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Abstract 

Recent netwoik traffic studies argue that network arrival pro
cesses are much more faithfully modeled using statistically 
self-similar processes instead of traditional Poisson processes 
(L1WW94a, PF94]. One difficulty in dealing with self
similar models is how to efficiently synthesize traces (sample 
paths) corresponding to self-similar traffic. We present a fast 
Fourier transform method for synthesizing approximate self
similar sample paths and assess its performance and validity. 
We find that the method is as fast or faster than existing meth
ods and appears to generate a closer approximation to true 
self-similar sample paths than the other known fast method 
(Random Midpoint Displacement). We then discuss issues 
in using such synthesized sample paths for simulating net
work traffic, and how an approximation used by our method 
can dramatically speed up evaluation of Whittle's estimator 
for H, the Hurst parameter giving the strength of long-range 
dependence present in a self-similar time series. 

1 Introduction 

When modeling network traffic, packet arrivals are often as
sumed to be Poisson processes because such processes have 
attractive theoretical properties [FM94]. Recent work, how
ever, argues convincingly that local-area network traffic is 
much better modeled using statistically self-similar processes 
[L1WW94a], which have much different theoretical.prop
erties than Poisson processes. A subsequent investigation 
suggests that the same holds for wide-area network traffic 
[PF94].' 

The strength of self-similar models is that they are able to 
incorporate long-range dependence, which informally means 
significant correlations across arbitrarily large time scales. 
For many networking questions, the presence or absence of 
long-range dependence plays a crucial role in the behavior 

•This work was supported by the Director, Office of Energy Research, 
Scientific Computing Staff, of the U.S. Department of Energy under Contract 
No. DE-AC03-76SF00098. 
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predicted by analytic models. For example,. the presence of 
long-range dependence completely alters the tail of queue 
waiting times [ENW94]. 

The theory of self-similar stochastic processes is not near! y 
as well-developed as that for Poisson processes. But given 
the strong empirical evidence that self-similar models are 
much better than Poisson models at capturing crucial net
work traffic characteristics such as burstiness, it has become 
important to develop tools for understanding self-similar pro
cesses, and for generating synthetic network traffic that re
flects the salient characteristics of these processes. 

In this paper we present a fast algorithm for generating 
approximate sample paths for a type of self-similar process 
known as fractional Gaussian noise (FGN) [B92b]. The. 
algorithm is based on synthesizing sample paths that have 
the same power spectrum as FGN. These sample paths can 
then be used in simulations as traces of self-similar netWork 
traffic. The key to the algorithm is a fast approximation of 
the power spectrum of an FGN process; this approximation 
~so has application for fast estimation of the strength of 
long-range dependence (Hurst parameter) present in network 
arrival processes. 

The next section defines self-similar processes and 
presents some of their properties and existing methods of 
synthesizing self-similar sample paths. These methods all 
have drawbacks of either being computationally expensive, 
or generating only approximate self-similar sample paths. 
The following section discusses Whittle's estimator, which 
is used to estimate a sample's Hurst parameter, giving the 
strength of the long-range dependence in the sample. In 
§ 4 we present our Fourier transform method for synthesizing 
approximate FGN, and in § 5 evaluate the method in several 
ways to assess how well it approximates FGN. We then in 
§ 6 discuss some issues in using synthesized FGN for sim
ulating network traffic. § 7 presents a method for speeding 
up Whittle's estimator dramatically at little cost to accuracy, 
and § 8 summarizes our findings. In an appendix we give 
a program written in the S language for implementing our 
method. 



2 Self-similar processes 

We begin with two definitions. A stationary process is long
range dependent (LRD) if its autocorrelation function r( k) 
is nonsummable (i.e., L:1.: r(k) = oo) [C84]. Thus, the defi
nition of long-range dependence applies only to infinite time 
series. 

The simplest models with long-range dependence are self
similar processes, which are characterized by hyperbolically
decaying autocorrelation functions. Self-similar and asymp
totically self-similar processes are particularly attractive 
models because the long-range dependence can be charac
terized by a single parameter, the Hurst parameter H, which 
can be estimated using Whittle's procedure (see§ 3 below). 

More specifically, the process {Xt}t=O,t,2, ... is asymptot
ically self-similar if 

r(k)- k- 2- 2H L(k) ask- oo, (1) 

for Hurst parameter H satisfying 1/2 < H < 1 and L a 
slowly-varying function1; and the process is exactly self
similar if [BSTW94] [C84, p.59]: 

r(k) = 1/2 [(k + 1)2H- 2k2H + (k- 1)2H] . 

For any process {Xdt=O,t,2, ... we can consider an "ag

gregated" version {X} m)} constructed by partitioning {X t } 

into non-overlapping blocks of m sequential elements and 

constructing a single element of x}m) from the average of 
the m elements: 

tm 

Xt(m) = 2_ ""' L.J X;. 
m i=tm-m+l 

(2) 

Thus {X} m)} corresponds to viewing the process {X t} using 
a time scale that is a factor of m coarser than that used to view 
{ X 1 } itself. 

For typical stochastic processes, as m increases the auto

correlation of {X}m)} decreases until in the limit the ele

ments of {X1(m)} are uncorrelated. For a self-similar pro
cess, on the other hand, the process { Xt} and the aggregated 
process {X} m)} have the same autocorrelation function. 

From these definitions it is not obvious at .first glance that 
self-similar processes actually exist, but in fact a number of 
families of self-similar processes are known [ST94]. 

The most widely-studied self-similar processes are frac
tional Gaussian noise (FGN) and fractional ARIMA pro
cesses [B92b, ST94, GW94]. Associated with FGN is frac
tional Brownian motion (FBM), which is simply the inte
grated version of FGN. In this paper we are concerned with 
synthesizing FGN. There are several existing methods for 
synthesizing sample paths for self-similar processes2, but 
they all have drawbacks: 

1For a slowly-varying function L, lime-oo L(tx)/L(x) = 1 for all 
x > 0. Constants and logarithms are examples of slowly-varying functions. 

