
Quantum Algorithms for Linear Algebra and Machine Learning

by

Anupam Prakash

A dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor Umesh Vazirani, Chair
Professor Satish Rao

Professor Ashvin Vishwanath

Fall 2014

Quantum Algorithms for Linear Algebra and Machine Learning

Copyright c© 2014

by

Anupam Prakash

Abstract

Quantum Algorithms for Linear Algebra and Machine Learning

by

Anupam Prakash

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Umesh Vazirani, Chair

Most quantum algorithms offering speedups over classical algorithms are based on the three tech-
niques of phase estimation, amplitude estimation and Hamiltonian simulation. In spite of the linear
algebraic nature of the postulates of quantum mechanics, until recent work by Lloyd and coauthors
(23; 22; 24) no quantum algorithms achieving speedups for linear algebra or machine learning had
been proposed.

A quantum machine learning algorithm must address three issues: encoding of classical data
into a succinct quantum representation, processing the quantum representation and extraction of
classically useful information from the processed quantum state. In this dissertation, we make
progress on all three aspects of the quantum machine learning problem and obtain quantum algo-
rithms for low rank approximation and regularized least squares.

The oracle QRAM , the standard model studied in quantum query complexity, requires time
O(
√
n) to encode vectors v ∈ Rn into quantum states. We propose simple hardware augmentations

to the oracle QRAM , that enable vectors v ∈ Rn to be encoded in time O(log n), with pre-
processing. The augmented QRAM incurs minimal hardware overheads, the pre-processing can be
parallelized and is a flexible model that allows storage of multiple vectors and matrices. It provides
a framework for designing quantum algorithms for linear algebra and machine learning.

Using the augmented QRAM for vector state preparation, we present two different algorithms
for singular value estimation where given singular vector |v〉 for A ∈ Rm×n, the singular value σi
is estimated within additive error ε ‖A‖F . The first algorithm requires time Õ(1/ε3) and uses the
approach for simulating e−iρ in (23). However, the analysis (23) does not establish the coherence of
outputs, we provide a qualitatively different analysis that uses the quantum Zeno effect to establish
coherence and reveals the probabilistic nature of the simulation technique. The second algorithm
has a running time Õ(1/ε) and uses Jordan’s lemma from linear algebra and the augmented QRAM
to implement reflections.

We use quantum singular value estimation to obtain algorithms for low rank approximation
by column selection, the algorithms are based on importance sampling from the leverage score
distribution. We obtain quadratic speedups for a large class of linear algebra algorithms that rely on
importance sampling from the leverage score distribution including approximate least squares and

1

CX and CUR decompositions. Classical algorithms for these problems require time O(mn log n+
poly(1/ε)), the quantum algorithms have running time O(

√
mpoly(1/ε, k,∆)) where k,∆ are the

rank and spectral gap. The running time of the quantum CX decomposition algorithm does not
depend on m, it is polynomial in problem parameters. We also provide quantum algorithms for `2
regularized regression problems, the quantum ridge regression algorithm requires time Õ(1/µ2δ) to
output a quantum state that is δ close to the solution, where µ is the regularization parameter.

