
d

d
d

s n s n
−

=
=∑ . (56) 

So far, the only restriction on the sd[n] sequences is that xd[n]+sd[n] must be an 

even integer for each n and d.  This leaves considerable flexibility in the design of the 

sd[n] sequences which is exploited in the remainder of the paper to achieve the desired 

quantization noise properties. 

The versions of the segmented quantizer considered in this paper partially ex-

ploit this flexibility to have first-order highpass shaped quantization noise, i.e., they 

are designed such that the running sum of each sd[n] sequence,  

 
0

[ ] [ ]
n

d d
k

t n s k
=

=∑ . (57) 

is bounded over all n and that the estimated power spectrum of sd[n] has a highpass 

spectral shape.  It follows from (56) that the overall quantization noise, s[n], inherits 

                                                 
5  Without loss of generality, numbers within the SQ are taken to be integers with a two’s-compliment 
binary number representation. 
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the spectral shape of the sd[n] sequences, and similarly that the running sum of the 

quantization noise,  

 
1

0
[ ] 2 [ ]

K
d

d
d

t n t n
−

=
=∑ , (58) 

is bounded. 

The restriction to first-order highpass shaped quantization noise still leaves 

flexibility in the design of the sd[n] sequences.  This flexibility is exploited in the re-

mainder of the paper to ensure that sp[n] for p = 1, 2, …, hs, and tp[n] for p = 1, 2, …, 

ht are free of spurious tones, where hs and ht are positive integers.  By definition, if 

sp[n] and tp[n] contain spurious tones at a frequency ωn, then (54) and (55), respec-

tively, are expected to be unbounded in probability at ω = ωn as L→∞.  Therefore, to 

establish that there are no spurious tones in either sp[n] or tp[n], it is sufficient to show 

that (54) and (55) are bounded in probability for all |ω| ≤ π as L→∞.  A spurious tone 

at ω = 0 is just a dc offset, so this case is excluded from consideration.  Theorems 1 

and 2 in the next section present sufficient conditions on the sd[n] sequences for (54) 

and (55) to be bounded in probability for every L ≥ 1 and 0 < |ω| ≤ π, thereby ensuring 

the absence of spurious tones in sp[n] and tp[n]. 

C. Example Segmented Quantizer and Appearance of Spurious Tones 

As shown in [28], first-order highpass quantization noise is achieved with 

quantization blocks that implement 
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x n t n
x n t n

=
 = − ==  = − = −
− = − =

 (59) 

where rd[n] is an independent random sequence that takes on the values 1 and –1 with 

equal probability.  The results presented in [29] imply that neither sd[n] nor td[n] con-

tain spurious tones.  Therefore, s[n] and t[n] inherit these properties provided the rd[n] 

sequences for d = 0, …, K−1 are independent.  This is demonstrated by the estimated 

power spectra shown in Figure 13 which correspond to a simulated segmented quan-

tizer with K = 16, x0[n] = 2457, and quantization blocks that implement (59). 
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Figure 13: Estimated power spectra of the quantization noise and its running sum for the SQ pre-
sented in Section II. 

However, if the quantization noise or its running sum is subjected to non-linear 
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distortion, spurious tones can be induced.  For instance, Figure 14 shows the estimated 

power spectrum of t2[n] for the simulation example described above.  Discrete spikes 

are evident in the plot, and it can be shown that the spikes grow without bound in pro-

portion to the periodogram length.  Therefore, the spikes represent spurious tones.  

The presence of spurious tones implies that subjecting t[n] to second-order distortion 

is sufficient to induce spurious tones even though t[n] is known to be free of spurious 

tones. 
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Figure 14: Estimated power spectra of the square of the running sum of the quantization noise for 
the SQ presented in Section II. 

The spur generation mechanism can be understood by considering the first 

quantization block.  Suppose the input to the segmented quantizer is an odd-valued 

constant and t0[n−1] = 0 for some value of n.  Then (59) implies that (s0[n], s0[n+1]) is 

either (−1, 1) or (1, −1) depending on the polarity of r0[n].  It follows from (57) that 
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(t0[n], t0[n+1]) is either (−1, 0) or (1, 0), and, by induction, t0[n] has the form {…, 0, 

±1, 0, ±1, 0, ±1, 0, …}.  Therefore, t0
2[n] has the form {…, 0, 1, 0, 1, 0, 1, 0, …} 

which is periodic.  A similar, but more involved analysis can be used to show that the 

td
2[n] sequences for d > 0 also contain periodic components.  These periodic compo-

nents cause the spurious tones visible in Figure 3. 

III.THEORY FOR TONE-FREE QUANTIZATION SEQUENCES 

It is assumed throughout the remainder of the paper that the input to the quan-

tizer, x0[n], is integer-valued and deterministic sequence for n = 0, 1, …, and that the 

segmented quantizer is designed such that the following properties are satisfied: 

 

Property 1: xd+1[n] = (sd[n] + xd[n])/2 is integer-valued for n = 0, 1, …, and d = 0, 1, 

…, K − 1. 

Property 2:  there exists a positive constant B such that |td[n]| < B, for n = 0, 1, 2, … . 

Property 3: td[0] = 0, and 

 ( )[ ] [ 1], [ ], [ ]d d d dt n f t n r n o n= −  (60) 

where f is a deterministic, memoryless function, {rd[n], d = 0, 1, …, 

K−1, n = 1, 2, …} is a set of independent identically distributed (iid) 

random variables, and 
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1, if [ ] is odd,

[ ] [ ] mod 2
0, if [ ] is even,

d
d d

d

x n
o n x n

x n


= = 


 (61) 

is called the parity sequence of the dth quantization block. 

Property 1 and the assumption that x0[n] is integer-valued imply that sd[n] is an 

even integer when xd[n] is even, and an odd integer otherwise.  Therefore, (57) implies 

that td[n] is integer-valued, and Property 2 further implies that it is restricted to a finite 

set of values.  Let T1, T2, …, TN denote these values.  Therefore, the function, f, in 

Property 3 takes on values restricted to the set {T1, T2, …, TN}. 

It follows from Properties 1, 2, and 3 that xd+1[n], sd[n], and td[n], for d = 0, 1, 

…, K−1, and n = 1, 2, …, depend only on the set of iid random variables {rd[n], d = 0, 

1, …, K−1, n = 0, 1, 2, …} and the deterministic segmented quantizer input sequence, 

{x0[n], n = 1, 2, …,}.  Therefore, the sample description space of the underlying prob-

ability space is the set of all possible values of the random variables {rd[n], d = 0, 1, 

…, K−1, and n = 0, 1, 2, …}. 

Equation (57) implies that 

 [ ] [ ] [ 1]d d ds n t n t n= − − . (62) 

Therefore, it follows from Property 1 that  

 ( )1 1 1[ ] [ ] [ 1] [ ] / 2d d d dx n t n t n x n− − −= − − + , (63) 

for  1 ≤ d  < K.  Recursively substituting (63) into itself and applying (61) yields 
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d k k
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o n x n t n t n
−

−

=

 = + − − 
 

∑ . (64) 

Recursively substituting (60) into itself implies that for any integer n > 0, 

 ( )[ ] [ ], [ 1], , [1], [ ], [ 1], , [1]d n d d d d d dt n g r n r n r o n o n o= − −… …  (65) 

where gn is a deterministic, memoryless function.  Similarly, for any pair of integers n2 

> n1 > 0, recursively substituting (60) into itself m = n2 − n1 − 1 times implies that 

 ( )2 1 1 1 2 1 1 2[ ] [ ], [ 1], [ 2], , [ ], [ 1], [ 2], , [ ]d m d d d d d d dt n h t n r n r n r n o n o n o n= + + + +… …  (66) 

where hm is a deterministic, memoryless function. 

