
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Relaxed Wasserstein, Generative Adversarial Networks, Variational Autoencoders and their
applications

Permalink
https://escholarship.org/uc/item/5v77z2d3

Author
Yang, Nan

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5v77z2d3
https://escholarship.org
http://www.cdlib.org/

Relaxed Wasserstein, Generative Adversarial Networks, Variational Autoencoders and their
applications

by

Nan Yang

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering-Industrial Engineering and Operations Research

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Xin Guo, Chair
Professor Paul Grigas
Professor Anil Aswani
Professor Will Fithian

Summer 2019

Relaxed Wasserstein, Generative Adversarial Networks, Variational Autoencoders and their
applications

Copyright 2019
by

Nan Yang

1

Abstract

Relaxed Wasserstein, Generative Adversarial Networks, Variational Autoencoders and their
applications

by

Nan Yang

Doctor of Philosophy in Engineering-Industrial Engineering and Operations Research

University of California, Berkeley

Professor Xin Guo, Chair

Statistical divergences play an important role in many data-driven applications. Two no-
table examples are Distributionally Robust Optimization (DRO) problems and Generative
Adversarial Networks (GANs).

In the first section of my dissertation, we propose a novel class of statistical divergence called
Relaxed Wasserstein (RW) divergence, which combines Wasserstein distance and Bregman
divergence. We begin with its strong probabilistic properties, and then to illustrate its
uses, we introduce Relaxed Wasserstein GANs (RWGANs) and compare it empirically with
several state-of-the-art GANs in image generation. We show that it strikes a balance between
training speed and image quality. We also discuss the potential use of Relaxed Wasserstein
to construct ambiguity sets in DRO problems.

In the second section of my dissertation, we show the application of another type of generative
neural network, the Variational AutoEncoder (VAE), to metagenomic binning problems in
bioinformatics. Shotgun sequencing is used to produce short reads from DNA sequences in a
sample from a microbial community, which could contain thousands species of discovered
or unknown microbes. The short reads are then assembled by connecting overlapping
subsequences and thus forming longer sequences called contigs. Metagenomic binning is
the process of grouping contigs from multiple organisms based on their genomes of origin.
We propose a new network structure called MetaAE, which combines compositional and
reference-based information in a nonlinear way. We show that this binning algorithm improves
the performance of state-of-the-art binners by 20% on two independent synthetic datasets.

i

To my mom and dad.

ii

Contents

Contents ii

List of Figures iii

List of Tables v

1 Outline 1

2 Background 2
2.1 Bregman Divergence . 2
2.2 Wasserstein Distance . 6
2.3 Neural Networks . 8
2.4 Generative Adversarial Networks . 10
2.5 Variational Autoencoders . 16

3 Relaxed Wasserstein GANs 20
3.1 Introduction . 20
3.2 Relaxed Wasserstein Divergence . 21
3.3 Experiments . 30
3.4 Discussion . 33

4 Properties of Bregman divergence and Choices of RW divergence 45
4.1 More Properties of Bregman Divergence . 45
4.2 Choices of φ in Relaxed Wasserstein divergence 50

5 Applications 52
5.1 Distributionally Robust Optimization . 52
5.2 MetaAutoEncoder in Metagenomic Binning 65
5.3 Simulation of Credit Default Swap Index Transaction Data 85

Bibliography 96

iii

List of Figures

2.1 The bias-variance tradeoff of the k-NN algorithm based on the loss functions
Dφ(x, y) = ex − ey − ey(x− y) and Dφ(x, y) = x log

(
x
y

)
+ (1− x) log

(
1−x
1−y

)
. . . 5

2.2 Earthmover interpretation of Wasserstein distance 8
2.3 Structure of an LSTM unit . 9
2.4 Network structure of the vanilla GAN . 12
2.5 Network structure of the conditional GAN . 15
2.6 Structure of a variational autoencoder . 19

3.1 The decomposition of WDφ where the solid arrow denotes transformation and the
dashed arrows denote the divergences between probability distributions. 25

3.2 Inception scores at the beginning and final stages of training. DCGAN refers to
the standard DCGAN generator and MLP refers to an ReLU-MLP with 4 hidden
layers and 512 units at each layer. 33

3.3 Sample qualities at different stages of training on MNIST. 36
3.4 Sample qualities at different stages of training on Fashion-MNIST. 38
3.5 Training curves of the negative critic loss at different stages of training on MNIST

and Fashion-MNIST. Gloss and Dloss refer to the loss in generative and discrimina-
tive nets, which is plotted in orange and blue lines, respectively. 39

3.6 Sample qualities at the initial stage of training on CIFAR-10. 40
3.7 Sample qualities at the final stage of training on CIFAR-10. 41
3.8 Sample qualities at the initial stage of training on ImageNet. 42
3.9 Sample qualities at the final stage of training on ImageNet. 43
3.10 Training curves at different stages of training. DCGAN refers to the standard

DCGAN generator and MLP refers to an ReLU-MLP with 4 hidden layers and 512
units at each layer. Gloss and Dloss refer to the loss in generative and discriminative
nets. The loss in RWGANs is shown to converge consistently while the loss in
WGANs-GP tends to diverge as the training progresses. WGANs achieves the
lowest variance among the three methods. 44

5.1 Shape of the upper and lower bounds of the objective value using an L2 ambiguity
set. 59

5.2 Metagenomics . 67

iv

5.3 Model Structure . 68
5.4 Clustering results of MetaAE vs. VAMB on the ActinoMock dataset 73
5.5 Clustering results of MetaAE vs. VAMB on the MetaHIT dataset 73
5.6 Histogram of numbers of pairwise nonzero elements of inter-genome and intra-

genome contigs in the NT matrix on the MetaHIT dataset 75
5.7 Histogram of similarities of inter-genome and intra-genome contigs in the NT

matrix on the MetaHIT dataset . 76
5.8 Histogram of similarities of inter-genome and intra-genome contigs in the TNF

matrix on the MetaHIT dataset . 77
5.9 Clustering results of MetaAE (with SVD) vs. VAMB on the MetaHIT dataset . 78
5.10 Clustering results of MetaAE (with quadratic transform) vs. VAMB on the

MetaHIT dataset . 79
5.11 Clustering results of TNF vs. encoded TNF on the MetaHIT dataset 79
5.12 Clustering results of encoded NT vs. encoded NT and TNF on the MetaHIT dataset 80
5.13 Clustering results of encoded NT vs. MetaAE on the ActinoMock dataset 80
5.14 Histogram of similarities of inter-genome and intra-genome contigs in the AA

matrix on the MetaHIT dataset . 81
5.15 Histogram of similarities of inter-genome and intra-genome contigs in the NT100

matrix on the MetaHIT dataset . 82
5.16 Histogram of similarities of inter-genome and intra-genome contigs in the NT99

matrix on the MetaHIT dataset . 82
5.17 Clustering results using only encoded NT99 and encoded NT100 matrix on the

MetaHIT dataset . 83
5.18 Histogram of similarities of inter-genome and intra-genome contigs in the AA100

matrix on the MetaHIT dataset . 83
5.19 Histogram of similarities of inter-genome and intra-genome contigs in the AA99

matrix on the MetaHIT dataset . 84
5.20 Structure of SeqGAN . 90
5.21 Pie chart of the action variable on the generated and the original datasets . . . 91
5.22 Pie chart of the collateral variable on the generated and the original datasets . . 91
5.23 Pie chart of the price forming variable on the generated and the original datasets 92
5.24 Histograms of the rounded notional amount variable on the generated and the

original datasets . 92
5.25 Heatmaps of the pairwise correlation coefficients on the generated and the original

datasets . 93

v

List of Tables

5.1 Input Matrices . 69
5.2 Sparsity in the MetaHIT dataset . 74
5.3 Reconstruction Errors of the MetaHIT dataset using Autoencoders 74
5.4 Confusion matrix on MetaHIT using NT . 76
5.5 Confusion matrix on MetaHIT using encoded NT 77
5.6 Accuracy of models predicting the cleared variable on the original and the synthetic

datasets . 94
5.7 Accuracy of models predicting the price_formulation variable on the original and

the synthetic datasets . 94
5.8 Accuracy of models predicting the price variable on the original and the synthetic

datasets . 94

vi

Acknowledgments

I would like to first thank my adviser, Professor Xin Guo. She has guided me with patience,
wisdom and kindness throughout the years. I have learned a lot from her, both in my research
and in my life. I would also like to thank Professor Paul Grigas, Professor Anil Aswani and
Professor Will Fithian for being in my qualifying exam and dissertation committee. Their
professional feedback are vital for the completion of my degree.

I would show my gratitude to my collaborators: Tianyi Lin and Johnny Hong from
Berkeley, and Zhong Wang and Volkan Sevim at the Joint Genome Institute. Being able to
work with them is a precious experience in my life.

I would like to thank my classmates in IEOR: Sheng, Quico, Haoyang, Erik, Shiman,
Renyuan, Xu, Ying, and my friends outside of IEOR: Haoyu Wu, Yishuang Chen, Jessica
Shui, Jieqi Sun, Qifan Pu, Zenan Wang, Weijia Li, Mujun Zhou, Hong Shang, Zhenxing
Zhang and Chenzhe Tian. The time spent with them at Berkeley makes these years enjoyable
and memorable.

Last but not least, I would like to thank my parents, Yumin Yang and Changyao Zhang,
for their continuous support and unconditional love.

1

Chapter 1

Outline

This dissertation is organized as follows: we first review the concept and properties of
the family of Bregman divergence and the basics of two generative models: variational
autoencoders (VAE) and generative adversarial neural networks (GANs) in Chapter 2. In
Chapter 3, we propose Relaxed Wasserstein divergences, a new family of divergence functions
that enjoys the benefits of both Bregman divergences and Wasserstein distance, and talk
about their usefulness in GANs. In Chapter 4, we show how to choose the appropriate
underlying convex function for Bregman divergence and Relaxed Wasserstein divergence for
different applications. Finally in Chapter 5, we cover three examples of the applications of
Bregman divergence and Relaxed Wasserstein divergence to robust optimization problems,
variational autoencoders to metagenomic binning problems in bioinformatics, and GANs to
data augmentation in finance.

2

Chapter 2

Background

In this chapter, we first introduce the definition and basic properties of two statistical
divergences: Bregman divergence and Wasserstein distance. Then we review the basic
ideas behind Generative Adversarial Networks, their applications, and mathematical details.
Finally, we illustrate the concept of Variational Autoencoders.

2.1 Bregman Divergence
Bregman divergences (Bregman 1967) were introduced by Lev Bregman in 1967 in solving a
problem in convex optimization and then continued by Censor and Lent (1981) and De Pierro
and Iusem (1986). Since their inception, Bregman divergences have found applications
not only in convex optimization, but also in statistics and machine learning. For example,
clustering (Lucic, Bachem, and A. Krause 2015; Banerjee, Merugu, et al. 2005), inverse
problems (Le Besnerais, Bercher, and Demoment 1999; Jones and Byrne 1990), classification
(Srivastava, Gupta, and Frigyik 2007), logistic regression and AdaBoost (Collins, Schapire,
and Singer 2002; Murata et al. 2004; Lafferty 1999), regression (Kivinen and Warmuth
1998), mirror descent (A. S. Nemirovski 1983), and generalized accelerated descent algorithms
(Wibisono and Wilson 2016; Taskar, Lacoste-Julien, and Jordan 2006).

Definition 2.1.1. For two vectors x and y in Rd and a strictly convex function φ(x) : Rd → R,
the Bregman divergence is defined as

Dφ(x, y) = φ(x)− φ(y)− 〈∇φ(y), x− y〉.

For two continuous distributions P and Q, one can define Bregman divergence as in Jones
and Byrne (1990),

Dφ(P,Q)

=

∫
[φ(p(x))− φ(q(x))− φ′(q(x))(p(x)− q(x))] dµ(x),

CHAPTER 2. BACKGROUND 3

where p(x) and q(x) are probability density functions of P and Q respectively, µ is the base
measure, and φ : R→ R is a strictly convex function.

For two discrete distributions P and Q with common support, one can similarly define
Bregman divergence to be

Dφ(P,Q) =
d∑
i=1

[φ(pi)− φ(qi)−∇φ(qi)(pi − qi)] ,

where {pi}di=1 and {qi}di=1 represent the distributions of P and Q respectively.
Examples of Bregman divergences include:

• L2 divergence: Dφ(x, y) = ‖x− y‖2
2 if φ(x) = ‖x‖2

2,

• Itakura-Saito divergence: Dφ(x, y) = x
y
− log(x

y
)− 1 if φ(x) = − log x,

• KL divergence: Dφ(x, y) = x> log(x
y
) if φ(x) = x> log(x), and

• Mahalanobis divergence: Dφ(x, y) = (x− y)>A(x− y) if φ(x) = x>Ax and A � 0.

As a divergence function, Dφ(x, y) is always nonnegative by the convexity of φ. Dφ(x, y) = 0
if and only if x = y. However, it may not be a metric because it may not be symmetric in
general, and it may violate the triangle inequality. The asymmetry of Bregman divergence
can potentially be more desirable in the setting of comparing distributions than a symmetric
measure such as Lp-Wasserstein distance. In Pardo and Vajda (2003), they show an asymptotic
equivalence between f -divergences (in particular, χ2-divergence) and Bregman divergences
under some conditions.

k-means clustering Using Bregman. In Banerjee, Guo, and H. Wang (2005), they show
that conditional expectation is the optimal predictor for all Bregman divergences. Moreover,
Bregman divergences are the only class of such loss functions. Mathematically,

Theorem 2.1.1. (Theorem 4 in Banerjee, Guo, and H. Wang (2005)) Let F : Rd ×Rd → R
be a nonnegative function such that F (x, x) = 0, ∀x ∈ Rd. Assume that F (x, y) and
Fxi,xj (x, y), 1 ≤ i, j ≤ d are all continuous. For all random variables X taking value in Rd, if
E[X|G] is the unique minimizer of E[F (X, Y)] overall random variable Y ∈ G, i.e.

arg min
y∈G

E[F (X, Y)] = E[X|G]

where G is a σ-algebra, then F (x, y) = Dφ(x, y) for some strictly convex and differentiable
function φ : Rd → R.

This property also ensures the convergence of k-means algorithm in statistical learning
when Bregman divergence is used as a loss function. See Banerjee, Merugu, et al. (2005) for
more details.

CHAPTER 2. BACKGROUND 4

Bregman Projection. In Bauschke and Borwein (1996), they introduced a related class
called the Bregman-Legendre functions and the following theorem. Define the Bregman
projection of y onto a region Ω as

PΩ(y) = arg min
ω∈Ω

Dφ(ω, y),

then the Bregman version of the Pythagorean theorem states that

Dφ(x, y) ≥ Dφ(x, PΩ(y)) +Dφ(PΩ(y), y).

Connections with Exponential Family. In Banerjee, Merugu, et al. (2005), they show
that there is a one-to-one correspondence between Bregman divergences and exponential
families. That is, take an exponential family in a canonical form of:

pθ(x) = exp(θTx− ψ(θ))h(x),

where θ, x ∈ Rd. ψ is the cumulant function with its Legendre convex conjugate φ defined as

φ(x) = sup
t

[〈x, t〉 − ψ(t)].

Then
pθ(x) = exp(−Dφ(x, µ(θ))− gφ(x)),

with µ(θ) = ∇ψ(θ). This one-to-one correspondence comes from the duality property of
Bregman divergence, which states that

Dφ(p, q) = Dψ(q∗, p∗),

with p∗ = ∇φ(p) and q∗ = ∇φ(q).

Bias-Variance Decomposition. In Buja, Stuetzle, and Shen (2005), they show that the
expected Bregman divergence has a bias-variance decomposition

EDφ(θ̂, θ) = Dφ(Eθ̂, θ) + EDφ(θ̂,Eθ̂).

Setting φ(x) = ‖x‖2
2 recovers the usual bias-variance decomposition for squared-error loss,

EDφ(θ̂, θ)

= E[(θ̂ − θ)2]

= (Eθ̂ − θ)2 + E[(θ̂ − θ)2]

= Dφ(Eθ̂, θ) + EDφ(θ̂,Eθ̂).

CHAPTER 2. BACKGROUND 5

Figure 2.1 shows how various choices of loss functions can lead to different measures
of bias-variance tradeoff in selecting the number of neighbors for the k-nearest neighbor
(k-NN) algorithm. For each plot, the solid dot indicates the parameter that minimizes the
corresponding loss function. The data used for this illustration come from the spam dataset
collected at Hewlett-Packard Labs, readily available in the R package kernlab.

● ●
●

●
● ●

●
● ●

●

2 4 6 8 10

16
0

18
0

20
0

22
0

24
0

26
0

k−NN bias−variance tradeoff (exp)

Number of neighbors

B
ia

s/
Lo

ss ●

26
28

30
32

34
36

V
ar

ia
nc

e

● Bias
Variance
Loss

● ● ● ●
● ●

●
● ●

●

2 4 6 8 10

30
0

40
0

50
0

60
0

70
0

k−NN bias−variance tradeoff (logistic)

Number of neighbors

B
ia

s/
Lo

ss

●

18
0

19
0

20
0

21
0

22
0

23
0

24
0

V
ar

ia
nc

e

● Bias
Variance
Loss

Figure 2.1: The bias-variance tradeoff of the k-NN algorithm based on the loss functions
Dφ(x, y) = ex − ey − ey(x− y) and Dφ(x, y) = x log

(
x
y

)
+ (1− x) log

(
1−x
1−y

)
.

In addition, the following lemma will be useful for our analysis later.

Lemma 2.1.2. Assume that φ : X → R is a strictly convex and twice-differentiable function
with an L-Lipschitz continuous gradient,

Dφ(x, y) ≤ L

2
‖x− y‖2

2

for any x, y ∈ X ⊂ Rd.

Proof. This is clear,

Dφ(x, y) = φ(x)− φ(y)− 〈∇φ(y), x− y〉

=

∫ 1

0

〈∇φ (tx+ (1− t)y) , x− y〉dt− 〈∇φ(y), x− y〉

=

∫ 1

0

〈∇φ (tx+ (1− t)y)−∇φ(y), x− y〉dt

≤
(∫ 1

0

t dt

)
L ‖x− y‖2

2 =
L

2
‖x− y‖2

2 .

where the second equality comes from the mean value theorem and the inequality comes from
the fact that φ is a twice-differentiable function with an L-Lipschitz continuous gradient.

CHAPTER 2. BACKGROUND 6

2.2 Wasserstein Distance
Wasserstein distance is a divergence defined between probability distributions on a given
metric space. It is also known as Kantorovich-Monge-Rubinstein metric. The concept is
introduced independently in a series of literatures including Gini (1914), Kantorovitch (1958),
Kantorovich and Rubinstein (1958), Vaserstein (1969), Mallows et al. (1972), and Tanaka
(1973). Wasserstein distance has deep connections with the optimal transport problem, which
is also called the Monge-Kantorovich problem, and is discussed first in Monge (1781) and
gains a linear programming formulation in Kantorovitch (1958).

Notations

Throughout this section and Chapter 3, the following notations are used unless otherwise
stated.

If x ∈ Rd denotes a vector in Euclidean space and X represents a matrix, then x>

denotes the transpose of this vector x, ‖x‖q denotes that q−norm of x, and log(x) denotes
the component-wise logarithm of this vector x. X � 0 or � 0 means that X is positive
semi-definite or positive definite, respectively. X ⊂ Rd denotes a set where the diameter of
X is defined as

diam(X) = max
x1,x2∈X

‖x1 − x2‖2 ,

and 1X denotes an indicator function of the set X . If P and Q are two probability distributions,
P(X) denotes the set of probability distributions defined on X , then Π(P,Q) denotes the set
of all couplings of P and Q, i.e. the set of all joint distributions over X × X with marginal
distributions being P and Q. We use φ for a strictly convex and twice-differentiable function
with an L-Lipschitz continuous gradient, i.e.

0 ≺ ∇2φ(x) � LId,

where x ∈ dom(φ), i.e. the domain of φ, and Id is an identity matrix in Rd×d. For the
statistical learning setup, we define Pr as an unknown true probability distribution, Pn as the
empirical distribution based on n observations from Pr, and {Pθ : θ ∈ Rd} as a parametric
family of probability distributions.

Definition 2.2.1. The Wasserstein distance of order p between the probability distributions
P and Q is defined as

Wp(P,Q) =

(
inf

π∈Π(P,Q)

∫
X×X

[c(x, y)]p π(dx, dy)

)1/p

, (2.1)

where p ≥ 1. c(·, ·) ≥ 0 is a metric supported on X × X . An important special case is the
Wasserstein-Lq distance of order p as follows,

WLq

p (P,Q) =

(
inf

π∈Π(P,Q)

∫
X×X
‖x− y‖pq π(dx, dy)

)1/p

. (2.2)

CHAPTER 2. BACKGROUND 7

q = 2 and X = Rd in (2.2) corresponds to the squared Wasserstein-L2 distance of order 2:

WL2

2 (P,Q) =

(
inf

π∈Π(P,Q)

∫
X×X
‖x− y‖2

2 π(dx, dy)

)1/2

(2.3)

Remark 1. For probability distributions, convergence under Wasserstein distance of order p
is equivalent to weak convergence plus convergence of the first p moments (see Theorem 6.8
in Villani (2008) for details). Given P and Q, we have the following two properties of the
Wasserstein distance of order p,

1. Wp(P,Q) ≥ 0 and the equality holds if and only if P = Q almost everywhere.

2. Wp(P,Q) is a metric since Wp(P,Q) = Wp(Q,P) and

Wp(P,Q) ≤ Wp(P,S) +Wp(S,Q),

where S is another probability distribution.

The form of Equation 2.1 also provides a nice interpretation. Let c(x, y) be the cost
function in the definition of Wp(P,Q). As shown in Figure 2.2, c(x, y)π(dx, dy) represents
the cost of transferring the probability density of P at x to probability density of Q at y. The
minimization over all coupling distributions corresponds to finding the policy that minimizes
the cost of transforming one probability distribution to the other.

Applications

Wasserstein distances are commonly used in optimal transport (Villani 2008), and also have
applications in many other areas, such as the study of mixing for Markov chains in probability
theory (Dobrushin 1996; Peres 2005), rates of fluctuations for empirical measures in statistics
(Rachev 1991; Rachev and Ruschendorf 1998; Dobrić and Yukich 1995), and propagation of
chaos in statistical mechanics (Dobrushin 1970; Spohn 2012).

The Wasserstein-L2 distance, also known as Mallows distance, has been widely used in
topics such as statistical testing (Munk and Czado 1998; De Wet 2002), machine learning
(D. Zhou, Jia Li, and Zha 2005), and stochastic games (Lasry and Lions 2007).

Distribution Learning with L1-Wasserstein Distance. In Arjovsky, Chintala, and
Bottou (2017), they use neural networks to learn probability density and define the objective
function for optimization to be the L1-Wasserstein distance. They have shown promising
results on a numerical experiment in image generation. We discuss this in detail in Section 2.4.

CHAPTER 2. BACKGROUND 8

Figure 2.2: Earthmover interpretation of Wasserstein distance

2.3 Neural Networks
Artificial neural networks are a class of models that commonly consist of stacks of layers of
non-linear transforms. The basic building blocks of neural networks are neurons, which apply
a non-linear transformation (called activation) to the real number that is fed as input. A
layer is an aggregation of neurons. The most common layer is called a fully-connected layer
and has the mathematical form y = f(Wx+ b). Here x ∈ Rm×n is the input of the layer and
y ∈ Rk×n is the output. W ∈ Rk×m is a matrix to perform linear transform and b ∈ Rk×n is
the bias term. f : Rk×n → Rk×n is called the activation function, which could be one of the
following popular choices:

• ReLU activation: f(t) = max(0, t), element-wise,

• Sigmoid activation: f(t) = 1
1+exp(−t) , element-wise,

• Tanh activation: f(t) = tanh(t), element-wise,

• Softmax activation: f(t)i = exp(ti)∑
exp(ti)

, i is the index of every entry of t.

Neural networks are, in essence, function approximators. They are trained by minimizing
a task-dependent loss function, through stochastic gradient descent (or its variants). The
gradient is calculated using chain-rule iteratively with respect to all trainable parameters in

CHAPTER 2. BACKGROUND 9

the network. This method is also called back-propogation because the parameters in later
layers are closer to the outputs and the gradients of them are hence computed first.

As a simple example, consider a two-layer neural network with a single neuron in the
hidden (middle) layer and all the input and outputs are one-dimensional. Its outputs can be
expressed as y1 = f(W1x + b1) and y2 = f(W2y1 + b2). Here Wi, bi and yi are the weight,
bias, and output of the ith layer, i = 1, 2. Then the gradient of the final output y2 with
respect to W2 is

∂y2

∂W2

= y1f
′(W2y1 + b2),

and the gradient with respect to W1 can be written as

∂y2

∂W1

=
∂y2

∂y1

∂y1

∂W1

= W2f
′(W2y1 + b2) · xf ′(W1x+ b1).

Here the first equality is using the chain-rule.