2

Contents

Contents i

List of Figures iv

List of Tables v

1 Introduction 1

1.1 Preliminaries and notation . 2

1.1.1 Linear algebra preliminaries . 3

1.1.2 Quantum preliminaries . 4

2 Quantum Memory Models 6

2.1 Preliminaries . 7

2.1.1 Oracle QRAM and amplitude amplification 8

2.1.2 Density matrix preparation . 11

2.2 Vector state preparation . 13

2.2.1 Sparse vector states . 13

2.2.2 Constant size vector states . 17

2.3 Augmented QRAM . 19

2.3.1 Augmented QRAM organization . 20

2.3.2 Insertion and query algorithms . 22

2.3.3 Parallelized augmented QRAM . 25

2.4 Operations on matrix states . 27

2.4.1 Multiplication by unitary operators . 27

2.4.2 States corresponding to matrix products . 29

i

3 Quantum singular value estimation 30

3.1 Preliminaries . 31

3.2 Quantum spectral sampling . 34

3.2.1 The need for coherence . 36

3.2.2 Overview of analysis . 37

3.2.3 Coherence using the Zeno effect . 39

3.2.4 Approximate phase estimation . 41

3.2.5 Implementing spectral sampling . 45

3.3 Quantum singular value estimation . 46

3.3.1 Jordan’s lemma . 47

3.3.2 Singular values and principal angles . 49

3.3.3 Singular value estimation . 50

3.3.4 Quantum projections . 51

4 Linear Algebra Algorithms 53

4.1 Leverage Scores . 54

4.2 Sampling based algorithms . 55

4.2.1 Leverage score sampling . 55

4.2.2 CX decomposition . 56

4.2.3 Comparison with classical algorithms . 57

4.3 Importance sampling . 59

4.3.1 Leverage score approximation . 59

4.3.2 Importance sampling algorithms . 61

5 Machine Learning Algorithms 68

5.1 Preliminaries . 68

5.2 Regression with `2 regularization . 69

5.2.1 Ridge regression . 69

5.2.2 Pagerank . 73

5.2.3 Polynomial Kernels . 74

Bibliography 77

ii

List of Algorithms

2.2.1 Quantum key value map . 17
2.3.1 Augmented QRAM insertion algorithm . 23
2.3.2 Augmented QRAM vector state preparation . 24
2.3.3 Parallel prefix algorithm (21) . 26
3.2.1 Quantum spectral sampling (23) . 35
3.3.1 Quantum singular value estimation . 51
3.3.2 Quantum projection onto Col(M). 52
4.2.1 Approximate leverage score sampler . 55
4.3.1 Leverage score sampling and relative error approximation. 60
4.3.2 CUR decomposition (6) . 67
5.2.1 Quantum ridge regression . 71

iii

List of Figures

2.1 An illustration of amplitude amplification and estimation. 9

2.2 Sparse vector state preparation using a quantum key value map. 14

2.3 The quantum key value map. 16

2.4 Constant size vector state preparation for 4-dimensional state |φ〉. 18

2.5 A conceptual view of the augmented QRAM . 20

2.6 Augmented QRAM memory organization . 21

2.7 Components of the augmented QRAM . 22

3.1 An illustration of the quantum Zeno effect. 34

3.2 (a) Success probability for phase estimation as a function of α. (b) Decaying mea-
surement probabilities for phase estimation. 45

3.3 The two dimensional invariant subspaces in Jordan’s lemma. 47

4.1 (a) Quantum and classical CX decomposition for power law decay of singular value
spectrum. (b) SV D for term document matrix exhibiting power law decay. 59

iv

List of Tables

2.1 Comparison of vector state preparation algorithms for creating k copies of |x〉 for
x ∈ RN . 26

2.2 Comparison of density matrix preparation algorithms for creating k copies of ρ =
AtA/Tr(AtA) for A ∈ Rm×n. 27

4.1 Running times for quantum and classical importance sampling algorithms. 54

5.1 Running times for quantum and classical regression algorithms. 76

v

Acknowledgements

I would like to thank Umesh Vazirani for advice, encouragement and helpful discussions on vari-
ous occasions, this dissertation would not have been written without his constant support. I am
also thankful to Professors Satish Rao, Elchanan Mossel and Ashvin Vishwanath for being on my
qualifying exam and thesis committees.

Finally, I want to thank Guoming Wang for helpful discussions, Zeph Landau for organizing the
quantum reading group and Michael Mahoney for teaching ’Randomized algorithms for matrices
and data’ in Fall 2013.

vi

Chapter 1

Introduction

Although there are a large number of problems for which quantum algorithms offer a speed
up over classical algorithms, the techniques for designing quantum algorithms are rather limited in
spite of intensive research over the last two decades. Most known quantum algorithms that obtain
speedups over classical algorithms use the three techniques of phase estimation (20), amplitude
estimation (4) and Hamiltonian simulation. Shor’s factoring algorithm (36), Grover’s search (12)
and the adiabatic algorithm (8) are canonical examples of algorithms from these three paradigms
and it remains a significant research challenge to find new quantum algorithms.