Repeatedly substituting (64) into (65) to eliminate the variables {od[n], …, 

od[1]} and then recursively substituting the result into itself to eliminate the variables 

{tk[m], k = 0, …, d−1, m = 1,  …, n} shows that td[n] is a random variable that de-

pends only on x0[n] (which is deterministic), and the random variables {rk[m], k = 0, 1, 

…, d, m = 1, 2, …, n}.  This in conjunction with (64) implies that od[n] is a random 

variable that depends only on x0[n], and the random variables {rk[m], k = 0, 1, …, d−1, 

m = 1, 2, …, n}.  In particular since the random sequence {od[n], n = 0, 1, 2, …} does 

not depend on the random sequence {rd[n], n = 0, 1, 2, …} and since all the random 

variables {rk[m] d = 0, 1, …, K−1, n = 0, 1, 2, …} are statistically independent by 

Property 3, it follows that {od[n], n = 0, 1, 2, …} and {rd[n], n = 0, 1, 2, …} are statis-

tically independent random sequences.  By similar reasoning, the random variable 

td[n] is statistically independent of the random variables {rd[m], m=n+1, n+2, …}. 
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Hence, (66) implies that td[n2] conditioned on the random variables td[n1], 

od[n1+1], od[n1+2], …, od[n2] is a function only of the statistically independent random 

variables rd[n1], rd[n1+1], …, rd[n2].  By definition, for i ≠ j the random variables 

{ri[n1], ri[n1+1], …, ri[n2]} are statistically independent of the random variables 

{rj[n1], rj[n1+1], …, rj[n2]}.  Therefore, for i ≠ j the random variables ti[n2] and tj[n2] 

conditioned on ti[n1], tj[n1], oi[n1+1], oi[n1+2], …, oi[n2], oj[n1+1], oj[n1+2], …, oj[n2] 

are statistically independent.  Consequently, for any positive real numbers p0, …, pK−1, 
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 (67) 

where the second equality follows from (60) and the independence of the {rd[n], n = 1, 

2, …,} sequences for d = 0, …, K − 1.  This implies that the pmf of the random vari-

able ti[n2] conditioned on ti[n1], oi[n1+1], oi[n1+2], …, oi[n2] is independent of any ad-

ditional conditioning by tj[n1], oj[n1+1], oj[n1+2], …, oj[n2] for i ≠ j.   

The statistical independence of od[n] and rd[n] together with (60) imply that 

{td[n], n = 0, 1, …} is a discrete-valued Markov random sequence conditioned on the 

sequence {od[n], n = 0, 1, …}.  Whenever xd[n] is odd the one-step state transition ma-

trix for td[n] is given by 

 { }[ ] | [ 1] , [ ] 1d j d i d N N
P t n T t n T o n

×
 = = − = = oA . (68) 
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Similarly, whenever xd[n] is even the one-step state transition matrix for td[n] is given 

by 

 { }[ ] | [ 1] , [ ] 0d j d i d N N
P t n T t n T o n

×
 = = − = = eA . (69) 

The function f in Property 3 is independent of n and d, so neither matrix is a function 

of n and d. 

Equation (62) implies that each possible value of sd[n] is given by Tj− Ti for 

some pair of integers i and j, 1 ≤ i, j ≤ N, so 

 { } { }[ ] [ 1] , [ ] 1 [ ] [ 1] , [ ] 1d j i d i d d j d i dP s n T T t n T o n P t n T t n T o n= − − = = = = − = = . (70) 

Given that td[n] is restricted to N possible values, sd[n] is restricted to N’ possible val-

ues where N’ ≤ N 2.  With identical reasoning to that used to proceed from (63) to (67), 

it follows that 
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 (71) 

Given that {td[n], n = 0, 1, …} is a discrete-valued Markov random sequence condi-

tioned on the sequence {od[n], n = 0, 1, …}, the conditional probability mass function 

(pmf) of td[n2] given td[n1] and od[n] is equal to the conditional pmf of td[n2] given 

td[n1], td[n1−1] and od[n].  Therefore, (62) implies that (71) is equivalent to 
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]

1

2 0 1 1 1 0 1 1 1
0

1

1 2 2 1 1 2
0

[ ] [ ], , [ ], [ ], , [ ], [ ];

0, , 1, 1, , [ ] [ ], [ ]; 1, ,

j

j

K
p
j K K d

j

K
p
j j j

j

E s n s n s n t n t n o n

d K n n n E s n t n o n n n n

−

− −
=

−

=





 = − = + = = + 

∏

∏

… …

… … …

 (72) 

The following definitions are used by the theorems presented below.  In analogy to the 

matrices Ao and Ae, let 

 { }
'

[ ] | [ 1] , [ ] 1d j d i d N N
P s n S t n T o n

×
 = = − = = oS , (73) 

and 

 { }
'

[ ] | [ 1] , [ ] 0d j d i d N N
P s n S t n T o n

×
 = = − = = eS , (74) 

where {Si, 1 ≤ i ≤ N’} is the set of all possible values of sd[n].  Property 3 ensures that 

neither matrix is a function of n and d.  It follows from (70) that each non-zero ele-

ment of So or Se is equal to an element in Ao or Ae, respectively.  For example, if Sk = 

Tj− Ti, then the element in the ith row and kth column of So is equal to the element in 

the ith row and jth column of Ao.  In this fashion, once Ao and Ae are known, So and Se 

can be deduced.  

Let 

 
( )

( )

( )

( )

1 1
( ) ( )

'

1
, , and

1

p p

p p

p p
N N

T S

T S

    
    
    
            

1 t s� � � � � � . (75) 

Suppose a sequence of vectors, b[n] = [b1[n], …, bN[n]]T converges to a constant vec-

tor, b1, as n→∞.  Then the convergence is said to be exponential if there exist con-
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stants C ≥ 0 and 0 ≤ α < 1 such that 

 [ ] n
ib n b Cα− ≤  (76) 

for all 1 ≤ i ≤ N and n ≥ 0. 

Theorem 1: Suppose that the state transition matrices Ae and Ao satisfy 

 e o o eA A = A A , (77) 

and there exists an integer ht ≥ 1 such that for each positive integer p ≤ ht 

 ( ) ( )lim , and limn p n p
p pn n

b b
→∞ →∞

= =e oA t 1 A t 1  (78) 

where bp is a constant and the convergence of both vectors is exponential.  Then for 

every L ≥ 1, 

 
,

[ ( )] ( )pt L
E I Cω ω≤ < ∞  (79) 

for each 0 < |ω| ≤ π.  Moreover, the bound C(ω), which is independent of L, is uniform 

in ω for all 0 < ε < |ω| ≤ π. 

By Markov’s Inequality [30], this immediately leads to, 

Corollary 1: Under the assumptions of Theorem 1, 
,

( )pt L
I ω  is bounded in probability 

for all L ≥ 1 and for each ω satisfying 0 < |ω| ≤ π. 

Proof of Theorem 1:  The expectation of 
,

( )pt L
I ω  can be expressed as 
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1 2

1 2

1 2

1 1 2
1 2

1 1
( )

1 2,
0 0

1 1 1
( )2

1 2
0 0 0

1 2

1[ ( )] [ ] [ ]

1 1[ ] [ ] [ ]

p

L L
j n np p

t L
n n

L L L
j n np p p

n n n
n n

E I E t n t n e
L

E t n E t n t n e
L L

J J

ω

ω

ω
− −

− −

= =

− − −
− −

= = =
≠

 =  

   = +   

+

∑∑

∑ ∑ ∑

�

. (80) 

The notation above means that J1 and J2 are defined as the first and second terms, re-

spectively, to the left of the �  symbol.  Property 2 states that |td[n]| ≤  B, so it follows 

from (58) that t[n] ≤ B1 for some finite constant B1.  Therefore, J1 ≤ B1
2p.  The crux of 

the proof is showing that there exists a constant pt
C , positive constants D1, D2, and a 

constant 0 < α < 1 such that for n1 ≠ n2 

 2 1 1
1 2 1 2[ ] [ ] p

n n np p
t

E t n t n C D Dα α− − ≤ +  , (81) 

The proof of (81), which is fairly lengthy, will be given later.  Here (81) is used to 

complete the proof of the theorem.  From (80), J2 can be expressed as 

 
( ) 1 2 1 2

1 2 1 2
1 2 1 2

1 1 1 1
( ) ( )

2 1 2
0 0 0 0

2,1 2,2

1 1[ ] [ ]

.

p p

L L L L
j n n j n np p

t t
n n n n
n n n n

J E t n t n C e C e
L L

J J

ω ω
− − − −

− − − −

= = = =
≠ ≠

 = − + 

+

∑ ∑ ∑ ∑

�

 (82) 

From (81) it is seen that 

 

( )

( ) ( )

1 2 1

1 2
1 2

1 2 1

1 2 1

1 1

2,1 1 2
0 0

1 1 1
1

2
0 0 0

1 2 1 2

1

1 12 2
1 1

L L
n n n

n n
n n

L L L
n n n

n n n

L

J D D
L

D D
L

D D D D

α α

α α

α
α α

− −
−

= =
≠

− − −
−

= = =

≤ +

≤ +

−≤ + ≤ +
− −

∑ ∑

∑∑ ∑  (83) 



 

 
 

49

and the bound is independent of L.  Similarly, J2,2 can be bounded by 

 

21

2,2
0

2 2

2

1 sin( / 2)
1 sin( / 2)

11
sin ( / 2)

p

p p

p

L
t j n

n

j L
t t

j

t

C
J e L

L

C Ce LL L
L e L

C

ω

ω

ω
ω
ω

ω

−
−

=

−

−

≤ −

−≤ − = −
−

 
≤ + 

 

∑

. (84) 

which is finite, independent of L, for each ω satisfying 0 < |ω| ≤ π; the bound is uni-

form for all ω satisfying 0 < ε < |ω| ≤ π since sin(ω/2) > sin(ε/2).  The result of the 

theorem then follows from (80) through (84). 