LSTM units Long Short-Term Memory is a type of neural network structure. The concept
was introduced by Hochreiter and Schmidhuber (1997). Gers, Schmidhuber, and Cummins
(1999) improve LSTM by adding a forget gate. Figure 2.3 describes the structure of a typical
LSTM unit. Let h ∈ R be the dimension of the hidden space. The vector ct ∈ Rh is called
a cell state vector, which memorizes the state of the unit at index t. The vector xt ∈ Rd

is the input vector of the unit, while the vector ht ∈ Rh is the output vector of the unit.
In the graph, the nodes with circles denote element-wise operations (multiplications × and
additions +), while the nodes with rectangles denote layers with sigmoid or tanh activations.
The edges represent the variables.

Figure 2.3: Structure of an LSTM unit

Inside each unit, ft is called the forget gate’s activation vector, it is called the input
gate’s activation vector, ot is called the output gate’s activation vector, and C̃t is called the

CHAPTER 2. BACKGROUND 10

candidate state vector. These interactions among variables and operations can be described
with the following equations:

it = σ(xtUi + ht−1Wi + bi)

ft = σ(xtUf + ht−1Wf + bf)

ot = σ(xtUo + ht−1Wo + bo)

C̃t = tanh(xtUg + ht−1Wg)

ct = σ(ft ◦ ct−1 + it ◦ C̃t)
ht = tanh(ct ◦ ot)

Here ◦ represents the element-wise product. W ’s and U ’s are the weights of each layer and
b’s are the biases of each layer.

These layers learn to put weights on inputs from the current t and outputs from previous
outputs. With these vectors and operations, LSTM can model sequential data by remembering
and forgetting information from previous units, hence learning long-term dependency among
inputs. We use LSTM in Section 5.3 to model a sequence of Credit Default Swap Index
orders.

2.4 Generative Adversarial Networks
Generative Adversarial Networks (GANs) (Goodfellow et al. 2014) provide a versatile class
of models for generative modeling. The key idea behind GANs is to interpret the process
of generative modeling as a competing game between two neural networks: a generator
network G and a discriminator network D. The generator network G attempts to fool
the discriminator network by converting random noise into sample data or, equivalently,
transforming an input distribution into approximately the distribution underlying the dataset,
while the discriminator network D is a classifier that tries to identify whether the input
sample is a fake data sample or a true data sample.

Applications of GANs

Since their introduction to the machine learning community, the popularity of GANs have
grown exponentially with numerous applications. Examples include high resolution image
generation (Denton, Chintala, and Fergus 2015; Radford, Metz, and Chintala 2015; C. Li
and Wand 2016; Zhang, Goodfellow, et al. 2018), image inpainting (Yeh et al. 2017), image
super-resolution (Ledig et al. 2017), visual manipulation (J.-Y. Zhu, Krähenbühl, et al. 2016),
text-to-image synthesis (Reed et al. 2016; Zhang, Xu, et al. 2017), video generation (Vondrick,
Pirsiavash, and Torralba 2016), semantic segmentation (Denton, Chintala, and Fergus 2015),
abstract reasoning diagram generation (Kulharia et al. 2017), style transfer and domain
adaptation (Bousmalis et al. 2017; Isola et al. 2017; J.-Y. Zhu, Park, et al. 2017; Antipov,

CHAPTER 2. BACKGROUND 11

Baccouche, and Dugelay 2017) and noise reduction (Wolterink et al. 2017). See also Arjovsky
(2017), Jerry Li et al. (2017), and Mescheder, Nowozin, and Geiger (2017) for more details on
the training dynamics of GANs.

Advantages of using GANs

First of all, the generator network has so many parameters that it is close to being nonpara-
metric. In most cases, it does not depend on any assumptions to build, train, or implement,
nor does it rely on rich knowledge about prior distributions. Therefore, it is suitable for tasks
where the underlying dynamic or distribution is unclear, or where a simple model would
result in a over-simplified solution.

Second, the model capacity of GANs can be arbitrarily large so long as the network is
deep enough. It is hence capable of learning complex underlying distributions, especially in
tasks related to computer vision.

Third, during training the generator faces an ever-changing loss function. This has benefits
in a number of situations. Sometimes there is a dilemma choosing between L1 and L2 losses
and one is unwilling to use either of them. Sometimes there are hardly any pre-determined
loss functions to optimize. For example, how could one tell the quality of generated image
samples? Sometimes the samples are unpaired, so there is no baseline for comparison. The
discriminator adds flexibility to these situations because it is improved during each step of
training and acts as an adversary to the currently best generator.

Lastly, GANs can utilize ideas and structures from the huge and fast-growing model zoos
contributed by the deep learning community. For instance, pretrained classifiers such as
the Inception Network can be used as discriminators without much modification in some
applications. Encoded messages from autoencoders can be directly used as inputs to GANs.
Besides, convolution and transpose convolutions can be incorporated into the generator
network. Attention mechanics LSTM units can improve the performance for generating
sequences like sentences or music.

Basics of GANs: an example on MNIST

To start with a simple example, consider how images could be generated that look like the
hand-written digits from the MNIST dataset.

Network structure. In this dataset, each sample is a 28 * 28 (784 pixels in total) image
that contains a black-and-white hand-written 0-9 digit. In this case, the generator can take a
low-dimensional random noise z ∈ R100. z first goes through a fully-connected layer with
ReLU as activation function and its dimension is raised to 128. It then goes through another
fully-connected layer with tanh as activation function and its dimension is raised to 784. The
output is the sample generated by the generator.

The discriminator, on the other hand, takes a 784-dimensional vector as input, which can
either be a true image from the dataset or a fake image generated by the generator. The

CHAPTER 2. BACKGROUND 12

input then goes through one hidden layer with Maxout as the activation function. After
going through a sigmoid layer, the final output is between 0 and 1, which represents the
confidence that the discriminator thinks the input is a true image. Refer to Figure 2.4 for
the structure of this vanilla GAN on MNIST.

Figure 2.4: Network structure of the vanilla GAN

Training of GANs. Training of GANs is often considered to be difficult. Careful hyper-
parameter tuning is required as otherwise the generator would only learn to replicate the
samples from the discriminator, or the discriminator is over-powered such that the output of
D(G(x)) is always 0 for a fake sample x, therefore the gradient no longer carries information,
and the training of generator is stuck forever. Many tricks have been developed to address
these problems. For example, one may apply a special scheme of decreasing the learning rate
or change the ratio of number of iterations the generator and discriminator update themselves
through stochastic gradient descent.

Mathematics behind GANs

GANs and Jenson-Shannon Divergence

The goal of the GANs is to estimate a probability distribution Pr hidden in the data. As
defined in Definition 3.2.3 in Chapter 3, one can define a random variable Z with a fixed
distribution PZ and pass it through a parametric function gθ : Z → X to construct a
probability distribution Pθ. In practice, the parametric function gθ is implemented using a

CHAPTER 2. BACKGROUND 13

neural network called Generator G. Meanwhile, another neural network Discriminator D will
assign a score between 0 to 1 to the generated samples, either from the empirical distribution
Pr or the approximate distribution Pθ = gθ(Z). A higher score from the discriminator D
would indicate that the sample is more likely to be from the empirical distribution. A GAN is
trained by optimizing G and D iteratively until D can no longer distinguish between samples
from Pr or Pθ. In this light, one can learn the probability distribution Pr by adapting θ and
fitting the data with Pθ. This approximation is done by finding a solution f that optimizes a
given cost function between Pr and Pθ.

Mathematically, training of GANs with an optimal discriminator is minimizing the Jensen-
Shannon divergence between Pr and Pθ. Indeed, recall that GANs is a min-max game
of

min
G

max
D

{
Ex∼Pr [logD(x)] + Ez∼P(z)[log(1−D(G(z)))]

}
. (2.4)

If we fix G and optimize for D, the optimal discriminator would be D∗G(x) = pr(x)
pr(x)+pg(x)

,
where pr and pg are density functions of Pr and Pθ = gθ(Z) respectively. Plugging this back
to Equation (2.4),

min
G

{
Ex∼Pr [log

pr(x)

pr(x) + pg(x)
] + Ex∼Pθ(Z)[log

pg(x)

pr(x) + pg(x)
]

}
(2.5)

= − log 4 + 2JS(Pr,Pθ), (2.6)

where the last term is the Jensen-Shannon (JS) divergence.
In Arjovsky, Chintala, and Bottou (2017), the JS divergence is replaced with Wasserstein

distance. In Section 3.3, we replace the JS divergence with RW divergence and show that it
would result in better performance.

Variants of GANs

There are many variants of GANs. Least square GANs (LSGANs) (Mao et al. 2017) attain
a stable performance during the learning process, replacing the sigmoid cross entropy loss
by the least square loss in the discriminator network of the original GANs. They are also
shown to generate higher quality images than the original GANs in practice. DRAGANs
(Kodali et al. 2017) alleviate the instability of the GANs training and offer a clear game-
theoretic justification by introducing regret minimization to reach the equilibrium in games
and to further explain the reason for the success of simultaneous gradient descent in GANs.
Conditional GANs (CGANs) (Mirza and Osindero 2014) propose to stabilize the training
by imposing the control on modes of the generated data in an original generative model.
Information-theoretic GANs (InfoGANs) (X. Chen et al. 2016) provide highly semantic and
meaningful hidden representations on a number of image datasets by maximizing the mutual
information between a fixed small subset of GAN’s noises and the observations. Auxiliary
Classifier GANs (ACGANs) (Odena, Olah, and Shlens 2017) improve GANs by adding more

CHAPTER 2. BACKGROUND 14

structure to the latent space together with a specialized cost function and with high-quality
samples. They also lead to a new analysis for assessing the discriminability and diversity
of samples from class-conditional image synthesis models. Energy-Based GANs (EBGANs)
(Zhao, Mathieu, and LeCun 2016) propose a new energy perspective of GANs. They construct
an energy function to measure the discriminator that attributes lower energies to the regions
near the data manifold and higher energies to other regions. As a result, the EBGAN
framework is shown to generate reasonable high-resolution images without a multi-scale
approach. Boundary Equilibrium GANs (BEGANs) (Berthelot, Schumm, and Metz 2017)
adopt a new equilibrium enforcing method paired with the Wasserstein divergence to train
GANs with an auto-encoder. This approach not only balances the generator network and the
discriminator network, but also uncovers a novel approximate convergence measure, leading
to a fast and stable training with high visual-quality.

Next, we present in detail two of the most important structures of GANs to show how
the vanilla GAN’s structure could be improved in various directions best suited for different
tasks.

Conditional GAN In the vanilla GAN, the only input is the random noise z.

min
G

max
D

{
Ex∼Pr [logD(x)] + Ez∼P(z)[log(1−D(G(z)))]

}
. (2.7)

In this case, there is no control over what kind of image to output. For example, in the
MNIST dataset, the generated image randomly chooses a digit from 0 to 9 as the output.
This restricts the use of GANs.

A special GAN structure called Conditional GAN (CGAN) (Mirza and Osindero 2014)
solves this issue by adding conditioning to the objective function. That is, in CGAN, they
turn to optimize the following objective:

min
G

max
D

{
Ex∼Pr [logD(x|y)] + Ez∼P(z)[log(1−D(G(z|y)))]

}
. (2.8)

How should one implement conditioning in practice? Of course, one way is to build a generator
for each individual category (then we would have 10 generators for the MNIST dataset). The
clever way is to include the category information into the input. For instance, one could
choose to use the structure shown in Figure 2.5 on the MNIST dataset. The categorical
information y here is concatenated with the random noise z as input to the generator network.

CycleGAN Previously, the output of GANs are random: the generator takes a random
noise and then transforms its distribution to something complex. GANs can do more. For
example, style transfer, where the input is no longer random but rather a deterministic and
meaningful image. Suppose that dataset X contains photos of various landscapes and dataset
Y contains paintings from one’s favourite painter. The samples in the dataset X and Y are
of course unpaired. Now we wish to transform the photos in a way such that they gain the
styles from the paintings. This type of task is called style transfer.

CHAPTER 2. BACKGROUND 15

Figure 2.5: Network structure of the conditional GAN

To do this, we introduce a special structure called CycleGAN (J.-Y. Zhu, Park, et al.
2017). It consists of two pairs of networks: (G,DX) that takes input from dataset X and
(F,DY) that takes input from dataset Y . G and F are generators that transform the input
sample to the dataset X and Y , respectively. DX and DY are discriminators that identify
whether a sample is from dataset X and Y or not, respectively.

The loss function now contains three parts: the adversarial loss for G and DY ,

LG = Ey∼pdata(y)[logDY (y)] + Ex∼pdata(x)[log(1−DY (G(x)))], (2.9)

the adversarial loss for F and DX ,

LF = Ex∼pdata(x)[logDX(x)] + Ey∼pdata(y)[log(1−DX(F (y)))], (2.10)

and the cycle consistency loss that connects both,

Lcyc(G,F) = Ex∼pdata(x)[‖F (G(x))− x‖1] + Ey∼pdata(y)[‖F (G(y))− y‖1]. (2.11)

The objective function is a weighted sum of all three losses:

L = LG + LF + λLcyc(G,F).

Multiple tricks are applied to enhance the training process. For example, to stablize
training, CycleGAN uses L2 loss instead of the Jenson-Shannon divergence. In particular, we
train G to minimize

Ex∼pdata(x)[(D(G(x))− 1)2],

CHAPTER 2. BACKGROUND 16

and train D to minimize

Ex∼pdata(x)[D(G(x))2] + Ey∼pdata(y)[(D(y)− 1)2].

The discriminator D is updated based on a history ’momentum’ of generated images rather
than the most recent ones. D is also designed in a fully-convoluted way to reduce the number
of trainable parameters and to make it work for inputs of any size.

Wasserstein GANs

A recurring theme to improve GANs training is the choice of loss functions (divergence
functions). The first proposed class of loss functions is based on the Jensen-Shannon
(JS) divergence, which is essentially the symmetric version of the Kullback-Leibler (KL)
divergence. It is shown in Arjovsky, Chintala, and Bottou (2017) that JS divergence is
undesirable with unstable training, suggesting Wasserstein-L1 distance as an alternative. The
resulting Wasserstein GANs (WGANs) outperform the original GANs in several aspects.
The Wasserstein-L1 distance is continuous, differentiable, and has a duality representation.
This constant availability of derivatives ensures a stable gradient descent algorithm in the
process of training. Besides the stability, the Wasserstein-L1 distance also avoids the issue of
mode collapse. Mode collapse is a phenomenon that the generator learns only the modes
of the training set. This is caused by training the generator against a fixed discriminator
(Goodfellow et al. 2014). The ability of WGANs to train the discriminator to optimality
solves this problem. WGANs further provide meaningful learning curves that can be used for
debugging and for hyperparameter searching. The volatility of the gradients is controlled
with additional regularization techniques such as weight clipping (Arjovsky, Chintala, and
Bottou 2017) and gradient penalty (Gulrajani et al. 2017).

The algorithm of WGAN is summarized in Algorithm 1. Line 7 is the weight clipping step.
It enforces the Lipschitz continuity of the critic (discriminator). The details are discussed in
Chapter 3.

If instead of weight clipping we apply a penalty to the gradient, we will result in Algorithm
2, which is proposed in Gulrajani et al. (2017) and is called WGAN with gradient penalty
(WGAN-GP). The gradient penalty term is in Line 7.

2.5 Variational Autoencoders
Variational autoencoders (VAEs) (Kingma and Welling 2013; Rezende, Mohamed, and
Wierstra 2014) are another type of generative model that consist of two neural networks:
an encoder network and an decoder network Pθ(X|z). The encoder network encodes a
sample X into parameters of a probability distribution Qλ(z|X). A latent representation
of the input, or the encoded message, z, is sampled according to Qλ(z|X). The decoder
network finally decodes z back into X ′, a reconstructed version of X. The loss function of the
variational autoencoder ensures that X ′ will be close to X after convergence. Similar to other

CHAPTER 2. BACKGROUND 17

Algorithm 1 WGAN. The default values α = 0.00005, c = 0.01, m = 64, ncritic = 5.

Require: α: the learning rate; c: the clipping parameter; m: the batch size; ncritic, the
number of iterations of the critic per generator iteration.

Require: w0, initial critic parameters; θ0: initial generator’s parameters.
1: while θ has not converged do
2: for t = 0, . . . , ncritic do
3: Sample a batch of real data {xi}mi=1 from Pr.
4: Sample a batch of prior samples {zi}mi=1 from p(z).
5: gw ← 1

m

∑m
i=1 [∇wfw(xi)−∇wfw(gθ(zi))].

6: w ← w + α · RMSProp(w, gw).
7: w ← clip (w,−c, c).
8: end for
9: Sample a batch of prior samples {zi}mi=1 from p(z).

10: gθ ← − 1
m

∑m
i=1∇θfw((gθ(zi))).

11: θ ← θ − α · RMSProp(θ, gθ).
12: end while

encoding-decoding structures, the encoder learns a low-dimensional representation of the
input X, which can be used as a non-linear dimension-reduction technique. The decoder, on
the other hand, takes any random input z from a simple distribution and yields a synthetic
sample. The generated sample is unlikely to be in the original dataset since the decoder is a
continuous mapping. Therefore, the decoder network can be used as a simulator.

Mathematics behind Variational Autoencoders

Consider a latent variable z and a sample X taken from a dataset. As a generative model, the
objective of a VAE is to maximize the probability that the sample X appears in the synthetic
dataset given we use all possible latent configurations, that is, we want to maximize:

P (X) =

∫
P (X|z; θ)P (z)dz, (2.12)

where P (z) is the prior distribution of the latent variable, P (X|z; θ) is the likelihood function,
parametrized by θ. However, since this integral is very hard to evaluate, observe that by the
definition of KL divergence,

DKL(Q(z|X), P (z|X)) = Ez∼Q[logQ(z|X)− logP (z|X)]

= Ez∼Q[logQ(z|X)− logP (X|z)− logP (z)] + logP (X)

= Ez∼Q[logP (X|z)]−DKL(Q(z|X), P (z)) + logP (X),

where the second equality is using the Bayes rule and the third equality is again by the
definition of KL divergence. We obtain this relationship:

logP (X)−DKL(Q(z|X), P (z|X)) = Ez∼Q[logP (X|z)]−DKL(Q(z|X), P (z)). (2.13)

CHAPTER 2. BACKGROUND 18

Algorithm 2 WGAN-GP. The default values α = 0.00005, λ = 10, ncritic = 5. β1 = 0,
β2 = 0.9

Require: α, β1, β2: the parameters in the Adam optimizer; m: the batch size; ncritic, the
number of iterations of the critic per generator iteration, λ: the gradient penalty coefficient.

Require: w0, initial critic parameters; θ0: initial generator’s parameters.
1: while θ has not converged do
2: for t = 0, . . . , ncritic do
3: for i = 1, . . . ,m do
4: Sample real data x from Pr, latent variable z from p(z), a random number ε that

follows uniform[0,1].
5: x̃← Gθ(z)
6: x̂← εx+ (1− ε)x̃
7: L(i) ← Dw(x̃)−Dw(x) + λ(‖∇x̂Dw(x̂)‖2 − 1)2

8: end for
9: w ← Adam(∇w

1
m

∑m
i=1 L

(i), w, α, β1, β2)
10: end for
11: Sample a batch of latent samples {zi}mi=1 from p(z).
12: θ ← Adam(∇θ

1
m

∑m
i=1−Dw(Gθ(z)), θ, α, β1, β2).

13: end while

On the left hand side of Equation 2.13, the divergence term can be negligible if the encoding
network Q(z|X) has high capacity. The right hand side is called the Evidence Lower Bound
(ELBO) and is the actual objective function that the VAE is maximizing. In practice, the
prior P (z) is usually taken as the standard Gaussian distribution N(0, I). The log-likelihood
term can be treated as the reconstruction loss when a sample X is first encoded into z and
then reconstructed back to itself. Under the Gaussian assumption, it becomes the common
L2 loss. Therefore, the loss function for VAE is written as the sum of squared errors plus KL
divergence regularization. The whole procedure is visualized in Figure 2.6.

Compared to GANs, VAEs focus more on the relationship between samples and their
encodings. The applications of VAEs include anomaly detection (An and Cho 2015), image
caption modeling (Pu et al. 2016), discrete data generation (Kusner, Paige, and Hernández-
Lobato 2017; Semeniuta, Severyn, and Barth 2017), representation learning (Higgins et
al. 2017) and recommendation systems (X. Li and She 2017). We use VAEs to perform
metagenomic binning in Section 5.2.

CHAPTER 2. BACKGROUND 19

Figure 2.6: Structure of a variational autoencoder

20

Chapter 3

Relaxed Wasserstein GANs

In this chapter, we introduce a new family of statistical divergences: the Relaxed Wasserstein
(RW) divergence. We start by showing that it has strong probabilistic and statistical properties.
We then show its competitive performance in building Generative Adversarial Networks.

3.1 Introduction
Statistical divergences play an important role in many data-driven applications. In addition
to generative adversarial networks which we introduce in Chapter 2, other striking examples
include statistical learning and robust optimization.

In both the literature of learning and robust optimization, one popular choice to measure
the difference between two distributions is the Kullback-Leibler divergence, which has strong
theoretical foundation in information theory and large deviations (Pardo and Vajda 1997).
However, there are two issues in using the KL divergence. The first one is that the KL
divergence between a continuous distribution and its empirical version, which is always a
discrete distribution, is undefined (or infinite). The second issue is that KL divergence does
not take into consideration the relative position of probability mass. As an example, consider
the discrete distribution P which puts 1/2 mass on 0 and 1/2 mass on 1, and the discrete
distribution Q which puts 1/2 mass on ε and 1/2 mass on 1− ε. The KL divergence does not
reflect the convergence of Q to P as ε ↓ 0, hence it is too restrictive. It is therefore natural
to use alternative measures for distributions, such as f -divergence, Lp-Wasserstein distance,
and Prohorov metric.

In this chapter, we propose a novel class of statistical divergence called Relaxed Wasserstein
(RW) divergence. RW divergence is Wasserstein distance parametrized by the class of strictly
convex and differentiable functions, which contain different curvature information. We first
show that RW divergence is dominated by the total variation (TV) distance and squared
Wasserstein-L2 divergence (Theorem 3.2.1). In parallel to the Wasserstein-L2 divergence, we
obtain its nonasymptotic moment estimate (Theorem 3.2.2) and its concentration inequality
(Theorem 3.2.3). By comparing with Wasserstein divergence, we show RW is a reasonable

CHAPTER 3. RELAXED WASSERSTEIN GANS 21

divergence.
For application purposes, we establish an important lemma (Lemma 3.2.4) which states

that RW divergence can be a distorted Wasserstein-L2 divergence with some residual terms
independent of the coupling. This decomposition immediately leads to the continuity and
differentiability of RW divergence (Theorem 3.2.5). From a practical perspective, especially
in light of stochastic gradient descent for GANs, these properties ensure the plausibility
of a gradient descent procedure. Using the decomposition lemma again, we establish the
duality representation of RW divergence (Theorem 3.2.6), which gives rise to an explicit
formula for the gradient evaluation and an asymmetric clipping procedure (Corollary 3.2.6.1).
Our numerical experiments show that this asymmetric clipping is useful for controlling the
volatility of the gradient.

We illustrate the use of RW divergence in GANs. In particular, we introduce Relaxed
Wasserstein GANs (RWGANs) and compare RWGANs with several state-of-the-art GANs in
image generation. We use RWGANs with KL divergence and the architectures of DCGAN
and MLP. We first evaluate all of candidate methods on MNIST and Fashion-MNIST datasets
and show that RWGANs are competitive with other popular approaches. Then we conduct
the experiment on CIFAR-10 and ImageNet datasets to investigate if RWGANs outperform
WGANs with symmetric clipping and gradient penalty, denoted as WGANs and WGANs-GP
respectively.

Our numerical results show that despite the fastest rate of training, WGANs-GP fail to
converge in some cases; RWGANs are robust and converge faster than WGANs, suggesting
that RWGANs strike a balance between WGANs and WGANs-GP and RWGANs might be
more desirable for large-scale computations. Furthermore, we observe in our experiments
RWGANs are fastest in generating meaningful and diverse images compared to other GANs.
In addition, RWGANs attain the highest inception scores at the initial stage of training
on the CIFAR-10 dataset, meaning that the generated samples correlate well with human
evaluations (Salimans et al. 2016). As a byproduct, our experiment provides some evidences
that an appropriate weight clipping has the potential to be competitive with gradient penalty
in WGANs.

Section 2.2 already provides the preliminaries and notations that will be used throughout
the chapter. The rest of the chapter is organized as follows. Section 3.2 describes the RW
divergence and discusses its theoretical properties. Section 3.3 discusses the implementation
of RWGANs and presents two numerical studies on four real data examples. We will discuss
choices of the convex function parametrizing the RW divergence in Section 4.2 in Chapter
4, and the application of RW divergence to robust optimization problems in Section 5.1 in
Chapter 5.

3.2 Relaxed Wasserstein Divergence
We now propose a new class of statistical divergence called Relaxed Wasserstein (RW)
divergence, parametrized by Wasserstein divergence and Bregman divergence. The term

CHAPTER 3. RELAXED WASSERSTEIN GANS 22

relaxed refers to the fact that RW divergence relaxes the symmetry of cost function c(x, y) in
Equation (2.1) and extends to a broader class of asymmetric divergences.

Definition 3.2.1. The Relaxed Wasserstein divergence between the probability distributions
P and Q is defined as

WDφ(P,Q) = inf
π∈Π(P,Q)

∫
X×X

Dφ(x, y) π(dx, dy),

where Dφ is the Bregman divergence with a strictly convex and differentiable function φ :
Rd → R.