The postulates of quantum mechanics are linear algebraic in nature, so it might appear surpris-
ing that until recent work by Lloyd and co-authors (23; 22; 24) no quantum algorithms achieving
speedups for linear algebra or machine learning problems had been proposed. These pre-prints
claimed exponential quantum speedups for machine learning tasks like principal components anal-
ysis, `2 regularized SVM and k-means clustering, where the quantum algorithm requires time
O(polylog(n)) and outputs a quantum state corresponding to the solution, as opposed to a classical
algorithm that requires time O(poly(n)) and returns a vector or matrix as answer.

While these results were promising and established a framework for studying quantum algo-
rithms for data analysis problems, they left several issues to be addressed. The exponential speedups
were restricted to particular inputs, correctness proofs were not provided for some of the algorithms
and the utility of generating quantum states as output was unclear. Addressing these outstanding
issues was the main motivation for our work.

The difficulty of designing quantum algorithms for matrix and vector valued data can be ap-
preciated by considering three problems that such an algorithm must address: (i) Encoding the
classical matrix/vector valued input into a succinct quantum state. (ii) Processing the quantum
encoding in a way that reveals useful structure. (iii) Extracting classically relevant information
from the processed quantum state. In this dissertation we make progress on all three aspects of the
quantum machine learning problem and present quantum algorithms for low rank approximation
and regularized regression.

1

In chapter 2, we discuss the problem of encoding vectors and matrices into quantum states.
The oracle QRAM , the standard memory model studied in quantum query complexity requires
time O(

√
n) for encoding vectors v ∈ Rn into quantum states. The worst case time bound O(

√
n)

is known to be tight by the search lower bounds in (2), and is the reason why the algorithms in
(23; 22; 24) run in time O(polylog(n)) for a restricted class of inputs.

We propose changes to the memory organization of the oracleQRAM and some simple hardware
augmentations, that enable vectors v ∈ Rn to be encoded in time O(polylogn), with pre-processing.
The augmented QRAM incurs minimal hardware overheads, the pre-processing can be parallelized
and it is a flexible model that allows storage of multiple vectors and matrices of varying size. It
provides an efficient solution to the problem of encoding data into quantum states and density
matrices and is presented in chapter 2.

In chapter 3, we present two different quantum algorithms for the problem of singular value
estimation where the singular values of M ∈ Rm×n are estimated to error ±ε ‖M‖F for M stored
in the augmented QRAM . The algorithms require time O(poly(1/ε)), polynomial in the accuracy
as opposed to classical algorithms that require time polynomial in the matrix dimensions.

The first algorithm is based on the idea for simulating e−i2πρ using an oracle for preparing
copies of ρ that was proposed in (23). However, the correctness argument presented in (23) does not
establish coherence of the outputs. We provide a qualitatively different and provably correct analysis
based on the quantum Zeno effect, concentration bounds and approximate phase estimation. The
second algorithm uses Jordan’s lemma (18) to relate singular values of M to principal angles
between subspaces associated with M , and estimates the angles using the augmented QRAM to
implement reflection in the subspaces.

In chapter 4, we use singular value estimation and amplitude amplification to obtain algorithms
for sampling from the leverage score distribution in linear algebra and approximating the leverage
scores. Importance sampling from the leverage score distribution has several applications to linear
algebra including approximate least squares and low rank approximation by column selection.
Classical algorithms for these problems require time O(mn log n+ poly(1/ε)), the running time for
the quantum algorithms if O(

√
mpoly(1/ε, k,∆)) where k,∆ is the rank and spectral gap. The

running times for the different problems are summarized in table 4.1.

In chapter 5, we provide quantum algorithms for the `2 regularized regression problem and its
generalization to polynomial kernels.The ridge regression algorithm requires time Õ(1/µ2δ) and
produces a quantum state that is δ close to the solution. The algorithms produces a quantum state
as answer and are not directly comparable to classical algorithms that output regression coefficients,
however we show that the quantum algorithms can be used for comparing models and selecting
regularization parameters.

