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ABSTRACT
An expression for thé‘classiCal-limit‘S—matrix for Coulomb excitation
is derived and directly evaluatéd without résorting_to stationary phase '
integration methods. The results obtained are in quantitétive agreement
with quantum mechanical calculations. This agreemenﬁ and the simplicity
of the method suggest the feasibility of extending it to cases where other

v

methods are not easily applied.
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The eleétroﬁagnetic interaction occurring in tﬁé:colliéion of a
nuélear projectile ﬁith a‘deformed target nucleus excites rotational
states.of the target. .Until several years agé only light projectile
ions were available, and coupled channel -quantum mechanical
calculations of the Coulomb excitation proceés are feasible in this
‘case.

ﬁith the advent df very heavy projectiles exact quantum mechanical
calculations have become impractical for the existing computer codes.
However, the shortness of de Broglie wavelength for heavy ions brings
the problem closer to the realm Qf classical mechanics. Semiclassical
theories use this fact to find‘appro#imate solutions to thé_problem,
such as in the Alder-Winther methodl which is the foundation for the
widelyAxuaiWinther-deBoer c@de‘for Coulomb excifation.2 Recently
a quiteAdifferent appfoach, the Uniform Semi-Classical Apprbximétion (usca)

developed mainly by Miller,3’h 5,6

was appliéd tq this problem.
In this paper we adapt and modify the formalism developed by
Marcus,7-9 so that we can study the Coulomb excitation process, and
we show its felationship in this case with the USCA as applied in
Refs. 5 and 6. |
We tgke as a target a deformed even-even nucleus in its ground
_ state; so that its initial spin is equal to zero and the final spin_
quantum number I is an e#en,integer.
- For Simplicity webrestrict 6ur§elves to the hegd-on.collisiqn
case so that the total éngular mbmentum of thé Systém (target'+‘brojectile)
is zefo. By téking the i;axis along the initial direction of the

projectile'motion the projection of the target angular momentum on this
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axis is aiwayé eqﬁgl tbtiefé;and’itvneed not be considered explicitly iﬁ 
ouf cgléulations._ | | |

Let HO be the Hamiltonian of the system for‘diStances largev
com?ared to thé diStaﬁpé ofzclosesfvapproéch; Hé consists then ofztﬁe‘
kihetic_energy“of:the.system plus the long-rangeiCoulomb,inferactidn
 term. Let !¢I> be the‘eigens#até of;Hd in the exit channel corrééponding
to spin quanfum number I'ofithé target for the boﬁndarj conditidné
mentioned 5efore. | )
~ At short.distances the Hémiltonian is‘H = Hof+.V,'wﬁére v includes
the remaining terms of the eleétromagnetic iﬁteféction.  We designéte'
by'|¢+) the»scatpéred paft of the eigenstate of H corresponding to the
initial conditioﬁs previously'given, and evaluated at a time long -
after the intéraction'hasvtaken place. |

" From the usual definition of the S-matrix

_ + Sty A o
St = <¢I|@ } = j'<¢1|%}<g|¢ ydg - (1)
where q is a convenient representatiqn and.the integrétion.is over
all the q space.

: s o+ o =
Since we do not know the function Y-(q) = {q|¢y"}, we approximate

it with the generalized multidimensional WKB deefunction Ny

¢(q) o
= s R (2).

@+(g)v='A(g)'eXP ii A
_where,'as may be seén in Ref. T, A COnserves ﬁrobability flﬁx and
the: phase ¢ satisfiés a Hamiltdn-Jacobi‘équétidﬁ.i
- “While. in Eq. (1) it wasiﬁot important which repreSentation'was‘.

chosen, such is not the case in Eq. (2), since for some choices of
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coordinates ‘the. WKB wavefunction @+(%)Abreak§'down. Marcus®?9 gives
considerable attention to thié problem, and we.refer to his papers for
additional details.