Remark 2. 1. WDφ(P,Q) ≥ 0 and the equality holds if and only if P = Q almost every-
where.

2. WDφ(P,Q) is not a metric since Dφ(x, y) is generally asymmetric.

3. WDφ(P,Q) includes two important special cases, WL2

2 and WKL. More specifically,
WDφ = WL2

2 when φ(x) = ‖x‖2
2, and WDφ = WKL when φ(x) = −x> log(x).

Probabilistic Properties

In this section, we establish several probabilistic properties of RW divergence. Recall that the
Wasserstein distance is controlled by weighted Total Variation (TV) distance (see Theorem
6.15 (Villani 2008) for more details). In parallel, we show that the RW divergence is dominated
by the weighted TV distance and the squared Wasserstein-L2 divergence.

Definition 3.2.2. The Total Variation distance between the probability distributions P and
Q is defined as

TV (P,Q) := sup
A
|P(A)−Q(A)| , (3.1)

where A is a Borel set.

Theorem 3.2.1. Assume that φ : X → R is a strictly convex and twice-differentiable function
with an L-Lipschitz continuous gradient, then

WDφ(P,Q) ≤ L [diam(X)]2 · TV (P,Q), (3.2)

WDφ(P,Q) ≤ 1

2
L ·
[
WL2

2 (P,Q)
]2

, (3.3)

where P and Q are two probability distributions supported on a compact set X ⊂ Rd.

Proof. For the inequality (3.2), define π as the transfer plan that keeps all the mass shared
by P and Q fixed and distributes the rest uniformly, i.e.,

π (dx, dy) = (P ∧Q)(dx)δ{y=x} +
1

a
(P−Q)+(dx) · (P−Q)−(dy),

CHAPTER 3. RELAXED WASSERSTEIN GANS 23

where P ∧Q = P− (P−Q)+ and a = (P−Q)+ [X] = (P−Q)− [X]. Then

WDφ (P,Q) ≤
∫
X×X

Dφ(x, y) π (dx, dy)

=
1

a

∫
X×X

[φ(x)− φ(y)− 〈∇φ(y), x− y〉] (P−Q)+ (dx) · (P−Q)− (dy)

=
1

a

∫
X×X

[∫ 1

0

〈∇φ(tx+ (1− t)y)−∇φ(y), x− y〉 dt
]

(P−Q)+ (dx) · (P−Q)− (dy)

≤ 1

a

∫
X×X

[(∫ 1

0

tdt

)
L ‖x− y‖2

2

]
(P−Q)+ (dx) (P−Q)− (dy)

≤ L

2a

∫
X×X

[
‖x− y‖2

2

]
(P−Q)+ (dx) (P−Q)− (dy)

≤ L

a

∫
X×X

[
‖x− x0‖2

2 + ‖x0 − y‖2
2

]
(P−Q)+ (dx) (P−Q)− (dy)

≤ L

[∫
X
‖x− x0‖2

2 (P−Q)+ (dx) +

∫
X
‖y − x0‖2

2 (P−Q)− (dy)

]
= L

∫
X
‖x− x0‖2

2 |P−Q| (dx) = L [diam(X)]2 · |P(X)−Q(X)|

≤ L [diam(X)]2 · TV (P,Q),

where the first inequality comes from Definition 3.2.1, the first equality from Definition 2.1.1
and the definition of the specific π, the second inequality is by Lemma 2.1.2, the fourth
inequality by the triangle inequality, and the last inequality by Definition 3.2.2.

For the inequality (3.3), we have

WDφ (P,Q) = inf
π∈Π(P,Q)

∫
X×X

Dφ(x, y) π(dx, dy)

≤ 1

2
L · inf

π∈Π(P,Q)

∫
X×X
‖x− y‖2

2 π(dx, dy)

=
1

2
·
[
WL2

2 (P,Q)
]2

,

where the inequality holds thanks to Lemma 2.1.2 and the fact that π(dx, dy) ≥ 0 for any
coupling π ∈ Π(P,Q).

Next, we establish another key probabilistic property of RW divergence, i.e., the nonasymp-
totic moment estimates and the concentration inequality. To begin, define two statistics

Mq(Pr) =

∫
X
‖x‖q2 Pr(dx), and Eα,γ(Pr) =

∫
X

exp (γ‖x‖α2) Pr(dx).

CHAPTER 3. RELAXED WASSERSTEIN GANS 24

Theorem 3.2.2 (Nonasymptotic Moment Estimate). Assume that Mq(Pr) < +∞ for some
q > 2, then there exists a constant C(q, d) > 0 such that, for n ≥ 1,

E
[
WDφ (Pn,Pr)

]
≤ C(q, d)LM

2
q
q (Pr)

2
·

n−

1
2 + n−

q−2
q , 1 ≤ d ≤ 3, q 6= 4,

n−
1
2 log(1 + n) + n−

q−2
q , d = 4, q 6= 4,

n−
2
d + n−

q−2
q , d ≥ 5, q 6= d/(d− 2).

Theorem 3.2.3 (Concentration Inequality). Assume one of the following three conditions
holds,

Either ∃ α > 2, ∃ γ > 0, such that Eα,γ(Pr) <∞, (3.4)
or ∃ α ∈ (0, 2) , ∃ γ > 0, such that Eα,γ(Pr) <∞, (3.5)
or ∃ q > 4, such that Mq(Pr) <∞. (3.6)

Then for n ≥ 1 and ε > 0,

Pr
(
WDφ (Pn,Pr) ≥ ε

)
≤ a(n, ε)1{ε≤L

2
} + b(n, ε),

where

a(n, ε) = C1

exp

(
−4cnε2

L2

)
, 1 ≤ d ≤ 3,

exp
(
−4cnε2

L2 log2
(
2 + L

2ε

))
, d = 4,

exp
(
−cn

(
2ε
L

) d
2

)
, d ≥ 5,

and

b(n, ε) = C2

exp

(
−cn

(
2ε
L

)α
2

)
· 1{ε>L

2
}, under condition (3.4),

exp
(
−c(2nε

L
)
α−ε
2

)
· 1{ε≤L

2
} + exp

(
−c
(

2nε
L

)α
2

)
· 1{ε>L

2
}, 0 < ε < α, under condition (3.5),

n
(

2nε
L

)− q−ε
2 , 0 < ε < q, under condition (3.6).

where c, C1 and C2 are constants depending on q and d.

Theorem 3.2.2 and Theorem 3.2.3 show that the importance of Lipchitz constant L of the
underlying function φ in the statistical behaviour of RW divergence. The proof follows from
Theorem 1 and Theorem 2 presented in (Fournier and Guillin 2015) and Theorem 3.2.1 in
this chapter.

Continuity, Differentiability and Duality Representation

In this section, we establish the continuity, differentiability and duality representation of RW
divergence, demonstrating that RW divergence is a reasonable choice for the GANs. We first
present a simple yet important lemma.

CHAPTER 3. RELAXED WASSERSTEIN GANS 25

Lemma 3.2.4 (Decomposition of RW divergence). The RW divergence can be decomposed
in terms of the distorted squared Wasserstein-L2 divergence of order 2 with several additional
residual terms independent of the choice of coupling π, i.e.,

WDφ(P,Q) =
1

2

[
WL2

2

(
P,Q ◦ (∇φ)−1

)]2

+

∫
X

[
φ(x)− 1

2
‖x‖2

2

]
P(dx) +

∫
X

[
〈∇φ(x), x〉 − φ(x)− 1

2
‖∇φ(x)‖2

]
Q(dx).

See Figure 3.1.

Q ◦ (∇φ)−1

Q P

WL2

2 (P,Q◦(∇φ)−1)∇φ

WDφ
(P,Q)

Figure 3.1: The decomposition of WDφ where the solid arrow denotes transformation and the
dashed arrows denote the divergences between probability distributions.

Proof. First, we need to prove that the inverse of φ is well-defined. Since ∇2φ(x) � 0, ∀x ∈ X ,
the gradient mapping ∇φ : X → Rd has a positive-definite Jacobian matrix at each point.
Applying the mean value theorem yields that φ is injective so the inverse of ∇φ exists and is
bijective. Denote it as

(∇φ)−1 : ∇φ(X)→ X ,

then
Q ◦ (∇φ)−1 : Rd → R

is also a probability distribution. Thus

WDφ(P,Q) = inf
π∈Π(P,Q)

∫
X×X

[φ(x)− φ(y)− 〈∇φ(y), x− y〉] π(dx, dy)

= inf
π∈Π(P,Q)

∫
X×X

[
1

2
‖x‖2

2 +
1

2
‖∇φ(y)‖2

2 − 〈∇φ(y), x〉
]
π(dx, dy)

+

∫
X×X

[
φ(x)− 1

2
‖x‖2

2

]
π(dx, dy)

+

∫
X×X

[
〈∇φ(y), y〉 − φ(y)− 1

2
‖∇φ(y)‖2

]
π(dx, dy)

= inf
π∈Π(P,Q)

∫
X×X

[
1

2
‖x‖2

2 +
1

2
‖∇φ(y)‖2

2 − 〈∇φ(y), x〉
]
π(dx, dy)

+

∫
X

[
φ(x)− 1

2
‖x‖2

2

]
P(dx) +

∫
X

[
〈∇φ(x), x〉 − φ(x)− 1

2
‖∇φ(x)‖2

]
Q(dx).

CHAPTER 3. RELAXED WASSERSTEIN GANS 26

Furthermore,[
WL2

2

(
P,Q ◦ (∇φ)−1

)]2

= inf
π∈Π(P,Q◦(∇φ)−1)

∫
X×Rd

‖x− y‖2
2 π(dx, dy)

= inf
π∈Π(P,Q)

∫
X×Rd

‖x−∇φ(y)‖2
2 π(dx, dy)

= inf
π∈Π(P,Q)

∫
X×X

[
‖x‖2

2 + ‖∇φ(y)‖2
2 − 2〈∇φ(y), x〉

]
π(dx, dy).

Therefore,

WDφ(P,Q) =
1

2

[
WL2

2

(
P,Q ◦ (∇φ)−1

)]2

+

∫
X

[
φ(x)− 1

2
‖x‖2

2

]
P(dx) +

∫
X

[
〈∇φ(x), x〉 − φ(x)− 1

2
‖∇φ(x)‖2

]
Q(dx).

Now we are ready to present our main results on the continuity and differentiability of
the parametrized RW divergence in the generative modeling.

Definition 3.2.3 (Generative modeling). The procedure of generative modeling is to approx-
imate an unknown probability distribution Pr by constructing a class of suitable parametric
probability distributions Pθ. More specifically, define a latent variable Z ∈ Z with a fixed
probability distribution PZ and a sequence of parametric functions gθ : Z → X . Then Pθ is
defined as the probability distribution of gθ(Z).

Theorem 3.2.5 (Continuity and Differentiability of RW divergence). 1. WDφ(Pr,Pθ) is
continuous in θ if gθ is continuous in θ.

2. WDφ(Pr,Pθ) is differentiable almost everywhere if gθ is locally Lipschitz with a con-
stant L(θ, z) such that E [L(θ, Z)2] < ∞, i.e., for each given (θ0, z0), there exists a
neighborhood N such that

‖gθ(z)− gθ0(z0)‖2 ≤ L(θ0, z0) (‖θ − θ0‖2 + ‖z − z0‖2) .

for any (θ, z) ∈ N .

Proof. It follows from Lemma 3.2.4 that WDφ(Pr,Pθ) = T1 + T2, where

T1 =
1

2

[
WL2

2

(
Pr,Pθ ◦ (∇φ)−1

)]2

,

T2 =

∫
X

[
φ(x)− 1

2
‖x‖2

2

]
Pr(dx) +

∫
X

[
〈∇φ(x), x〉 − φ(x)− 1

2
‖∇φ(x)‖2

]
Pθ(dx).

We observe that T2 is continuous and differentiable with respect to θ since φ is a twice
differentiable function. Furthermore, since (∇φ)−1 is also continuous and differentiable, it

CHAPTER 3. RELAXED WASSERSTEIN GANS 27

suffices to show that WL2

2 (Pr,Pθ) is continuous in θ if gθ is continuous in θ, and differentiable
almost everywhere if gθ is locally Lipschitz with a constant L(θ, z) such that E [L(θ, Z)2] <∞
for any θ.

Given two vectors θ0, θ ∈ Rd, we define π as a joint distribution of (gθ(Z), gθ0(Z)) where
Z ∼ PZ , then

WL2

2 (Pθ,Pθ0) ≤
(∫
X×X
‖x− y‖2

2 π(dx, dy)

)1/2

=

(∫
Z
‖gθ(z)− gθ0(z)‖2

2 PZ(dz)

)1/2

,

where ‖gθ(z)− gθ0(z)‖2
2 → 0, ∀z ∈ Z, since gθ is continuous in θ. Furthermore, ‖gθ1(z)− gθ2(z)‖2

2

is uniformly bounded on Z since gθ(x) ∈ X and X is a compact set. Therefore, applying the
bounded convergence theorem yields∣∣∣WL2

2 (Pr,Pθ)−WL2

2 (Pr,Pθ0)
∣∣∣ ≤ WL2

2 (Pθ,Pθ0)

≤
(∫
Z
‖gθ(z)− gθ0(z)‖2

2 PZ(dz)

)1/2

→ 0, as θ → θ0.

where the first inequality comes from the triangle inequality.
Given a pair (θ0, z0), the local Lipschitz continuity of gθ implies that there exists a

neighborhood N such that ‖gθ(z)− gθ0(z0)‖2 ≤ L(θ0, z0) (‖θ − θ0‖2 + ‖z − z0‖2) for any
(θ, z) ∈ N . Then∫

Z
‖gθ(z0)− gθ0(z0)‖2

2 PZ(dz0) ≤
∫
Z

[L(θ0, z0)]2 · ‖θ − θ0‖2
2 PZ(dz0)

= ‖θ − θ0‖2
2 · E

[
L(θ0, Z)2

]
.

Therefore,∣∣∣WL2

2 (Pr,Pθ)−WL2

2 (Pr,Pθ0)
∣∣∣ ≤ WL2

2 (Pθ,Pθ0)

≤
(∫
Z
‖gθ(z0)− gθ0(z0)‖2

2 PZ(dz0)

)1/2

≤ ‖θ − θ0‖2 · E
[
L(θ, Z)2

]1/2
,

which implies that WL2

2 (Pr,Pθ) is locally Lipschitz. Applying the Rademacher’s theorem
(Evans and Gariepy 2015) yields that WL2

2 (Pr,Pθ) is differentiable with respect to θ almost
everywhere.

Next is the the duality representation of RW divergence.

CHAPTER 3. RELAXED WASSERSTEIN GANS 28

Theorem 3.2.6 (Duality Representation of RW divergence). Given two probability distribu-
tions P and Q such that ∫

X
‖x‖2

2 (P + Q) (dx) < +∞,

then there exists a Lipschitz continuous function f : X → R such that the RW divergence has
the following duality representation

WDφ(P,Q) =

∫
X
φ(x) (P−Q) (dx)+

∫
X
〈∇φ(x), x〉 Q(dx)−

(∫
X
f(x) P(dx) +

∫
X
f ∗ (∇φ(x)) Q(dx)

)
,

where f ∗ is the conjugate of f , such that f ∗(y) = supx∈Rd 〈x, y〉 − f(x).

Proof. First,[
WL2

2 (P,Q)
]2

= inf
π∈Π(P,Q)

∫
X×X
‖x− y‖2

2 π(dx, dy) (3.7)

=

∫
X
‖x‖2

2 (P + Q) (dx)− sup
π∈Π(P,Q)

∫
X×X

2x>y π(dx, dy), (3.8)

then it follows from Proposition 3.1 (Brenier 1991) that there exists a Lipschitz continuous
function f : X → R such that the squared Wasserstein-L2 divergence of order 2 has a duality
representation:[

WL2

2 (P,Q)
]2

= inf
π∈Π(P,Q)

∫
X×X
‖x− y‖2

2 π(dx, dy)

=

∫
X
‖x‖2

2 (P + Q) (dx)− 2

(∫
X
f(x) P(dx) +

∫
X
f ∗(x) Q(dx)

)
,

where f ∗(y) = supx∈Rd 〈x, y〉 − f(x). By Lemma 3.2.4,

WDφ(P,Q) =
1

2

[
WL2

2

(
P,Q ◦ (∇φ)−1

)]2

+

∫
X

[
φ(x)− 1

2
‖x‖2

2

]
P(dx) +

∫
X

[
〈∇φ(x), x〉 − φ(x)− 1

2
‖∇φ(x)‖2

]
Q(dx),

=
1

2

(∫
X
‖x‖2

2 P(dx) +

∫
X
‖∇φ(x)‖2

2 Q(dx)

)
−
(∫
X
f(x) P(dx) +

∫
X
f ∗ (∇φ(x)) Q(dx)

)
+

∫
X

[
φ(x)− 1

2
‖x‖2

2

]
P(dx) +

∫
X

[
〈∇φ(x), x〉 − φ(x)− 1

2
‖∇φ(x)‖2

]
Q(dx)

=

∫
X
φ(x) (P−Q) (dx) +

∫
X
〈∇φ(x), x〉 Q(dx)

−
(∫
X
f(x) P(dx) +

∫
X
f ∗ (∇φ(x)) Q(dx)

)
.

CHAPTER 3. RELAXED WASSERSTEIN GANS 29

Finally, we show that Theorem 3.2.6 allows for an explicit formula for the gradient
evaluation in the generative modeling (Definition 3.2.3), providing the theoretical guarantee
for the RWGANs training.

Corollary 3.2.6.1 (Gradient Evaluation). Under the setting of generative modeling, we
assume that gθ is locally Lipschitz with a constant L(θ, z) such that E [L(θ, Z)2] <∞ and∫

X
‖x‖2

2 (Pr + Pθ) (dx) < +∞.

Then there exists a Lipschitz continuous solution f : X → R such that the gradient of the
RW divergence has an explicit form of

∇θ

[
WDφ(Pr,Pθ)

]
= EZ

[
[∇θgθ(Z)]>∇2φ(gθ(Z))gθ(Z)

]
+ EZ [∇θf (∇φ(gθ(Z)))] .

Proof. Since gθ is a locally Lipschitz and
∫
X ‖x‖

2
2 (Pr + Pθ) (dx) < +∞, it follows from

Theorem 3.2.5 and Theorem 3.2.6 that WDφ(Pr,Pθ) is differentiable almost everywhere and
there exists a Lipschitz continuous function f̃ : X → R such that the RW divergence has a
duality representation as

WDφ(Pr,Pθ) =

∫
X
φ(x) (Pr − Pθ) (dx) +

∫
X
〈∇φ(x), x〉 Pθ(dx)

−
(∫
X
f̃(x) Pr(dx) +

∫
X
f̃ ∗ (∇φ(x)) Pθ(dx)

)
.

By the envelope theorem (Milgrom and Segal 2002), we obtain that

∇θ

[
WDφ(Pr,Pθ)

]
= ∇θ

[
−
∫
X
φ(x) Pθ(dx) +

∫
X
〈∇φ(x), x〉 Pθ(dx)−

∫
X
f̃ ∗ (∇φ(x)) Pθ(dx)

]
= ∇θ[−

∫
Z
φ(gθ(z)) PZ(dz) +

∫
Z
〈∇φ(gθ(z)), gθ(z)〉 PZ(dz)

−
∫
Z
f̃ ∗ (∇φ(gθ(z))) PZ(dz)]

= −
∫
Z

[∇θgθ(z)]>∇φ(gθ(z)) PZ(dz) +

∫
Z

[∇θgθ(z)]>∇φ(gθ(z)) PZ(dz)

+

∫
Z

[∇θgθ(z)]>∇2φ(gθ(z))gθ(z) PZ(dz)−
∫
Z
∇θf̃

∗ (∇φ(gθ(z))) PZ(dz)

=

∫
Z

[∇θgθ(z)]>∇2φ(gθ(z))gθ(z) PZ(dz)−
∫
Z
∇θf̃

∗ (∇φ(gθ(z))) PZ(dz)

Letting f = −f̃ ∗,

∇θ

[
WDφ(Pr,Pθ)

]
= EZ

[
[∇θgθ(Z)]>∇2φ(gθ(Z))gθ(Z)

]
+ EZ [∇θf (∇φ(gθ(Z)))] ,

where f is Lipschitz continuous.

CHAPTER 3. RELAXED WASSERSTEIN GANS 30

3.3 Experiments

RWGANs

In this section, we will present numerical evaluation on image generations to demonstrate
the effectiveness and efficiency of using RW divergence in GANs. For the review of the
basics of GANs, please refer to Section 2.4). For the review of structures of WGAN and
WGAN-GP, please refer to Section 2.4. We first derive the computation of the gradient of
RW in training GANs (RWGANs) (Section 3.3). We then describe our experiment framework
and settings (Section 3.3). Finally we report the experimental results under RWGANs versus
other well-established variants of GANs including WGAN, and WGAN-GP in Section 3.3.

Gradient descent and smoothness of RW divergence

In the training of GANs, descent methods are typically used to minimize Equation (2.6).
Similarly, differentiability is needed for RW divergence in the RWGANs approach. As in
WGANs, despite the theoretical explicit formulas derived in the duality representation and
the gradient evaluation (Theorem 3.2.6 and Corollary 3.2.6.1), it is infeasible to directly
compute such an f in practice. Nevertheless, since the RW divergence is parametrized by
any strictly convex function in RWGANs, we obtain a great deal of flexibility in the choice of
loss functions. For example, one can choose an appropriate φ such that

∇θ

[
WDφ(Pr,Pθ)

]
≈ EZ [∇θf (∇φ(gθ(z)))] .

For instance, one can try the KL divergence where ∇2φ(x) = diag(1/x), observing that

EZ
[
[∇θgθ(Z)]>∇2φ(gθ(Z))gθ(Z)

]
= EZ

[
[∇θgθ(Z)]>~1

]
≤ C,

where C is a constant depending on the Lipschitz constant of gθ. This implies that this term
is controlled by θ during the process of training. The numerical results in Section 3.3 confirm
the effectiveness of our heuristic.

Experimental framework and settings

Experimental framework. The similarity between our experimental framework and the
one in WGANs (Arjovsky, Chintala, and Bottou 2017) is: we apply back-propagation to train
the generator and discriminator networks, and update the parameters once in the generative
model and ncritic times in the discriminator network.

The differences between ours and the WGANs (Algorithm 1 in Chapter 2) are: 1) we
use ∇φ to do the asymmetric clipping instead of the symmetric clipping. Note that the
asymmetric clipping guarantees the Lipschitz continuity of f and ∇φ(w) ∈ [−c, c]; 2) we use
a scaling parameter S to stabilize the asymmetric clipping. This parameter ensures that the
norm of the gradient is controlled within a small range. This is critical for the experiment

CHAPTER 3. RELAXED WASSERSTEIN GANS 31

since it reduces the variance of the gradient updates; 3) we adopt RMSProp (Tieleman and
Hinton 2012) instead of ADAM (Kingma and Ba 2014), which allows a choice of a larger
step-size and avoids the non-stationary problem (Mnih et al. 2016).

The details are described in Algorithm 3, where the boxed equation highlights the
asymmetric clipping procedure, one of the key algorithmic differences between WGANs and
RWGANs.

Algorithm 3 RWGANs. The default values α = 0.0005, c = 0.005, S = 0.01, m = 64,
ncritic = 5.

Require: α: the learning rate; c: the clipping parameter; m: the batch size; ncritic, the
number of iterations of the critic per generator iteration; Nmax, the maximum number of
one forward pass and one backward pass of all the training examples.

Require: w0, initial critic parameters; θ0: initial generator’s parameters.
for N = 1, 2, . . . , Nmax do
for t = 0, . . . , ncritic do
Sample a batch of real data {xi}mi=1 from Pr.
Sample a batch of prior samples {zi}mi=1 from p(z).
gw ← 1

m

∑m
i=1 [∇wfw(xi)−∇wfw(gθ(zi))].

w ← w + α · RMSProp(w, gw).
w ← clip

(
w,−S · (∇φ)−1(−c), S · (∇φ)−1(c)

)
.

end for
Sample a batch of prior samples {zi}mi=1 from p(z).
gθ ← − 1

m

∑m
i=1∇θfw(∇φ(gθ(zi))).

θ ← θ − α · RMSProp(θ, gθ).
end for

Experimental settings. In order to test RWGANs, we adopt nine baseline methods as
discussed in the introduction. They are RWGANs, WGANs (Arjovsky, Chintala, and Bottou
2017), WGANs-GP (Gulrajani et al. 2017), CGANs (Mirza and Osindero 2014), InfoGANs
(X. Chen et al. 2016), GANs (Goodfellow et al. 2014), LSGANs (Mao et al. 2017), DRAGANs
(Kodali et al. 2017), BEGANs (Berthelot, Schumm, and Metz 2017), EBGANs (Zhao, Mathieu,
and LeCun 2016), and ACGANs (Odena, Olah, and Shlens 2017). The implementation of all
these approaches is based on publicly available online information. In addition, we use the
following four standard and well-known datasets in our experiment.

1. MNIST is a dataset of handwritten digits. It has a training set of 60,000 examples, and
a test set of 10,000 examples. It is a subset of a larger set available from NIST. The
digits have been size-normalized and centered in a fixed-size image.