1.1 Preliminaries and notation

We introduce some linear algebra and quantum computing preliminaries and notational con-
ventions that will be followed throughout this dissertation. R,C,Z,N and R+ denote the real
numbers, complex numbers, integers, natural numbers and positive real numbers. The running

2

time of algorithms is stated in the standard asymptotic notation, O(f(n)) indicates a running time
upper bounded by cf(n) for a fixed c ∈ R+ and sufficiently large n ∈ N. The notation Õ() hides
poly-logarithmic factors, that is O(f(n)polylog(n)) is represented by Õ(f(n)).

1.1.1 Linear algebra preliminaries

We follow standard linear algebra notation, given a matrix A ∈ Rm×n, aij denotes the (i, j)-th
entry of A, nnz(A) is the number of non zero entries of A and AT ∈ Rn×m is the transpose of A.
The i-th row of A is denoted by ai while the j-th column is denoted by aj . The set {1, 2, · · · , n} is
denoted by [n], the standard basis for Rn is denoted by {e1, e2, · · · , en}. The `p norm of a vector
x ∈ Rn is |x|p := (

∑
i∈[n] |xi|p)1/p and |x|∞ = maxi∈[n] |xi|.

The kernel of A ∈ Rm×n is defined asKer(A) = {x ∈ Rn | Ax = 0}, the image ofA is the column
space of A and is denoted by Col(A). Subspaces of Rn are denoted by calligraphic fonts, that is
A,B denote subspaces. The orthogonal complement of A ∈ Rn is defined as A⊥ = {x ∈ Rn | a.x =
0 ∀ a ∈ A}. The direct sum of subspaces A,B ∈ Rn is defined as A⊕ B = {a+ b | a ∈ A, b ∈ B}.

The adjoint A∗ = AT for a complex matrix A ∈ Cn×n is obtained by taking the element-wise
complex conjugate of the transpose. The matrix A is normal if it commutes with the adjoint
AA∗ = A∗A, Hermitian if A = A∗ and unitary if AA∗ = A∗A = I. A matrix A ∈ Cn×n has n
eigenvectors and eigenvalues Avi = λivi where vi ∈ Cn and λi ∈ C. The spectral theorem states
that every normal operator has a spectral decomposition A =

∑
i∈[n] λiviv

t
i where the eigenvectors

vi form an orthonormal basis for Cn. The eigenvalues λi ∈ R for Hermitian matrices and |λi| = 1
for unitary matrices.

By the spectral theorem, a symmetric matrix A ∈ Rn×n has spectral decomposition A =∑
i∈[n] λiviv

t
i with vi ∈ Rn and λi ∈ R. A symmetric matrix A ∈ Rn×n is positive semi definite if

xtAx ≥ 0 for all x ∈ Rn, or equivalently if all the eigenvalues λi ≥ 0. We use the notation A � 0 to
indicate that A is positive semi-definite. An operator P ∈ Rn×n is a projector if P 2 = P , projectors
are positive semi definite and have eigenvalues 0 or 1.

Real valued functions are extended to matrix variables using the spectral theorem, if A ∈ Cn×n
has spectral decomposition A =

∑
i λiviv

t
i and f : R → R, then f(A) =

∑
i f(λi)viv

t
i . Matrix

exponentials e−iA and square roots
√
A for positive semi definite matrices are are defined in this

manner.

Singular value decomposition: The singular value decomposition of A ∈ Rm×n is a decom-
position of the from A = UΣV t where U ∈ Rm×m, V ∈ Rn×n are unitary and Σ is a diagonal matrix
with positive entries. If r is the rank of A, the SV D can be expressed as:

A =
∑
i∈[r]

σiuiv
t
i (1.1)

where the left and the right singular vectors ui and vi are the columns of U and V . The Moore
Penrose pseudo-inverse is defined as A+ = V Σ+U t,

A+ =
∑
i∈[r]

1

σi
viu

t
i (1.2)

3

AA+ is the projection onto the column space Col(A) while A+A is the projection onto the row
space Row(A). The condition number κ(A) = σmax

σmin
, for a square matrix the condition number is

λmax
λmin

. The truncation of A to the space of the largest k singular values is denoted by Ak, that is