To establish (81), it suffices to assume that n2 > n1.  Using (58), E[tp[n2]tp[n1]] 

can be expressed as 

 1 1

1 1

1 1 1 1

2 1 2 1
0 0 0 0 1 1

[ ] [ ] 2 [ ] [ ]p p

i j
p p

p pK K K K
c c d dp p

c d
c c d d i j

E t n t n E t n t n
− − − −

+ + + + +

= = = = = =

 
  =   

 
∑ ∑∑ ∑ ∏ ∏� �

� � . (85) 

It is seen that the above expression is a finite sum of terms of the form 

 ( )
1

1 2 2 1
0

( , ) [ ] [ ]j j
K

p q
j j

j
Q n n E t n t n

−

=

 
=  

 
∏ , (86) 

where pj and qj are positive integers less than or equal to p.  It thus suffices to establish 

a bound for Q(n1, n2) of the form 

 2 1 1
1 2 3 1 2( , ) n n nQ n n C C Cα α−− ≤ + . (87) 

The right side of (86) is computed by conditional expectation as follows 
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1 2

1 1

1 2 1 1 2
0 0

( , )

[ ] [ ] [ ], [ ], 0,1, , 1, 1, ,ji

K K
qp

i j d d
i j

Q n n

E t n E t n t n o n d K n n n
− −

= =

   = = − = +   
   
∏ ∏ … …

. (88) 

Substituting (67) into the inner conditional expectation of (88) yields 

 ( )1

1 2 1 2 1 1 2
0

( , ) [ ] [ ] [ ], [ ], 1, ,j j
K

p q
j j j j

j
Q n n E t n E t n t n o n n n n

−

=

 
 = = +  

 
∏ …  (89) 

Since {td[n], n = 0, 1, …} is a Markov process for any given parity se-

quence,{od[n] = od,n, n = 0, 1, …} where , {0,1}d no ∈ , it follows from (68) and (69) that 

the m-step state transition matrix corresponding to td[n] from time n to time n + m can 

be written as 

 ( ), ,
1

[ , ] 1
n m

d d k d k
k n

n m o o
+

= +

 = + − ∏ o eA A A , (90) 

where Ad[n, m] is an N×N matrix with elements of the form 

 { }, 1 , 2 ,[ ] [ ] , [ 1] , [ 2] , , [ ]d j d i d d n d d n d d n mP t n m T t n T o n o o n o o n m o+ + ++ = = + = + = + =… .(91) 

Since od,n is either 1 or 0 for each n, (77) can be used to write (90) as 

 ,
1

[ , ] , wherem m m m

n m
y m y m y y

d m d k
k n

n m y o
+

− −

= +
= = = ∑e o o eA A A A A . (92) 

By definition, ym ≥ m/2 or m − ym ≥ m/2 depending on the given parity sequence.  It 

follows from the exponential convergence of (78) that there exists positive numbers 

Cp,e and Cp,o and positive numbers αp,e and αp,o less than unity such that each element 

of 
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 ( )my p
pb−eA t 1  (93) 

is less than Cp,eαp,e
 m/2 for ym ≥ m/2, and each element of 

 ( )mm y p
pb− −oA t 1  (94) 

is less than Cp,oαp,o
 m/2 for m − ym ≥ m/2. 

The matrices mm y−
oA  and my

eA  are stochastic matrices, so mm y− =οA 1 1 ,  my =eA 1 1  

and  

 ( )( ) ( )m m m mm y y m y yp p
p pb b− −− = −o e o eA A t 1 A A t 1 , (95) 

 ( )( ) ( )m m m my m y y m yp p
p pb b− −− = −e o e oA A t 1 A A t 1 . (96) 

Since the elements of the vectors in (93) and (94) are exponentially bounded, the same 

must be true for the vectors in (95) and (96).  From (92) it follows that the right side of 

either (95) or (96) is equal to 

 ( )[ , ] p
d pn m b−A t 1 . (97) 

Therefore, in general each element of (97) has a magnitude less than Cα m/2 where 

C=max{Cg,e, Cg,o} and α=max{αg,e, αg,o}, which implies that 

 ,[ ] | [ ], [ ] , 1, ,p
d d d d n j pE t n m t n o n j o j m b+ + + = = → …  (98) 

as m → ∞ uniformly in n where the convergence is also exponential.  This result is 

independent of the given deterministic sequence {od,n, n = 0, 1, …}, so it implies that 

 [ ] | [ ], [ ], 1, ,p
d d d pE t n m t n o n j j m b + + = → …  (99) 
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almost surely as m → ∞ uniformly in n where the convergence is also exponential. 

Thus, the inner conditional expectation in (89) converges exponentially to 
jrb  

as n2 − n1 → ∞ with probability one so that 

 
1 1

1 2 1
0 0

( , ) [ ]i

j

K K
p

q i
j i

Q n n b E t n
− −

= =

 →  
 

∏ ∏ . (100) 

More precisely, the exponential convergence of (100) implies that for every n2 > n1 

 2 1
2 1 1 2[ ] | [ ], [ ], 1, , ( )j

j

q n n
j j j q jE t n t n o n n n n b C q α − = + − ≤ … . (101) 

with probability one where C(qj) is a constant that depends on qj.  For every n2 > n1 

 

2 1 2 1

1 1

1 2 1
0 0

1

1 2 1 1 2
0

1

1
0

( , ) [ ]

[ ] [ ] | [ ], [ ], 1, ,

( )

i

j

j j

j

j

K K
p

q i
j i

K p q
j j j j q

j

K
p n n n n

j
j

Q n n b E t n

E t n E t n t n o n n n n b

C q B Cα α

− −

= =

−

=

−
− −

=

 −  
 

 
 ≤ = + −  

 

≤

∏ ∏

∏

∏

…

�

. (102) 

where B is given from Property 2.  By similar reasoning, it can be established that 

 1

1 1

1 2
0 0

E [ ]j

j

K K
q n
j q

j j
t n b C α

− −

= =

 
− ≤ 

 
∏ ∏  (103) 

Hence, the above two bounds imply there exist positive constants C1 and C2 such that 

for all n2 > n1 
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2 1 1

1 1

1 2
0 0

1 1 1 1 1 1

1 2 1 1
0 0 0 0 0 0

1 2

( , )

( , ) [ ] [ ]

.

i j

i i

j j i j

K K

p q
i j

K K K K K K
p p

i q i q p q
i j i j i j

n n n

Q n n b b

Q n n E t n b E t n b b b

C Cα α

− −

= =

− − − − − −

= = = = = =

−

−

   ≤ − + −   
   

≤ +

∏ ∏

∏ ∏ ∏ ∏ ∏ ∏ . (104) 

Consequently, there exists a constant C3 such that 

 2 1 1
1 2 3 1 2( , ) n n nQ n n C C Cα α−− ≤ +  (105) 

which is of the required form. 