CHAPTER 3. RELAXED WASSERSTEIN GANS 32

2. Fashion-MNIST is an alternative dataset of Zalando’s article images to MNIST. It consists
of a training set of 60,000 examples and a test set of 10,000 examples. Each example is
a 28×28 gray-scale image, associated with a label from 10 classes.

3. The CIFAR-101 dataset consists of 60000 32×32 color images in 10 classes, with 6000
images per class. There are 50000 training images and 10000 test images.

4. The ImageNet2 dataset is a large visual database designed for visual object recognition
research. As of 2016, over ten million URLs of images have been hand-annotated by
ImageNet to indicate which objects are in the picture. In at least one million of the
images, bounding boxes are also provided.

Metric. The negative critic loss, well-known as the standard quantitative metric, is used
in all our experiments. In addition to the negative critic loss, we use the inception score
(Salimans et al. 2016) to evaluate samples generated by three WGANs methods on CIFAR-10
and ImageNet. The inception score is defined as follows:

Inception_Score = exp {Ex [DKL(p(y|x), p(y)]} ,

where p(y|x) is given by the inception network. A high inception score is an indicator that
the images generated by the model are highly interpretable and diversified. It is also highly
correlated with human evaluation of the images.

Experimental Results.

Experiments on MNIST and Fashion-MNIST: We start our experiment by training mod-
els using the ten different GANs procedures on MNIST and Fashion-MNIST. The architecture
is DCGAN (Radford, Metz, and Chintala 2015) and the maximum number of epochs is 100.

Figure 3.5 shows the training curves of the negative critic loss of all candidate approaches.
The figure indicates that RWGANs and WGANs are stable with the smallest variances,
where RWGANs has a slight higher variance partly due to the use of a larger step-size
and asymmetric clipping. This slightly higher variance, nevertheless, speeds up the rate
of training. Indeed, as illustrated in Figure 3.3 and Figure 3.4, RWGANs is the fastest to
generate meaningful images. Note that CGANs and InfoGANs seem faster in generating
clearer images, they fall into local optima in the optimization procedure therefore he samples
all look similar and not as diverse.
Experiments on CIFAR-10 and ImageNet: After observing that WGANs and RWGANs
perform the best among all the variants of GANs, we proceed to compare RWGANs and
WGANs, together with WGANs with Gradient Penalty (WGANs-GP), on two much larger
datasets CIFAR-10 and ImageNet. Here the architectures used are DCGAN and ReLU-MLP
(Conan-Guez and Rossi 2002) and the maximum number of epochs is set to 25.

1https://www.cs.toronto.edu/∼kriz/cifar.html
2http://image-net.org/small/train_ 64x64.tar

CHAPTER 3. RELAXED WASSERSTEIN GANS 33

Figure 3.10 shows the training curves of the negative critic loss of all candidate approaches
again. Except for the small variance of WGANs, we observe that, in terms of the negative
loss, WGANs-GP tend to diverge as the training progresses, implying that such method might
not be robust in practice despite its fast rate of training. In this case, RWGANs achieve
relatively low variance with convergent negative critic loss, leading to a trade-off between
robustness and efficiency.

We then evaluate the candidate methods with the inception score and present the results in
Table 3.2. The table shows that RWGANs are often the fastest method. They perform the best
in three out of four cases during several early epochs, and obtain images with competitively
high quality at the final stage. Figures 3.6, Figure 3.7, Figure 3.8 and Figure 3.9 show the
sample qualities of the image generated at the initial and final stages, which strongly supports
our conclusion.

Architecture Method CIFAR-10 ImageNet
First 5 epochs Last 10 epochs First 3 epochs Last 5 epochs

DCGAN
RWGANs 1.8606 2.3962 2.0430 2.7008
WGANs 1.6329 2.4246 2.2070 2.7972

WGANs-GP 1.7259 2.3731 2.2749 2.7331

MLP
RWGANs 1.3126 2.1710 2.0025 2.4805
WGANs 1.2798 1.9007 1.7401 2.2304

WGANs-GP 1.2711 2.2192 1.8845 2.3448

Figure 3.2: Inception scores at the beginning and final stages of training. DCGAN refers to
the standard DCGAN generator and MLP refers to an ReLU-MLP with 4 hidden layers and
512 units at each layer.

3.4 Discussion
In this chapter, we propose a novel class of statistical divergence called RW divergence
and establish several important theoretical properties. Numerical experiments, with RW
parametrized by the KL divergence in image generation, show that RWGANs is a promising
trade-off between WGANs and WGANs-GP, achieving both the robustness and efficiency
during the learning process. The asymmetric clipping in RWGANs is a viable alternative to
the gradient penalty and the symmetric clipping in WGANs, avoiding the low-quality samples
and the failure of convergence. We also discuss a potential application of RW divergence in
the context of robust optimization and explain how it can be used to construct ambiguity
sets.

The flexible framework of RW divergences raises a natural question on whether one can
select φ according to the data and the structure of the problem. This question is partially
addressed by Proposition 1 and Theorem 4.1.3 in Chapter 4: with the objective of variance

CHAPTER 3. RELAXED WASSERSTEIN GANS 34

stabilization, a reasonable choice of the Bregman divergence is the Mahalanobis distance
with the corresponding covariance matrix being the estimated Fisher information matrix.

While we highlight only the applications of RW to GANs (and robust optimization in
Chapter 5), we believe that the theoretical results of RW divergence can be a valuable
addition to the rich theory for optimal transport, where regularities of Wasserstein-based
cost functions have been extensively studied (Caffarelli 1991; Caffarelli 1992; S. Chen and
Figalli 2017; Villani 2008). With the extension of Bregman divergence to the functional
space (Frigyik, Srivastava, and Gupta 2008), the application of RW divergence in martingale
optimal transport is also promising.

CHAPTER 3. RELAXED WASSERSTEIN GANS 35

Method N = 1 N = 10 N = 25 N = 100

RWGANs

WGANs

CGANs

InfoGANs

GANs

CHAPTER 3. RELAXED WASSERSTEIN GANS 36

Method N = 1 N = 10 N = 25 N = 100

LSGANs

DRAGANs

BEGANs

EBGANs

ACGANs

Figure 3.3: Sample qualities at different stages of training on MNIST.

CHAPTER 3. RELAXED WASSERSTEIN GANS 37

Method N = 1 N = 10 N = 25 N = 100

RWGANs

WGANs

CGANs

InfoGANs

GANs

CHAPTER 3. RELAXED WASSERSTEIN GANS 38

Method N = 1 N = 10 N = 25 N = 100

LSGANs

DRAGANs

BEGANs

EBGANs

ACGANs

Figure 3.4: Sample qualities at different stages of training on Fashion-MNIST.

CHAPTER 3. RELAXED WASSERSTEIN GANS 39

Method MNIST Fashion-
MNIST Method MNIST Fashion-

MNIST

RWGANs LSGANs

WGANs DRAGANs

CGANs BEGANs

InfoGANs EBGANs

GANs ACGANs

Figure 3.5: Training curves of the negative critic loss at different stages of training on MNIST
and Fashion-MNIST. Gloss and Dloss refer to the loss in generative and discriminative nets,
which is plotted in orange and blue lines, respectively.

CHAPTER 3. RELAXED WASSERSTEIN GANS 40

Method N = 1
DCGAN MLP

RWGANs

WGANs

WGANs-
GP

Figure 3.6: Sample qualities at the initial stage of training on CIFAR-10.

CHAPTER 3. RELAXED WASSERSTEIN GANS 41

Method N = 100
DCGAN MLP

RWGANs

WGANs

WGANs-
GP

Figure 3.7: Sample qualities at the final stage of training on CIFAR-10.

CHAPTER 3. RELAXED WASSERSTEIN GANS 42

Method N = 1
DCGAN MLP

RWGANs

WGANs

WGANs-
GP

Figure 3.8: Sample qualities at the initial stage of training on ImageNet.

CHAPTER 3. RELAXED WASSERSTEIN GANS 43

Method N = 25
DCGAN MLP

RWGANs

WGANs

WGANs-
GP

Figure 3.9: Sample qualities at the final stage of training on ImageNet.

CHAPTER 3. RELAXED WASSERSTEIN GANS 44
Method Architecture CIFAR-10 ImageNet

RWGANs DCGAN

MLP

WGANs DCGAN

MLP

WGANs-GP DCGAN

MLP

Figure 3.10: Training curves at different stages of training. DCGAN refers to the standard
DCGAN generator and MLP refers to an ReLU-MLP with 4 hidden layers and 512 units at
each layer. Gloss and Dloss refer to the loss in generative and discriminative nets. The loss in
RWGANs is shown to converge consistently while the loss in WGANs-GP tends to diverge as
the training progresses. WGANs achieves the lowest variance among the three methods.

45

Chapter 4

Properties of Bregman divergence and
Choices of RW divergence

An important question in using RW divergence is the choice of the underlying convex function
φ. In this chapter, we establish the connection between Fisher information and the Hessian
of a convex function (Proposition 1), and derive the asymptotic distribution of Bregman
divergences (Theorem 4.1.3). These theoretical results shed light from a variance stabilizing
perspective on why Wasserstein-L2 might not be a desirable choice of statistical divergence
and how to select the convex function for RW.

In this chapter, our main contributions are as follows:

• We derive a weak convergence result using Bregman divergence in parametric distribu-
tions. The result describes precisely how the Hessian of the underlying convex function
in Bregman divergence impacts the statistical properties of the divergence measure in
the asymptotic setting.

• In the non-asymptotic setting, we prove concentration results using Bregman divergence
between the true discrete distribution and the empirical distributions. This allows the
construction of ambiguity set in robust optimization.

4.1 More Properties of Bregman Divergence
In Section 2.1, we introduce Bregman divergence and some of its properties. In this section,
we will discuss several theorems that motivate our discussion later. Let p = (p1, . . . , pm) ∈ Rm

be the probability distribution of a discrete random variable X, where pi = P(X = ai,
i ∈ {1, 2, . . . ,m}. Let p̂n = (p̂n,1, . . . , p̂n,m) ∈ Rm be the random vector denoting the
empirical distribution of a sequence of iid random variables {Xi}ni=1, where each Xi has the
same distribution as X. That is,

p̂n =

(
1

n

n∑
i=1

1{Xi = a1}, . . . ,
1

n

n∑
i=1

1{Xi = am}

)
.

CHAPTER 4. PROPERTIES OF BREGMAN DIVERGENCE AND CHOICES OF RW
DIVERGENCE 46

Concentration of Bregman Divergence

We first establish that the Bregman divergence Dφ between the empirical distribution and
the true distribution concentrates around the mean, where the rate can be expressed in terms
of the gradient of the convex function φ.

Theorem 4.1.1. Consider the random variable Z = Dφ(p̂n, p), the Bregman divergence
between p̂n and p,

Z = Dφ(p̂n, p) = φ(p̂n)− φ(p)− 〈∇φ(p), p̂n − p〉,

where φ : [0, 1]m → R is a strictly convex function. Then the following concentration inequality
holds for all ε > 0:

P{Z − E[Z] ≥ ε} ≤ exp(
−n2ε2

4dMφ

}),

where Mφ = maxt∈∆m−1 ‖∇φ(t)‖2, and ∆m−1 is the standard (m− 1)-simplex, which is the
set {(t1, t2, . . . , tm) ∈ Rm|

∑m
i=1 ti = 1, ti ≥ 0,∀i}.

Proof. Let (X1, . . . , Xi−1, Xi, Xi+1, . . . , Xn) be iid random variables from distribution p. De-
fine another sequence of random variables (X1, . . . , Xi−1, X

′
i, Xi+1, . . . , Xn), in which only the

i-th element in the sequence is different. Let the corresponding empirical distribution be p̂′n.
Then

Z ′ = Dφ(p̂′n, p) = φ(p̂′n)− φ(p)− 〈∇φ(p), p̂′n − p〉.
The difference of Z and Z ′ is

Z ′ − Z = φ(p̂′n)− φ(p̂n) + 〈∇φ(p), p̂n − p̂′n〉.

Notice that by construction, p̂n − p̂′n is a vector with an element being 1/n, an element being
−1/n, and all other elements being zeros. Therefore by the Cauchy-Schwarz inequality,

|〈∇φ(p), p̂n − p̂′n〉| ≤ ‖∇φ(p)‖2‖p̂n − p̂′n‖2

=

√
2

n
‖∇φ(p)‖2 ≤

√
2

n
Mφ.

Also by the Taylor’s expansion,

φ(p̂′n)− φ(p̂n) = ‖∇φ(ξ)‖2‖p̂n − p̂′n‖2

≤Mφ‖p̂n − p̂′n‖2

=

√
2

n
Mφ,

where ξ is a random vector which is a convex combination of p̂n and p̂′n. Therefore by the
triangle inequality,

|Z − Z ′| ≤ |〈∇φ(p), p̂n − p̂′n〉|+ |φ(p̂′n)− φ(p̂n)|

≤ 2
√

2

n
Mφ.

CHAPTER 4. PROPERTIES OF BREGMAN DIVERGENCE AND CHOICES OF RW
DIVERGENCE 47

Hence by the bounded difference inequality (Talagrand 1995),

P{Z − E[Z] ≥ ε} ≤ exp(
−n2ε2

4dMφ

).

Notice that Bregman divergence is only convex with respect to its first argument, which
in the previous case is p̂n. To construct a convex ambiguity region, we need to reverse the
order of p̂ and p to make the unknown true distribution the first argument. Hence we also
prove the following concentration inequality:

Theorem 4.1.2. Consider the random variable Y = Dφ(p, p̂n), the Bregman divergence
between p and p̂n:

Y = Dφ(p, p̂n) = φ(p)− φ(p̂n)− 〈∇φ(p̂n), p− p̂n〉,

where φ : [0, 1]m → R is a strictly convex function. Then we have the following concentration
inequality for all ε > 0:

P(Y − EY ≥ ε) ≤ exp(− n2ε2

4d(Mφ + Lφ)2
),

where Lφ is the Lipschitz constant of ∇φ, and Mφ = maxt∈∆m−1 ‖∇φ(t)‖. ∆m−1 is the
standard (d− 1)-simplex, which is the set {(t1, t2, . . . , tm) ∈ Rm|

∑m
i=1 ti = 1, ti ≥ 0,∀i}.

Proof. Let (X1, . . . , Xi−1, Xi, Xi+1, . . . , Xn) be iid random variables from distribution p. De-
fine another sequence of random variables (X1, . . . , Xi−1, X

′
i, Xi+1, . . . , Xn), in which only the

i-th element in the sequence is different. Let the corresponding empirical distribution be p̂′n.
Then

Y ′ = Dφ(p, p̂′n) = φ(p)− φ(p̂′n)− 〈∇φ(p̂′n), p− p̂′n〉.
The difference of Y and Y ′ is

Y ′ − Y = φ(p̂n)− φ(p̂′n)

+ 〈∇φ(p̂n), p− p̂n〉 − 〈∇φ(p̂′n), p− p̂′n〉.

By the proof of Theorem 4.1.1,

φ(p̂n)− φ(p̂′n) ≤
√

2

n
Mφ.

Meanwhile

〈∇φ(p̂n), p−p̂n〉 − 〈∇φ(p̂′n), p− p̂′n〉
= 〈∇φ(p̂n)−∇φ(p̂′n), p〉
− 〈∇φ(p̂n), p̂n〉+ 〈∇φ(p̂′n), p̂′n〉.

CHAPTER 4. PROPERTIES OF BREGMAN DIVERGENCE AND CHOICES OF RW
DIVERGENCE 48

Since ∇φ is defined on the compact region [0, 1]m, we can assume without loss of generality
that it has Lipschitz constant Lφ. Then by the Cauchy-Schwarz inequality,

|〈∇φ(p̂n)−∇φ(p̂′n), p〉| ≤ ‖p‖2‖∇φ(p̂n)−∇φ(p̂′n)‖2

≤ Lφ‖p̂n − p̂′n‖2 =

√
2

n
Lφ,

and similarly

| − 〈∇φ(p̂n), p̂n〉+ 〈∇φ(p̂′n), p̂′n〉|
= |〈∇φ(p̂n), p̂′n − p̂n〉+ 〈∇φ(p̂′n)−∇φ(p̂n), p̂′n〉|
≤ |〈∇φ(p̂n), p̂′n − p̂n〉|+ |〈∇φ(p̂′n)−∇φ(p̂n), p̂′n〉|

≤
√

2

n
Mφ +

√
2

n
Lφ.

Therefore

|Y ′ − Y | ≤ 2

(√
2

n
Mφ +

√
2

n
Lφ

)
.

By the bounded difference inequality,

P(Y − EY ≥ ε) ≤ exp(− n2ε2

4d(Mφ + Lφ)2
).

Weak Convergence of Bregman Divergence

In this section, we will show that in the asymptotic case, Bregman divergence between the
true parameters of a distribution and the maximum likelihood estimator of the parameters
will converge in distribution to a finite weighted sum of independent χ2 distributed random
variables. This result allows us to construct asymptotic ambiguity sets according to the
quantiles of the asymptotic distribution.

Theorem 4.1.3. Suppose there exists a family of probability distributions Pθ parametrized by
θ ∈ Θ ⊂ Rm. Suppose we have iid data {Xi}ni=1, and θ̂n is the maximum likelihood estimator
of θ. Then

lim
n→∞

nDφ(θ, θ̂n)
d→ 1

2

r∑
i=1

βiZ
2
i ,

where Zi’s are independent standard Gaussian random variables, Dφ denotes the Bregman
divergence characterized by φ, βi’s are the non-zero eigenvalues of the matrix HΣ and
r = rank(ΣTHΣ), with H the Hessian of φ at θ and Σ the inverse Fisher information matrix.

CHAPTER 4. PROPERTIES OF BREGMAN DIVERGENCE AND CHOICES OF RW
DIVERGENCE 49

Proof. First, write the Taylor expansion of φ around θ̂n,

φ(θ) = φ(θ̂n) + 〈θ − θ̂n,∇φ(θ̂n)〉

+
1

2
(θ − θ̂n)TH(θ̂n)(θ − θ̂n) + o(‖θ − θ̂n‖2

2),

where H(θ̂) is the Hessian of φ(x) at x = θ̂. Notice that by the properties of maximum
likelihood estimators, as n→∞,

√
n(θ − θ̂n)

d→ N(0, I−1)
d
= N(0,Σ),

where
(I)ij = −E∂

2 logL

∂θi∂θj

is the Fisher information matrix of the underlying true distribution, with L being the
likelihood function. Also,

H(θ̂n)→ H(θ)

in probability, and
n · o(‖θ − θ̂n‖2

2)→ 0

in probability. Therefore by the Slutsky’s theorem,

nDφ(θ, θ̂n) = n(φ(θ)− φ(θ̂n)− 〈θ − θ̂n,∇φ(θ̂n)〉)

=
1

2

√
n(θ − θ̂n)TH

√
n(θ − θ̂n)

+ n · o(‖θ − θ̂n‖2
2)

d→ 1

2
XTHX,

where X d
= N(0,Σ). Let S ∈ Rd×s be a square root of Σ. Since Σ and H are positive

semidefinite, by spectral theorem, we can write STHS = RTΛR, where Λ = diag(β1, . . . , βr),
which is the diagonal matrix of non-zero eigenvalues of STHS, hence is also the diagonal
matrix of non-zero eigenvalues of HΣ, r = rank(ΣHΣ), and R is the matrix of corresponding
orthonormal eigenvectors. Then

XTHX
d
= (SY)THSY

d
= Y TRTΛRY

d
= ZTΛZ =

r∑
i=1

βiZ
2
i ,

where Zi are independent standard Gaussian random variables. Therefore, we have the
quadratic form of Gaussian variables

√
n(θ − θ̂n)TH

√
n(θ − θ̂n)

d
=

r∑
i=1

βiZ
2
i .

This completes the proof.

CHAPTER 4. PROPERTIES OF BREGMAN DIVERGENCE AND CHOICES OF RW
DIVERGENCE 50

Remark 3. Even though Bregman divergence is asymmetric, nDφ(p̂n, p) has the same asymp-
totic distribution as nDφ(p, p̂n) by a similar proof.

Noting that p̂n is the maximum likelihood estimator of p, we immediately arrive at the
following corollary.

Corollary 4.1.3.1. For a discrete distribution p = (p1, . . . , pm) and the empirical distribution
p̂n = (p̂n,1, . . . , p̂n,m) generated from n iid samples, we have

lim
n→∞

nDφ(p, p̂n)
d→ 1

2

r∑
i=1

βiZ
2
i ,

where Zi are independent standard Gaussian random variables, r = rank(ΣTHΣ), H is the
Hessian of φ, Σ is the inverse Fisher information matrix, and β1, . . . , βr are the nonzero
eigenvalues of HΣ.

4.2 Choices of φ in Relaxed Wasserstein divergence
While RW divergence provides the flexibility of choosing the underlying Bregman divergence,
in practice one would like to have a principled way of determining this choice. The following
theoretical results shed light on how to choose an appropriate convex function φ in Bregman
divergence Dφ.

Our result connects Fisher information of a distribution of an exponential family and the
Hessian of φ.

Proposition 1. Suppose X ∼ Pθ belongs to a regular exponential family. Let µ = E(X), ψ
be the cumulant function, and φ be the convex conjugate of ψ. Let

(I)ij = −E∂
2 logL

∂θi∂θj
(4.1)

be the Fisher information matrix of the underlying true distribution, with L being the likelihood
function. Assume that ψ is three-time differentiable. Then

I(µ) = E
[
∇2
µDφ(x, µ)

]
= ∇2φ(µ). (4.2)

Proof. Equation (4.1) follows directly from the representation pθ(x) = exp(−Dφ(x, µ)−gφ(x)).
Equation (4.2) follows from a straightforward calculation,

E
[
∇2
µDφ(x, µ)

]
= E

[
∇2
µ[φ(x)− φ(µ)−∇φ(µ)T (x− µ)]

]
= E

[
∇µ[−∇2φ(µ)(x− µ)]

]
= E[∇2

µφ(µ)] = φ′′(µ).

CHAPTER 4. PROPERTIES OF BREGMAN DIVERGENCE AND CHOICES OF RW
DIVERGENCE 51

Recall that Theorem 4.1.3 shows that asymptotically, Bregman divergence between the
true parameters and the corresponding maximum likelihood estimator of the parameters
will converge in distribution to a finite weighted sum of independent χ2 distributed random
variables.

To see how Theorem 4.1.3 and Proposition 1 shed light on the choice of φ, let us first
consider the squared loss Dφ(x, y) = ||x− y||2. In this case, the corresponding φ is ||x||22 and
the Hessian is H = 2I, so the weights in the weighted sum of χ2

1 random variables in Theorem
4.1.3 are determined purely from the eigenvalues of the inverse Fisher information matrix
Σ, which is the negative inverse of Hessian of the likelihood function. In other words, the
convergence behavior of nDφ(θ, θ̂n) is purely determined from the curvature of the likelihood
surface at θ. If the likelihood surface is close to being flat at θ in certain directions, some of
the eigenvalues of Σ will be undesirably large, resulting in a large asymptotic variance for
nDφ(θ, θ̂). This suggests that the squared loss function and hence Wasserstein-L2 might not
be a suitable choice as a divergence measure when the underlying likelihood function is likely
to be flat at the true parameter θ.

Moreover, in light of Theorem 4.1.3, H can be used as a tool to stabilize the asymptotic
variations of nDφ(θ, θ̂n). A potential choice of H is Σ−1, the Fisher information matrix of
the likelihood function. Then HΣ = I, so all the associated eigenvalues βi’s are ones and the
resulting asymptotic variance is always r/2, independent of the curvature of the underlying
likelihood surface. To ensure that H = Σ−1, if the underlying likelihood function is from
an exponential family, φ can be simply chosen to be the associated Bregman divergence by
Proposition 1. Note that with this choice nDφ(θ, θ̂n) is equivalent to the classical likelihood
ratio statistic. In a more general setting, if a reasonable estimate of the Fisher information
matrix at θ is available, say Σ̂−1, a reasonable choice of Bregman divergence is the Mahalanobis
distance Dφ(x, y) = (x − y)T Σ̂−1(x − y), provided that the objective is to stabilize the
asymptotic variance of nDφ(θ, θ̂n). Indeed, the corresponding φ is φ(x) = xT Σ̂−1x and the
Hessian is Σ̂−1, so the matrix HΣ in Theorem 4.1.3 is close to being the identity matrix.

52

Chapter 5

Applications

In this chapter, we cover three examples using techniques discussed in previous chapters:
distributionally robust optimization problems (DRO) for inventory and portfolio management,
variational autoencoders for metagenomic binning, and generative adversarial networks for
financial data simulation.

5.1 Distributionally Robust Optimization
Solutions to traditional optimization problems are usually sensitive to the model parameters,
which is a major drawback. Robust optimization solves this issue by formulating problems
under appropriate uncertainty sets for the model parameters and/or for the solutions against
a certain measure of robustness. For instance, the constraint f(x, z) ≤ 0 for all z ∈ C is robust
for the decision variable x ∈ R. z ∈ R is an uncertain parameter, C ⊂ R is the uncertainty
set and f : R → R is a constraint function. For more details, please refer to Ben-Tal and
A. Nemirovski (1998) and Ben-Tal, El Ghaoui, and A. Nemirovski (2009) for the tractability
of such formulations.