2See [L1WW94b] for a more complete discussion and citations. 
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• Consider an alternating renewal process R(t) in which 
the on and off periods have durations from a "heavy
tailed" (e.g., Pareto) distribution. Let Sn be the process 
constructed by multiplexing n independent instances of 
the R(t) process, where Sn(t) is the number of R(t) 
processes that are in "on" periods dming timet. Then 
Sn is asymptotically (as n approaches oo) a self-similar 
process [LTWW94a]. 

The principle difficulty with using a simulation of Sn for 
synthesizing a self -similar process is that one must trade 
off speed of computation (low n) against the degree of 
agreement with a true self-similar process (asymptoti
cally high n). 

• Consider an MIG/oo queue model, where customers ar
rive according to a Poisson process and have service 
times drawn from a heavy-tailed distribution with infi
nite variance [C84, LTWW94a, PF94]. In this model, 
X 1 is the number of customers in the system at timet, 
and {Xt} is asymptotically self-similar in the sense 
ofEqn. 1. 

The drawback of this method is that the process is only 
asymptotically self-similar, so again one must trade off 
length of cOmputation for degree of self-similarity. 

• A third method of synthesizing a self-similar process is 
the "Random Midpoint Displacement" (RMD) method 
[LEWW95], which works by progressively subdividing 
an interval over which to generate the sample path. At 
each division, a Gaussian displacement is used to deter
mine the value of the sample path at the midpoint of the 
subinterval. Self-similarity comes about by appropriate 
scaling of the variance of the displacement 

This method has the attractive property that it is fast (see 
below) and that it can be used to interpolate a self-similar 
sample path between observations made on a larger time 
scale. The drawbacks of the method are that it only gen
erates an approximately self-similar process; in partic
ular, the Hurst parameter for the sample paths tends to 
be larger than the "true" value for 0.5 < H < 0.75, 
and smaller than the "true" H for 0.75 < H < 1. 
Moreover, for H = 0.5, the sample path should corre
spond to white noise, but the authors found that instead it 
appears correlated, since the estimated fi for their syn
thesized sample paths was barely within two standard 
deviations ofH = 0.5. 

• A fourth method involves computing wavelet coeffi
cients corresponding to a wavelet transform of FBM. 
The coefficients are then used with an inverse wavelet 
transformation to yield sample paths ofFBM [F92]. The 
method is only approximate because the wavelet coef
ficients are not independent, but it is difficult to capture 
their interdependence. The author of [F92] points out 
that the RMD method is essentially equivalent to the 



.... 

wavelet method for a particular (non-orthonormal) ba
sis. Unfortunately, the paper does not include an analy
sis of the quality of the synthesized FBM nor the running 
time of an implementation of the method. 

• A fifth method, due to Hoskings, is discussed by Gar
rett and Willinger in [GW94]. This algorithm generates 
sample paths from a fractional ARJMA process. The 
authors of [GW94] do not evaluate the quality of the 
synthesized sample paths, but they note the algorithm's 
running time is 0( n2) for generating n points, unattrac
tively slow; generating 171,000 points required 10 CPU 
hours. 

Most of the synthesis methods take large amounts of CPU 
time. For example, [LTWW94b] discusses an AR(l) method 
which requires 3-5 minutes to synthesize a trace of 100,000 
points when running on a massively parallel computer with 
16,384 processors. The first two methods mentioned above 
have running times on the order of CPU hours for traces of 
comparable length. The RMD method, on the other hand, 
is quite fast, requiring a couple of minutes on a SPARCsta
tion 20 to generate 260,000 points, making it much more 
attractive computationally. Our method is faster still, one of 
its main strengths. 

3 Whittle's estimator 

A key problem when studying samples of self-similar pro
cesses is estimating the Hurst parameter H. A "quick 
and dirty" approximate estimator, based on a maximum 
likelihood technique due to Whittle, is given by Beran 
[B92b, LTWW94a, GW94]3. We now give an overview of 
Whittle's estimator, because some of the properties of FGN 
processes upon which it is based are also used by our FGN 
synthesis method, and because a key approximation used by 
our method can also be used to rapidly evaluate Whittle's 
estimator (see§ 7). 

In brief, suppose { x t} is a sample of a self-similar process 
X for which all parameters except u 2 and H are known. Let 
f(>.; H) denote the power spectrum of X when normalized 
to have variance 1, and I(>.) the periodogram (i.e., power 
spectrum as estimated using a Fourier transform) of {xt}. 
Then to estimate H, find ii that minimizes: 

A 1" I(>.) g(H) = A d>.. 
_,. !(>.;H) 

(3) 

If { Xt} has length n, then the above integral is readily 
converted to a discrete summation over the frequencies 

>. = 2:' ~' ... '21r. 
The form of this estimator relies on the fact that the peri

odogram ordinates I ( >.) are asymptotically independent and 

3 An alternative estimation technique based on wavelet decomposition is 
discussed in [KK.93). 
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exponentially distributed with mean f(>.; H) (we use this 
property below). 

Along with the estimator one can compute u'k, its variance 
[G93, B92a]: 

dj, = 4• [L ( ato;i<"l), dwr 
When synthesizing self-similar sample paths, we can then 
use Whittle's estimator along with u'k to determine whether 
our ii is acceptably close to the H we intended. 

An important point regarding Whittle's estimator bears re
peating: it is not a test for whether a sample of a time series is 
consistent with long-range dependence (see [B92a] for such 
a test). Rather, it is an estimator of H, given the assump
tion that the power spectrum of the underlying process does 
indeed correspond to f(>.; H). 

4 The Fourier Transform method 

In this section we present a method, based on the Discrete 
Time Fourier Transform (DTFT), for synthesizing fractional 
Gaussian noise. The strategy behind our method is taken 
from [F92], and can be summarized as follows. Suppose 
we know /(>..;H), the power spectrum of the FGN pro
cess. Then we can construct a sequence of complex num
bers z1 corresponding to this power spectrum; z, is in a 
sense a frequency-domain sample path. We can then use an 
inverse-DTFT to obtain x1, the time-domain cmmterpart to 
z1• Because x1 has (by construction) the power spectrum of 
FGN, and because autocorrelation and power spectrum form 
a Fourier pair, x1 is guaranteed to have the autocorrelational 
properties of an FGN process, which for many purposes are 
its most salient characteristic. 