Ak =
∑

i∈[k] σiuiv
t
i , the threshold τ = σ2k/ ‖A‖

2
F . The spectral decomposition of AAt and AtA can

be easily computed from the singular value decomposition of A,

AAt =
∑
i∈[r]

σ2i uiu
t
i

AtA =
∑
i∈[r]

σ2i viv
t
i (1.3)

The Schatten-p norm for a matrix ‖A‖p is the `p norm of the vector of its singular values. The

Frobenius norm ‖A‖2F =
∑

ij a
2
ij =

∑
i σ

2
i , the trace norm ‖A‖1 =

∑
i |σi| and the spectral norm

‖A‖ = σmax. All Schatten-p norms are sub-multiplicative, that is ‖AB‖p ≤ ‖A‖p ‖B‖p and unitarily
invariant, that is ‖UAV ‖p = ‖A‖p for unitaries U, V .

1.1.2 Quantum preliminaries

We use the standard bra-ket notation for representing quantum states. Consider a quantum
system with n degrees of freedom. A (pure) quantum state for such a system is a unit vector in the
Hilbert space Cn and is represented by |v〉. A mixed state is a probabilistic mixture of pure states
and is represented by a density matrix, a mixture of states |wi〉 with probability pi is described
by a density matrix ρ =

∑
i pi |wi〉 〈wi|. A quantum register is a system that stores quantum

information, the set of all mixed states for register X is denoted by L(X).

A matrix ρ is a density matrix iff. it is positive semidefinite and has trace 1. The spectrum
of ρ consists of eigenvector eigenvalue pairs (vi, λi), ρ represents a mixed state where |vi〉 occurs
with probability λi. Note that several mixtures of pure states may correspond to the same density
matrix ρ, but the spectral decomposition provides a unique representation of ρ as a mixture of
orthogonal states.

The evolution of an isolated (closed) quantum system is described by Schrödinger’s equation,

i~
∂ |φ(t)〉
∂t

= H |φ(t)〉 (1.4)

The Hamiltonian H is a Hermitian matrix, if the Hamiltonian is time independent the solution to
Schrodinger’s equation is |φ(t)〉 = e−iHt |φ(0)〉, thus the evolution of a closed quantum system is
described by a unitary operator U = e−iHt. Under the action of U the pure state |v〉 evolves to
U |v〉 while the density matrix ρ evolves to UρU∗.

A quantum measurement (POVM) on an n dimensional quantum system is a collection of
positive operators Ma � 0 such that

∑
aMa = In, the probability of obtaining outcome a is

Tr(Maρ). The state of the system after the measurement is ρ′ =
∑

a

√
Maρ
√
Ma. Measuring in

a given orthogonal basis corresponds to a POVM where the Ma are one dimensional projectors
along the basis vectors. Different mixtures of pure states represented by the same density matrix

4

exhibit identical behavior under quantum measurements. The outcome of measurement M on state
ρ is denoted by M(ρ).

The state space for two copies of the quantum system is Cn ⊗ Cn where ⊗ denotes the tensor
product. The density matrix ρ describes the state of the bipartite system, the reduced state of the
first system is represented by ρ1. The reduced state ρ1 must describe outcomes of measurements
on the first subsystem, that is Tr(M ⊗ Iρ) = Tr(Mρ1) must hold for all measurements M . This
requirement can be used to show that the reduced state is unique, and is is obtained by tracing out
the second system,

ρ1 = Tr2(ρ) :=
∑

i,j,k,l∈[n]

ρij,klδjl |i〉 〈k| (1.5)

The delta function δjl = 1 for j = l and 0 otherwise. The partial trace is invariant under change of
basis for the second system, physically the operation corresponds to discarding the second subsystem
or measuring in some fixed basis.

The trace norm for a matrix is the Schatten-1 norm, that is ‖A‖1 := Tr(
√
A∗A) is the `1 norm

of the vector of singular values of A. The trace norm for a Hermitian matrix is the sum of the
absolute values of the eigenvalues. The trace norm is unitarily invariant, that is ‖UAV ‖1 = ‖A‖1
for unitary operators U, V . The maximum probability of distinguishing density matrices ρ, σ using
a quantum measurement is upper bounded by the trace norm, thus Pr[M(ρ) 6= M(σ)] ≤ ‖ρ− σ‖1
for all measurements.