� 

Theorem 2: Suppose that the state transition matrices Ae and Ao satisfy 

 e o o eA A = A A , (106) 

and there exists an integer hs ≥ 1 such that for each positive integer p ≤ hs, the se-

quence transition matrices Se and So satisfy 

 ( ) ( ) ( ) ( )lim lim lim lim ,n p n p n p n p
pn n n n

c
→∞ →∞ →∞ →∞

= = = =e e e o o e o oA S s A S s A S s A S s 1  (107) 

where cp is a constant and the convergence of all vectors are exponential.  Then for 

every L ≥ 1, 

 
,

[ ( )] ( )ps L
E I Dω ω≤ < ∞  (108) 

for each 0 < |ω| ≤ π.  Moreover, the bound D(ω), which is independent of L, is uniform 

in ω for all 0 < ε < |ω| ≤ π. 
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By Markov’s Inequality, this immediately leads to, 

Corollary 2: Under the assumptions of Theorem 2, 
,

( )ps L
I ω  is bounded in probability 

for all L ≥ 1 and for each ω satisfying 0 < |ω| ≤ π. 

Proof of Theorem 2: The proof is similar to that of Theorem 1, so only the non-trivial 

differences with respect to the proof of Theorem 1 are presented. 

Similarly to the proof of Theorem 1, it is necessary to show that 

 [ ] | [ ], [ ], 1, ,p
d d d pE s n m t n o n j j m c + + = → …  (109) 

almost surely as m → ∞ uniformly in n where the convergence is also exponential.  

With this result and sd[n], cp, and (72) playing the roles of td[n], bp, and (67) in the 

proof of Theorem 1, respectively, the proof of Theorem 2 is almost identical that of 

Theorem 1.  Therefore, it is sufficient to prove (109). 

Since the random variables td[n−1] and od[n] are statistically independent, for 

any given parity sequence,{od[n] = od,n, n = 0, 1, …} where , {0,1}d no ∈ , it follows 

from (73), (74), and (91) that 

 ( ), 1 , 1[ , 1] [ , ] 1d d d n m d n mn m n m o o+ + + + + = + − o eS A S S , (110) 

where Sd[n, m+1] is an N×N’ matrix with elements of the form 

 { }, 1 , 1[ 1] [ ] , [ 1] , , [ 1]d j d i d d n d d n mP s n m S t n T o n o o n m o+ + ++ + = = + = + + =… , (111) 

where i is the row index and j is the column index.  By similar reasoning to that used 
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in the proof of Theorem 1, (106) and (107) together imply that there exists a positive 

number D and a positive number β less than unity such that each element of the vector   

 ( )[ , 1] p
d pn m c+ −S s 1 , (112) 

has a magnitude less than D⋅β m/2.  Thus, (112) implies that 

 ,[ ] | [ ], [ ] , 1, ,p
d d d d n j pE s n m t n o n j o j m c+ + + = = → …  (113) 

as m → ∞ uniformly in n where the convergence is also exponential.  This result is 

independent of the given deterministic sequence {od,n, n = 0, 1, …}, so it implies that 

(109) holds almost surely as m → ∞ uniformly in n where the convergence is also ex-

ponential. 

� 

IV. A SEGMENTED QUANTIZER THAT SATISFIES THEOREMS 1 AND 2 

A. Verification of Example Matrices 

Matrices Ae, Ao, Se, and So which can be used with the segmented quantizer to 

generate quantized sequences and satisfy the conditions of Theorems 1 and 2 for ht = 3 

and hs = 5 are presented in this section.   

For a state td[n] whose possible values are {−2, −1, 0, 1, 2}, define 

 ( ) ( 2) ( 1) 0 1 2
Tp p p p p = − − t , (114) 

and the proposed state transition matrices as 
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0 3 4 0 1 4 0 1 4 0 3 4 0 0
3 16 0 3 4 0 1 16 0 5 8 0 3 8 0

, and .0 1 2 0 1 2 0 1 8 0 3 4 0 1 8
1 16 0 3 4 0 3 16 0 3 8 0 5 8 0

0 1 4 0 3 4 0 0 0 3 4 0 1 4

   
   
   

= =   
   
   
      

o eA A  (115) 

From (62) all possible sd[n] values are {−4, −3, −2, −1, 0, 1, 2, 3, 4}, and further de-

fine 

 ( ) ( 4) ( 3) ( 2) ( 1) 0 1 2 3 4
Tp p p p p p p p p = − − − − s . (116) 

Applying (70) yields 

 

0 0 0 0 0 3 4 0 1 4 0
0 0 0 3 16 0 3 4 0 1 16 0

, and0 0 0 1 2 0 1 2 0 0 0
0 1 16 0 3 4 0 3 16 0 0 0
0 1 4 0 3 4 0 0 0 0 0

0 0 0 0 1 4 0 3 4 0 0
0 0 0 0 5 8 0 3 8 0 0

.0 0 1 8 0 3 4 0 1 8 0 0
0 0 3 8 0 5 8 0 0 0 0
0 0 3 4 0 1 4 0 0 0 0

 
 
 
 =
 
 
  

 
 
 
 =
 
 
  

o

e

S

S

 (117) 

Multiplying the matrices in either order yields 

 

0 9 16 0 7 16 0
9 64 0 3 4 0 7 64

,0 1 2 0 1 2 0
7 64 0 3 4 0 9 64

0 7 16 0 9 16 0

 
 
 

= =  
 
 
  

e o o eA A A A  (118) 

so the matrices commute.  Direct computation reveals that the eigenvectors of both Ae
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and Ao are linearly independent, and therefore Ae
 and Ao are diagonalizable [31].  

Specifically, 1n n −=e e e eA V Λ V , where 

 

1

1 0 0 0 0 1 1 1 0 0
0 1/ 4 0 0 0 0 0 0 1 1

, ,0 0 0 0 0 1 0 1/ 3 0 0
0 0 0 1 0 0 0 0 1 1
0 0 0 0 1/ 4 1 1 1 0 0

1/ 8 0 3/ 4 0 1/8
1/ 2 0 0 0 1/ 2

and ,3/ 8 0 3/ 4 0 3/ 8
0 1/ 2 0 1/ 2 0
0 1/ 2 0 1/ 2 0

n

n

n

−

   
   −   
   = = −
   
   
   −   

 
 − 
 = −
 
 
 − 

e e

e

Λ V

V

 (119) 

and 1n n −=o o o oA V Λ V , where 

 

( )

( )

1

1 0 0 0 0 1 1 1 1 1
0 1 0 0 0 1 1 1/ 2 1/ 2 0

, ,1 1 0 0 1/ 30 0 1/ 4 0 0
1 1 1/ 2 1/ 2 00 0 0 1/ 4 0

1 1 1 1 10 0 0 0 0

1/16 1/ 4 3/ 8 1/ 4 1/16
1/16 1/ 4 3/ 8 1/ 4 1/16

and 1/ 4 1/ 2 0 1/ 2 1/ 4
1/ 4 1/ 2 0 1/ 2 1/ 4

3/ 8 0 3/ 4 0

n

n n

n

−

 − − 
   − − −   
   = = −−   −   
   −  

− −

= − −
− −

−

o o

o

Λ V

V .

3 /8

 
 
 
 
 
 
  

 (120) 

By inspection of (119), n
eΛ  converges to 
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 ,1

1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0

 
 
 
 =
 
 
  

eΛ . (121) 

The vector given by 1 ( )
,1

n p−
e e eV Λ V t  is equal to bp1, where bp = 0, 1 and 0 for p = 1, 2 

and 3 respectively, which is of the form required by Theorem 1.  To show exponential 

convergence, consider 

 
( )( ) 1 ( )

,1

1 ( )
,1

n p n p
p

n p

b −

−

− = −

≤ −

e e e e e

e e e e

A t 1 A V Λ V t

A V Λ V t
, (122) 

where || || is the l2 norm, and p = 1, 2 or 3.   Evaluating ||t(p)|| for p = 3, and ||Ae
n − 

VeΛΛΛΛe,1Ve
-1|| yields 130  and ( )2 1/ 4 n  respectively therefore the right side of (122) is 

equal to 

 ( )260 1/ 4 n  (123) 

and therefore each element of the vector given by ( )n p
pb−eA t 1  converges exponen-

tially to zero. 