As another example, instead of requiring that the constraint be satisfied at all time,
tractable uncertainty sets can be formulated in terms of chance constraints and expectation
constraints under a given distribution P (Jiang and Guan 2016) such that the constraints are
satisfied with certain probability.

However, in most data-driven research, the distribution P itself is usually unknown. The
concept of ambiguity sets is introduced in Scarf (1957), and then explored in, for example,
Delage and Ye (2010), Ghaoui, Oks, and Oustry (2003), and Bayraksan and Love (2015). The
key idea of Distributionally Robust Optimization (DRO) is as follows: instead of optimizing
under one particular distribution and under a deterministic set, it formulates optimization
problems with a set of possible distributions, under the concept of ambiguity sets. The
ambiguity set contains distributions that are not far away from the nominal distribution,
measured by the divergence function.

CHAPTER 5. APPLICATIONS 53

Specifically, one could consider minimizing the expected loss as follows,

min
X∈X

max
P∈P

EP[h(X; ξ)],

where X is the decision variable, allowed to vary inside the feasible region X , and the random
element ξ follows distribution P ∈ P , with P being the ambiguity set and h the loss function.

In the data driven setting where we have iid samples {ξi}ni=1 drawn from P, the ambiguity
set P can be constructed so that it contains all distributions that are within a certain
divergence from the empirical distribution, where the radius of the ambiguity set is large
enough so that it contains P with high probability. Alternative methods to construct ambiguity
sets use moment constraints under P ∈ P, where P consists of all probability distributions
with first order and second order moments matching the sample moments. Again, the key is
to define and measure the difference between various distributions.

In this section, we will discuss cases where we use the Bregman divergence and the Relaxed
Wasserstein divergence to construct ambiguity sets.

Related Work

Comparing probability distributions has been a recurring theme in many research areas of
machine learning. In distribution learning, for example, one is interested in approximating
the true distribution by an element in a predetermined class of probability distributions, and
this element is chosen based on the observed data. Such choices rely on the divergence used
in comparing distributions. While there is an abundance in statistical divergences, there is
no consensus about the "ideal" way to measure the difference between distributions.

In this regard, various choices of divergence functions have been discussed in the literature
of distributionally robust optimization, for example, KL and f -divergences (Namkoong and
Duchi 2016; Van Parys, Esfahani, and Kuhn 2017) and Wasserstein distances (Esfahani and
Kuhn 2018; Shafieezadeh-Abadeh, Esfahani, and Kuhn 2015; Powell 2016; Gao and Kleywegt
2016; Blanchet, Lin Chen, and X. Y. Zhou 2018).

DRO with KL Divergence. In Hu and Hong (2013), they formulate a robust optimization
problem in terms of a KL divergence constraint and show that the problem can be converted
into a convex optimization problem which can be solved analytically. In Jiang and Guan (2016),
they show that chance constraints with KL divergence ambiguity sets can be reformulated
into a traditional chance constraint problem with different risk levels.

DRO with Lp-Wasserstein Distance. In Esfahani and Kuhn (2018), they propose the
use of L1-Wasserstein ambiguity set. They show that Wasserstein ambiguity sets provide a
better out-of-sample guarantee than the KL divergence, because a continuous P will always
be outside the KL divergence ball centered at the empirical distribution P̂n, which is discrete,
whereas the Wasserstein ball contains continuous as well as discrete distributions. They also
show that the robust optimization problem, under some mild conditions, can be converted

CHAPTER 5. APPLICATIONS 54

into a finite-dimensional convex programming problem, solvable in polynomial time. In
Shafieezadeh-Abadeh, Esfahani, and Kuhn (2015), they use Wasserstein ambiguity set for
distributionally robust logistic regression. Specifically they study infβ supP∈P EP[lβ(x, y)],
where lβ(x, y) is the logloss function with parameter β. They show that this problem has
a tractable convex reformulation and provide confidence interval for the objective function,
which is the out of sample performance guarantee. In Powell (2016), they use the L1-
Wasserstein ball as the ambiguity set. They show that the candidate probability distributions
in the ball can be reduced to a subset whose elements can be described using extreme/exposed
points of the set, hence a tractable reformulation of the original problem becomes possible. In
Gao and Kleywegt (2016), they consider the Lp-Wasserstein ball for p ≥ 1, and give necessary
and sufficient conditions for the worst-case distributions to exist. In Fournier and Guillin
(2015), they inspect the convergence rate of the empirical distribution to the true distribution
under Wasserstein distance.

DRO with Bregman divergence

In this section, we apply Bregman ambiguity sets to two types of problems: Basic Distri-
butionally Robust Problem, and the Distributionally Robust Optimization problem, using
two specific Bregman divergences: KL divergence and the Euclidean distance. Suppose one
chooses the divergence between probability distributions to be d(P,Q), where P and Q are
probability measures defined on the set X ⊂ Rn. LetM+ denotes the set of all probability
distributions defined over the set X . Then the ambiguity set P can be defined as a ball
centered at the nominal distribution Q:

P = {P ∈M+ : d(P,Q) ≤ δ}.

The nominal distribution Q may come from prior knowledge of the model, or directly
from data. In the data-driven setting where we are given iid samples {Xi}ni=1, the nominal
distribution Q is chosen to be the empirical distribution P̂n.

• When the sample size n is large (relative to d), one can appeal to the asymptotic
distribution of D(p, p̂n) to construct an ambiguity set using Theorem 4.1.3.1. More
specifically, an ambiguity set can be constructed as follows:

P = {p : Dφ(p, p̂n) ≤ 1

2n
F−1(α)},

where F−1(α) is the quantile function of
∑r

i=1 βiZ
2
i , which is a weighted sum of indepen-

dent χ2 random variables with one degree of freedom. This quantile can be approximated
via a Monte Carlo approximation. For a large K (say K = 10000), one can simulate rK
independent standard normal random variables Z1,1, ..., Z1,r, Z2,1, ..., Z2,r, ..., ZK,1, ..., ZK,r,
and compute Rj =

∑r
i=1 βiZ

2
i,j for each j = 1, ...K. Then one can use take the α-th

empirical quantile of (R1, ..., RK) as an approximation to F−1(α). Note that P is convex
since Bregman divergence is convex with respect to the first argument.

CHAPTER 5. APPLICATIONS 55

• When the sample size n is of moderate size or small, one must appeal to concentration
results to obtain a valid ambiguity set. In order to apply Theorem 4.1.1 or Theorem
4.1.2 for the construction of the ambiguity set, we have to first derive an upper bound
for EDφ(p, p̂n) or EDφ(p̂n, p), respectively.
For EDφ(p, p̂n), clearly

EDφ(p, p̂n) = E[φ(p)− φ(p̂n)− 〈∇φ(p̂n), p− p̂n〉]
= E[φ(p)− φ(p̂n)]− E[〈∇φ(p)−∇φ(p̂n), p− p̂n〉]

≤Mφ

√√√√ d∑
i=1

pi(1− pi)
n

+ LφE‖p− p̂n‖2
2

= Mφ

√√√√ d∑
i=1

pi(1− pi)
n

+ Lφ

d∑
i=1

pi(1− pi)
n

= Mφ

√
d

4n
+ Lφ

d

4n
,

where the inequality is by the Cauchy-Schwarz inequality and the Taylor’s theorem.
Similarly, for EDφ(p̂n, p),

E [Dφ(p̂n, p)] = E[φ(p̂n)− φ(p)]

= E[〈∇φ(ξ), p̂− p〉]
≤ E[‖∇φ(ξ)‖‖p̂− p‖2]

≤MφE[‖p̂− p‖2]

≤Mφ

√
E[‖p̂− p‖2

2]

= Mφ

√√√√ d∑
i=1

pi(1− pi)
n

≤Mφ

√
d

4n
,

where ξ is between p̂ and p, the first inequality is by Cauchy-Schwarz, and the third
inequality is by the Jensen’s inequality.

• As described immediately after the proof of Theorem 4.1.1, the resulting ambiguity set
might be intractable to be computed because of its potential nonconvex nature. On the
other hand, Theorem 4.1.2 results in a convex ambiguity set, which is the Bregman
ball of p̂n with radius Mφ

√
d

4n
+ Lφ

(
d

4n

)
+ ε:{

p : Dφ(p, p̂n) ≤Mφ

√
d

4n
+ Lφ

(
d

4n

)
+ ε

}
.

CHAPTER 5. APPLICATIONS 56

• Consider the problem that involves two parametrized distributions pβ and pβ0 :

max
pβ

/min
pβ

K∑
k=1

`(β, β0)

s.t.Dφ(β, β0) ≤ δ

By Lagrangian duality, we know that for every δ > 0, there exists a corresponding
λ(δ) > 0 such that the following problem will yield the same solution:

max
pβ

/min
pβ

K∑
k=1

`(β, β0) + λ(δ)Dφ(β, β0)

This can be seen as an regression/classification problem in statistical learning, with
Dφ(β, β0) as the regularization term, penalizing β’s that are far from the nominal β0

measured by the Bregman divergence.

In the coming sections, we will give some examples where we can use the Bregman
ambiguity sets.

Basic Distributionally Robust Problem with KL ambiguity set

Consider the following setting: {hi}mi=1 is a sequence of real numbers representing the cost
incurred in scenario i. {p0,i}mi=1 is the baseline model where p0,i represents the probability
that scenario i occurs. In the data-driven case, we can set p0,i = p̂i, which is the empirical
probability of scenario i. Our objective is to find a robust confidence interval of the expected
cost Ep[h]. Mathematically the problem can be formulated as 5.1:

max
p
/min

p

m∑
i=1

pihi

s.t.Dφ(p, p0) ≤ δ
m∑
i=1

pi = 1

pi ≥ 0 for 1 ≤ i ≤ m

(5.1)

Example 1. Choose Dφ to be the KL divergence (called Basic Distributionally Robust (BDR)
Problem in Blanchet, Lam, et al. (2017))

Dφ(p, p0) =
m∑
i=1

pm log

(
pi
p0,i

)
.

CHAPTER 5. APPLICATIONS 57

In this case, the optimal solution ((Blanchet, Lam, et al. 2017)) is

pi = p0,i exp(θhi − ψ),

where θ = 1/λ1, and ψ = λ2/λ1 + 1 satisfying

θ

∑m
i=1 p0,i exp(θhi)hi∑m
i=1 p0,i exp(θhi)

− log

(
m∑
i=1

p0,i exp(θhi)

)
.

In general, since the constraints are convex with respect to pi, the objective function is
linear and p = p0 is an interior point, Slater’s condition is satisfied and the KKT condition is
necessary to find the optimal solution. The Lagrangian for this problem is

L(p, λ) = −
∑
i

pihi + λ1(Dφ(p, p0)− δ) + λ2(
∑
i

pi − 1).

In cases where this formulation is too complex to solve analytically, the Mirror Descent
algorithm can be applied to 5.1. Notice that a single update step of the mirror descent
algorithm applied to the problem without the ambiguity constraint with the prox function
being φ(·) is equivalent to solving the problem itself. The algorithm update is listed as
Algorithm 4.

Algorithm 4 Mirror Descent
for t = 1, 2, . . . , T do
g(t) = (h1, . . . , hm) ∈ ∂f(p(t))
p(t+1) = arg minp∈∆m{f(p(t)) + gTt (p− p(t)) + 1

αt
Dφ(p, p(t))}

end for

Distributionally Robust Optimization with L2 ambiguity set

Consider the following problem with a parameter/decision variable x ∈ X where X ⊆ Rd is a
convex compact feasible region for the decision variables. This is called the Distributionally
Robust Optimization problem (DRO). For a sequence of convex smooth cost functions
hk(·) : X → R, we want to provide a robust confidence interval of the expected objective
value Ep[h(x)], using the Bregman ambiguity set. Formally,

max
p
/min

p
min
x∈X

m∑
i=1

pihi(x)

s.t.Dφ(p, p0) ≤ δ
m∑
i=1

pi = 1,

pi ≥ 0 for i ≥ 1

(5.2)

CHAPTER 5. APPLICATIONS 58

For the max-min problem, since the feasible region for p is a Bregman ball, which is a
compact subset of Rm, by Sion’s minimax theorem, we can switch the order of min and max
so that 5.2 is reformulated as two subproblems: min-max (5.3) :

min
x∈X

max
p

m∑
i=1

pihi(x)

s.t.Dφ(p, p0) ≤ δ
m∑
i=1

pi = 1, pi ≥ 0 for i ≥ 1

(5.3)

and min-min (5.4)

min
x∈X

min
p

m∑
i=1

pihi(x)

s.t.Dφ(p, p0) ≤ δ
m∑
i=1

pi = 1, pi ≥ 0 for i ≥ 1

(5.4)

Example 2. The special case of applying KL divergence to this problem has been considered
in Lam and E. Zhou (2015). Consider instead

Dφ(p, p0) =
m∑
i=1

(pi − p0,i)
2

corresponding to φ(x) = 1
2
‖x‖2

2. This example has an analytical solution. First, it can be
shown that the nonnegativity constraints can be ignored for sufficiently small δ. Then using
the KKT conditions, the solution to the maximization problem can be shown to be

λ1 =

√∑m
i=1(hi − h̄)2

2δ

λ2 =
1

m

m∑
i=1

hi := h̄

pi =
hi − λ2

λ1

+ p0,i

CHAPTER 5. APPLICATIONS 59

and the solution to the minimization problem is

λ1 =

√∑m
i=1(hi + h̄)2

2δ

λ2 =
1

m

m∑
i=1

hi := h̄

pi =
−hi − λ2

λ1

+ p0,i

The shape of this ambiguity set in terms of the upper and lower bound of the objective is
illustrated in Figure 5.1:

Figure 5.1: Shape of the upper and lower bounds of the objective value using an L2 ambiguity
set.

In general, if the inner problem is analytically solvable, then the whole problem would
just be minimizing over x ∈ X , which turns to be a traditional optimization problem. If the
problem has a structure that is too complex to solve analytically, then the min-min problem
can be solved by the coordinate descent algorithm.

To solve the min-max problem, we can apply the Mirror Prox algorithm (A. Nemirovski
2004; Juditsky, A. Nemirovski, and Tauvel 2011). The algorithm is suitable for a saddle-point
problem, which in our case would be maximizing a concave function over p and minimizing a
convex function over x.

Define the prox mapping as as Πz′(x) = arg minz∈Z [〈x, z〉 + Dφ(z, z′)], where Z =
X × BDφ(δ). The procedure for this Mirror Prox algorithm is shown in Algorithm 5.

Here αt is the stepsize for step t, gt = (∇xf(x, p),−∇pf(x, p)) is the (d+K) dimensional
vector of gradients at step t of f(x, p) =

∑m
i=1 pihi(x). zt = (xt, pt) is the vector of decision

variables at iteration t. This algorithm achieves O(1
T

) convergence rate when we have hi
smooth for all i, and O(1√

T
) convergence rate when we drop the smoothness assumption.

CHAPTER 5. APPLICATIONS 60

Algorithm 5 Mirror Prox algorithm for DRO
Initialize z0

for t = 1, 2, . . . , Tmax do
at = Πzt(αtg(zt))
zt+1 = Πzt(αtg(at))

end for

Robust optimization problems with linear constraints

Given a ∈ Rn, B ∈ Rn×m, β ∈ R, C ∈ Rk×m, ρ ≥ 0, the following theorem shows that the
Bregman ambiguity sets have a similar duality result to the ambiguity sets constructed using
φ-divergences with linear constraints (see for example (Ben-Tal, Den Hertog, et al. 2013)).

Theorem 5.1.1. Suppose we have the ambiguity set U = {p ∈ Rm|p ≥ 0, Cp ≤ d,Dφ(p, q) ≤
ρ} and the robust linear constraint (a+Bp)Tx ≤ β, ∀p ∈ U . Assume that q ∈ U , then x ∈ Rm

is feasible if there exists non-negative Lagrangian multipliers η ∈ Rk and λ ∈ R such that

aTx+ dTη + ρλ+ λ
m∑
i=1

[φ(qi)−∇φ(qi)qi] +
m∑
i=1

φ∗
(
bTi x− cTi η

λ
+∇φ(qi)

)
≤ β.

Proof. The feasibility of x is equivalent to

β ≥ max
p
{(a+Bp)Tx|p ∈ U}

= max
p≥0
{(a+Bp)Tx|Cp ≤ d,

m∑
i=1

[φ(pi)− φ(qi)−∇φ(qi)(pi − qi)] ≤ ρ}.

The Lagrange function for the maximization problem above is

L(p, λ, η) = (a+Bp)Tx+ ρλ− λ
m∑
i=1

[φ(pi)− φ(qi)−∇φ(qi)(pi − qi)] + ηT (d− Cp).

The dual objective function is

g(λ, η) = max
p≥0

L(p, λ, η).

CHAPTER 5. APPLICATIONS 61

Since U is regular, the strong duality holds. We can write

g(λ, η) = aTx+ dTη + ρλ+ λ
m∑
i=1

[φ(qi)−∇φ(qi)qi] + max
p≥0

m∑
i=1

[pi(b
T
i x)− pi(cTi η)− λφ(pi) + λpi∇φ(qi)]

= aTx+ dTη + ρλ+ λ

m∑
i=1

[φ(qi)−∇φ(qi)qi] + max
p≥0

m∑
i=1

[pi(b
T
i x− cTi η + λ∇φ(qi))− λφ(pi)]

= aTx+ dTη + ρλ+ λ

m∑
i=1

[φ(qi)−∇φ(qi)qi] +
m∑
i=1

(λφ)∗
(
bTi x− cTi η + λ∇φ(qi)

)
= aTx+ dTη + ρλ+ λ

m∑
i=1

[φ(qi)−∇φ(qi)qi] +
m∑
i=1

φ∗
(
bTi x− cTi η

λ
+∇φ(qi)

)
.

Then the following corollary holds:

Corollary 5.1.1.1. Given f : Rn → Rk. Suppose we have the ambiguity set U = {p ∈
Rm|p ≥ 0, Cp ≤ d,Dφ(p, q) ≤ ρ} and the robust linear constraint (a+Bp)Tf(x) ≤ β, ∀p ∈ U .
Assume that q ∈ U , then x ∈ Rm is feasible if there exists non-negative Lagrangian multipliers
η ∈ Rk and λ ∈ R such that

aTf(x) + dTη + ρλ+ λ
m∑
i=1

[φ(qi)−∇φ(qi)qi] +
m∑
i=1

φ∗
(
bTi f(x)− cTi η

λ
+∇φ(qi)

)
≤ β.

Observing this corollary, let us reconsider the min-max problem (5.2). Assuming that the
cost functions hi(x) are concave in x, it can be formulated as

max
x∈X

min
p∈U

m∑
i=1

pihi(x).

By adding a dummy variable z which represents the cost in the worst case, this problem is
equivalent to the reformulation

max
z,x∈X

{
z |

m∑
i=1

pihi(x) ≥ z,∀p ∈ U

}
.

Then by Corollary 5.1.1.1, 5.2 is equivalent to

max
x∈X ,λ≥0,η

{
−η − ρλ− λ

m∑
i=1

[φ(qi)−∇φ(qi)qi]−
m∑
i=1

φ∗
(
−hi(x)− η

λ
+∇φ(qi)

)}
. (5.5)

This shows that the robust counterpart of a DRO with linear constraints can be reduced to a
ordinary convex (concave) optimization problem.

CHAPTER 5. APPLICATIONS 62

An Example in Inventory Management

In this section, we consider the classical example of the Newsvendor problem. In this setting,
a merchant, faced with random demand D, would like to decide the optimal inventory level
Q. Suppose that the profit of selling one unit of goods is u, the acquisition cost is c, the
salvage value is s, and the cost of lost sales is l. Then the value function of the merchant is:

f(Q) = umin(D,S)− cS + s(Q−D)+ + l(D −Q)+.

If P(D = di) = pi, i = 1 . . .m, then

hi(Q) = umin(di, S)− cS + s(Q− di)+ + l(di −Q)+.

If the merchant is trying to maximize the worst case revenue, then the optimization problem
is:

max
Q

min
p∈U

m∑
i=1

pihi(Q).

Then by Equation 5.5, this problem is equivalent to

min
Q,λ≥0,η

{
η + ρλ+ λ

m∑
i=1

[φ(qi)−∇φ(qi)qi] +
m∑
i=1

φ∗
(
−hi(x)− η

λ
+∇φ(qi)

)}
.

To add a linear constraint to this problem, let’s assume that the there are in total K items
available for stock. The items face independent demands D(k), but the merchant has budget
constraint such that the total money invested in all items should not exceed β. Therefore
the whole problem can be formulated into a distributionally robust multi-item Newsvendor
problem as follows:

max
Q

min
p(k)∈U

K∑
k=1

m∑
i=1

p
(k)
i h

(k)
i (Q(k))

s.t.
K∑
k=1

c(k)Q(k) ≤ β.

Then by previous discussions, this problem can be transformed into:

max‖z‖∞

s.t.− ckQ(k) − ηk − λkρ− λk
m∑
i=1

[
φ(q

(k)
i)−∇φ(q

(k)
i)q

(k)
i

]
−

m∑
i=1

φ∗

(
−h(k)

i (x)− ηk
λk

+∇φ(q
(k)
i)

)
≥ zk,∀k

K∑
k=1

c(k)Q(k) ≤ β.

It can then be solved using any convex solvers.

CHAPTER 5. APPLICATIONS 63

Robust Optimization and Robust Portfolio Construction with RW
divergence

As another application of RW divergence we discussed in Chapter 3, we discuss ways to use
RW divergence to construct ambiguity sets for distrbutionally robust optimization (DRO)
problems, in which statistical divergences are of critical importance. We will show that
using RW divergences as a divergence function in DRO problems leads to simple forms of
asymptotically valid ambiguity sets, and discuss the construction of robust portfolios under
mean-variance framework.

Consider the following setting in robust optimization and machine learning:

min
θ

max
P∈P

EP[`(X, Y ; θ)],

which minimizes the loss function ` with available features X (and potentially labels Y in the
supervised learning setting) over the parameter θ. The data follows probability distribution
P, which is allowed to vary inside an ambiguity set P. In the data driven setting where
iid samples {Xi}ni=1 are drawn from an underlying probability distribution P, we consider
ambiguity sets defined as the Relaxed-Wasserstein ball centered at the empirical distribution
subject to certain constraints: P = {P : WDφ(P,Pn) ≤ δ,EP[h(X, θ)] = 0}.

Now let X be a random variable in Rm, with i.i.d copies X1, . . . , Xn, θ ∈ Rl be the
model parameter of interest, and h(·, ·) be the optimality condition of the parameter θ to be
calibrated. Notice that h also restricts the type of distributions we put in the ambiguity set,
for example, if h(X, θ) = Xn − θ, then we restrict the nth moment of the distribution to be
θ. Then one can easily extend Proposition 1 in Blanchet, Y. Kang, and Murthy (2016) to
RW divergence, with little modification of the proof:

Proposition 2. Let h(·, θ) : Rm × Rl → Rr be Borel measurable and integrable, and Ω =
{(u, x) ∈ Rm × Rm : Dφ(u, x) <∞} be Borel measurable and non-empty. Further, suppose
that 0 lies in the interior of the convex hull of {h(u, θ) : u ∈ Rm}. Define the Robust
Wasserstein Profile (RWP) function as

Rn(θ) = inf{WDφ(P,Pn) : EP[h(X, θ)] = 0}.

Then the following duality result holds,

Rn(θ) = sup
λ∈Rr

{
− 1

n

n∑
i=1

sup
u∈Rm
{λTh(u, θ)−Dφ(u,Xi)}

}
. (5.6)

From Equation 5.6, we can derive the limiting distributions of Rn(theta). Two examples
will be given later. If the limiting distribution of Rn(θ) is known, then the α/2 and (1− α/2)
quantiles of the limiting distribution would give a 1− α confidence region for Rn(θ). These
quantiles provide an ambiguity set of the smallest size, such that the set contains the true
distribution P underlying the data. Inverting these quantiles would further yield a 1 − α
confidence region for the θ.

CHAPTER 5. APPLICATIONS 64

Here we present two examples of special choices of φ. For simplicity, let h(x, θ) = x− θ.
Then the constraint EP[h(X, θ)] = 0 becomes EPX = θ. This is saying that the first moment
of the distribution in the ambiguity set should be θ. Choose c(u, x) = Dφ(u, x) for any strictly
convex φ. Proposition 2 then implies

Rn(θ) = sup
λ∈R

{
− 1

n

n∑
i=1

sup
u∈R
{λ(u− θ)−Dφ(u,Xi)}

}

= sup
λ∈R

{
λθ − 1

n

n∑
i=1

sup
u∈R
{λu− φ(u) + φ(Xi) + φ′(Xi)(u−Xi)}

}
.

We know
sup
u
{λu− φ(u) + φ′(Xi)u} = ψ(λ+ φ′(Wi)),

where ψ is the convex conjugate of φ. Then

Rn(θ) = sup
λ∈R

{
λθ − 1

n

n∑
i=1

{φ(Xi)− φ′(Xi)Xi + ψ(λ+ φ′(Xi))}

}
. (5.7)

Example 3. If φ(x) = x2, which corresponds to the L2 distance, then Equation (5.7) is
reduced to

Rn(θ) =

(
1

n

n∑
i=1

(Xi − θ)

)2

.

Applying the Central Limit Theorem, Rn(θ) converges to a χ2 distribution.