The difficulty with this approach lies in accurately comput
ing f ( >..; H), and in finding z; truly corresponding to the FGN 
power spectrum. In particular, there is no a priori reason to 
assume that the individual z; are independent, and capturing 
their interdependence may prove difficult. We address this 
difficulty below. 

Because the DTFT and its inverse can be rapidly computed 
using the Fast Fourier Transform (FFf) algorithm, we refer 
to our method as the FFT method of synthesizing fractional 
Gaussian noise. We will not prove that the method results 
in true FGN, and, indeed, it does not, due to several approx
imations made when developing the method. But we will 
instead argue that the method effectively produces FGN. By 
this we mean that the sample paths produced by the method 
are indistinguishable (using current statistical tests) from true 
FGN, so for practical purposes such as simulations the sam
ple paths can be used in lieu of true FGN with a high degree 
of confidence. We refer to this approach as the "quacks like 
a duck" approach, from the adage that if an object looks like 
a duck, walks like a duck, and quacks like a duck, one might 
as well call it a duck. 



In line with this argument, there are four tests that a sample 
of purported FGN must pass: 

• A variance-time plot should show that if the sample is 
aggregated by a factor of m (corresponding to Eqn. 2), 
then, asymptotically, the variance of the aggregated ver
sion falls off by a factor of m- .6, where ,8 = 2( 1 - H) 
[LTWW94a, GW94]. This is a heuristic test in the 
sense that the statistical properties of these plots are not 
known, but it is valuable because of the accompanying 
physical intuition: it indicates how "bursty" the sample 
is when viewed over progressively larger time scales. 
For this reason, we prefer it to other heuristic tests such 
as periodogram plots orRIS plots [LTWW94a, GW94]. 

• Beran's goodness-of-fit test for long-range dependence 
[B92a] must indicate that the sample is consistent with 
long-range dependence. 

• Whittle's estimator (Eqn.3) must yield an estimated ii 
that is consistent with the "true" value of H used when 
generating the sample. 

• The marginal_distribution of the sample must be normal 
or' nearly normal, since it corresponds to a Gaussian pro
cess. This can be tested using the Anderson-Darling A 2 

omnibus test for the normal distribution [DS86, PF94]. 
Without this test, we cannot know that it is valid to use 
Whittle's estimator (previous item). 

Both Beran's test and Whittle's estimator (Eqn.3) are in
tricately tied to the estimated power spectrum of the process. 
For an FGN process, the power spectrum is [B86]: 

f(>.; H)= A(>.; H) (i>.i-~H-l + 8(>.; H)] (4) 

forO< H < 1 and -1r ~ >. ~ 1r, where: 

A(>.; H) = 2sin(7rH)f(2H + 1)(1- cos>.) 
00 

8(>.;H) = L [(27rj + >.)-2H-l + (27rj- >.)-2H-1] 

i=l 

The main difficulty with using Eqn. 4 to compute the power 
spectrum is the vexing infinite summation in the expression 
for 8(>.; H), for which no closed form is known. In Ap
pendix A we discuss a general method for approximating 
such infinite sums, and in particular the approximation we 
will use is: 

8(>.;H) 

where: 

~ af + bf + a1 + b1 + a~ + bg 
af + bf + a{ + b{ 

+ 8H1r 

d -2H -1 

d' -2H 

ak = Zk1r + >. 
bk 2k7r- >. 

(5) 

(6) 
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We then define/(>.; H) as the approximation ofEqn. 4 given 
by using Eqn. 5 for 8(>.; H). We subsequently show that 
this approximation is good enough to pass the "quacks like a 
duck" criterion. 

The inputs to our method are H, the desired Hurst param
eter, and n, the desired (even) number of observations in the 
synthesized sample path. Our method proceeds as follows: 

1. Construct a sequence of values {!I, ... , fn/2}, where 
/j = f(l:!f/-; H), corresponding to the power spectrum 
of an FGN process for frequencies from 21r fn to 1r. 

2. "Fuzz" each {/1} by multiplying by an independent ex
ponential random variable with mean 1. Call the fuzzed 
sequence {h}. 

We do this because when estimating a process's power 
spectrum using the periodogram of a sample, the power 
estimated for a given frequency is distributed asymptot
ically as an independent exponential random variable 
with mean equal to the actual power ([B92b, G93]; and 
see §3 above). 

A question regarding the accuracy of our method in 
producing true self-similar sample paths is the degree 
to which this asymptotic result can be applied to a fi
nite power spectrum without compromising the self
similarity property. 

3. Construct { z~, ... , zn/2}, a sequence of complex values 

such that iz; I = IJ. and the phase of z; is uniformly 
distributed between 0 and 21r. The random phase tech
nique, taken from [S92], preserves the power s~trum 
(and thus autocorrelation) corresponding to {/;}, but 
ensures that different sample paths generated using the 
method will be independent. It also makes the marginal 
distributions of the final result normal, a requirement 
for fractional Gaussian noise, and also for applying the 
Whittle procedure using an expression for f( >.;H) cor
responding to the FGN power spectrum. 

One outstanding question with our method is we do not 
understand why the phase randomization leads to a sta
tistically verifiable Gaussian process, but it does (see the 
next section), and the absence of phase randomization 
results in a non-Gaussian process. 

4. Construct {zb, ... , z~_ 1 }, an "expanded" version of 
{zh···,Zn/2}: . 

{ 

0, ifj = 0, 
zj = 2:.__ ifO < j ~ n/2, and 

Zn-j ifn/2 < j < n. 

{ zj} retains the power spectrum used in constructing 
{ z;}, but because it is symmetric about z~12 , it now 
corresponds to the Fourier transform of a real-valued 
signal (again, see [S92]). 



5. Inverse-Fourier transform {zj} to obtain the approxi
mate FGN sample path { x;}. 

Appendix B gives a program written in the S language for 
implementing the above method. 