By inspection of (120), n
oΛ  does not converge, however it is sufficient to show 

that the vector 1 ( )n p−
o o oV Λ V t  converges.  Consider 1 1

,1 ,2
n n n− −= +o o o o o o oA V Λ V V Λ V  where 
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 ,1 ,2

0 0 0 0 0 ( 1) 0 0 0 0
0 1 0 0 0 0 0 0 0 0

, and ,0 0 ( 1/ 4) 0 0 0 0 0 0 0
0 0 0 1/ 4 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

n

n nn

n

 − 
  
  
  = =−
  
  
     

o oΛ Λ  (124) 

Multiplying 1
,2

n −
o o oV Λ V  by t(p) for p = 1, 2 or 3 results in a vector with all zero ele-

ments for all n≥1.  Therefore, for all n≥1 and p = 1, 2 or 3, ( ) 1 ( )
,1

n p n p−=o o o oΑ t V Λ V t .  By 

inspection, ,1
n
oΛ  converges to 

 ,3

0 0 0 0 0
0 1 0 0 0

,0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 
 
 
 =
 
 
  

oΛ  (125) 

The vector given by 1 ( )
,3

p−
o o oV Λ V t  is equal to bp1, where bp = 0, 1 and 0 for p = 1, 2 

and 3 respectively.  Replacing ,1, ,n
e e eA V Λ , and 1−

eV  in (122) with ,3, ,n
o o oA V Λ , and 

1−
oV  respectively shows that ||Ao

nt(p) − bp1|| converges exponentially to bp1.  Therefore 

the state transition matrices given by (115) satisfy the conditions of Theorem 1 for ht = 

3. 

Using the decomposition in (119) and (120) and the sequence transition matri-

ces given by (117), it can be shown by direct computation that 

( ) ( ) ( ), ,n p n p n p
o e o o e eA S s A S s A S s  and ( )n p

e oA S s  converges to cp1, where cp = 0, 1.5, 0, 6, and 

0 for p = 1, 2, 3, 4 and 5 respectively.  Furthermore, the convergence of each vector at 

index n can be bounded using (122), replacing ||t(p)|| alternately with ||Ses(p)|| and 
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||Sos(p)||, which implies that the convergence of ( ) ( ) ( ), ,n p n p n p
o e o o e eA S s A S s A S s  and 

( )n p
e oA S s  are exponential.  Therefore, the matrices Ae, Ao, Se, and So given in (115) 

and (117) also satisfy the conditions of Theorem 2 for hs = 5. 

B. Simulation Results and Comparison to a ∆Σ Modulator 

The segmented quantizer presented above performs first-order quantization 

noise shaping.  Therefore, it is reasonable to compare its quantization noise character-

istics to those of a first-order ∆Σ modulator of the type shown in Figure 15.  The ∆Σ 

modulator consists of a discrete-time integrator and a mid-tread quantizer enclosed in 

a negative feedback loop.  A random independent, identically distributed (iid) dither 

sequence, d[n], is added to the output of the discrete-time integrator prior to the quan-

tizer to ensure that the quantization noise sequence introduced by the quantizer is 

white (and therefore free of spurious tones) [32].  The quantizer implements 

 [ ] 1[ ] ,
2 2k K

u nx n  = +  
 

where     is the floor function, and the dither sequence has a triangular pmf with 

support on {0, 2K+1 − 2}.  

[ ]Kx n0[ ]x n

2K

1

11
z

z

−

−−

[ ]u n
( [ ])Q u n

[ ]d n

 

Figure 15: A first-order ∆Σ modulator. 
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Figure 16: Estimated power spectra of a) the quantization noise sequences, and b) the running 
sums of the quantization noise sequences of the first-order ∆Σ modulator and the segmented 
quantizer presented in Section IV before and after application of non-linear distortion. 
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Simulation results for the segmented quantizer presented above and the ∆Σ 

modulator with 16K =  and a constant input of 0[ ] 2048x n =  are shown in Figure 16.  

The quantization noise, as well as its running sum for both the segmented quantizer 

and the ∆Σ modulator are subjected to the following distortion polynomials, 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

3 2
3

5 4 3 2
5

[ ] 0.15 [ ] 0.32 [ ] 0.99 [ ] 0.23

[ ] 0.32 [ ] 0.27 [ ] 0.64 [ ] 0.12 [ ] 1.03 [ ] 0.13.

P t n t n t n t n

P s n s n s n s n s n s n

= + + −

= − − + + +
(126) 

Figure 16 shows the estimated power spectra of the quantization noise and in-

tegrated quantization noise before and after application of the distortion polynomials.  

The estimated power spectra of the sequences, tp[n] or sp[n], are taken to be the aver-

age of the periodograms of the M windowed sequences, tp[n − kL]w[n − kL] and sp[n − 

kL]w[n − kL], for k = 1, 2, …, M, where w[n] is a Hanning window of length L.  As 

expected from the theoretical results presented above, no spurious tones are apparent 

in the figures for the segmented quantizer before or after application of the distortion 

polynomials.  In contrast, spikes, which imply the presence of spurious tones, are evi-

dent in the estimated power spectra of the quantization noise from the ∆Σ modulator 

after application of the distortion polynomials. 
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Chapter 3 :  A Wideband 2.4GHz Delta-Sigma Frac-
tional-N PLL with Calibrated Phase Noise Cancella-

tion 

ABSTRACT 

A calibration technique applied to a phase noise canceling fractional-N phase-

locked loop (PLL) is presented and demonstrated as an enabling component in a wide-

band, low power CMOS delta-sigma fractional-N PLL.  The prototype has a measured 

bandwidth of greater than 730kHz with a 12MHz reference frequency.  The PLL is 

demonstrated with the technique enabled over all Bluetooth channels from 2.402GHz 

to 2.480GHz and is found to have a worst-case phase noise of –101dBc/Hz and –

124dBc/Hz at 100kHz and 3MHz frequency offset from the carrier respectively.  With 

the exception of the reference spur, the spurious tones are less than –57dBc at 2MHz 

offset, and –62dBc at 3MHz or greater offset.  The calibration loop settles in less than 

35µs, enabling its use as a background technique for any wireless application.  The 

core PLL circuitry consumes 20.9mA from a 1.8V supply.  The IC is fabricated in a 

0.18µm mixed-signal CMOS technology, and has a die size of 2.2mm × 2.2mm. 

I.  INTRODUCTION 

This paper presents a calibration technique applicable for use in phase noise 

canceling Fractional-N Phase-locked Loops (PLL) that improves the quality of phase 

noise cancellation and has fast transient performance.  This, along with low-power cir-

cuit architectures, makes it practical to implement a low power, fully integrated frac-

tional-N PLL.  This enhancement is demonstrated in a CMOS Delta-Sigma (∆Σ) frac-
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tional-N PLL for operation in the 2.4GHz ISM band.  The technique enables the frac-

tional-N PLL to achieve the required phase noise for Bluetooth with a bandwidth of 

730kHz and a reference of 12MHz without incurring either increased phase noise or 

power consumption that results from the design of wide bandwidth PLLs.  The wide 

bandwidth makes it possible to integrate a passive 2nd order loop filter on chip [33], 

which does not suffer from the increased noise inherent to an integrated active loop 

filter [34].  Moreover, the wide bandwidth also reduces the sensitivity of the voltage-

controlled oscillator (VCO) to pulling [35], and attenuates the 1/f2 and 1/f3 phase noise 

from the VCO within the PLL loop bandwidth. 

The presented calibration technique differs from current techniques in that the 

existing PLL loop is modified so that minimal extra circuitry is required for calibra-

tion.  In addition, the calibration circuitry is an analog, continuous-time technique, and 

avoids many of the problems of existing techniques, such as reference clock 

feedthrough from sampling the loop filter voltage, and the low calibration loop band-

width required to filter quantization noise added during the calibration process [36].  

The calibration technique demonstrated in this paper has a wide bandwidth and thus 

fast settling time.  The resulting improvement in the quality of phase noise cancella-

tion allows for enhancements to be made, such as reducing the reference frequency, 

which lowers the power consumption of the digital logic at the cost of increased phase 

noise.  A dynamic bias technique allows the charge pump to operate with significantly 

high output current to meet circuit noise requirements without dissipating constant 

power in the bias network. 
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Figure 17: High-level functional diagram of the implemented PLL 

A high-level block diagram of the implemented fractional-N PLL is shown in 

Figure 17.  It differs from a typical phase noise canceling fractional-N PLL in that the 

charge pump, digital-to-analog converter (DAC), loop filter and VCO have been 

modified to implement the calibration technique.  The additional circuitry required to 
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implement the calibration technique is an analog integrator and voltage-to-current 

converter connected between the modified loop filter and the DAC current bias.  The 

details of the fractional-N PLL are presented throughout this paper; Section II presents 

the calibration technique.  Section III discusses circuit issues involved in the imple-

mentation, and Section IV presents measured results from the prototype. 