Example 4. Take φ(x) = x log x− x, which corresponds to the KL divergence, then φ′(x) =
log x, ψ(x) = ψ′(x) = ex. The first order condition for λ in Equation (5.7) gives us

θ =
1

n

n∑
i=1

ψ′(λ+ φ′(Xi)).

Solve for λ and we get

λ = log θ − log(
1

n

n∑
i=1

Xi).

Then

Rn(θ) = θ log θ − θ − θ log

(
1

n

n∑
i=1

Xi

)
+

1

n

n∑
i=1

Xi,

which by the Central Limit Theorem and the continuous mapping theorem, it converges to
a normal distribution plus the logarithm of a normal distribution. The parameters of the
limiting distribution can be easily estimated using data. Moreover, to construct a 1 − α
confidence region for θ, one only needs to find the α/2 and (1− α/2) quantiles of the limiting
distribution.

CHAPTER 5. APPLICATIONS 65

Now we specialize to the mean-variance portfolio construction problem, which is to
construct a portfolio with a required expected return such that the risk, measured by the
variance of the portfolio, is minimized. A robust version of this mean variance portfolio
problem is to consider all possible distributions for the returns of assets in the ambiguity set,
and then to optimize under the worst case scenario.

Mathematically, let π ∈ Rd be the vector of the weights of d assets in the portfolio,
V arP(R) ∈ Rd×d be the variance of the vector of returns R under a probability measure
P, U(Pn) = {P : WDφ(P,Pn) ≤ δ} be the ambiguity set, which is a RW ball centered at
the empirical distribution Pn, and Fδ,α(n) = {π : πT1 = 1,minP∈Uδ(Pn)[EP(πTR)] ≥ α} be
the feasible region of π such that the portfolio has minimum return of α in the worst case.
The mean-variance portfolio construction problem with a certain underlying probability
distribution P can then be formulated as:

min
πT 1=1,EP(πTR)≥α

πTV arP(R)π. (5.8)

The distributionally robust version of Equation 5.8 with Relaxed Wasserstein ambiguity set
is then the following min-max problem:

min
π∈Fδ,α(n)

max
P∈Uδ(Pn)

πTV arP(R)π.

If φ(x) = x2, then according to Theorem 1 in Blanchet, Lin Chen, and X. Y. Zhou (2018),
the following duality result holds:

min
π∈Fδ,α(n)

max
P∈Uδ(Pn)

πTV arP(R)π = min
π∈Fδ,α(n)

(√
πTV arPn(R)π +

√
δ‖π‖2

)2

. (5.9)

That is to say, the distributionally robust optimization problem of minimizing portfolio
variance is equivalent to minimizing the standard deviation of the portfolio under the
empirical distribution, plus an L2 penalization term. In other words, to counter the effect of
a adversarially-chosen distribution in the ambiguity set (to reduce variance), we should just
add an additional regularization to the original problem (Equation 5.8) (adding bias). This
is similar to our previous discussion about bias-variance tradeoff in Section 2.1.

5.2 MetaAutoEncoder in Metagenomic Binning
In this section, we will talk about the application of variational autoencoders to the problem
of metagenomic binning.

Introduction

In bioinformatics and in the study of metagenomics, shotgun sequencing is used to produce
short reads from DNA sequences in a sample from a microbial community, which could

CHAPTER 5. APPLICATIONS 66

contain thousands species of discovered or unknown microbes, each species carrying its own
genome. The short reads are then assembled by connecting overlapping subsequences and
thus form longer sequences called contigs. A contig is a short DNA segment. It is continuous
and consists of nucleotides. In a DNA sequence, nucleotide comes with 4 different kinds of
nucleobases: Adenine (A), Thymin (T), Cytosine (C) and Guanine (G). Their permutations
in the contigs encode information into genes.

A typical bacterial genome has a length of around 5 million base pairs. In comparison,
human has around 500 million base pairs on one chromosome. However, a modern sequencing
machine can read 2 * 300 basis pairs at an error rate of 0.2%, or 2 * O(103) basis pairs at
an error rate of 14%, which is still short compared with the length of a genome. Therefore,
the genomes shall be fragmented into reads, assembled, and then binned into clusters.
Metagenomic binning is the process of grouping contigs from multiple organisms into bins.
Ideally, each bin should contain readings from just one species. The whole procedure is
illustrated in Figure 5.2.

In this section, we discuss the application of deep learning techniques to generate more
informative encodings of features extracted from the samples, such that contigs from different
species are more separable under the cosine similarity measure, and the performance of the
clustering algorithms are improved.

Related Algorithms

Many metagenomic binning algorithms have been developed over the years. Some algorithms
rely solely on information of nucleotide composition and abundance. For example, MetaBAT
(D. D. Kang et al. 2015) and MetaBAT2 (D. Kang et al. 2019) use probabilistic models and
Bayesian statistics to compute similarities between contigs and VAMB (Nissen et al. 2018)
uses deep learning (variational autoencoder) to extract low-dimensional representations from
high-dimensional features. These algorithms rely on the empirical fact that the distribution
of different k-mers of nucleotides are usually characteristic for a certain species in a sample.
Here k-mer is defined as a subsequence of length k in DNA (nucleotide) sequences.

Some other algorithms that work on metagenomic datasets are reference-based. For
example, SPHINX (Mohammed et al. 2010), CARMA (L. Krause et al. 2008), MGmapper
(Petersen et al. 2017) and MetaPhlAn2 (Truong et al. 2015). These kind of algorithms usually
classify contigs into existing taxonomic groups (sometimes on the levels of species, genus,
family, order, class, up to phylum) based on existing reference genome libraries that have
already been sequenced and analyzed.

Algorithms such as Chatterji et al. (2008) use the reference genomes in a semi-supervised
fashion. That is, their feature vector is GC-contents, k-mer histogram, etc., but the clustering
algorithm that follows chooses thresholds that are based on the existing references. Here
GC-content refers to the percentage of Guanine (G) and Cytosine (C) in the sequence of
DNA.

CHAPTER 5. APPLICATIONS 67

Figure 5.2: Metagenomics

Model Formulations

In this section, we introduce an improved metabinning algorithm called MetaAutoEncoder.
The structure of our model is described in Figure 5.3.

The model takes four matrices, Abundance, TNF, NT and AA, as inputs. We feed NT and AA
into two separate autoencoders and keep their latent encoding. In the next step, a variational
autoencoder encodes the encodings and the original Abundance and TNF matrices, and we
take only the encodings (latent representations). In the next step, we compute the cosine
similarity distance between each pair of the encodings. Finally a clustering algorithm is
invoked to group the contigs into bins.

CHAPTER 5. APPLICATIONS 68

Figure 5.3: Model Structure

Model Inputs

Our model uses the following matrices as inputs:

• Abundance matrix (also known as Depth). It describes the abundance of contigs in
each sample. After normalization, it can be treated as a distribution among samples.

• Tetra-Nucleotide Frequency matrix (TNF). It describes the genome sequence composition.
It keeps track of the number of appearances (as in a histogram) of each of the 136
permutations of 4 nucleotides (also known as 4-mers) in every contig.

• NeucleoTide Sketch similarity matrix (NT). It is a reference-genome similarity matrix.
Each row in NT is the similarity of the contig’s similarity to a set of known genomes at
the nucleotide level. Each entry in NT is a real number between 0 and 1.

• Amino Acid Sketch similarity matrix (AA). It is a reference-genome similarity matrix.
Each row in AA is the similarity of the contig’s similarity to a set of known genomes at
the amino acid level. Each entry in NT is a real number between 0 and 1.

Table 5.1 summarizes the descriptions and sizes of the input matrices. In the table, N is
the number of contigs, S the number of samples, K1 the number of reference genomes for NT,
and K2 the number of reference genomes for AA.

CHAPTER 5. APPLICATIONS 69

Table 5.1: Input Matrices

Matrix Name Shape Type Description
Label (N, 1) String Contains genome IDs
TNF (N, 136) Dense floats Contains tetra-neucleotide frequencies
Depth (N,S) Dense floats Contains abundance information
NT (N,K1) Sparse floats Reference similarity matrix (nucleotide)
AA (N,K2) Sparse floats Reference similarity matrix (amino acid)

Preprocessing

The TNF matrix and the NT / AA matrices are standardized by each column. That is, we
subtract the mean from each column of the matrix and then divide it by the standard
deviation. If a column is constant for all contigs, then we just put a uniform distribution on
it.

The Abundance matrix is normalized by each row using the L1 norm. That is, we divide
each row of the matrix by the sum of that row so that the sum of the normalized row is equal
to 1. If a row is empty for a contig, we put a uniform distribution on it so that each entry is
equal to 1

N
.

Network Structure and training

Autoencoder. It is a vanilla autoencoder, characterized by an encoding network and a
decoding network. The default structure of the encoding network is [1000, 500, 250, 100]-
dimensional dense layers with leaky ReLU as activation functions. The default structure of
the decoding network is [250, 500, 1000, K1 (or K2)]-dimensional dense layers with leaky
ReLU as activation functions. The parameter for the leaky ReLU function is set to 0.2.

The autoencoder is trained on the NT and AA matrices for dimensionality reduction and
feature extraction purposes. The encodings are no longer sparse. By dimension reduction we
also reduce the number of parameters in the next variational autoencoder network, hence
increasing training speed and reducing memory usage.

The loss function of this autoencoder is L2 reconstruction loss. It is formulated in Equation
5.10,

`ae =
N∑
i=1

‖xi,true − xi,reconstructed‖2
2. (5.10)

Here xi,true is the ith row of the NT matrix, and xi,reconstructed is the output of the autoencoder
by feeding in the ith row of the NT matrix.

The network is trained using the Adam optimizer with learning rate = 1e−4. The default
batch size is 200, and the number of epochs is chosen to be 300.

CHAPTER 5. APPLICATIONS 70

Variational autoencoder. A variational autoencoder is trained on the Depth, TNF, (en-
coded) NT and (encoded) AA matrices to reduce dimensionality and combine features in a
non-linear way. The use of the variational autoencoder is to ensure that the encodings are
scattered in the latent space as evenly as possible.

The current structure of the variational autoencoder is as follows. By default, on the
encoder side first goes through a 325-dimensional dense layer with leaky ReLU activation,
followed by a dropout layer with drop rate 0.2 and a batch normalization layer. The parameter
of the leaky ReLU function is set to be 0.01.

After this, the output goes through another dense-activation-dropout-batchnorm com-
bination with the same configurations. The reparameterization layer then samples from a
Gaussian distribution with mean and standard deviation being the outputs from the previous
layer. After this, the decoder has exactly the reverse structure of the encoder.

The loss function of this variational autoencoder is a combination of L2 reconstruction
loss, cross entropy loss and KL divergence penalty. In particular,

`vae = α ∗ `sse +
1− α
S
∗ `ce +

1

nlatentβ
∗ `KL. (5.11)

The `sse represents the L2 reconstruction loss for TNF, NT and AA,

`sse =(1− γ1 − γ2) ∗ 1

136

N∑
i=1

‖xi,true, tnf − xi,reconstructed, tnf‖2
2

+ γ1 ∗
1

K1

N∑
i=1

‖xi,true, NT − xi,reconstructed, NT‖2
2

+ γ2 ∗
1

K2

N∑
i=1

‖xi,true, AA − xi,reconstructed, AA‖2
2.

The `ce represents the cross entropy loss for reconstructing Depth. It is defined as

`ce = −
N∑
i=1

S∑
j=1

xij,true, Depth lnxij,reconstructed, Depth.

Here xij,true, Depth is the entry in the ith row, jth column of the Depth matrix. The KL
divergence measures the distance between the reparametrized distribution after the encoding
step and the standard Gaussian distribution. It is defined as

`KL = −1

2
∗

N∑
i=1

(
1 + ‖ log σi‖2

2 − ‖µi‖2
2

)
.

Here µi and σi are the encoded mean and standard deviation of the ith contig.
During the training step, the data are fed in batches of 64. The batchsize doubles when

we reach epoch 25, 75, 150 and 300. The optimizer is the Adam optimizer with learning rate
being 1e−3.

CHAPTER 5. APPLICATIONS 71

Similarity Matrix and Clustering Algorithms

After we obtain the latent representations from the variational autoencoder, the next step is
to compute a similarity matrix and run clustering algorithms. The current model chooses to
use the same methods proposed in Nissen et al. (2018). For completeness of presentation, we
describe the procedures in details in this section.

The similarity metric is chosen to be the cosine similarity. In particular, the similarity
between the representations of two contigs x and y in Rm is defined as

similarity =
x · y

‖x‖2‖y‖2

The similarity is always between 0 and 1. If either ‖x‖2 or ‖y‖2 is 0, we define the
similarity to be 0.

The clustering algorithm is a modified version of the k-medoid algorithm, which is
described in Algorithm 6.

Algorithm 6 Clustering Algorithm (iterative medoid clustering)
Require: contigs, list of contigs, threshold, threshold of distance, Nsamples, number of

samples
1: seed← first contig of contigs
2: cluster ← set of all contigs within threshold of seed
3: D(cluster)← mean distance of seed to each other member of cluster
4: for trialseed of Nsamples randomly sampled contigs from cluster do
5: trial← set of all contigs within threshold of trialseed
6: D(trial)← mean distance of trialseed to each other member of trial
7: if D(trial) < D(cluster) then
8: seed← trialseed
9: go to 2

10: end if
11: end for
12: output cluster
13: contigs← contigs\cluster
14: if contigs 6= ∅ then
15: go to 1
16: end if

In the clustering algorithm, the threshold is determined using the following procedure,
described in Nissen et al. (2018). First, 2500 contigs are sampled from the dataset. For each
contig, its cosine distances from all other contigs are calculated. We then calculate and draw
a histogram for the distances.

Two groups are said to be well-separated if two peaks can be spotted in the histogram
and the density falls below 0.025 between the two peaks. The threshold is then defined as
the distance between the two points where the density is equal to 0.025.

CHAPTER 5. APPLICATIONS 72

Two groups are said to be poorly-separated if the density between peaks falls below 80%
of the density at the larger peak. The threshold is then defined as the distance between the
two points where the density is equal to 0.8 * peak density.

For other patterns of the histogram, no threshold will be given because the groups cannot
be easily separated using the cosine similarity.

Finally, the threshold used in the clustering algorithm is set to be the median of thresholds
obtained in the previous step.

Performance Evaluation

Experiment setting

The model is tested on two independent synthetic datasets: the high-definition MetaHIT
dataset and the high-definition ActinoMock dataset. The reason we use synthetic datasets is
to ensure that the ground truth is clear: the genomes of the bacteria grown in the samples
have been accurately recorded in the library, hence the label of each contig is known.

MetaHIT is a large synthetic dataset in which each contig is simulated from a sequenced
reference genome. It contains 169864 labeled contigs from 256 genomes and 264 samples.

ActinoMock (high-D) is another synthetic dataset, independent from MetaHIT. It is
smaller: it only contains 1188 labeled contigs from 12 genomes and 2 samples.

In our experiments, we keep all contigs regardless of their lengths.

Clustering Performance

In clustering analysis, a requirement of precision at 0.95 means that 95% of the contigs a
certain bin contains should come from the same genome. On the other hand, a requirement
of recall at 0.9 means that 90% of the contigs from a certain genome should be identified and
recovered in a single bin. Recall and precision together can tell us how the clusters recover
the original genomes from the dataset. Figure 5.4 shows the performance of our algorithm
(MetaAE) versus VAMB on the ActinoMock dataset under different precision and recall
requirements. Figure 5.5 shows the performance of our algorithm (MetaAE) versus VAMB
on the MetaHIT dataset under different precision and recall requirements. The MetaAE
algorithm improves both the quality of bins as well as the number of bins recovered compared
to VAMB, in both precision requirement settings.

Discussions

In this section, we try to answer the following questions:

1. What is the reconstruction quality for the autoencoders?

2. Does the NT/ AA matrix add additional information? If so, how should we include this
information to the original framework?

CHAPTER 5. APPLICATIONS 73

Figure 5.4: Clustering results of MetaAE vs. VAMB on the ActinoMock dataset

Figure 5.5: Clustering results of MetaAE vs. VAMB on the MetaHIT dataset

3. Should we use autoencoders, or SVD / PCA?

4. How do we deal with uncertainty in the NT / AA similarity measurements?

5. How will this method work if we have only partial information available, i.e., what if
the abundance matrix is not available?

What is the reconstruction quality for the autoencoders?

The NT and AA matrix both have high dimensions. They are also very sparse. Table 5.2
describes the row-wise and column-wise sparsity in the MetaHIT dataset. In this case, the
dot product of two rows would mostly result in 0. Hence, using cosine distance to measure
the similarity between rows does not make much sense.

CHAPTER 5. APPLICATIONS 74

Table 5.2: Sparsity in the MetaHIT dataset

Percentile Row Column Percentile Row Column
0 (min) 0 1
10 1 2 60 12 154
20 2 5 70 25 242
30 3 11 80 34 1009
40 5 25 90 81 7011
50 8 62 100 (max) 4458 13973

In the latent space, however, the low-dimensional representation is dense. Besides, the
NT / AA matrix is usually huge in size. Using autoencoder avoids reading the whole matrix,
but rather reads a batch of rows at a time. In this experiment, we do not enforce a penalty
such that the reconstructed rows shall be sparse. The reconstruction error for the MetaHIT
dataset is presented in Table 5.3. The reconstruction error (RE) is measured using sum of
squared errors. For most of the rows, the reconstruction error is below 20%.

Table 5.3: Reconstruction Errors of the MetaHIT dataset using Autoencoders

Percentile SS per row RE RE in percentage
0 0 86 0.03
10 10000 316 0.20
20 20000 460 0.52
30 29946 620 0.82
40 49296 865 1.44
50 75506 1203 2.43
60 116367 2087 4.04
70 234320 4705 6.21
80 325090 11014 9.16
90 774354 35636 18.01
100 40487081 1901078 inf

How do the matrices separate the clusters?

We randomly sample 15 genomes from the MetaHIT dataset and collect the contigs. For
each pair of the contigs, we count the number of non-zero entries (columns) that are shared
by them in the NT matrix. Figure 5.6 compares the normalized histogram of the counts of
intra-genome pairs and inter-genome pairs. It can be seen that although the intra-genome
pairs tend to have more non-zero columns in common, over half of the time the number of
shared non-zero entries is still very low and hence this could not be reliably used to determine
whether two contigs come from the same genome.

CHAPTER 5. APPLICATIONS 75

Figure 5.6: Histogram of numbers of pairwise nonzero elements of inter-genome and intra-
genome contigs in the NT matrix on the MetaHIT dataset

However, if we compute the cosine similarity of every pair of contigs using rows from the
NT matrix, the distributions become extremely separable, as observed in Figure 5.7. As a
comparison, Figure 5.8 shows how the similarity between TNF separates the genomes.

To make this more concrete, are NT / AA matrices informative? The final goal of
metagenome binning is to produce bins that contain similar contigs. In the previous sections,
we choose the cosine distance to be the distance metric between contigs, which is (1 - cosine
similarity). We then feed the pairwise distance / similarity matrix to the clustering algorithm
6 and get the clusters. Indeed, the number of genomes (species) we can recover is the ultimate
criterion of the whole process. However, the clustering performance shown in the above
sections relies heavily on the clustering algorithm used to generate clusters. We hence would
like to find a simple way to tell how informative the features that our encoded features are in
the space of cosine distance. To do that, we propose to use the following performance metric.

Metric. First, we randomly sample k genomes from the dataset without replacement and
collect a set of contigs. For each pair of the contigs in the set, their cosine similarity is
computed. Then a decision tree model with maximum depth of 3 is trained to maximize the
accuracy in predicting whether each pair of contigs belong to the same genome, using the
similarities as a 1-dimensional feature. Because the feature is only 1-dimensional, the model
is essentially choosing the best threshold to split the intra-cluster (genome) similarities and
the inter-cluster (genome) similarities. We then sample another independent testing set, run
the decision tree algorithm on it, and output the confusion matrix.

Table 5.4 shows the confusion matrix that uses NT to compute similarities between each

CHAPTER 5. APPLICATIONS 76

Figure 5.7: Histogram of similarities of inter-genome and intra-genome contigs in the NT
matrix on the MetaHIT dataset

pair of contigs. Positive in the matrix means that the contigs are from the same genome,
whereas negative means they are from different genomes. Table 5.5 shows the confusion
matrix that uses the encoded NT to compute similarities. Notice here NT has 21288 columns
whereas the encoded version only has 40 dimensions. In view of the fact that they have
similar performances, we could conclude that the encoding is effective. The autoencoder
structure here increases training speed by reducing the number of trainable parameters. In
addition, the encoded NT can be used alone later for hyperparameter tuning or other tasks.

Table 5.4: Confusion matrix on MetaHIT using NT

Predicted Outcome
Positive Negative Total

Actual Outcome Positive 259749 2751 262500
Negative 5329 13046 18375
Total 265078 15797 280875

Should we use autoencoders or SVD / PCA for dimension reduction?

To speed up training and to gain better latent representations, we need to reduce the
dimensionality of the NT / AA matrices. SVD is an effective and common method for
dimension reduction. We apply SVD to both datasets. In terms of dimension reduction, SVD

CHAPTER 5. APPLICATIONS 77

Figure 5.8: Histogram of similarities of inter-genome and intra-genome contigs in the TNF
matrix on the MetaHIT dataset

Table 5.5: Confusion matrix on MetaHIT using encoded NT

Predicted Outcome
Positive Negative Total

Actual Outcome Positive 246234 16266 262500
Negative 5059 13316 18375
Total 251293 29582 280875

works well. On the ActinoMock dataset, by taking the first 100 principle components, we can
recover 93.10% of the total variation.

Figure 5.9 compares the clustering results of MetaAE with SVD and VAMB on the
MetaHIT dataset. We can see that the inclusion of SVD slightly improves the performance
at the 0.95 precision level, but reduces the number of genomes recovered at the 0.9 precision
level. This could be due to the fact that SVD fails to describe the non-linear dependencies
for the reference genomes, while the autoencoders do.

How do we deal with uncertainty in the NT matrix?

The entries in the NT matrix are actually not homoskedastic. In fact, the lower the similarity
is, the more uncertain the similarity becomes. For example, a similarity of 0.95 between a
contig and a reference genome is more certain than a similarity of 0.80. The sparsity of the
NT matrix is also caused by the fact that a similarity below 0.75 is so unreliable that it is
truncated to 0.

CHAPTER 5. APPLICATIONS 78

Figure 5.9: Clustering results of MetaAE (with SVD) vs. VAMB on the MetaHIT dataset

This uncertainty from the entries creates two problems: a similarity of 0.75 does not
contain more information than a similarity of 0; a similarity of 0.95 should carry more weight
in our model than a similarity of 0.80. To solve these two problems, we propose to apply a
transformation before autoencoding the NT matrix. In particular, for every entry xij in the
matrix,

x′ij =

{
(xij − δ)2 if x ≥ δ,

0 otherwise.

Here δ is a parameter for thresholding. The new entry will be shifted towards 0 if it is above
the threshold. The autoencoder will also make sure that the reconstruction is more accurate
when the entry is close to 1.

Figure 5.10 shows the clustering result on the MetaHIT dataset when we set δ = 0.75. It
further improves the performance of the MetaAE algorithm.

What if we only have a single sample?

If only a single sample is available, then the depth matrix is meaningless and contains no
information because every row of it will be normalized to 1. In this case, if we just remove
the cross entropy loss from the loss function and rerun the variational autoencoder, the
performance is poor: the latent representation can only help identify fewer than 5 genomes
on the MetaHIT dataset and fewer than 2 genomes on the ActinoMock dataset.

The TNF matrix is noisy and not informative itself. Figure 5.11compares the performance
of TNF vs. encoded TNF on the MetaHIT dataset. We can see that the overlap of the two
distributions is so large that using the similarity based solely on TNF does not fully separate
intra-genome contigs from inter-genome contigs.

On the other hand, if we use the vanilla autoencoder, the NT matrix alone will yield very
good performance on the MetaHIT dataset, while combining TNF with NT does not work well.

CHAPTER 5. APPLICATIONS 79

Figure 5.10: Clustering results of MetaAE (with quadratic transform) vs. VAMB on the
MetaHIT dataset

Figure 5.11: Clustering results of TNF vs. encoded TNF on the MetaHIT dataset

Figure 5.12 shows the comparison of performance between using encoded NT and encoded
TNF and NT (weight of NT in the reconstruction loss is 0.95) on the MetaHIT dataset.

However, the high performance of the NT matrix is not stable across datasets. On the
ActinoMock dataset, for example, NT will not help recover more than 2 genomes, as shown in
Figure 5.13.

These results suggest that the most stable features to use in binning are from Depth
and NT. The algorithm becomes less effective if we are missing one of them. Moreover, the
variational structure of the MetaAE algorithm helps better separate different clusters.

How is the AA matrix compared with NT?

Compared with NT, using the AA matrix to separate clusters has higher specificity, but lower
sensitivity. The reasons are mainly two-fold. First, inside the same family of species, multiple

CHAPTER 5. APPLICATIONS 80

Figure 5.12: Clustering results of encoded NT vs. encoded NT and TNF on the MetaHIT
dataset

Figure 5.13: Clustering results of encoded NT vs. MetaAE on the ActinoMock dataset

nucleotides could translate to the same amino acids, so similarity measured using AA is usually
more ambiguous. Second, with different families of species, the same nucleotide could encode
different AA, so similarity measured using NT is more significant. Compared to NT, Figure
5.14 has the peak of inter-species similarity at 0 is lower. So, usually we would prefer to use
NT to AA. However, as is going to be shown in the next section, AA is preferred when we have
less confidence what families these species belong to.

