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ABSTRACT 

An .expression for the. classical-limit· S-matrix for Coulomb excitation 

is derived and directly evaluated without resorting to stationary phase 

integration methods. The· results obtained are in quantitative agreement 

with quantum mechanical calculations. This agreement and the simplicity 

of the method suggest the feasibility of extending it to cases where other 

me.thods are not easily applied. 

* This report was done with support from the U. S. Energy Research and 
Development Administration. Any conclusions or opJ.nJ.ons expressed in this 
report represent solely those of the authors and not necessarily those of 
The Regents of the University of California, the Lawrence Berkeley 
Laboratory or the U. S. Energy Research and Development Administration. 

** Permanent address: Institut des Sciences Nucleaires de Grenoble 
BP 257 * 38044 Grenoble, FRANCE. 
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The electromagnetic interaction occurring in the collision of a 

nuclear projectile with a deformed target nucleus excites rotational 

states of the target. Until several years ago only light projectile 

ions were available, and coupled channel quantum mechanical 

calculations of the Coulomb excitation process are feasible in this 

case. 

With the advent of very heavy projectiles exact quantum mechanical 

calculations have become impractical for the existing computer codes. 

However, the shortness of de Broglie wavelength for heavy ions brings 

the problem closer to the realm of classical mechanics. Semiclassical 

theories use this fact to find approximate solutions to the problem, 

such as in the Alder-Winther method1 which is the foundation for the 

widelyusedWinther-deBoer code for Coulomb excitation. 2 Recently 

a quite different approach, the Uniform Semi-Classical Approximation (USCA) 

developed mainly by Miller, 3 ' 4 was applied to this problem. 5 ' 6 

In this paper we adapt and modify the formalism developed by 

Marcus, 7- 9 so that we can study the Coulomb excitation process, and 

we show its relationship in this case with the USCA as applied in 

Refs. 5 and 6. 

We take as a target a deformed even-even nucleus in its ground 

state, so that its initial spin is equal to zero and the final spin 

quantum number I is an even integer. 

For simplicity we restrict ourselves to the head-on collision 

case so that the total angular momentum of the system (target + projectile) 

is zero. By taking the z-axis along the initial direction of the 

projectile ~otion the projection of the target angular momentum on this 
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axis is always equal to zero,and it need not be c(.)nsidered explicitly in 

our calculations. 

Let H be the Hamiltonian of the system for distances large 
0 

compared to the distance of closest approach; H consists then of the . . . . 0 

kinetic energy of the system plus the long-range·Coulomb interaction 

term. Let l<t>1 > be the eigenstate of·H
0 

in the exit channel corresponding 

to spin quantum number I of the target for the boundary conditions 

mentioned before. 

At short distances the Hamiltonian is H = H · + V, where V includes 
0 

the remaining terms of the electromagnetic interaction. We designate 

by l'l/J+) the scattered part of the eigenstate of H corresponding to the 

initial conditions previously given, and evaluated at a time long 

after the interaction has ·taken place. 

From the usual definition of the S-matrix 

' ' (1) 

where q is a convenient representation and the integration is over 

all the q space. -
Since we do not know the function 'ljJ + ( q) = (q I 'ljJ + > , we. approximate - -

it with the generalized multidimensional WKB wavefunction 

-+ ~ <t>( q) l 
'ljJ {q) = A ( ~) exp } i -T- ~ 

where, as may be seen in Ref. 7, A conserves probability flux and 

the phase <1> satisfies a Hamilton-Jacobi equation. 

While in Eq. (1) it was not important which representation was 

chos.en, such is not the case in Eq. (2), since for some choices of 

(2) 
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coordinates the.WKB wavefunction ~+{q) breaks down. Marcus 8 '9 gives 

considerable attention to this problem,and we.refer to his papers for 

additional details. 

To test this approach for the Coulomb excitation problem we start 
\ 

· by taking the following coordinates to describe our system in the out-

going asymptotic region: X, the angle between the symmetry axis of 

the target and the line joining the centers of projectile and target 

and r, the distance between these centers. We denote by L the angular 

momentum of the target, by Pr the relativeradial momentum and by v 

the relative velocity. -+ To obtain \jl- trajectories are run at a given total 

energy with the initial conditions: r large, x=x (various arbitrary 
0 

values), and L = 0. From the values of the dynamical variables in 

the final asymptotic region we can determine A and ¢, as shown in 

Ref. 7. In this (X,r) representation they are given by: 

and 

¢ = - f ( r ( t ) dP ( t) + X ( t ) dL ( t ) ) + rP + XL 
r .r 

where in Eq. (3) quantities with subscript zero are initial values, 

(3) 

(4) 

and quantities without subscript are values at the end of the trajectory. 

The integral in Eq. (4) is performed along the trajectory. In the 

asymptotic region ¢I is given by: 

( 5) 
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where v
0 

and vi are the asymptotic relative velocities for the values 

0 and I respectively of the target spin quantum number, PI is an 

ordinary Legendre polynomial and n is the Sommerfeld parameter for the 

exit channel. 

Primarily because X does not take a constant value in this asymptotic 

region, it is not possible to define. a good WKB wavefunction in this 

q = (x,r) representation. Hence, we transform.it to a re~resentation 

analogous to the .one in Ref. 9 which is in this case 

-X = X - WT (6) 

here w is the angular velocity of the target at the end of the interaction, 

and T is the time it would take the projectile to describe an elastic 

trajectory gover'ned by the Hamiltonian H
0 

for an energy equal to that 

of the projectile on the outgoing asymptotic branch of its actual 

trajectory. The time T is measured from the point of closest approach 

on this elastic trajectory to the distance r corresponding to the angle 

X on the actual trajectory. 