II.CALIBRATED PHASE NOISE CANCELING TECHNIQUE 

A. The Problem with Phase-Noise Canceling PLLs 

The core of a phase-noise canceling PLL is shown in Figure 18a [37, 38, 39].  

It consists of a Phase/Frequency Detector (PFD), charge pump (CP), voltage-

controlled oscillator (VCO), divider, DAC, and digital logic required to generate the 

divider input, y[n], as well as the DAC input.  The operation of a delta-sigma frac-

tional-N PLL is discussed at some length in [40], but will be summarized in order to 

present the salient points necessary to understand the operation of the calibration tech-

nique.  The divider output, Vdiv(t), is a two level signal, where the nth and (n+1)th rising 

edges are separated by N + y[n] VCO cycles.  The PFD compares the rising edges of 

Vdiv(t) with the rising edges of a reference signal, Vref(t), and then generates control 

signals for the CP, resulting in a pulse of current, icp(t), which deposits charge propor-

tional to the time difference between Vdiv(t) and Vref(t) onto the loop filter.  This serves 

to either increase, or decrease the loop filter voltage, Vctl(t), and hence increase or de-

crease the frequency of the VCO.  In this way, the PLL attempts to lock the phase of 

the divider output with the reference signal. 
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Figure 18: Phase Noise Canceling PLL; a) Block Diagram; b) Timing Diagram 

If y[n] is a constant, then the VCO frequency is N + y[n] times the reference 

frequency.  The VCO can be locked to a fractional multiple of the reference frequency 

by maintaining a fractional average value on y[n].  This is done by quantizing a frac-
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tional number, x[n] to an integer y[n] with a delta-sigma modulator [41] such that the 

quantization noise, eQ[n] is high-pass spectrally shaped.  Since it is only possible for 

the divider edge to occur after an integer multiple of the VCO period, instantaneously 

the divider output will never be phase-locked to the reference.  At the output of the CP, 

this results in current pulses always adding or subtracting charge from the loop filter 

and, on average, the net charge added to the loop filter is zero.  This CP charge depos-

ited each reference period can be well modeled by the following expression [37] 

 
1

0
[ ] [ ] [ ]

n

cp CP VCO Q CP VCO int
k

Q n I T e k I T e n
−

=
= =∑ , (127) 

where TVCO is the period of the VCO output under steady-state conditions, ICP is the 

magnitude of the charge pump current, and eint[n] is the integrated quantization noise.  

Since the noise introduced by eint[n] is generated by the digital logic, the phase noise 

cancellation technique uses this information to subtract the error charge given by (127). 

The DAC converts eint[n] into current pulses which have a charge nominally 

equal in magnitude and opposite in sign to the CP charge.  Thus with ideal cancella-

tion, the net voltage change on Vctl(t) over a period of the reference clock is zero, and 

is shown in Figure 18b.  The DAC pulses can be mismatched from the CP pulses due 

to static current mismatch or pulse width mismatches [42].  This results in a residual 

charge error remaining on the loop filter, thereby limiting the achievable phase noise 

cancellation, also shown in Figure 18b. 

The DAC circuitry is often simply a scaled copy of the CP circuitry in order to 
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maintain good matching between them.  However the matching between DAC unit 

elements necessitates increased device sizes, and the speed of the CP circuitry necessi-

tates reduced device lengths, which impose opposing constraints on the design of the 

DAC and CP circuitry.  To date, intrinsic matching of CP and DAC circuitry has re-

sulted in 16dB, 15dB and 29dB of phase noise cancellation for [37], [38], and [39] 

respectively. 

B. Calibration for Phase-Noise Canceling PLLs 

DAC gain mismatch results in a fraction of the original CP charge given by 

(127) being deposited into the loop filter each reference period.  To a first order, after 

the CP and DAC pulses occur the loop filter voltage settles to a constant value related 

to this charge.  The mismatch is estimated by multiplying this loop filter voltage with a 

binary correlation signal, c[n], equal to sgn(eint[n]), each reference period.  The aver-

age value of c[n] is zero, and multiplying (127) by c[n] results in a discrete-time signal 

which is always positive.  Therefore if the DAC gain is greater or less than the CP 

gain, the correlated loop filter voltage will have a net positive or negative dc value re-

spectively.  This dc value is accumulated, and used to modify the DAC gain by adjust-

ing the DAC bias current.  The feedback of the calibration loop adjusts the DAC gain 

to minimize the dc component of the correlated loop filter voltage.  An example of this 

is given in [36] where a source-follower isolates the loop filter from a sampling ana-

log-to-digital converter  (ADC).  In this particular system, swapping the input sam-

pling capacitor between the positive and negative inputs of the ADC performs the cor-

relation operation.  Two problems exist with this scheme.  First, noise arising from the 



 

 
 

72

multiplication of the correlation signal with the dc loop filter voltage, and quantization 

noise from the ADC must be filtered prior to adjusting the DAC bias current.  This re-

sults in a long transient response of the calibration circuit, which settles in approxi-

mately 1 second [43].  Second, the buffer needs to provide isolation for the loop filter 

and thus requires a significant amount of power consumption. 

To overcome these problems, a continuous-time calibration technique is util-

ized to reduce the noise from quantization and correlation of the dc loop filter voltage, 

and eliminate the sampling of the loop filter voltage.  The method is shown conceptu-

ally in Figure 19a, from the DAC and CP to the VCO output.  Two signal paths are 

necessary; one for PLL operation containing the required VCO input voltage to main-

tain the correct output frequency, and one for calibration loop operation, containing 

the correlated residual charge due to mismatch between the CP and DAC.  The two 

signal paths are given by common-mode (CM) voltage, {Vp(t) + Vn(t)} / 2, and the dif-

ferential-mode (DM) voltage, Vcalp(t) − Vcaln(t). 

The VCO in Figure 19a has two equal half-sized inputs, each of which is con-

nected to a filter with identical component values.  If both input terminals of the VCO 

were connected together, the VCO would behave identically to the VCO shown in 

Figure 18.  To a first order, the output frequency is proportional to the sum of the two 

input voltages.  Thus, to a first order, the VCO shown in Figure 19a is insensitive to 

Vp(t) − Vn(t), and is only dependent on.  The correlation signal, c[n], is constant over 

the duration of a DAC and CP pulse and switches the DAC and CP currents, idac(t) and 

icp(t), between two equivalent loop filters, each of which is connected to an equally 
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sized VCO input.  Since the VCO is only sensitive to the CM voltage, {Vp(t) + Vn(t)} / 

2, the switching due to c[n] is transparent to the operation of the PLL, and to a first 

order results in the equivalent circuit shown in Figure 19b, where Vctl(t) is equal to 

{Vp(t) + Vn(t)} / 2. 
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Figure 19: PLL Loop Modification for Calibration; a) Modified LF and VCO; b) Equivalent cir-
cuit for PLL; c) Equivalent single-ended half circuit for Calibration system 
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However since c[n] is related to the CP and DAC charge, the switching of the 

CP and DAC current is equivalent in DM to multiplying idac(t) and icp(t) by c[n], and 

results in a change in the DM voltage, Vp(t) – Vn(t), when gain mismatch exists be-

tween the CP and DAC.  In practice, idac(t) and icp(t) are large pulses of current occur-

ring over a short duration, so Vp(t) and Vn(t) have large changes over the duration of 

the CP and DAC pulses.  This causes a significant change at the input of the calibra-

tion loop during the DAC pulse, which results in a significant change in the DAC bias 

current during the duration of a DAC pulse.  The voltages Vcalp(t) and Vcaln(t), which 

are filtered versions of Vp(t) and Vn(t) respectively are used in the calibration loop to 

reduce the variation in the DAC bias current for the duration of a DAC pulse.  With 

matched loop filter components, Vcalp(t) – Vcaln(t) is a filtered version of Vp(t) – Vn(t), 

and therefore contains the correlated signal information necessary for calibration loop 

operation.  The equivalent half-circuit for the calibration loop is shown in Figure 19c.  