Existing problems and potential solutions

In this section, we discuss some of the limitations of this algorithm.

CHAPTER 5. APPLICATIONS 81

Figure 5.14: Histogram of similarities of inter-genome and intra-genome contigs in the AA
matrix on the MetaHIT dataset

The effect of the number of known genomes

First, since the NT matrix measures the similarity between contigs and genomes in a reference
library, the number of genomes that already exist in the reference library matters. For
illustration, we remove all genomes that appear in the MetaHIT dataset from the reference
library (they have perfect correlation with the contigs), then the total number of columns in
NT is reduced from 21288 to 21028. The resulting matrix is called NT100.

Figure 5.15 shows the distributions of similarity of intra-genome contigs vs. inter-genome
contigs. It can be observed that compared to Figure 5.7 we lose some separability, but the
NT100 matrix is still very good at predicting whether two contigs are from the same genome.

If we further reduce the number of reference genomes in the library, we would result in
NT99 where reference genomes that are similar to the genomes in the MetaHIT dataset are
also removed from the library. Repeating the procedure above, we would get Figure 5.16.
Even with this, the prediction power is relatively strong. These results show that the NT
matrices are robust in the size of the reference library, which implies that they could be useful
in clustering undiscovered genomes.

However, the existing clustering algorithm (Algorithm 6) does not fully exploit their
power. Figure 5.17 compares the clustering results using only encoded NT100 or encoded
NT99 matrices as features (single sample, no depth, or TNF information).

Amino acids as features, on the other hand, are less sensitive to the size of the reference
library. Figures 5.18 and 5.19 show that as the reference size shrinks, the similarity matrix
still separates intra- and inter-species contigs pretty well. The peak of intra-species similarity

CHAPTER 5. APPLICATIONS 82

Figure 5.15: Histogram of similarities of inter-genome and intra-genome contigs in the NT100
matrix on the MetaHIT dataset

Figure 5.16: Histogram of similarities of inter-genome and intra-genome contigs in the NT99
matrix on the MetaHIT dataset

at 0 is much lower compared to what we have for NT matrices.
A future direction would be to design a metric that measures the coverage of the reference

genomes over the sampled contigs. The weights in our Variational Autoencoders should then

CHAPTER 5. APPLICATIONS 83

Figure 5.17: Clustering results using only encoded NT99 and encoded NT100 matrix on the
MetaHIT dataset

Figure 5.18: Histogram of similarities of inter-genome and intra-genome contigs in the AA100
matrix on the MetaHIT dataset

be adjusted accordingly: the better the coverage, the more weights we should put on the NT
matrix.

Conclusion

In this section, we show that variational autoencoders are effective at greatly improving the
performance of existing metagenomic binners by incorporating categorical information from

CHAPTER 5. APPLICATIONS 84

Figure 5.19: Histogram of similarities of inter-genome and intra-genome contigs in the AA99
matrix on the MetaHIT dataset

the reference database. The nonlinear dimension reduction ensures that the generative model
is expressive enough to capture the underlying inter- and intra- genomic similarity in the
cosine space.

CHAPTER 5. APPLICATIONS 85

5.3 Simulation of Credit Default Swap Index
Transaction Data

From previous chapters, we have seen that GANs are a type of generative model that learns
high-dimensional continuous distributions (most often image data). In the last section of
this chapter, we present an example showing that GANs have great potential in dealing with
financial data as well. In finance, the Credit Default Swap (CDS) index trade data are rare
to find and complex in structure. In this section, our goal is to build a simulator that can
artificially generate more CDS index trade data that are similar to existing trading records.
We train a special type of Generative Adversarial Network, the Sequential GAN (SeqGAN),
to achieve this.

After constructing the synthetic dataset, we then explore various ways and metrics to
validate the effectiveness of the synthetic dataset. For example, we examine the marginal
distributions and the correlations among variables. We also test the relative effectiveness of
popular machine learning algorithms on both the original and the synthetic dataset. 1

Introduction

Credit Default Swaps are a type of financial credit derivative designed for buyers to transfer
some of the risk exposure on the underlying product, usually corporate bonds, mortgage-
backed securities (MBS), or municipal bonds, to the sellers. In the most basic case, the buyers
pay the sellers a predetermined price, or spread, on a regular basis. Whenever a special credit
event that is specialized in the contract happens (for example, when the underlying bond
defaults), the buyer receives payment from the sellers. In essence, the sellers are protecting
the buyers from credit risks by issuing insurance.

CDSs are usually highly customized and traded not on exchanges, but over-the-counter.
A CDS Index, on the other hand, is a basket of CDSs, which is standardized and traded on
the exchange. There are two major types of corporate CDS indices: CDX, which contains
companies from North America and emerging markets, and iTraxx. In this section, we will
focus on the CDXs. Multiple types of CDXs are available on the market with focus on different
risk levels, for example, High Yield (HY) and Investment Grade (IG). The composition of
these CDXs are recalibrated and changed regularly (usually every six months). Their prices
generally reflect the credit risk evaluated by the market.

Related Works

GANs for data augmentation. Generative neural networks (GANs) are typically used
for generating images that are similar to existing ones in the dataset. Since it learns the
underlying distribution of observations in an nonparametric way, people have been exploring

1The methodology used in this section was also used in one of the FinTech projects of the Master of
Engineering program at UC Berkeley in Spring 2019.

CHAPTER 5. APPLICATIONS 86

the uses of GANs in data augmentation and the datasets are not restricted to image data.
Data Augmenting GAN (DAGAN) (Antoniou, Storkey, and Edwards 2017) show a new
structure of GAN that can improve the accuracy of classifiers by generating additional samples
in the low-data regime. Bowles et al. (2018) augment the performance of brain segmentation
by introducing a Progressive Growing of GANs (PGGAN) network. Frid-Adar et al. (2018)
use a convolutional neural network (CNN) to output synthetic computed tomography (CT)
image data in order to improve liver lesion classification. Refer to Mariani et al. (2018), Shin
et al. (2018), Nie et al. (2017), and X. Zhu et al. (2017) for more applications.

Simulating CDS. Past efforts in the literature to simulate CDS prices have considered
probabilistic techniques. Most of them use credit risk models to simulate default events and
generate spreads or prices. To name a few, see Joro, Niu, and Na (2004), Hull and White
(2000), Hull and White (2004), and Sethi, Thakkar, and Jamal (2018).

Deep learning in Finance. The use of deep learning in finance, on the other hand, is a
relatively new field. Horvath, Muguruza, and Tomas (2019) use deep learning to calibrate
stochastic models for volatility surfaces, for example, the rough Bergomi model, the Heston
model, and the Bergomi model. The inputs of the network are parameters in the stochastic
models; that is, the coefficients of the Brownian motion and the drift terms. The outputs are
the volatility at different maturity and strikes. Their method is two-step: 1. Simulate by
Monte-Carlo, using the stochastic models and known parameters, thousands of Brownian
motion paths as the training set. Then the neural network is optimized by minimizing the
mean square error at each grid point of the volatility surface. 2. Simulate another test set.
Then try to recover the model parameters using the trained neural network in step 1 (learn
the inputs of the networks). In summary, their neural network approximates the mapping
between model parameters and the paths of Brownian motions.

Luyang Chen, Pelger, and J. Zhu (2019) adapt the conditional no-arbitrage moment
condition to a min-max optimization problem with adversarial loss. The Stochastic Discount
Factor weights try to minimize the loss, while the conditioning functions (of macroeconomic
and firm-specific characteristics) try to maximize it. The SDF and the conditioning functions
can each be approximated by a neural network with LSTM units. This is similar to the
GAN structure (two networks with adversarial loss), hence they apply the iterative training
procedure from GAN to optimize everything. By definition, the SDF weights are the weights
of the conditional mean-variance efficient portfolio, which maximizes the Sharpe ratio.

Feng, He, and Polson (2018) train a neural network, which applies a regression-like model
that uses exposures to macroeconomic and firm-wise characteristics in a non-linear fashion,
to predict excess asset returns. Gu, B. Kelly, and Xiu (2018) compare deep neural nets with
other machine learning models on the performance of measuring asset risk premia. Messmer
(2017) also use neural networks to predict asset returns, while Bianchi, Büchner, and Tamoni
(2019) predict bond returns. Gu, B. T. Kelly, and Xiu (2019) use autoencoder plus the
no-arbitrage assumption to look for nonlinear latent factors that drive asset prices.

CHAPTER 5. APPLICATIONS 87

Dataset

The dataset is from the public Swap Data Repository (SDR), which is hosted by the Depository
Trust & Clearing Corporation (DTCC). According to the U.S. Commodity Futures Trading
Commission, the swap dealers are required by the Dodd-Frank Act to report all CDS index
(CDX) transactions to registered SDRs. The real-time reporting contains swap transaction
and pricing data, available on a daily basis.

We downloaded the credit swap index message data from 01-01-2014 to 02-28-2019, a
total of 1885 days, from DTCC’s website, among which 30 days of files are missing. After
combining the files, the dataset contains a total of 1103307 records with 44 features. Some of
the features are categorical variables. For example, the taxonomy variable indicates whether
the CDX is high-yield (high credit risk) or investment-grade, the action variable, like what
we usually observe in a limit order book, indicates whether this record is for posting new
orders to the market (new), correcting an existing order on the market (correct), or cancel an
outstanding order (cancel).

Some variables are continuous in nature. For example, the price variable is the price at
which the order is posted or traded. However, the price is truncated if it is above certain
thresholds that depend on each individual record.

The features are also highly unbalanced. For example, for the action feature among all
records, 904440 (82%) are new orders, 124583 (11%) are order cancellations, and the rest
(less than 7%) are corrections of existing orders. The large fraction of the orders being new is
very different from what we usually observe on the equity market, where most orders are
cancellations.

The quality of records is relatively low. Ten out of forty-four features are completely
unpopulated. Other features contain NaN values, or incorrect values that do not match the
descriptions of that column. Preprocessing is hence an essential step in this example.

Preprocessing

We perform a minimum amount of manipulation on the records to ensure that even without
much guidance or domain knowledge, the neural network would still be able to capture the
essence of the structure of our dataset. The preprocessing therefore focuses on removing
redundant or uninformative rows and columns.

For this example, instead of including all 44 variables, of which most are irrelevant
or of low data quality, we decide to use 7 of the most relavant features: action, cleared,
indication_of_collateralization, taxonomy, price_forming, price and notional_amount.
The following list summarizes their possible values:

• action: new, correct, cancel.

• taxonomy: investment grade (IG), high yield (HY).

• price_forming: trade, novation, partial termination, amendment.

CHAPTER 5. APPLICATIONS 88

• cleared: cleared, uncleared.

• indication_of_collateralization: collateralized, not collateralized.

• price: continuous.

• notional_amount: continuous.

We proceed through the following steps to preprocess the dataset and prepare for training:

1. Select only orders whose notional_currency is U.S. dollars. This reduces the number
of rows from 1103307 to 823555.

2. Select only orders whose taxonomy is a high-yield or investment-grade credit default
swap index (CDX). This reduces the number of orders to 300112.

3. Select only orders with a maturity of around 5 years (4.5 to 5.5 years). The duration
is calculated as the difference of end_date and effective_date. Most of the orders
have a maturity in this range. The number of rows is now 285134.

4. To avoid duplication of orders, we drop those actions that create orders which are
modified later and those actions that cancel an existing order in our dataset. This way
we only consider the most-updated orders. We end up with 245104 orders.

5. We only keep orders whose price_notation_type is in basis points or in percentage,
leaving us with 158632 orders.

6. We keep orders whose price is not 0. This reduces the number of orders to 158131.

7. To deal with the inconsistency in price notations, we normalize the price notations in
the following way:

• For prices quoted in percentage, some of the orders are actually quoted in basis
points, which are easily detected if the prices are in the range of [1000, 100000].
We convert them by dividing the price by 10000.

• For prices quoted in basis points, we convert them to percentage by dividing the
price by 100.

8. In the current version of the model, we drop all rows that have an NaN in them. This
reduces the number of rows to 30857.

9. To transform the continuous features to discrete ones, we construct bins for the prices
and the notional_amounts.

10. We combine each 30 contiguous records into a sequence. We then add a token <GO> to
the head of each sequence and append a token <END> to the end of each sequence.

CHAPTER 5. APPLICATIONS 89

Model Setup

In this example, we are dealing with a mixture of continuous and discrete type data; that
is, some features are discrete (categorical) and some features are continuous (positive real
numbers). In addition, the data are actually a time series: contiguous samples are often
posted in a clustered fashion, and therefore their features and prices are correlated. We apply
Sequential GAN (SeqGAN) (Yu et al. 2017) to address these two problems through policy
gradients. The following section describes how SeqGAN works with a discrete and sequencial
underlying distribution.

SeqGAN

In SeqGAN, the objective is to train a generative neural network Gθ parameterized by
θ to generate a random sequence Y1:T = (y1, . . . , yt, . . . , yT), where yt ∈ Y and Y is our
action space, also called vocabulary in this setting. At the same time, a discriminator Dφ,
parameterized by φ, is trained so that the output on the real data Dφ(Y n

1:T) is close to 1
and the output on the generated data Dφ(Y1:T) is close to 0. The objective function on the
discriminator side is hence similar to a vanilla GAN,

min
φ
−EY∼pdata [logDφ(Y)]− EY∼Gθ [log(1−Dφ(Y))]. (5.12)

The structure of SeqGAN is visualized in Figure 5.20.
The generator network, Gθ, is trained to maximize the expected end reward over all

possible actions y1 given the current state s0,

J(θ) = E[RT |s0, θ] =
∑
y1∈Y

Gθ(y1|s0) ·QGθ
Dφ

(s0, y1). (5.13)

Since the discriminator network Dφ only gives an output when the whole sequence is finished,
SeqGAN applies Monte Carlo search that samples future possible actions from the vocabulary.
A rollout policy is used for generating the remaining time periods. In this example, the
rollout policy is the current best generator.

Network Structure

The generator network is a recurrent neural network (RNN) that uses Long-Short Memory
Units (LSTMs) as building blocks. In addition to all the possible combinations of features,
three special tokens are added to the dictionary as possible actions to take by the generator:
<GO>, <PAD> and <END>. The input goes through several hidden layers before being fed into a
softmax layer to output the probabilities of taking each possible action. A maximum sequence
length of 50 is allowed before an <END> is appended to the end of each sequence.

The discriminator network is a convolutional neural network (CNN). For each sequence, we
apply a series of convolutional kernels with different sizes to it, and then take the max-pooling
over all outputs as the feature. The final layer is a fully connected layer with sigmoid as the
activation function.

CHAPTER 5. APPLICATIONS 90

Figure 5.20: Structure of SeqGAN

Hyperparameter Settings. For this example, we use mostly the default settings in the
original SeqGAN paper. On the generator side, the embedding dimension is 32, the hidden
dimension is 100 and the maximum sequence length is 50. The batchsize is 64. On the
discriminator side, the embedding dimension is 32, the kernels’ sizes are [1,2,3,4,5,6,7,8,9,10,15],
the number of kernels are [100, 200, 200, 200, 200, 100, 100, 100, 100, 100, 160], the dropout
rate is 0.25, the L2 regularization parameter is 0.2, and the batchsize is 64.

Evaluation of results

The similarity between generated records and the historical true records is evaluated using
the following criteria:

1. Marginal distribution of each individual features;

2. Dependency of each pair of features, measured by the correlation coefficients;

3. Stability of accuracy of machine learning models on the generated and the true datasets.

Marginal distributions. We check the marginal distributions of each variable. Since they
are all categorical, we plot out the pie charts that show the percentage of every possible
category. Below are some samples:

CHAPTER 5. APPLICATIONS 91

Figure 5.21 shows the marginal distribution of the action variable;
Figure 5.22 shows the marginal distribution of the indication_of_collateralization

variable;
Figure 5.23 shows the marginal distribution of the price_forming variable;
Figure 5.24 compares the marginal distribution of the rounded_notional_amount variable.

Figure 5.21: Pie chart of the action variable on the generated and the original datasets

Figure 5.22: Pie chart of the collateral variable on the generated and the original datasets

Pairwise correlations. In addition to the marginal distributions, we also check the pair-
wise relationship between variables; that is, if the simulated dataset could reconstruct the
correlations between variables. In Figure 5.25, red cells denote positive correlations between
variables, while blue cells denote negative correlations. We can see that SeqGAN is able to
reconstruct the directions of 15 out of 21 pairwise correlations.

CHAPTER 5. APPLICATIONS 92

Figure 5.23: Pie chart of the price forming variable on the generated and the original datasets

Figure 5.24: Histograms of the rounded notional amount variable on the generated and the
original datasets

Stability of machine learning algorithms. In practice, after the new dataset is gener-
ated, we train various machine learning models. The generated new dataset is the training
set and the real dataset becomes the test set. Ideally, we would observe that the accuracies
of the models trained on the synthetic data remain roughly the same on the real dataset. In
the model selection setting, however, a weaker sense of stability is required; that is, we would
expect that the better performing model on the generated dataset should still perform better
in the original dataset. To measure this kind of stability and to check whether the simulated
dataset recovers the joint distribution of all variables, we introduce the idea of Synthetic
Ranking Agreement (SRA) from Jordon, Yoon, and Schaar (2018).

Formally, let A1, . . . ,Ak be the k models considered for selection. For each dataset D, we
split it into training set D1 and testing set D2. Let m be a performance metric, e.g., accuracy,
and let DG be the synthetic dataset generated by the generator G. Then we would expect
the following relationship: if for two models Ai and Aj , 1 ≤ i, j ≤ k, Ai performs better than

CHAPTER 5. APPLICATIONS 93

Figure 5.25: Heatmaps of the pairwise correlation coefficients on the generated and the
original datasets

Aj on the synthetic dataset, that is,

m(Ai(DG1),DG2) < m(Aj(DG1),DG2), (5.14)

then it also performs better on the original dataset, that is

m(Ai(D1),D2) < m(Aj(D1),D2). (5.15)

To come up with a metric for a generator G, the synthetic ranking agreement score is
defined as

SRA(G) =
1

k(k − 1)

k∑
i=1

∑
j 6=i

1((Ri−Rj)(Si−Sj)>0). (5.16)

where Ri = m(Ai(D1,D2), Si = m(Ai(DG1 ,DG2).
In this example, we consider the following 5 machine learning models, which are all very

popular in the data science community:

1. Random Forest,

2. Logistic Regression,

3. Linear Support Vector Machine (SVM),

4. Multinomial Naive Bayes,

5. Gaussian Naive Bayes.

CHAPTER 5. APPLICATIONS 94

The models are all trained directly out-of-the-box from the Scikit-learn package with
default hyperparameters and configurations. For each variable in the dataset, we use it as
the label and the rest of the variables as features. We split the samples into 80% for training
and 20% for testing. Table 5.6 shows the model ranks for the rank variable. The SRA score
is 0.90. Random Forest is the best model. The rest are not as good, but the performances on
both datasets are similar.

Random Forest Logistic Reg. Linear SVM Multinomial NB Gaussian NB
Original 0.872 0.693 0.728 0.653 0.664
Synthetic 0.968 0.766 0.752 0.553 0.682

Table 5.6: Accuracy of models predicting the cleared variable on the original and the synthetic
datasets

When predicting the price_formulation variable using other variables, the results are
shown in Table 5.7. The SRA score is 0.90. Random forest remains the best.

Random Forest Logistic Reg. Linear SVM Multinomial NB Gaussian NB
Original 0.901 0.857 0.823 0.784 0.653
Synthetic 0.916 0.752 0.753 0.586 0.512

Table 5.7: Accuracy of models predicting the price_formulation variable on the original and
the synthetic datasets

When we predict the price of CDS using other variables, the models yield the following
results in Table 5.8. The SRA score is 0.90.

Random Forest Logistic Reg. Linear SVM Multinomial NB Gaussian NB
Original 0.941 0.929 0.929 0.789 0.867
Synthetic 0.958 0.697 0.623 0.545 0.591

Table 5.8: Accuracy of models predicting the price variable on the original and the synthetic
datasets

From the results above, we conclude that the best performing model among all 5, the
random forest, has similar performance on the original dataset and the synthetic one. The
other 4 models, on the other hand, could have different predictive powers on both datasets,
but their relative rankings stay the same. This shows that our synthetic dataset is capable of
running model selection tasks.

CHAPTER 5. APPLICATIONS 95

Limitations and Future Works

In this example, we only consider fixed lengths of order sequences. In fact, it could be better
if the length of order sequences are dynamically determined, based on factors such as densities
of incoming orders or volatilities of the market.

To ensure a finite action space, we divide the range of the continuous features into bins.
Although this is understandable since the variables themselves are truncated at the beginning,
the number and sizes of bins are arbitrary for now.

Finally, the rollout policy for the discriminator is chosen to be the current best generator,
whose value is slow to evaluate. To improve training speed, the rollout policy could be chosen
as a separate model with less complexity.

Conclusion

In this section of the dissertation, we show the following three facts:

• The Sequential GAN model is capable of learning the underlying distribution of the
CDX dataset and simulating new order records based on this information;

• The synthetic dataset, the marginal distributions, and pairwise correlations among
features are well-kept;

• Machine learning model selections done on the new dataset are consistent with the
original one.

96

Bibliography

[1] Jinwon An and Sungzoon Cho. “Variational autoencoder based anomaly detection
using reconstruction probability”. In: Special Lecture on IE 2 (2015), pp. 1–18.

[2] Grigory Antipov, Moez Baccouche, and Jean-Luc Dugelay. “Face aging with conditional
generative adversarial networks”. In: 2017 IEEE International Conference on Image
Processing. IEEE. 2017, pp. 2089–2093.

[3] Antreas Antoniou, Amos Storkey, and Harrison Edwards. “Data augmentation genera-
tive adversarial networks”. In: arXiv preprint arXiv:1711.04340 (2017).

[4] Martin Arjovsky. “Towards principled methods for training generative adversarial
networks”. In: ArXiv Preprint: 1701.04862 (2017).

[5] Martin Arjovsky, Soumith Chintala, and Léon Bottou. “Wasserstein generative adver-
sarial networks”. In: International Conference on Machine Learning. 2017, pp. 214–
223.

[6] Arindam Banerjee, Xin Guo, and Hui Wang. “On the optimality of conditional expec-
tation as a Bregman predictor”. In: IEEE Transactions on Information Theory 51.7
(2005), pp. 2664–2669.

[7] Arindam Banerjee, Srujana Merugu, Inderjit S Dhillon, and Joydeep Ghosh. “Clustering
with Bregman divergences”. In: Journal of Machine Learning Research 6.Oct (2005),
pp. 1705–1749.

[8] Heinz H Bauschke and Jonathan M Borwein. “On projection algorithms for solving
convex feasibility problems”. In: SIAM review 38.3 (1996), pp. 367–426.

[9] Güzin Bayraksan and David K Love. “Data-driven stochastic programming using
phi-divergences”. In: The Operations Research Revolution. INFORMS, 2015, pp. 1–19.

[10] Aharon Ben-Tal, Dick Den Hertog, Anja De Waegenaere, Bertrand Melenberg, and Gijs
Rennen. “Robust solutions of optimization problems affected by uncertain probabilities”.
In: Management Science 59.2 (2013), pp. 341–357.

[11] Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust optimization.
Vol. 28. Princeton University Press, 2009.

[12] Aharon Ben-Tal and Arkadi Nemirovski. “Robust convex optimization”. In: Mathemat-
ics of operations research 23.4 (1998), pp. 769–805.

BIBLIOGRAPHY 97

[13] David Berthelot, Thomas Schumm, and Luke Metz. “Began: Boundary equilibrium
generative adversarial networks”. In: arXiv preprint arXiv:1703.10717 (2017).

[14] Daniele Bianchi, Matthias Büchner, and Andrea Tamoni. “Bond risk premia with
machine learning”. In: USC-INET Research Paper 19-11 (2019).

[15] Jose Blanchet, Lin Chen, and Xun Yu Zhou. “Distributionally robust mean-variance
portfolio selection with Wasserstein distances”. In: ArXiv Preprint: 1802.04885 (2018).

[16] Jose Blanchet, Yang Kang, and Karthyek Murthy. “Robust Wasserstein profile inference
and applications to machine learning”. In: ArXiv Preprint: 1610.05627 (2016).

[17] Jose Blanchet, Henry Lam, Qihe Tang, and Zhongyi Yuan. “Applied robust performance
analysis for actuarial applications”. In: Technical Report. the Society of Actuaries
(SOA), 2017.

[18] Konstantinos Bousmalis, Nathan Silberman, David Dohan, Dumitru Erhan, and Dilip
Krishnan. “Unsupervised pixel-level domain adaptation with generative adversarial
networks”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2017, pp. 3722–3731.

[19] Christopher Bowles, Liang Chen, Ricardo Guerrero, Paul Bentley, Roger Gunn,
Alexander Hammers, David Alexander Dickie, Maria Valdés Hernández, Joanna
Wardlaw, and Daniel Rueckert. “GAN augmentation: augmenting training data using
generative adversarial networks”. In: arXiv preprint arXiv:1810.10863 (2018).