To tesfvtﬂis approach for the Coulomb excitation problem we start
" by taking the féllowing coordinateS'fo gescribe our syétem in the out-
going asymptotic region: X, the anglé between the symmetfy'axis of
the targét and the line joining the centers of projectile and target
and r, the distance between these centers. We denote by L the angular
mémentum of th¢ target, by Pr the relatiVe‘radigl momentum and by v
the relative velocity.  To obtain @f»trajectories are run at a given tdtq}
energy with the initial conditiohs: r large?.x=xo (various' arbitrary
values), and L = 0. From the values of fhe dynamical variables in

the final asymptotic region we can determine A and ¢, as shown in

Ref. 7. In this (X,r) representation they are given by:

: 1 sinxo dxo v, 1 | : v : o
O e ROV 9
and .
6 = - f(r(t)ap_(t) + X(t) dL(t)) + rp_+ XL ()

whére in Eq. (3) quantities with subscript zero are initial values,

and quantities without subscript are values at the end of the trajectory.
The integral in Eq. (L) is performed along thé trajectory. In the
asymptotic region ¢I is given by:

. d)I = (g’d)l) =

%;'.V'Gl (I + %) PI(cosx) %ae r . .

e}
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where v, and Vo are the asymptotic relati#e velocities for the values

0 and I respectively of the target spin. quantum number, PI

is an
ordinary Legendre polynoﬁial and n is the SQmmerfeld‘pérameter for the
exit channel.

Primarily because X does not take a constant valué in this as&mptotic
region, it is nbt-possible to define. a gqod'WKB'wavefunction in‘thiS‘

q = (x,r) représenﬁation. Hence, we transfofm;it to a representation
' analqgous to the.bne in Ref. 9 which is in this case
X=x-wt . ®

here w is the angular.felocity of the,target.at the end of the_interaction,
and T is fhe time it would take the projectile to describe an glastic
trajectory governed by the Hamiltonian Ho for an‘energy.equai to that
of the projectile on the outgoing asymptotic branch of its actual
trajectory. The time T is measured from fhe point of closest apprqach_
on this elastic trajectory to the disténce r corrgsponding to the angile
X on the actual trajectory.

In fhe éame'way as in Ref. 8 we can show from Eq. (1) that in this
case.tﬁeTS—matrix is given by

a = %oy 2 . = = _ T %4 D - dg .. ‘.
51e0 _.J~¢Iw 27r 51px day —_.[. ¢Iw 2mr s:nx_dxo dXo. (7)
' o - .



Or, more explicitly:

s

_ val 1 - .
SI<_O=————2—+——I PI(cosx) \/31nxos1n ELV—Z- e dxo (8)
. o . ,
where:
'¢' =& j‘(r(t) ap_(t) + x(t) an(t)) +.;-"L +n 1n (2p r/h)
h Ppit X h X nin tep,

We will eiamine Eq. (8) in méré detail.

First, let us coﬁsider the sudden impact limit of a case in
~which only the Quadrupéle‘momeﬁt of the target contributes to the
excitation. In this iimit i = Xo» and ¢' =:2qsin2)(o where q is given
by Eq. (5.11) of Ref. 1: therefore,.Eq.‘(B) réduces to the expression
found by Alder -and Winther for this same case.l This result is very
interésﬁing due td the coﬁceptually different approach we héve taken.

" If we now take the asymptotic expression for the Legendre polynomials:

PI(cos;() ~ 2cpsv[.(I +1/2) ¥ - %]/ \/(21 + 1) siny

and utilize the facf that initial orientation angles-xo and T - X6

result in Opposite'final angular momenta, we find

I*—O = f Jsm %Lv_I S 1./2) ] X (8')

o

The evaluation'of this infegral by the;stétionary phase’abproximation
results in the USCA'as applied iﬁ Réf._é. 'Thé Weighting_factofs.introduced-
through.geometrical arguments in_that péper,.and-also the use of the
I + 1/2 spin quantization conaitién are_thus:derived as an apprbximation