5 Evaluation of the method 

We have implemented the method described in the previous 
section in the S language (see Appendix B). It is quite fast: 
generating a sample path of 32,768 points takes about 11 CPU 
seconds on a SPARCstation IPX, and 262,144 takes about 
80 seconds.4 

We then assessed how well samples produced by the 
method match what we would expect for FGN. For each of 
H = 0.50, 0.55, ... , 0.90, 0.95 we generated ten samples of 
32,768 points each, corresponding to different random seeds. 
We then applied the four tests mentioned above: variance
time plot, Beran's goodness of fit test, Whittle's estimator, 
and Anderson-Darling for normal marginal distribution. 

I H I H Range I Beran I Normal I V-TPlot 

.50 .499-.505 -../ -../ -../ 

.55 .547-.556 -../ -../ -../ 

.60 .591-.606 -../ -../ -../ 

.65 .647-.659 -../ -../ -../ 

.70 .693-.708 -../ -../ -../ 

.75 .745-.754 -../ -../ sometimes low 

.80 .794-.806. -../ -../ sometimes low 

.85 .842-.855 -../ -../ usually low 

.90 .895-.904 -../ No* usually low 

.95 .943-.959 -../ No* always low 

Table 1: Evaluation of Synthesized Fractional Gaussian 
Noise. 

Table 1 summarizes the results of the tests. For each "true" 
value of H, the second column gives the range over the ten 
seeds of the fi estimate of H produced by using the Whittle 
procedure. As noted in § 3, in addition to ii, the Whittle 
procedure also produces a standard deviation <7H associated 
with the estimate. For our tests, uH was always about 0.004. 
We were thus able to test each ii to see whether it lay within 
two standard deviations of the actual value of H. This test 
failed four times for the 100 sample paths tested, well within 
the margin of error of the Whittle procedure.5 Two of these 
instances were for H = 0.60 (one for H = 0.65, one for 

4 We have found that on numeric-intensive tasks the S interpreter runs 
abouttwice as fast on a SPARCstation 20 as on the IPX model, so comparing 
these timings with those for the RMD method given in § 2 indicates that 
our implementation of the FFf method runs more than twice as fast as the 
implementation of the RMD method used by [LEWW95]. 

5Here and in the sequel, when we discuss a finding of k events out of 
n as being within the margin of error, we mean the following. Assume the 
k events are independent and each has probability p, where p depends on 
the exact form of the event (in this case, p = 0.05 since the event is "more 
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H = 0.95). Two failures, each with probability p = 0.05, 
out of ten samples for H = 0.60, is again within the margin 
of error. Thus, as far as Whittle's estimator is concerned, 
our simulated data is wholly consistent with FGN with the 
desired value of H. 

A second consistency test is to check for any trends of ii 
being greater than H or less than H more often than should 
occur by chance. Of the 100 samples, 55 had ii < Hand 
45 had ii > H. This variation lies within the margin of 
error for the null hypothesis that fi is equally likely to be 
larger or smaller than H (i.e., no trend). When looking at 
fixed values of H, it takes ii < H or ii > H occurring 
9 or 10 times for the trend to be significant (i.e., less than 5% 
chance of occurring by chance). This happened three times: 
for H = 0.5, 9 of the 10 samples had fi > 0.5; for H = 0.7 
and H = 0.75, 9 out of 10 samples had ii < H. Thus 
for H = 0.5 our method appears biased toward values of ii 
that are slightly too high and for H = 0.7 and H = 0.75 
they are slightly too low (though in all cases still within two 
standard deviations). We note that the failure for H = 0.5 is 
not as severe as in the case for the RMD method, since for 
our method, in all cases the value of if is comfortably within 
two standard deviations of H, while for the RMD method, the 
authors report the values of H are barely within two standard 
deviations. But it remains a deficiency. 

Given that the RMD method has a bias towards H = 0.75, 
we also checked for separate trends for 0.55 :::; H :::; 0.65 
(skipping H = 0. 7 due to the bias already noted above) and 
0.80 :::; H :::; 0.95. Inthefirstcase, 14outofthe30samples 
had f1 > H and in the second case, 20 out of the 40. Both of 
these are within the expected range. Thus our method does 
not appear to suffer from the same bias. 

We then applied Beran's goodness-of-fit test, for which 
two of the samples paths failed at the 5% level, again within 
the margin of error. 

For H < 0.85, all or all but one of the sample paths passed 
the A 2 test at the 5% level for normality of the marginal dis
tribution. That they passed means that they exhibit a striking 
degree of normality, as the test is very sensitive to minor de
viations from normality (particularly in the tails), especially 
for large datasets. For H = 0.85, two of the sample paths 
failed and eight passed, still within the margin of error. For 
H ~ 0.9 the sample paths failed the A2 test, but they still 
"look" strongly normal. For example, as shown in Figure 1, 

· a Q-Q plot for H = 0.95 is indistinguishable to the eye from 
that of a normal distribution. 

The final evaluation we made was to construct variance
time plots to see whether when the sample path was aggre
gated by a factor of m its variance fell off by the expected 
factor of m-2(!-H). Figure 2 shows such plots for one sam-