[20] Lev M Bregman. “The relaxation method of finding the common point of convex sets
and its application to the solution of problems in convex programming”. In: USSR
Computational Mathematics and Mathematical Physics 7.3 (1967), pp. 200–217.

[21] Yann Brenier. “Polar factorization and monotone rearrangement of vector-valued
functions”. In: Communications on Pure and Applied Mathematics 44.4 (1991), pp. 375–
417.

[22] Andreas Buja, Werner Stuetzle, and Yi Shen. “Loss functions for binary class probability
estimation and classification: Structure and applications”. In: Working draft, November
3 (2005).

[23] Luis A Caffarelli. “Some regularity properties of solutions of Monge Ampere equation”.
In: Communications on Pure and Applied Mathematics 44.8-9 (1991), pp. 965–969.

[24] Luis A Caffarelli. “The regularity of mappings with a convex potential”. In: Journal of
the American Mathematical Society 5.1 (1992), pp. 99–104.

[25] Yair Censor and Arnold Lent. “An iterative row-action method for interval convex
programming”. In: Journal of Optimization theory and Applications 34.3 (1981),
pp. 321–353.

BIBLIOGRAPHY 98

[26] Sourav Chatterji, Ichitaro Yamazaki, Zhaojun Bai, and Jonathan A Eisen. “Compost-
Bin: A DNA composition-based algorithm for binning environmental shotgun reads”.
In: Annual International Conference on Research in Computational Molecular Biology.
Springer. 2008, pp. 17–28.

[27] Luyang Chen, Markus Pelger, and Jason Zhu. “Deep learning in asset pricing”. In:
Available at SSRN 3350138 (2019).

[28] Shibing Chen and Alessio Figalli. “Partial W2, p regularity for optimal transport
maps”. In: Journal of Functional Analysis 272.11 (2017), pp. 4588–4605.

[29] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter
Abbeel. “Infogan: Interpretable representation learning by information maximizing
generative adversarial nets”. In: Advances in Neural Information Processing Systems.
2016, pp. 2172–2180.

[30] Michael Collins, Robert E Schapire, and Yoram Singer. “Logistic regression, AdaBoost
and Bregman distances”. In: Machine Learning 48.1-3 (2002), pp. 253–285.

[31] Brieuc Conan-Guez and Fabrice Rossi. “Multi-layer perceptrons for functional data
analysis: a projection based approach”. In: International Conference on Artificial
Neural Networks. Springer. 2002, pp. 667–672.

[32] AR De Pierro and AN Iusem. “A relaxed version of Bregman’s method for convex
programming”. In: Journal of Optimization Theory and Applications 51.3 (1986),
pp. 421–440.

[33] T De Wet. “Goodness-of-fit tests for location and scale families based on a weighted L
2-Wasserstein distance measure”. In: Test 11.1 (2002), pp. 89–107.

[34] Erick Delage and Yinyu Ye. “Distributionally robust optimization under moment
uncertainty with application to data-driven problems”. In: Operations research 58.3
(2010), pp. 595–612.

[35] Emily L Denton, Soumith Chintala, and Rob Fergus. “Deep generative image models
using a laplacian pyramid of adversarial networks”. In: Advances in Neural Information
Processing Systems. 2015, pp. 1486–1494.

[36] V Dobrić and Joseph E Yukich. “Asymptotics for transportation cost in high dimen-
sions”. In: Journal of Theoretical Probability 8.1 (1995), pp. 97–118.

[37] Roland L Dobrushin. “Perturbation methods of the theory of Gibbsian fields”. In:
Lectures on Probability Theory and Statistics. Springer, 1996, pp. 1–66.

[38] Roland L Dobrushin. “Prescribing a system of random variables by conditional distri-
butions”. In: Theory of Probability & Its Applications 15.3 (1970), pp. 458–486.

[39] Peyman Mohajerin Esfahani and Daniel Kuhn. “Data-driven distributionally robust
optimization using the Wasserstein metric: Performance guarantees and tractable
reformulations”. In: Mathematical Programming 171.1-2 (2018), pp. 115–166.

BIBLIOGRAPHY 99

[40] Lawrence Craig Evans and Ronald F Gariepy. Measure Theory and Fine Properties
of Functions. Chapman and Hall/CRC, 2015.

[41] Guanhao Feng, Jingyu He, and Nicholas G Polson. “Deep learning for predicting asset
returns”. In: arXiv preprint arXiv:1804.09314 (2018).

[42] Nicolas Fournier and Arnaud Guillin. “On the rate of convergence in Wasserstein
distance of the empirical measure”. In: Probability Theory and Related Fields 162.3-4
(2015), pp. 707–738.

[43] Maayan Frid-Adar, Eyal Klang, Michal Amitai, Jacob Goldberger, and Hayit Greenspan.
“Synthetic data augmentation using GAN for improved liver lesion classification”. In:
2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). IEEE.
2018, pp. 289–293.

[44] Béla A Frigyik, Santosh Srivastava, and Maya R Gupta. “Functional Bregman diver-
gence and Bayesian estimation of distributions”. In: IEEE Transactions on Information
Theory 54.11 (2008), pp. 5130–5139.

[45] Rui Gao and Anton J Kleywegt. “Distributionally robust stochastic optimization with
Wasserstein distance”. In: arXiv preprint arXiv:1604.02199 (2016).

[46] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. “Learning to forget: Continual
prediction with LSTM”. In: (1999).

[47] Laurent El Ghaoui, Maksim Oks, and Francois Oustry. “Worst-case value-at-risk and
robust portfolio optimization: A conic programming approach”. In: Operations research
51.4 (2003), pp. 543–556.

[48] Corrado Gini. Sulla misura della concentrazione e della variabilita dei caratteri. Pre-
miate officine grafiche C. Ferrari, 1914.

[49] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. “Generative adversarial nets”. In:
Advances in Neural Information Processing Systems. 2014, pp. 2672–2680.

[50] Shihao Gu, Bryan T Kelly, and Dacheng Xiu. “Autoencoder Asset Pricing Models”.
In: Available at SSRN (2019).

[51] Shihao Gu, Bryan Kelly, and Dacheng Xiu. Empirical asset pricing via machine
learning. Tech. rep. National Bureau of Economic Research, 2018.

[52] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C
Courville. “Improved training of Wasserstein GANs”. In: Advances in Neural Informa-
tion Processing Systems. 2017, pp. 5767–5777.

[53] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew
Botvinick, Shakir Mohamed, and Alexander Lerchner. “beta-VAE: Learning basic
visual concepts with a constrained variational framework”. In: International Conference
on Learning Representations. Vol. 3. 2017.

BIBLIOGRAPHY 100

[54] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neural
computation 9.8 (1997), pp. 1735–1780.

[55] Blanka Horvath, Aitor Muguruza, and Mehdi Tomas. “Deep Learning Volatility”. In:
Available at SSRN 3322085 (2019).

[56] Zhaolin Hu and L Jeff Hong. “Kullback-Leibler divergence constrained distributionally
robust optimization”. In: Available at Optimization Online (2013).

[57] John C Hull and Alan D White. “Valuation of a CDO and an n-th to default CDS
without Monte Carlo simulation”. In: The Journal of Derivatives 12.2 (2004), pp. 8–23.

[58] John C Hull and Alan D White. “Valuing credit default swaps I: No counterparty
default risk”. In: The Journal of Derivatives 8.1 (2000), pp. 29–40.

[59] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. “Image-to-image trans-
lation with conditional adversarial networks”. In: Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition. 2017, pp. 1125–1134.

[60] Ruiwei Jiang and Yongpei Guan. “Data-driven chance constrained stochastic program”.
In: Mathematical Programming 158.1-2 (2016), pp. 291–327.

[61] Lee K Jones and Charles L Byrne. “General entropy criteria for inverse problems,
with applications to data compression, pattern classification, and cluster analysis”. In:
IEEE Transactions on Information Theory 36.1 (1990), pp. 23–30.

[62] James Jordon, Jinsung Yoon, and Mihaela van der Schaar. “Measuring the quality of
Synthetic data for use in competitions”. In: arXiv preprint arXiv:1806.11345 (2018).

[63] Tarja Joro, Anne R Niu, and Paul Na. “A simulation-based First-to-Default (FTD)
Credit Default Swap (CDS) pricing approach under jump-diffusion”. In: Proceedings
of the 36th Conference on Winter Simulation. Winter Simulation Conference. 2004,
pp. 1632–1636.

[64] Anatoli Juditsky, Arkadi Nemirovski, and Claire Tauvel. “Solving variational inequali-
ties with stochastic mirror-prox algorithm”. In: Stochastic Systems 1.1 (2011), pp. 17–
58.

[65] Dongwan D Kang, Jeff Froula, Rob Egan, and Zhong Wang. “MetaBAT, an efficient
tool for accurately reconstructing single genomes from complex microbial communities”.
In: PeerJ 3 (2015), e1165.

[66] Dongwan Kang, Feng Li, Edward S Kirton, Ashleigh Thomas, Rob S Egan, Hong An,
and Zhong Wang. “MetaBAT 2: an adaptive binning algorithm for robust and efficient
genome reconstruction from metagenome assemblies”. In: PeerJ Preprints 7 (2019),
e27522v1.

[67] Leonid Vasilevich Kantorovich and Gennady S Rubinstein. “On a space of completely
additive functions”. In: Vestnik Leningrad. Univ 13.7 (1958), pp. 52–59.

[68] Leonid Kantorovitch. “On the translocation of masses”. In: Management Science 5.1
(1958), pp. 1–4.

BIBLIOGRAPHY 101

[69] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In:
arXiv preprint arXiv:1412.6980 (2014).

[70] Diederik P Kingma and Max Welling. “Auto-encoding variational Bayes”. In: arXiv
preprint arXiv:1312.6114 (2013).

[71] Jyrki Kivinen and Manfred K Warmuth. “Relative loss bounds for multidimensional
regression problems”. In: Advances in Neural Information Processing Systems. 1998,
pp. 287–293.

[72] Naveen Kodali, Jacob Abernethy, James Hays, and Zsolt Kira. “How to train your
DRAGAN”. In: arXiv preprint arXiv:1705.07215 2.4 (2017).

[73] Lutz Krause, Naryttza N Diaz, Alexander Goesmann, Scott Kelley, TimWNattkemper,
Forest Rohwer, Robert A Edwards, and Jens Stoye. “Phylogenetic classification of short
environmental DNA fragments”. In: Nucleic Acids Research 36.7 (2008), pp. 2230–2239.

[74] Viveka Kulharia, Arnab Ghosh, Amitabha Mukerjee, Vinay Namboodiri, and Mohit
Bansal. “Contextual RNN-GANs for abstract reasoning diagram generation”. In: Thirty-
First AAAI Conference on Artificial Intelligence. 2017.

[75] Matt J Kusner, Brooks Paige, and José Miguel Hernández-Lobato. “Grammar varia-
tional autoencoder”. In: Proceedings of the 34th International Conference on Machine
Learning-Volume 70. JMLR. org. 2017, pp. 1945–1954.

[76] John Lafferty. “Additive models, boosting, and inference for generalized divergences”.
In: In Proceedings of 12th Annual Conference on Computatinoal Learning Theory.
Citeseer. 1999.

[77] Henry Lam and Enlu Zhou. “Quantifying uncertainty in sample average approximation”.
In: Proceedings of the 2015 Winter Simulation Conference. IEEE Press. 2015, pp. 3846–
3857.

[78] Jean-Michel Lasry and Pierre-Louis Lions. “Mean field games”. In: Japanese Journal
of Mathematics 2.1 (2007), pp. 229–260.

[79] Guy Le Besnerais, J-F Bercher, and Guy Demoment. “A new look at entropy for
solving linear inverse problems”. In: IEEE Transactions on Information Theory 45.5
(1999), pp. 1565–1578.

[80] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham,
Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al.
“Photo-realistic single image super-resolution using a generative adversarial network”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2017, pp. 4681–4690.

[81] Chuan Li and Michael Wand. “Precomputed real-time texture synthesis with marko-
vian generative adversarial networks”. In: European Conference on Computer Vision.
Springer. 2016, pp. 702–716.

BIBLIOGRAPHY 102

[82] Jerry Li, Aleksander Madry, John Peebles, and Ludwig Schmidt. “Towards un-
derstanding the dynamics of generative adversarial networks”. In: arXiv preprint
arXiv:1706.09884 (2017).

[83] Xiaopeng Li and James She. “Collaborative variational autoencoder for recommender
systems”. In: Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM. 2017, pp. 305–314.

[84] Mario Lucic, Olivier Bachem, and Andreas Krause. “Strong coresets for hard and
soft Bregman clustering with applications to exponential family mixtures”. In: arXiv
preprint arXiv:1508.05243 (2015).

[85] CL Mallows et al. “A note on asymptotic joint normality”. In: The Annals of Mathe-
matical Statistics 43.2 (1972), pp. 508–515.

[86] Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and Stephen
Paul Smolley. “Least squares generative adversarial networks”. In: Proceedings of the
IEEE International Conference on Computer Vision. 2017, pp. 2794–2802.

[87] Giovanni Mariani, Florian Scheidegger, Roxana Istrate, Costas Bekas, and Cris-
tiano Malossi. “Bagan: Data augmentation with balancing gan”. In: arXiv preprint
arXiv:1803.09655 (2018).

[88] Lars Mescheder, Sebastian Nowozin, and Andreas Geiger. “Adversarial variational
bayes: Unifying variational autoencoders and generative adversarial networks”. In:
Proceedings of the 34th International Conference on Machine Learning-Volume 70.
JMLR. org. 2017, pp. 2391–2400.

[89] Marcial Messmer. “Deep learning and the cross-section of expected returns”. In:
Available at SSRN 3081555 (2017).

[90] Paul Milgrom and Ilya Segal. “Envelope theorems for arbitrary choice sets”. In: Econo-
metrica 70.2 (2002), pp. 583–601.

[91] Mehdi Mirza and Simon Osindero. “Conditional generative adversarial nets”. In: arXiv
preprint arXiv:1411.1784 (2014).

[92] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy
Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. “Asynchronous methods
for deep reinforcement learning”. In: International Conference on Machine Learning.
2016, pp. 1928–1937.

[93] Monzoorul Haque Mohammed, Tarini Shankar Ghosh, Nitin Kumar Singh, and
Sharmila S Mande. “SPHINX - an algorithm for taxonomic binning of metagenomic
sequences”. In: Bioinformatics 27.1 (2010), pp. 22–30.

[94] Gaspard Monge. Mémoire sur la théorie des déblais et des remblais. De l’Imprimerie
Royale, 1781.

BIBLIOGRAPHY 103

[95] Axel Munk and Claudia Czado. “Nonparametric validation of similar distributions
and assessment of goodness of fit”. In: Journal of the Royal Statistical Society: Series
B (Statistical Methodology) 60.1 (1998), pp. 223–241.

[96] Noboru Murata, Takashi Takenouchi, Takafumi Kanamori, and Shinto Eguchi. “Infor-
mation geometry of U-Boost and Bregman divergence”. In: Neural Computation 16.7
(2004), pp. 1437–1481.

[97] Hongseok Namkoong and John C Duchi. “Stochastic gradient methods for distribu-
tionally robust optimization with f-divergences”. In: Advances in Neural Information
Processing Systems. 2016, pp. 2208–2216.

[98] Arkadi Nemirovski. “Prox-method with rate of convergence O (1/t) for variational
inequalities with Lipschitz continuous monotone operators and smooth convex-concave
saddle point problems”. In: SIAM Journal on Optimization 15.1 (2004), pp. 229–251.

[99] Arkadii Semenovich Nemirovski. Problem Complexity and Method Efficiency in Opti-
mization. Wiley, 1983.

[100] Dong Nie, Roger Trullo, Jun Lian, Caroline Petitjean, Su Ruan, Qian Wang, and
Dinggang Shen. “Medical image synthesis with context-aware generative adversarial
networks”. In: International Conference on Medical Image Computing and Computer-
Assisted Intervention. Springer. 2017, pp. 417–425.

[101] Jakob Nybo Nissen, Casper Kaae Sonderby, Jose Juan Almagro Armenteros, Christo-
pher Heje Groenbech, Henrik Bjorn Nielsen, Thomas Nordahl Petersen, Ole Winther,
and Simon Rasmussen. “Binning microbial genomes using deep learning”. In: BioRxiv
(2018), p. 490078.

[102] Augustus Odena, Christopher Olah, and Jonathon Shlens. “Conditional image synthesis
with auxiliary classifier gans”. In: Proceedings of the 34th International Conference on
Machine Learning-Volume 70. JMLR. org. 2017, pp. 2642–2651.

[103] MC Pardo and Igor Vajda. “About distances of discrete distributions satisfying the
data processing theorem of information theory”. In: IEEE transactions on Information
Theory 43.4 (1997), pp. 1288–1293.

[104] MC Pardo and Igor Vajda. “On asymptotic properties of information-theoretic di-
vergences”. In: IEEE Transactions on Information Theory 49.7 (2003), pp. 1860–
1867.

[105] Yuval Peres. “Mixing for Markov chains and spin systems”. In: Unpublished notes
(2005). url: www.stat.berkeley.edu/~peres/ubc.pdf.

[106] Thomas Nordahl Petersen, Oksana Lukjancenko, Martin Christen Frølund Thom-
sen, Maria Maddalena Sperotto, Ole Lund, Frank Møller Aarestrup, and Thomas
Sicheritz-Pontén. “MGmapper: reference based mapping and taxonomy annotation of
metagenomics sequence reads”. In: PLoS One 12.5 (2017), e0176469.

www.stat.berkeley.edu/~peres/ubc.pdf

BIBLIOGRAPHY 104

[107] Warren B Powell. “A unified framework for optimization under uncertainty”. In:
Optimization Challenges in Complex, Networked and Risky Systems. INFORMS, 2016,
pp. 45–83.

[108] Yunchen Pu, Zhe Gan, Ricardo Henao, Xin Yuan, Chunyuan Li, Andrew Stevens,
and Lawrence Carin. “Variational autoencoder for deep learning of images, labels and
captions”. In: Advances in Neural Information Processing Systems. 2016, pp. 2352–
2360.

[109] Svetlozar T Rachev. Probability Metrics and the Stability of Stochastic Models. John
Wiley & Sons Ltd., Chichester, 1991.

[110] Svetlozar T Rachev and Ludger Ruschendorf. Mass Transportation Problems: Volume
I: Theory. Vol. 1. Springer Science & Business Media, 1998.

[111] Alec Radford, Luke Metz, and Soumith Chintala. “Unsupervised representation learn-
ing with deep convolutional generative adversarial networks”. In: arXiv preprint
arXiv:1511.06434 (2015).

[112] Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, and
Honglak Lee. “Generative adversarial text to image synthesis”. In: arXiv preprint
arXiv:1605.05396 (2016).

[113] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. “Stochastic back-
propagation and approximate inference in deep generative models”. In: arXiv preprint
arXiv:1401.4082 (2014).

[114] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and
Xi Chen. “Improved techniques for training gans”. In: Advances in Neural Information
Processing Systems. 2016, pp. 2234–2242.

[115] Herbert E Scarf. A min-max solution of an inventory problem. Tech. rep. RAND
CORP SANTA MONICA CALIF, 1957.

[116] Stanislau Semeniuta, Aliaksei Severyn, and Erhardt Barth. “A hybrid convolutional
variational autoencoder for text generation”. In: arXiv preprint arXiv:1702.02390
(2017).

[117] Madhvi Sethi, Parthiv Thakkar, and Zahid M Jamal. “A Simulation Model for Pricing
the Spread in a Credit Default Swap: Application and Analysis”. In: SDMIMD Journal
of Management 9.2 (2018), pp. 9–18.

[118] Soroosh Shafieezadeh-Abadeh, Peyman Mohajerin Esfahani, and Daniel Kuhn. “Distri-
butionally robust logistic regression”. In: Advances in Neural Information Processing
Systems. 2015, pp. 1576–1584.

BIBLIOGRAPHY 105

[119] Hoo-Chang Shin, Neil A Tenenholtz, Jameson K Rogers, Christopher G Schwarz,
Matthew L Senjem, Jeffrey L Gunter, Katherine P Andriole, and Mark Michalski.
“Medical image synthesis for data augmentation and anonymization using generative
adversarial networks”. In: International Workshop on Simulation and Synthesis in
Medical Imaging. Springer. 2018, pp. 1–11.

[120] Herbert Spohn. Large Scale Dynamics of Interacting Particles. Springer Science &
Business Media, 2012.

[121] Santosh Srivastava, Maya R Gupta, and Béla A Frigyik. “Bayesian quadratic discrim-
inant analysis”. In: Journal of Machine Learning Research 8.Jun (2007), pp. 1277–
1305.

[122] Michel Talagrand. “Concentration of measure and isoperimetric inequalities in product
spaces”. In: Publications Mathématiques de l’Institut des Hautes Etudes Scientifiques
81.1 (1995), pp. 73–205.

[123] Hiroshi Tanaka. “An inequality for a functional of probability distributions and its
application to Kac’s one-dimensional model of a Maxwellian gas”. In: Probability
Theory and Related Fields 27.1 (1973), pp. 47–52.

[124] Ben Taskar, Simon Lacoste-Julien, and Michael I Jordan. “Structured prediction, dual
extragradient and Bregman projections”. In: Journal of Machine Learning Research
7.Jul (2006), pp. 1627–1653.

[125] T. Tieleman and G. Hinton. “Lecture 6.5-RMSProp: divide the gradient by a running
average of its recent magnitude”. In: COURSERA: Neural Networks for Machine
Learning 4.2 (2012).

[126] Duy Tin Truong, Eric A Franzosa, Timothy L Tickle, Matthias Scholz, George
Weingart, Edoardo Pasolli, Adrian Tett, Curtis Huttenhower, and Nicola Segata.
“MetaPhlAn2 for enhanced metagenomic taxonomic profiling”. In: Nature Methods
12.10 (2015), p. 902.

[127] Bart PG Van Parys, Peyman Mohajerin Esfahani, and Daniel Kuhn. “From Data
to Decisions: Distributionally Robust Optimization is Optimal”. In: arXiv preprint
arXiv:1704.04118 (2017).

[128] Leonid Nisonovich Vaserstein. “Markov processes over denumerable products of spaces,
describing large systems of automata”. In: Problemy Peredachi Informatsii 5.3 (1969),
pp. 64–72.

[129] Cédric Villani. Optimal Transport: Old and New. Vol. 338. Springer Science & Business
Media, 2008.

[130] Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. “Generating videos with scene
dynamics”. In: Advances in Neural Information Processing Systems. 2016, pp. 613–621.

BIBLIOGRAPHY 106

[131] A. Wibisono and A. C. Wilson. “A variational perspective on accelerated methods
in optimization”. In: Proceedings of the National Academy of Sciences of the United
States of America. 2016.

[132] Jelmer M Wolterink, Tim Leiner, Max A Viergever, and Ivana Išgum. “Generative
adversarial networks for noise reduction in low-dose CT”. In: IEEE Transactions on
Medical Imaging 36.12 (2017), pp. 2536–2545.

[133] Raymond A Yeh, Chen Chen, Teck Yian Lim, Alexander G Schwing, Mark Hasegawa-
Johnson, and Minh N Do. “Semantic image inpainting with deep generative models”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2017, pp. 5485–5493.

[134] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. “Seqgan: Sequence generative
adversarial nets with policy gradient”. In: Thirty-First AAAI Conference on Artificial
Intelligence. 2017.

[135] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. “Self-attention
generative adversarial networks”. In: arXiv preprint arXiv:1805.08318 (2018).

[136] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang,
and Dimitris N Metaxas. “Stackgan: Text to photo-realistic image synthesis with
stacked generative adversarial networks”. In: Proceedings of the IEEE International
Conference on Computer Vision. 2017, pp. 5907–5915.

[137] Junbo Zhao, Michael Mathieu, and Yann LeCun. “Energy-based generative adversarial
network”. In: arXiv preprint arXiv:1609.03126 (2016).

[138] Ding Zhou, Jia Li, and Hongyuan Zha. “A new mallows distance based metric for
comparing clusterings”. In: Proceedings of the 22nd International Conference on
Machine learning. ACM. 2005, pp. 1028–1035.

[139] Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and Alexei A Efros. “Generative
visual manipulation on the natural image manifold”. In: European Conference on
Computer Vision. Springer. 2016, pp. 597–613.

[140] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. “Unpaired image-to-
image translation using cycle-consistent adversarial networks”. In: Proceedings of the
IEEE International Conference on Computer Vision. 2017, pp. 2223–2232.

[141] Xinyue Zhu, Yifan Liu, Zengchang Qin, and Jiahong Li. “Data augmentation in
emotion classification using generative adversarial networks”. In: arXiv preprint
arXiv:1711.00648 (2017).

	Contents
	List of Figures
	List of Tables
	Outline
	Background
	Bregman Divergence
	Wasserstein Distance
	Neural Networks
	Generative Adversarial Networks
	Variational Autoencoders

	Relaxed Wasserstein GANs
	Introduction
	Relaxed Wasserstein Divergence
	Experiments
	Discussion

	Properties of Bregman divergence and Choices of RW divergence
	More Properties of Bregman Divergence
	Choices of in Relaxed Wasserstein divergence

	Applications
	Distributionally Robust Optimization
	MetaAutoEncoder in Metagenomic Binning
	Simulation of Credit Default Swap Index Transaction Data

	Bibliography