Quantum Gates: A quantum system with 2 degrees of freedom is called a qubit. Quantum
gates are local unitary operations that act on a small number of qubits. Circuits for quantum
computation are constructed by composing quantum gates, we describe the action of some useful
quantum gates. The Hadamard, controlled not (CNOT) and Toffoli (CCNOT) gates act on 1, 2
and 3 qubits,

H |i〉 =
1√
2

(|0〉+ (−1)i |1〉) i = 0, 1

CNOT |a, b〉 = |a, a⊕ b〉 a, b ∈ {0, 1}

CCNOT |a, b, c〉 = |a, b, (a ∧ b)⊕ c〉 a, b, c ∈ {0, 1} (1.6)

The ⊕ and ∧ operators represent the bitwise Xor and And operations. Adding Not gates to the
input of the Toffoli gate, we obtain a gate that applies a bit flip to |c〉 conditioned on the values of
|a, b〉. More generally, using Toffoli gates we can implement a qubit flip conditioned on the values
of an arbitrary number of other qubits.

In addition to the above gates, we require phase and controlled rotation gates,

Rθ(|0〉) = cos(θ) |0〉+ sin(θ) |1〉
Rθ(|1〉) = − sin(θ) |0〉+ cos(θ) |1〉
Zθ |j〉 = e−iθj |j〉 (1.7)

These gates are used to encode real valued data into quantum states, the precision θ for these gates
must equal the machine precision.

5

Chapter 2

Quantum Memory Models

In this chapter we address the problem of encoding vector and matrix valued data into quantum
states. Such encodings can potentially achieve exponential compression as an n dimensional vector
v ∈ Rn can be encoded into a quantum state with O(log n) qubits. We seek encoding algorithms
with running time O(polylog(n)), that is polynomial in the encoding size. An encoding algorithm
is constrained by the memory model used for storing the data, for example if v ∈ Rn is stored in a
classical random access memory, an algorithm for any reasonable notion of encoding requires time
O(n) as it must access all the coordinates of v and each access requires time O(1).

We formalize the problem of encoding vectors and matrix valued data into quantum states.
Density matrix and vector state preparation defined below are fundamental primitives for succinctly
encoding real valued data into quantum states, we seek a memory model that allows these tasks to
be accomplished in time Õ(log n) with pre-processing.

Definition 2.0.1. Density matrix preparation: Given A ∈ Rm×n stored in memory, create copies

of the density matrix ρ = AAt/Tr(AAt) and ρ = AtA/Tr(AtA).

Definition 2.0.2. Vector state preparation: Given x ∈ RN stored in memory create copies of the

vector state |x〉 = 1
|x|
∑

i∈[N] xi |i〉.

Density matrix preparation reduces to vector state preparation, the choice of memory model is
therefore guided by the resources required for vector state preparation.

A O(polylog(n)) time encoding algorithm is potentially achievable only if the memory model
allows queries in quantum superposition. The oracle QRAM (quantum random access memory)
is the standard model for memory allowing queries in quantum superposition and has been stud-
ied extensively in the quantum algorithms and query complexity literature. The quantum query
complexity literature establishes upper and lower bounds on the number of queries made to an
oracle QRAM for solving specific problems. Query complexity lower bounds (2) show the worst

6

case query complexity for vector state preparation 2.0.2 is O(
√
n), ruling out the possibility of a

O(polylog(n))) time encoding algorithm using the oracle QRAM .

Our solution to the encoding problem circumvents the search lower bounds by pre-processing
vectors when loading them into memory. The pre-processing requires simple hardware augmen-
tations to the oracle QRAM and modifications to the memory organization. We propose the
augmented QRAM as a model for designing quantum algorithms for problems with matrix and
vector valued inputs. The augmented QRAM provides a framework for implementing vector state
preparation and related primitives in time Õ(1), which we utilize in later chapters to design quan-
tum algorithms for linear algebra and machine learning problems.