than two standard deviations from the mean"). Tilen the probability that we 
would observe at least k such events, if indeed they are spurious, is given 
by the binomial distribution for the given values of n, k, and p. If this 
probability is greater than 5%, then the finding of k events mightreasonably 
have occurred simply due to chance, and we declare the finding within the 
margin of error. 



~~~------~------~------~------~~ -2 0 2 4 
Quantiles of Standard Normal 

Figure 1: Q-Q Plot for Marginal Distribution of Synthesize 
Fractional Gaussian Noise, H = 0.95. 

X H=0.9 
+ H=0.8 
6 H=0.7 
o H=0.6 
c H =0.5 

0 
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logtO M (Aggregation Size) 

Figure 2: Variance-Time Plot for Synthesized Fractional 
Gaussian Noise. 

ple each of H = 0.5, 0.6, 0.7, 0.8, 0.9. The x-axis gives 
log10 of the aggregation level m, and they-axis gives log10 
of the (normalized) variance of the aggregated process. 

The lines drawn from the origin correspond to 
y = x-2(1-H) (after a log10 transformation), so we ex
pect that for a true self-similar process the variance-time plot 
for a given value of H will coincide with the corresponding 
line. We found this to be the case for H :::; 0.7, but that 
for H 2': 0.75, the variance-time plot was sometimes, usu
ally, or always lower (i.e., steeper-sloped) than expected, as 
indicated in Table 1. The variance-time plot is based on an 
asymptotic relationship [C84], so this anomaly may simply 
be due to stronger long-range dependence (i.e., higher values 
of H) requiring longer sample paths to exhibit their true de
pendence. Still, caution must be used because the burstiness 
of aggregated sample paths for large H is verifiably smaller 
than one might expect. 
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6 Application to network simulations 

We have shown in the previous section that in general FGN 
sample paths synthesized using the FFT method pass the 
"quacks like a duck" criterion, in that existing statistical tools 
are unable to detect that the sample paths were generated us
ing an approximate method. This finding suggests that the 
method can be profitably used in networking simulations. 

Networking researchers wishing to simulate long-range 
dependent traffic face a number of issues. We comment 
here on some of those issues and how they relate to the FFT 
method. 

One of the most important questions is: even if network 
traffic is long-range dependent, are self-similar models suf
ficient for capturing the long-range dependence, and if so, 
is the fractional Gaussian noise model an appropriate self
similar model? One would expect self-similar models to be 
appropriate if one can show that network processes such as 
packet arrivals match one of the known methods of gen
erating a truly self-similar process, such as the M j G / oo 
queue or the heavy-tailed on/off models discussed in § 2 
(see also [ENW94]). Even without compelling evidence of 
such a match, self-similar models still remain more attractive 
than traditional Poisson-based models of network arrival pro
cesses, since the latter have no long-range dependence what
soever. 

In assessing whether FGN models are appropriate, we 
must consider whether network arrival processes appear a 
close match to Gaussian processes. One important test in this 
regard is whether the marginal distribution of the network ar
rival process is close to normal, which can be assessed with 
a Q-Q plot (this is better than using a A 2 test since, as shown 
above, A2 can be too sensitive and reject a very-close-to
normal distribution due to minor noise). We obtained the 
wide-area link-level traces used by the authors of [PF94] 
(which they argue show clear long-range dependence) to as
sess the degree to which the associated arrival processes have 
normal marginal distributions. These traces all came from a 
large research laboratory's link to the external Internet, and 
thus represent a medium level of aggregation (much greater 
than a few sources, considerably less than a backbone). We 
found that none of the arrival processes drawn from the traces 
had a marginal distribution close to normal when viewed on 
time scales less than 10 seconds. (Here the arrival processes 
are packets arrivals per fixed-duration bin.) 

The authors of [LTWW94a] address this problem and sug
gest applying a logarithmic transformation to the arrival pro
cess in an effort to pull the tails of the distribution closer to 
normality. We found this transformation effective, resulting 
in close-to-normal marginal distributions when viewing the 
arrival processes at time scales of 1 second, and in some cases 
0.1 seconds. Figure 3 illustrates the effect of the transforma
tion. The data in the plots is taken from [PF94] 's PKT -4 trace, 
which captured 1.3 million wide-area packets (one hour's 
worth) of all protocols. Here we have binned the trace into 
1-second bins and taken the bin counts as a sample of the 
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Figure 3: Q-Q Plots of Marginal Distribution for PKT -4 Ar
rivals (top) and Log-transformed (bottom) 

WAN packet arrival process. The top plot shows a Q-Q plot 
of the arrival process sample against quantiles of a normal 
distribution. The line corresponds to the plot we would ex
pect if the sample was drawn from a normal distribution with 
the same mean and variance. The bottom plot shows the 
same sort of Q-Q plot after applying a log2-transformation 
to the bin counts. The fit is clearly much better, though still 
not exact in the tails. 

The need for such a transformation suggests that either 
there is not an underlying physical process that gives a funda
mental FGN characteristic to network arrivals, or that if there 
is· such a process, it is only a partial description and must 
be supplemented with additional elements (such as short
range dependence) to explain the departure from normality. 
This does not rule out, however, that FGN might serve as 
a good approximation for (log-transformed) network pro
cesses. (And of course there might be physical processes 
leading directly to other self-similar models.) 

Let us now consider the general question of transforming 
FGN sample paths generated by the FFT (or other) method. 
For FGN, the mean, variance, and Hurst parameter are all 
independent parameters. Thus, an FGN sample path can 
be scaled by a linear transformation (which preserves H) to 
achieve any desired mean and variance. In particular, the 
FFT method as given in Appendix B generates a mean-zero 
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sample path, so it is replete with negative values, which are 
non-physical for arrival processes. If, however, one has a 
desired mean and variance in mind when generating the traf
fic, then applying the corresponding transformation should 
result in all or almost all positive values. If it does not, then 
the validity of modeling the arrival process using a Gaussian 
process with the given mean and variance becomes suspect. 