In the same way as in Ref. 8 we can show from Eq. (1) that in this 

case the s~matrix is given by 

·s ·*-+ 2 -SI+O = ~I~ 2Tir sinX dX J7r *-+ 2 .... dX = ~I~ 2rrr sinX d 
. o . \ Xo 

.• · 
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Or, more explicitly: 

J~ ~ siriX sin)( 
d- VI v2I + l 

PI(cosx) ei<l>'dx 8I+-O = QX__ 
2 0 dX v 0 

0 0 
0 

(8) 

where: 

<I>' 
l J (r(t) dp (t) + x(t) dL(t)) l - + n ln (2prr/h) - - h + h XL r 

We will examine Eq. ( 8) in more detail. 

First, let us consider the sudden impact limit of a case in 

which only the quadrupole moment of the target contributes to the 

excitation. In this limit X = x
0

, and <!>' = 2qsin
2

x
0 

where q is given 

by Eq_. (5.11) of Ref. 1: therefore, Eq. (8) reduces to the expression 

found by Alder· and Winther for this same case .1 This result is very 

interesting due to the conceptually different approach we have taken. 

If we now take the asymptotic expression for the Legendre polynomials· 

and utilize the fact that initial orientation angles X and TI - X 
0 0 

result in opposite final angular momenta, we find 

~ 

s ~_l:.J 
I+-0 c . 

V'TI o 

.... /sinxo dX . vi ei[<J>'. - (I + l/2) )(] dX 
~ dX v o 

0 0 

( 8' ) 

The evaluation of this integral by the stationary phase approximation 

results in the USCA as applied in Ref. 6. The weighting factors introduced 

through geometrical arguments in that paper, and also the use of the 

I + l/2 spin quantization condition are thus derived as an approximation 

of Eq. (8). 
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We'bave applied Eq. (8) to several cases. In Fig. 1 we compare 

our calculations with those obtained by means of the coupled-channel 

. 10 
quantum-mechanical code AROSA. In all three cases the agreement 

is good, especially considering that in these cases the systems considered 

are not very classical. The method employed here should become more 

accurate for :tieavy-:-ion systems in which the de-Broglie wavelength of 

the projectile is shorter and the angular momentum transfer becomes 

larger. No comparison is possible here for those cases, since quantum-

mechanical calculations for heavy systems are not yet feasible. We 

should remark at this point that the validity of Eq. (8) is limited 

' -+ 
to cases where the WKB wavefunction ~ given in.Eq. (3) is a good 

;r,+. asymptotic approximation to the actual wavefunction "' In particular 

- -+ 
this requires that X be a monotonic function of X ; if·not, t/J will 

0 

break down at the points where ~X = 0. These difficulties were not 
Xo l . 11 

present in any of the calculations presented here, but Kreek et al. 

reported them for a related problem,and one should be careful that the rep- . 

resentation X is monotonic in X . 
0 

Equation (8) is applicable at energies around the Coulomb barrier 

by including the complex nuclear potential in the equations of motion 

in the manner of Ref. 13. 

The fact that the.stationary phase appr,oximation is not used IJ1akes 

Eq. ( 11) more straightforward to use than the USCA in cases where the 

stationary phase points are not easy to locate, or where there are 

more than two of them. Since in our direct integration of Eq. (8) the 

stationary phase approximation is not used, there is even reason to think 

that our results could be more precise than those of USCA, especially 
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in cases where the exponent in the integrand of Eq, (11) varies slowly. 

For comparison purposes we give ih Table 1 the results obtained by all 

the methods we have mentioned for one cas·e where this exponent yaries 

slowly. The USCA used is the form using Airy functions as 

considered in Ref. 6; for this case the Bessel uniform approximation 

12 ' 
given by Stine and Marcus shouldbe more appropriate. However, the 

results shown in Ref. 11 indicate that an integral expression such as Eq. (8) 

is more accurate than the Bessel approximation for the cases shown there. 

Finally, we would like to point out that in cases where more than 

one internal degree of freedom is considered, such as in rotational-

vibrational excitation, it may be considerably easier to evaluate 

directly an expression of the form of Eq. (8) than to perform the 

multidimensional root search required by all methods based on the. 

stationary phase approximation. 
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-
Table l. Excitation probabilities of rotational levels 

. l68E 1.n r for backscattering of 45 MeV 10Be. 
"' 

This Work 
AROSA10 2 USCA

6 .- Spin (Eq. 8) Winther-deBoer 

0 0.1023 0.0890 0.1087 0.1167 

2 0.4615 0.4754 0.4375 0.4928 

4 0.3571 0. 3522. 0.3544 0.3336 

6 '0.0734 0.0775 0.0885 0.0531 

8 0.00468 0.00756 0.0103 0.00395 

• 
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FIGURE CAPTION 

Fig. 1. Probabilities to Coulomb excited the rotational band of 168Er 

for backscattering of 7 MeV deuterons, 14 MeV a-particles and 

45 MeV 
10

Be projectiles. The quantum mechanical results were 

obtained using the code AROSA, and they are indicated by dark 

circles for the case of deuterons, dark squares for a-particles, 

and dark triangles for 
10

Be, respectively, joined.by solid 

lines. The results from Eq. (8) in the text are shown, respectively, 

by open circles, squares, and triangles, joined by dashed lines. 

168 . 
The quadrupole moment of Er is taken to be 7.67 b, its energy 

I 

levels are taken from the rotational model, and no nuclear forces 

were considered in any of the calculations. 
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