“of Eq. (8).
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'We 'have applied Eq. (8) to several cases. In Fig. 1 we compare
our calculations with those obtained by means‘of‘the coupled-channel

quéntum—mechanical code AROSA.lo

in all three cases the agreement

is good, especially considering thaﬁ in these cases the'syste#s considered
are not very classical. The method employed here should become more
accurate for heavy%ion sysiems in which the dg—Broglié Wavelength'of
the projectile is shorter and the_angular.momentum transfer becomes
laiger. No comparison is possible here for those cases,since quantum-
mechanical calculations for heavy systems are not yet feasible. We ‘

| should remérk at this point that the validity\of Eq. (8) is limited
to cases where the WKB wavefunction ¥ given in'Eg. (3) is a good
asymptotic apﬁroximation to the actual wavefunction w+. In particular
this requires fhat i be a monotonic function of XO; if-not, @f will

break down at the points where %%—-f 0. These difficulties were not

present in any of the célculationz presehted here, but K?eek gﬁ_gl:ll
fgported them for a related problem, and one should be Eareful that the rep-
resentation ‘X is monotoﬁié in ko'
Equation (8) is applicablé at energies arouna‘the Cbulomb barrier
by includiﬁg thé~compléx nuclear poﬁeﬁtial iﬁ tﬁe equations of motion
in the manner of Ref._l3{v |
-fhe féct that theAstationary phése appgoximation ;s:ﬁot used makes
Eq. (11) more strgiéhtforward to use thanvthevUSCAlin cases where the
stationary phase points are not easy to locate, ér where there are .
more than tiro §f'thém- Since in éur.direct ihtegratidn of Eq. (8).the
. stationary phase approximation isvnbﬁiused,-there is even reaéon.to tﬁink.

that our'resulté-could'be'mbre precise than those of USCA, especially
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in cases where the exponent - in the:integrand.of_Eq. (11) vgfies slowly.
For compariéoﬁ purposes.we give in Table 1 the results obtained by all
the methods we have mentioned for one case where this exponent varies
slowly. The USCA used is tﬁe form using Airy functions as
considered in\ﬁef. 63 fof this ;ase the Bessel unifofm approximation
given by Stine and Marcusleshouldbe morerappropriate. “However, the
results shown in Ref. 11 indicate that an integral expression such as Eq. (8)
is more accufate than the Bessel‘approximation for the cases shown there.
vFinally; we wouldvlike to point out that in casés where ﬁore than
one internal degree of freedom is considered, suéh as in rotationél—
vibrational excitétion, it may be considerably easier to evaluate
directly an éxpression of the form of Eg. (8) than to perform the

multidimensional root search required by all methods based on the

stationary phase approximation.
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Table 1. Excitation probabilities of rotational levels

in 1685, for backscattering of 45 MeV ;oBe.

This Work 0

== : ,‘ ' Spin (Eq. 8) , AROSAl ' Winther-deBoer2 USCA6

0 10.1023 0.0890  0.1087 ©0.1167
2 . 0.L615 0.4754 | 0.4375 0.h928’
u 0.3571  0.3522. . 0.35hk 0.3336
6  0.073%  0.0775  0.0885 -  o.0531
g . 0.00468  0.00756 0.0103 0.00395
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FIGURE CAPTION

Probabilities to Coulomb excited the rotational band of l68E

g
fpr backscattering of 7 MeV deuﬁeroné, 14 Mev u—particies and

45 MeVv lOBe projectiles; The quantum mechanical results were
obtained usihg the code AROSA, and they are indicated by dark
circles for the case of deuterons, dark squares for o-particles,
énd dark triangies for loﬁe, respectivély, Jjoined by solid
lines. The resulté from Eq. (8) in the text aré,shown, respectively,A
by'opeh.circles, squares, and triangles, joined by dashed lineé.
The quadrupole moment of/}68Er'i§ taken to be 7.67 b, its energy

levels are taken from the rotational model, and no nuclear forces

were considered in any of the calculations.
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