This chapter is organized as follows, in section 2.1 we discuss the known results on vector
state and density matrix preparation. Amplitude amplification using the oracle QRAM discussed
in section 2.1.1 is the best known vector state preparation method. In section 2.1.2, we discuss
the reduction of density matrix preparation to vector state preparation (23) and present some
additional state preparation procedures that do not require an oracle QRAM .

In section 2.2 we present two special cases of vector state preparation that are used as com-
ponents of the augmented QRAM . The first method extends amplitude amplification to create
vector states |x〉 in time O(

√
nnz(x)) using a quantum key value map. The second method prepares

vector states using an auxiliary quantum circuit, it is used for creating constant sized vector states
in the augmented QRAM .

In section 2.3 we present the augmented QRAM , a quantum memory model for storing multiple
vectors that can prepare vector state |x〉 in time Õ(1) with a pre processing overhead of O(nnz(x)).
The augmented QRAM is obtained by adding a controller to the oracle QRAM and changing the
memory organization, the augmentations are used to pre-process vectors while loading them into
memory. The hardware and pre-processing overheads for the augmented QRAM are small and the
pre-processing can be parallelized. The augmented QRAM is used for the quantum algorithms for
singular value estimation in chapter 3.

Finally we present some applications of vector state preparation in section 2.4, including Fourier
sampling for matrices and creating states corresponding to products of matrices and matrix vector
products.

2.1 Preliminaries

In section 2.1.1, we discuss existing results on vector state preparation and introduce the oracle
QRAM model and the amplitude amplification algorithm which are extended to the augmented
QRAM in section 2.3. The oracle QRAM is the standard model studied in the quantum query
complexity literature (12; 2), architectures for the oracle QRAM have been proposed in (10; 9). The
amplitude amplification algorithm (4) is a generalization of Grover’s search (12) and has been found
to be useful in several contexts, here we use amplitude amplification for vector state preparation
using the oracle QRAM .

In section 2.1.2, we discuss the reduction from density matrix preparation to vector state

7

preparation that was implicit in (23), in addition to the reduction we present a method for preparing
density matrices corresponding to normalized graph Laplacians without using the oracle QRAM .

2.1.1 Oracle QRAM and amplitude amplification

The oracle QRAM with is a memory device capable of answering queries in quantum super-
position, if the QRAM has N memory cells with contents xi, i ∈ [N], it can achieve the following
transformation: ∑

i∈[N]

αi |i〉 →
∑
i∈[N]

αi |i, xi〉 (2.1)

The oracle QRAM is the memory model studied in the quantum query complexity literature,
algorithms such as Grover’s search and amplitude amplification use the the oracle QRAM . Phys-
ical architectures implementing an oracle QRAM have been proposed but there are significant
challenges to be overcome before such a device can be realized in practice.

Possible physical realizations and architectures for the oracle QRAM are discussed in detail
in the papers (10; 9). A straightforward conversion of the classical RAM to the quantum setting
achieves a query time O(logN) but requires creation of exponentially large quantum superpositions.
The bucket brigade architecture proposed in (10) reduces the size of the quantum superpositions
but requires query time O(log2N). We note that for all proposed QRAM architectures, the query
register is used to address memory and does not interact with the memory contents, that is a
transformation of the form |i〉 → |i⊕ xi〉 can not be achieved. The query time for the oracle
QRAM is Õ(log n) for all proposed architectures.

The vector state |x〉 = 1
|x|
∑

i∈[N] xi |i〉 can be generated by querying the QRAM on a uniform
superposition, appending an ancilla qubit and applying a rotation on it conditioned on the memory
contents, post-selecting on the ancilla qubit being |0〉 and un-computing the memory contents by
repeating the QRAM query.

1√
N

∑
i∈[N]

|i〉 |xi〉 →
1√
N

∑
i∈[N]

|i〉 |xi〉
(

xi
|x|∞

|0〉+ βi |1〉
)

(2.2)

In the above equation βi =

(
1−

(
xi
|x|∞

)2)1/2

, the choice of βi ensures correct normalization. If

|x| = 1 the probability of obtaining |x〉 is 1
N |x|2∞

, the worst case time for preparing |x〉 using this

procedure is Õ(N) for a basis vector ei.