The need discussed above for a logarithmic transforma
tion, however, suggests an alternate way for converting the 
FGN sample path to a representation consistent with a physi
cal process, namely the transformation y; = 2"''. This trans
formation both preserves H [G93] (so the transformed pro
cess remains. long-range dependent) and results in a physical 
arrival process that, as shown above, more closely matches 
measured (wide-area) network traffic. {y;} does not, how
ever, correspond to an FGN sample path anymore, and this 
must be kept in mind when analyzing its properties.6 

A second issue is that often what is of interest for network 
simulations are interarrival times (for example, for queueing 
studies) and not arrival counts per bin. Since it is the arrival 
process that is long-range dependent and not the interarrival 
process, we need some way to convert arrival counts to in
terarrivals. First one converts the real-valued arrival process 
to integer counts, and then one must convert the given num
ber of arrivals per bin into interarrivals occurring during that 
bin. Simple ways of distributing the arrivals over the bin 
are to distribute them uniformly (corresponding to exponen
tial interarrivals) or with constant interarrivals [LEWW95]. 
One would expect these methods however to underestimate 
burstiness [PF94]. 

Another option is to use the RMD method to interpolate 
further self-similar sample paths within each bin. This ap
proach makes sense if the number of arrivals is large. At 
some point, however, the number of arrivals is small enough 
that further interpolation becomes problematic, and petbaps 
incorrect inasmuch as the arrival process at such fine time 
scales may no longer be self-similar [LEWW95]. 

. An alternative approach relates to a third issue, which is 
the presence of short-range dependence (SRD) in network ar
rival processes. In general, on small (e.g., 0.01 seconds) time 
scales SRD can dominate network arrivals, leading to traf
fic which is only asymptotically self-similar [LTWW94a]. 
While the presence of LRD can have a dramatic effect on · 
queueing, SRD can also significantly effect queueing behav
ior [ENW94]. The need to incorporate SRD into simulated 
network traffic suggests that one should look for ways of dis
tributing individual arrivals within a bin in such a way as 
to introduce SRD. For example, perhaps ARMA techniques 
can be applied on a bin-by-bin basis (perhaps with matching 
across bin boundaries) to introduce the desired level of SRD. 

Better still would be a method of synthesizing self-similar 

6The logarithmic transformation brings about another problem: since y; 
is always positive, it is impossible to generate an arrival count of zero. As 
discussed shortly, however, one must convert the real-valued sample path to 
an integer count anyway; incorporating rounding into this conversion will 
provide a mechanism for generating zero counts. 



sample paths that consistently integrates the presence ofLRD 
and SRD. One such method, based on the Haar wavelet trans
form, is discussed by Kaplan and Kuo in [KK94]. At the mo
ment their method is somewhat limited due to difficulties in 
parameter estimation, but still appears promising. In general, 
we believe wavelet methods hold great promise for character
izing and synthesizing self-similar traffic, due to the natural 
match between the notion of "scaling" in a wavelet trans
form and the notion of "invariance across different scales" 
in a self-similar process. Furthermore, wavelet transforms 
and inverse transforms can be done in 0( n) time, while the 
FFf method is limited to 0( n log n ), so in principle wavelet 
methods should also prove more efficient 

7 Application to fast Whittle estima
tion 

In this section we turn to the problem of efficiently estimating 
f1 for a given sample. While the form of Whittle's estimator 
given in Eqn.3 is fairly simple, it involves evaluating/(>.; H) 
(Eqn. 4), the power spectrum of the self-similar process from 
which the sample is presumed to have been drawn. As dis
cussed above, exact evaluation of f ( >.; H) is an open prob
lem, and instead one must turn to estimates. Our S program 
for doing Whittle estimation (written by J. Beran) addresses 
this problem by summing the first 200 terms of the summa
tion expression for 8( >.;H). 

As shown in Appendix A, this is a good approximation, but 
it is slow to compute. Given that Eqn. 5 appears to be a good 
approximation to 8( >.;H), at least for synthesizing FGN, we 
might then wonder whether the corresponding approximation 
to f ( >.; H) might be useful for computing Whittle's estimator 
more quickly. 

To explore this possibility, we devised a modified Whittle's 
estimator (the estimates of which we will label it) and ran it 
against the sample paths evaluated in the previous section. In 
all cases, il was within u H of ii, with a maximum difference 
between the two of 0.0028. Furthermore, we computed f1 
and i£ to a tolerance of o.oot?. Fully 75 of the 100 samples 
had li£- HI < 0.001, indicating a high degree of accuracy. 
In 60 of the 100 samples, il was greater than ii, indicating 
a clear (but slight) bias towards higher values of i£. But for 
those samples with li£- ill ~ 0.001, 14 of the 25 had il 
greater than f1, well within the margin of error and suggesting 
that the slight bias might be of no practical consequence. 

While the differences between il and ii are slight, the 
differences in running time are dramatic: using the original 
form of Whittle's estimator required on average about 6,500 
CPU seconds on a SPARCstation IPX, while the modified 
estimator required about 120 CPU seconds, a savings of over 
a factor of 50. We conclude that using Eqn. 5 to approximate 

7Thatis, the minimization corresponding to Eqn. 3 stopped when it found 
H1 and fi2 bracketing a local minimum for which lfi2- fl1l ~ 0.001. 
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the power spectrum buys significant performance gains at 
only a slight cost of accuracy. 

Finally, we note that we have not tested the agreement be
tween il and f1 for tolerances less than 0.001; it is possible 
that the agreement continues to be good, or that at finer levels 
limitations in the approximation of the power spectrum result 
in slightly inaccurate values ofi£. Even in the latter case, one 
can still speed up computation of ii using our approxima
tion as follows: perform the initial part of the minimization 
in Eqn. 3 using i£, to a tolerance of 0.005 (say); at that point 
switch to the more accurate but computationally expensive 
ii method, until achieving the desired accuracy. Thus, the 
approximation serves to rnpidly find "the right ballpark," af
ter which additional precision is bought with more lengthy 
and exact computation. 

8 Summary and future work 

One of the general problems network researchers face is how 
to synthesize "authentic" traffic for use in simulations and 
analysis. We have presented the principles behind an FFf
based method for synthesizing approximate sample paths 