Similar to PLL operation, the calibration loop is a differential circuit, and can be de-

signed to have very low sensitivity to common-mode signals.  In this manner, the 

common-mode voltage is used by the PLL, and the differential-mode voltage is used 

by the calibration loop. 

Mismatches in the two paths will result in a CM to DM conversion in the cali-

bration loop, and a DM to CM conversion in the PLL.  The DM to CM conversion re-

sults in a scaled copy of idac(t) and icp(t)  multiplied by c[n] appearing at the CM input 

of the PLL.  The dc present in this signal is compensated for by the PLL, and does not 

result in instability.  The CM to DM conversion results in a scaled copy of idac(t) and 
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icp(t) appearing at the input to the calibration loop.  Since this does not contain dc due 

to the steady-state operation of the PLL, the calibration loop settles to the correct 

value. 

To illustrate the operation of the calibration technique, suppose that the PLL is 

in steady state, and the DAC gain is less than the CP gain.  In this case, Vp(t) would 

accumulate positive charge from icp(t) and idac(t), and Vn(t) would accumulate negative 

charge from icp(t) and idac(t).  Thus a mismatch would cause Vp(t) to increase and Vn(t) 

to decrease.  Since the PLL is only sensitive to the common-mode voltage across the 

two loop filters, this has no effect on the PLL steady-state output frequency. 

The DM voltage, Vcalp(t) − Vcaln(t), is a filtered version of the DM loop filter 

voltage Vp(t) − Vn(t), so from the preceding example Vcalp(t) will also increase and 

Vcaln(t) will also decrease.  This DM voltage is then accumulated and used to adjust the 

DAC gain through the voltage-to-current converter such that the DM voltage, Vcalp(t) − 

Vcaln(t), settles to zero.  This also results in the DM voltage Vp(t) − Vn(t) settling to 

zero. 

III.CIRCUIT ISSUES 

A. Overview 

The circuit is implemented in the TSMC 0.18µm CMOS process, with single 

poly and six metal layers, Metal-insulator-metal capacitors and packaged in a 5mm 32 

pin TQFN, with electro-static discharge (ESD) protection devices included on all pads.  

The circuits are all operated with a 1.8V supply, and the VCO, CP, PFD, DAC, digital 
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and loop filter are integrated on chip.  Separate deep n-wells under the digital logic 

and critical analog circuitry and separate supply domains were used to help prevent 

interference from each circuit block. 
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Figure 20: Effect of PLL Bandwidth on component noise requirements; a) 100kHz bandwidth; b) 
500kHz bandwidth 



 

 
 

77

B. Power Consumption Issues 

Widening the bandwidth of a PLL helps reduce in-band VCO phase noise and 

improve acquisition time, however, the attenuation of spot noise outside the PLL 

bandwidth is reduced.  Consequently, to maintain a given level of phase noise per-

formance outside the PLL bandwidth, the noise contributions of the reference, divider, 

PFD and CP circuits must be reduced.  This effect is shown in Figure 20 for an out of 

band phase noise specification of –120dBc/Hz at 3MHz offset from the carrier.  In or-

der to meet this specification, the thermal noise requirements for the CP are signifi-

cantly reduced from −77dBc/Hz to –103dBc/Hz (inband noise referred to the PLL 

output) when the PLL loop bandwidth is increased from 100kHz to 500kHz respec-

tively.  In this design, the CP had the largest power consumption due to the noise re-

quirements. 

In a delta-sigma fractional-N PLL, the transfer function of the CP noise to the 

output of the PLL is given by 

 ( ) ( )cp
CP

NH f G f
I
π 

=  
 

 (128) 

where N is the divider value, and G( f ) is the closed-loop PLL transfer function from 

the divider input to the PLL output where, for frequencies within the PLL bandwidth, 

|G( f )| ≅  1 [44].  Since thermal noise in a MOSFET transistor is proportional to CPI , 

it can be seen from (128) the only mechanisms for decreasing the CP inband noise is 

to increase ICP or decrease N.  Decreasing N constrains the PLL design to having an 
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increased reference frequency for a fixed output frequency, which increases digital 

power consumption and reduces the choices for the reference frequency, while 

increasing ICP results in increased power consumption in the CP.  In the presented de-

sign, the choice was made to increase ICP rather than increase the reference frequency. 

C. Dynamic Bias Technique 

The CP bias circuit is shown in Figure 21 where the transmission gates are 

CMOS transistors with dimensions of 10µm by 0.18µm.  The enable clocks en, en , 

and en2 are generated such that the gate of each bias transistor is disconnected before 

removal of the current paths through each bias line.  This is done in order to avoid dis-

turbing the voltage on the gates of the bias transistors.  To further reduce variation on 

the gate voltage of each bias, 24pF on-chip decoupling capacitors are used for each 

bias signal. 

The CP bias circuitry only needs to be active during a CP pulse.  Since the CP 

is on for a fraction of the reference period, the current through the bias circuitry is dis-

abled in the manner described above whenever the CP is off.  To ensure proper opera-

tion of the CP, the current is disabled such that en and en2 are high for the duration of 

a CP pulse.  The reduction in current dissipation is limited by the duty cycle of the en-

able signal.  In the presented design, the optimum duration of en was found to be ap-

proximately 10ns, occurring 4.4ns before the divider edge.  A similar technique is 

demonstrated in [45] for a PLL with 10kHz reference frequency and 500Hz band-

width, however no circuit details are given on the implementation of the dynamic bias 

technique. 
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Figure 21: CP dynamic bias technique 

D. Phase/Frequency Detector and CP 

The PFD compares the rising edges of the divider and reference signals, and 

generates control pulses for the CP.  To generate the proper polarity signals for the CP 
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and to provide the necessary drive, buffers are used between the PFD and CP.  The 

PFD and buffers are shown in Figure 22, with the details of the PFD given in [37].  

The up and down signals enable the CP positive and negative currents respectively.  

The upped and downped signals are used to convert the mismatch between the positive 

and negative currents into a constant current offset each reference period which re-

duces non-linearity in the CP [37]. 

PFD

To CP
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Switches
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upped

down

downped

55Ω

55Ω

55Ω

55Ω

18pF

18pF

Vdd

Vss

To CP
NMOS

Switches

Divider
input

Reference
input

 

Figure 22: PFD and Buffer schematic 

To reduce the supply coupling between up & down pulses, the buffer supplies 

are resistively drawn from PFD supply, with 18pF decoupling for each up and down 

buffer.  The buffers draw a significant amount of current from the supply during the up 

and down transitions.  The disturbance on the supply during transitions results in inter-
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ference between the buffers.  For example, if the up and upped signal transitions occurs 

first, the supply voltage is temporarily reduced, and the delay in the buffers for the 

down and downped signal are increased.  In this way, the difference between the rising 

edges of the up, upped and down, downped pulses is subjected to a non-linearity when 

the two edges occur close to each other.  This was found in simulation to provide suf-

ficient isolation between the buffers. 

1mA1mA
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casp

casn

biasn
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Loop
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Switching on c[n]

up upped

down downped

 

Figure 23: CP schematic 

The CP schematic is shown in Figure 23.  The correlation switching required 

for the calibration loop is implemented through the switching of the cascode devices 
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between each loop filter.  The switching is synchronized to be 12 VCO periods before 

the divider edge in order to ensure that the CP current has the maximum time to de-

posit charge into the loop filters. 

E. VCO and Divider 

Digital
Control k

Analog
Inputs

Ibias

CtlCtl

Ctl

Vdd

Vss  

Figure 24: VCO schematic 

The VCO is a negative-gm CMOS LC oscillator, as shown in Figure 24.  The 

differential inductor is a stacked M5 & M6 spiral, with a Q of approximately 8 at 

2GHz.  Two equal MOS varactors provide tuning over a 0.6V-1.2V range, with a 

nominal tuning gain of 60MHz/V at each input.  Coarse digital tuning is performed by 
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switching MIM capacitors of 20fF & 80fF sizes into the tank circuit [46].  This is suf-

ficient for the VCO to cover a range from 2.35GHz to 2.65GHz, which encompasses 

the entire 2.4 GHZ ISM band. 