corresponding to fractional Gaussian noise (FGN}, the sim
plest self-similar process. We then showed that an implemen
tation of the method is both as fast or faster than existing tech
niques and generates sample paths that in most regards are in-

. distinguishable using current statistical techniques from true 
FGN. In particular, the FFf method appears to suffer from 
less bias than the Random Midpoint Displacement method, 
the other fast algorithm of which we are aware, though it is 
not completely free of bias. 

Furthermore, the approximation used by the FFf method 
also has applications to fast evaluation of Whittle's estimator. 
We found that speedups by a factor of 50 were possible with 
only a slightloss of accuracy. Results outlined in Appendix A 
suggest that even this slight inaccuracy can be avoided by 
minor adjustments to the approximation, though we have not 
fully evaluated this possibility. 

Section 6 raised three key issues that must be addressed 
when using synthesized traces for network simulations: the 
need to match the marginal distribution of actual traffic; the 
need to convert arrival counts into interarrival times; and ihe 
problem of incorporating short-range dependence into the 
synthesized trace. In the remainder of the section we expand 
on these points and related, open questions. 

Suppose a group of researchers wish to perform simula
tion studies of network traffic, and that they accept the FFf 
method as an adequate mechanism for generating fractional 
Gaussian noise. We believe that in addition to the issues 
discussed in § 6, they need to address at least the following 
points: 

• To what degree are they confident that the network pro
cess of interest is long-range dependent, and not simply 
non-stationary? This question is crucial because non-
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stationarity can exhibit itself in ways that look remark
ably similar to long-range dependence (in particular, 
what appears to be strong low-frequency components, 
which can lead to Whittle estimates of H > 0.5, and 
variance-time plots with shallow slopes). The authors 
of [L1WW94a] took considerable care to rule out non
stationarity effects as an explanation of long-range de
pendence in LAN traffic. The authors of [PF94] present 
an argument that time scales of 1-2 hours are station
ary with regard to TCP connection arrivals, but further 
work is needed to convincingly rule out non-stationarity 
influences in WAN traffic on those time scales. 

• Is long-range dependence a property of the traffic 
sources, or only of the traffic as seen aggregated upon 
the network link? The difficulty here is that differ
ent traffic sources interact with one another, essen
tially competing for a fixed resource, namely the link 
bandwidth. This is particularly true for TCP traffic, 
the dominant source of wide-area traffic today, due to 
TCP' s adaptive window mechanism. These interactions 
will lengthen the "on" times dunng which connections 
transmit traffic, while also tending to homogenize the 
rates at which they transmit. Both of these effects will 
strengthen the match between network traffic and the 
heavy-tailed on/off model for generating self-similar 
traffic discussed in § 2. 

Thus one must use caution in assuming that traffic 
sources are well modeled using self-similar processes. 
Similarly, in some situations a traffic "source" might 
actually be traffic aggregated on a previous, upstream 
link. It may be tempting to model the upstream traffic 
as a self-similar source; but because the traffic will be 
further distorted by network dynamics, such a model 
may prove incomplete even if it is known that the traf
fic ultimately measured on the upstream link is indeed 
self-similar. 

Furthermore, even if a traffic source is self-similar, and 
the resulting link-level traffic is self-similar, it is possi
ble that the relationship between the two is complex: 
network dynamics may significantly alter the mean, 
variance, Hurst parameter, and character of short-range 
dependence in the source. That is, the entire process 
might alter. 

Both the [L1WW94a] and the [PF94] studies analyze 
network traffic at the link level, and thus do not pro
vide strong guidance for bow sources should be mod
eled (though both studies, and also the related [ENW94 ], 
offer arguments concerning how source characteristics 
could lead to link-level self-similarity). The authors of 
[GW94], on the other band, show that video sources 
should be modeled as self-similar. No studies have yet 
been made on the effects of network dynamics on dis
torting traffic; such a study holds great promise for deep
ening our understanding of networks. A good starting 
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point might be to analyze a traffic trace to characterize 
packet loss patterns and the resulting TCP adaptations. 
If, for example, TCP traffic is shaped more by the (fixed) 
receiver window than the (adaptive) congestion avoid
ance mechanisms, then it is likely that network dynam
ics play a minor role in contributing to self-similarity. 
But if, on the contrary, TCP traffic (especially large 
transfers, as they contribute the most to long-range de
pendence) is primarily shaped by congestion avoidance, 
then it is vital to include TCP effects when simulating 
networks. 

• Related to the previous point, if the goal of synthe
size self-similar traffic is to use it as background traffic 
against which, e.g., a new transport protocol is assessed, 
then one must recognize that due to network dynamics it 
may not be possible to cleanly separate the background 
traffic from the introduced traffic. For example, sup
pose the introduced traffic attempts to aggressively use 
spare bandwidth as it becomes available. It may be quite 
unrealistic to assume that the rate of background traf-' 
fie is not affected by the resulting changes in available 
bandwidth. 

·How to incorporate such changes into the background 
traffic remains an open problem (that is, can the FFf or 
RMD methods be modified to extrapolate altered traffic 
after a change is introduced to the traffic parameters?). 
Indeed, as related in the previous item, even understand
ing what changes need to be incorporated, e.g., modified 
mean, variance, and Hurst parameter, is an open prob
lem. 

• It is crucial to understand the relative importance of 
arrival process's short-range dependence vs. its long
range dependence. There is no fixed balance between 
the two; for some situations SRD may dominate, for oth
ers LRD, and for still others each might contribute dif
ferent important effects. For example, when performing 
a queueing simulation using a finite queue buffer, the 
strength of SRD in the packet arrivals might play a sig
nificant role in the delay distribution, while the strength 
of LRD greatly influences the packet drop patterns. The 
authors of [GW94] emphasize this point in a queueing 
simulation of video traffic by showing that the value of 
the Hurst parameter H is necessary but not sufficient for 
characterizing the burstiness of the video source. 

In summary, we view the FFTmethod not as a final answer 
to simulating self-similarity in network traffic, but simply as 
a promising starting point. 
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A Approximating infinite sums 

Since no closed form is known for the expression B(.A; H) 
in Eqn. 4, for our method we must instead find a suitable 
approximation. 

Suppose f( x) is a monotone decreasing function for which 
L::1 /; converges. Then, provided the integrals exist, we 
have: 

100 
f(x)dx ~ "f_t; ~ 100 

f(x)dx. 
1 i=1 0 

Without additional information regarding the behavior of 
f(x), we might then use the midpoint of these integrals as 
an approximation for the infinite sum, since in a mean-error 
squared sense it is likely to be a better approximation than 
either the upper or the lower bound: 

00 

i=1 

Jo""' f(x)dx+ J;oo f(x)dx 

2 

::::: ~ 11 

f(x)dx + 100 

f(x)dx. 

We can further improve this approximation by explicitly re
taining k of the first terms of the summation: 

00 k 1 1k+l 100 
Lf;:::::L/;+2 f(x)dx+ f(x)dx. (7) 
i=1 i=1 k k+1 

With this addition, the approximation can be made arbitrarily 
close by increasing k. 

Applying Eqn. 7 to Eqn. 4, we then have: 

where d, d', ak. bk, and the like are defined as in Eqn. 6. 
Computationally, a great attraction of this expression is that 
for a given k the summation can be "unrolled" and the re
sulting expression is then amenable to fast evaluation for a 
vector of different .A's. Since the S language is vector-based, 
this means (even on a uniprocessor) it can efficiently evaluate 
Bk(.A;H). 

The one remaining question when using this approxima
tion is what value of k to use for the best trade-off between 
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accuracy and computational speed We first performed the 
evaluations discussed in § 5 for k = 0 and k = 1, but found 
that the resulting ii estimates were either always lower than 
the target value (k = 0), or nearly always (k = 1). We 
skipped k = 2 since the assessment procedure is lengthy (re
quiring several CPU days· for the Whittle estimations), and 
found k = 3 provided a satisfactory approximation. It is 
possible that k = 2 also performs satisfactorily, and it would 
run a bit faster. 

One might also wonder about using the asymptotic 
form for the power spectrum given in [ST94], which is 
h(.A) ...... k.A1- 2H. This was the first form we tried, but, 
like k = 0, it resulted in ii estimates that were always too 
low. 

We now make a brief assessment of the error introduced by 
using B3(.A; H) as an approximation for B(.A; H). For differ
ent values of .A and H we computed ''near exact" values for 
8( .A; H) by summing the first 10,000 terms of the summation 
in Eqn. 4. We then compared these values to those obtained 
using. B3(.A; H), and also when summing only the first 200 
terms (which is what our Whittle estimation procedure uses). 
We refer to this latter approximation as B200 (.A; H). 

gr---------------------------------~ 
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Figure 4: Relative Error in Using B3(.A; H) Approximation. 

Figure 4 shows the relative error when using the 83( .A; H) 
approximation. Here the relative error is [B3(.A; H) -
B(.A; H)]/B(.A; H). We see that in all cases the error is less 
than 0.5%. We also note that .83( .A; H) is always larger than 
B(.A; H), suggesting that perhaps a simple adjustment can be 
made to the approximation to reduce much of the error; we 
return to this point below. 

Figure 5 shows a similar plot comparing summing 200 
terms with summing 10,000 terms. We see that (as expected), 
summing only 200 terms consistently results in underestima
tion of B(.A; H), perforce since the summation terms are all 
positive. In general, using 200 terms instead of 10,000 re
sults in little error, except for small values of H. Since in this 
case B2oo(.A; H) underestimates B(.A; H) and B3(.A; H) over
estimate B( .A; H), the error between the two approximations 
is particularly large for H = 0.5, ranging as high as 0.8%. 
This discrepancy may account for some of the purported bias 



9 0.0 1.0 1.5 2.0 2.5 3.0 
Lambda (radians) 

Figure 5: Relative Error in Using 8200 (-A; H) Approxima
tion. 

towards slightly high values of H for H = 0.5, as reported 
in§ 5. 

As noted above, the fact that B3(.A; H) is consistently 
larger than B(.A; H) suggests that some simple fitting might 
improve the approximation. We first fitted the mean absolute 
error B3(.A; H)- B(.A; H) as a function of H (since the abso
lute error is relatively invariant with respect to .A), resulting 
in the following correction: 

With this change, the relative error dropped from a maximum 
of0.5% (as shown in Figure 4) to 0.025%, an improvement 
of a factor of 20. The positive bias also disappeared. We 
then added a correction for linear variation in .A: 

B3(.A; H)" = [1.0002- 0.000134-A] B3(.A; H)', 

which further reduced the error to 0.0075%, a factor of 3 
improvement. This is within a factor of 2.5 of the relative 
error for B200(.A; H) for H = 0.9 (see Figure 5), and signif
icantly better than 8 200 (-A; H) for H ~ 0.7, suggesting that 
B3(.A; H)" could be profitably used for fast, accurate Whit
tle estimation. To this end, further evaluation of B3(.A; H)" 
remains to be done. 

B A program for generating self
similar traces 

Here is a set of S functions for implementing the method 
described in this paper: 

ss.gen.fourier <
function{n, H) 
{ 

# Returns a Fourier-generated sample path 
# of a "self similar" process, consisting 
# of n points and Hurst parameter H 
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# {n should be even) . 

n <- n/2 
lambda<- {{l:n)*pi)/n 

# Approximate ideal power spectrum. 
f <- FGN.spectrum{lambda, H) 

# Adjust for estimating power 
# spectrum via periodogram. 
'f <- f * rexp {n) 

~ 

# Construct corresponding complex 
# numbers with random phase. 
z <- complex{modulus = sqrt{f), 

argument= 2*pi*runif{n)) 

# Last element should have zero phase. 
z[n] <- abs{z[n]) 

# Expand z to correspond to a Fourier 
# transform of a real-valued signal. 
zprime <- c{O, z, Conj{rev{z) [-1])) 

# Inverse FFT gives sample path. 
Re{fft{zprime, inv=T)) 

FGN.spectrum <- function{lambda, H) 
{ 

# Returns an approximation of the power 
# spectrum for fractional Gaussian noise 
# at the given frequencies lambda and 
# the given Hurst parameter H. 

2 * sin{pi*H) * gamma{2*H+l) * 
{1-cos(lambda)) * 
(lambdaA(-2*H-1) + 
FGN.B.est{lambda, H)) 

FGN.B.est <- function{lambda, H) 
{ 

# Returns the estimate for 
# B{lambda,H). 

d <- -2*H - 1 
dprime <- -2*H 
a <- function{lambda,k) 2*k*pi+lambda 
b <- function {lambda, k) · 2*k*pi-lambda 
al <- a{lambda,l) 
bl <~ b{lambda,l) 
a2 <- a(lambda,2) 
b2 <- b{lambda,2) 
a3 <- a{lambda,3) 



b3 <- b(lambda,3) 
a4 <- a(lambda,4) 
b4 <- b(lambda,4) 
a1Ad+b1Ad+a2Ad+b2Ad+a3Ad+b3Ad + 
(a3Adprirne+b3Adprirne + 
a4Adprirne+b4A dprirne}/(8*pi*H) 
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