The divider is a 7-stage pulse-swallowing divider similar to that used in [37] 

and [47].  CML logic is used in the first two stages, and CMOS logic is used for the 

remaining stages.  The divider output is resynchronized to the output of the first CML 

stage in order to reduce divider jitter noise and modulus dependent delays.  
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Figure 25: Details of the mismatch-shaping digital encoder 
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The digital logic was implemented using a standard cell library with transistor 

gate lengths of 0.18µm.  The requantizer adds an 8 lsb-bit pseudo-random number to 

the input then truncates the result to 10 bits to ensure that the requantization noise is 

uncorrelated from the delta-sigma quantization noise [48].  The mismatch scrambling 

encoder was implemented as a partially segmented tree-structured encoder, and is 

shown in Figure 25.  Each switching block, shown as Sk,r, uses a random sequence to 

ensure that the digital input exercises all DAC elements in a random fashion to scram-

ble DAC element mismatches.  More details on the switching blocks are given in [49]. 

G. Loop Filter and DAC 

The loop filter is fully integrated, with values for R, C1, and C2 in Figure 17 of 

5kΩ (polysilicon resistor), 18pF (MIM capacitor), and 282pF (PMOS capacitor) re-

spectively.  Coarse tuning is provided to account for process variations.  Each DAC 

element is a resistively degenerated charge pump cell and shown in Figure 26, with a 

DAC lsb current of 1µA.  The transistor sizes are large to reduce the mismatch of the 

DAC, which in turn results in channel charge in the gates of the transistors to be of the 

order of the charge delivered by the DAC unit elements.  Since this can lead to a sig-

nificant DAC gain error, a fast turn off scheme is used with a reset switch is connected 

between bias transistor source and gate.  When the DAC is enabled, the reset switch is 

off, and either M1 or M2 supplies current into the loop filter.  When the DAC is dis-

abled, the gate & source of M1 and M2 are shorted together and channel charge from 

the bias and switch transistors are shunted to the DAC bias signal.  This results in a 

significant disturbance on the DAC bias, however this occurs after the DAC pulse 
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event and the reference period is sufficient for settling of the DAC bias to the proper 

voltage before the next DAC pulse.  Previously published reset schemes involve short-

ing the source of the bias transistor to the supplies [50], however this was not done in 

order to minimize charge injection through the shorting switch into the loop filter.  The 

correlation switching for the DAC is implemented by using two identical DACs, en-

abled by c[n], and connected between the DAC encoder and both loop filters.  The 

gain mismatch between each DAC was found to be negligible and did not affect the 

calibration loop operation. 
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enp
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ennb

enn

M1

M2

 

Figure 26: DAC schematic 
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Comparing Figure 23 and Figure 26, it can be seen that the DAC and CP cir-

cuits have different architectures since the DAC was designed in order to improve 

matching between elements, and the CP was designed in order to ensure fast turn-on.  

This results in poor DAC gain matching, which the calibration loop corrects for. 

H. Calibration Circuitry 

To DAC
bias( )calpV t

gm
( )calnV t

 

Figure 27: Calibration circuit 

The calibration system is shown in Figure 27, with Vcalp(t) and Vcaln(t) defined 

in Figure 19.  The OTA integrator accumulates the correlated signal information con-

taining the DAC mismatch signal.  The DAC gain is adjusted by applying the output 

of the voltage-to-current converter into the DAC bias current.  The OTA is a folded-

cascode, single stage amplifier with a wide input CM range to account for the varia-

tion of the loop filter voltage over the PLL frequency range.  The OTA is designed 

with sufficiently low offset voltage that the settled voltages on Vp(t) and Vn(t) do not 

result in current mismatch in the CP and DAC when switched between the two calibra-

tion path.  In normal operation, the simulated current consumption of the calibration 

circuit is 1.3mA. 
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IV.MEASUREMENT RESULTS 

The performance of the IC was tested over all 79 Bluetooth channels.  The re-

sults, presented in Table 2, are compared between the calibration technique and DAC 

enabled and disabled.  With the DAC and calibration technique enabled, the phase 

noise performance at a 3MHz offset was found to improve by 27dB to 33dB.  The 

worst-case phase noise with the techniques enabled was –101dBc/Hz and –124dBc/Hz 

at a 100kHz and 3MHz offset respectively.  A representative plot of the phase noise 

with the DAC disabled and enabled, and with the calibration technique enabled is 

shown in Figure 28.  Similar results are seen on all tested Bluetooth channels.  For 

each channel, the settling time of the calibration loop was found to be approximately 

35µs, which makes this calibration technique suitable for the numerous wireless appli-

cations where the PLL is powered down when not in use.  The settling performance is 

shown in Figure 29. 

The worst-case spurious tones are also given in Table 2.  With the calibration 

technique enabled, the fractional spurs were found to be within the required Bluetooth 

specifications.  The fractional spurs can be seen to be significantly higher when the 

DAC is disabled.  Simulations indicate that this is due to Kvco non-linearity in the 

MOS varactors used in the VCO.  Kvco can vary by up to 30% over the output voltage 

range of the CP, so when the DAC and calibration technique are enabled, the net volt-

age change on the loop filter each reference period is greatly reduced, resulting in im-

proved Kvco linearity.  The calibration technique was found to have an insignificant 

impact on the fractional spur performance of the PLL versus manually calibrating the 
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DAC gain and disabling the calibration technique.  The fractional and reference spur 

performance at a center frequency of 2.403 GHz is seen in Figure 30. 

Table 2: Performance Parameters 

 
Design Details 
Technology TSMC 0.18 µm 1P6M CMOS 
Package and Die Area 32 pin TQFN, 2.2 × 2.2 mm2 
Reference Frequency 12 MHz 
Output Frequency 2.4 – 2.5 GHz 
Loop Bandwidth > 730kHz 
Measured Current Consumption (at 1.8V) 
VCO and Divider Buffer 6.9 mA 
Divider 5.8 mA 
CP (with dynamic biasing) 2.7 mA 
Digital 0.5 mA 
DAC 3.6 mA 
Calibration 1.4 mA 

20.9 mA 

Xtal Buffer 4.1 mA 
External Buffer 5.3 mA 9.4 mA 

Measured Worst Case Integer-N Performance 
Phase Noise @ 100 kHz -104 dBc/Hz 
Phase Noise @ 3 MHz -126 dBc/Hz 
Measured Worst Case Performance, DAC and Calibration Technique Disabled 
Phase Noise @ 3 MHz -91 dBc/Hz 
Fractional Spur @ 1 MHz -40 dBc 
Fractional Spur @ 2 MHz -42 dBc 
Fractional Spur @ ≥3 MHz -45 dBc 
Measured Worst Case Performance, DAC and Calibration Technique Enabled 
Phase Noise @ 100 kHz -101 dBc/Hz 
Phase Noise @ 3 MHz -124 dBc/Hz 
Fractional Spur @ 1 MHz -47 dBc 
Fractional Spur @ 2 MHz -57 dBc 
Fractional Spur @ ≥3 MHz -62 dBc 
Reference Spur -53 dBc 
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Figure 28: Phase Noise Performance 

 

Figure 29: Calibration Loop Settling Performance 

The worst-case reference spur was found to be –53dBc.  Measurements of the 
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IC indicated that the P/N mismatch in the CP was 2%.  While the CP linearization 

technique from [37] improves the linearity due to P/N mismatch, it does so at the ex-

pense of transforming the non-linearity into a constant charge offset each reference 

period, which results in the increased spur.  To improve the matching even further, rep-

lica biasing techniques could have been used [38, 51].  The chip photograph is shown 

in Figure 31. 

 

Figure 30: PLL Output Spectrum 
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Figure 31: Die Photograph 

V.CONCLUSIONS 

A calibration technique suitable for phase-noise canceling fractional-N PLL 

and a dynamic biasing technique have been presented and demonstrating as enabling 

components in a low power, fully integrated delta-sigma fractional-N PLL.  The cali-

bration technique enables a wide loop filter bandwidth, which allows for a fully inte-

grated passive loop filter, and flexibility in the system choices such as reducing the 

reference frequency, which increases the phase noise.  The calibration technique dem-

onstrates fast settling time, enabling its use as a background technique in most wire-

less transceivers.  The dynamic biasing technique is not restricted to being used in this 
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class of PLL, and can be added on as a simple enhancement to reduce the power 

consumption of any PLL. 
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