The time complexity can be improved to Õ(
√
N) using amplitude amplification (4) as discussed

next. Query complexity lower bounds for Grover’s search show that some states require O(
√
N)

queries to prepare, indicating that amplitude amplification is tight up to logarithmic factors and
that without additional assumptions/pre processing O(

√
N) time is required for creating vector

states using the oracle QRAM .

8

|x′, 1〉

|x, 0〉

|φ〉

θ

Sx |φ〉

SφSx |φ〉

−SφSx |φ〉

2θ

The composition of reflections about |x, 0〉 and

|φ〉 = cos(θ) |x′, 1〉 + sin(θ) |x, 0〉 is is a clockwise

rotation by 2θ on the two dimensional subspace

Span(|x, 0〉 , |x′, 1〉).

Amplitude amplification boosts the probability

of obtaining |x, 0〉 by repeated applications of

U = −SφSx while amplitude estimation esti-

mates θ by performing phase estimation on U .

Figure 2.1. An illustration of amplitude amplification and estimation.

Amplitude amplification

We describe the algorithm for creation of vector states using amplitude amplification, first note
that the QRAM can be used to implement the unitary transformation U |0〉logN+1 = |φ〉 where |φ〉
is defined as,

|0〉logN+1 FTN−−−→ 1√
N

∑
i

|i〉 |0〉 QRAM−−−−→ 1√
N

∑
i

|i〉
(

xi
|x|∞

|0〉+ βi |1〉
)

:= |φ〉 (2.3)

The state |φ〉 can be decomposed as |φ〉 = sin(θ) |x, 0〉+ cos(θ) |x′, 1〉 where sin2(θ) = 1
N |x|2∞

is the

probability of obtaining |x〉. The transformations U and its inverse U−1 can be implemented in
time Õ(log n) using the QRAM .

The reflection in |φ〉 is defined as Sφ |φ〉 = |φ〉 and Sφ |φ⊥〉 = − |φ⊥〉 where |φ⊥〉 is a state

orthogonal to |φ〉. It is implemented as Sφ = US0U
−1 where S0 is a reflection in |0〉logN+1, that is

S0 |0〉logN+1 = |0〉logN+1 and S0 |i〉 = − |i〉 for i 6= |0logN+1〉. Over the two dimensional subspace
of states of the form sin(θ) |x, 0〉+ cos(θ) |x′, 1〉, the reflection Sx in |x, 0〉 is a controlled phase flip
conditioned on the ancillary qubit being 1. The reflections Sφ and Sx can therefore be implemented
efficiently.

The product of the reflections −SφSx acts as (a clockwise) rotation by an angle of 2θ on the
subspace spanned by |x, 0〉 , |x′, 1〉 as in figure 2.1. The amplitude amplification algorithm starts
with the state |φ〉 and iteratively applies the operators Sx and −Sφ. After k iterations of amplitude
amplification,

(−SφSx)k |φ〉 = sin((2k + 1)θ) |x, 0〉+ cos((2k + 1)θ) |x⊥, 1〉 (2.4)

Using the inequality θ ≥ sin(θ) = 1√
N |x|∞

, after k = O(
√
N |x|∞) iterations of amplitude ampli-

fication, the probability of obtaining state |x〉 becomes a constant. Each iteration of amplitude
amplification involves two calls to the oracle QRAM , the overall running time is Õ(

√
N).

9

Claim 2.1.1. The vector state |x〉 for x ∈ RN can be generated in time Õ(
√
N |x|∞) using amplitude

amplification.

Amplitude amplification can be modified so that knowledge of the number of iterations is not
required (4). We state a more general version of amplitude amplification as it is a fundamental
primitive and will be used subsequently in numerous places. A precise statement may be found in
(4), however the version stated below is sufficient for our purposes.

Theorem 2.1.2. [Amplitude Amplification, (4)] If there is unitary operator U such that U |0〉l =

|φ〉 = sin(θ) |x, 0〉 + cos(θ) |x′, 1〉 then |x〉 can be generated in expected time O(T (U)
sin(θ)), where T (U)

is the time to implement U .

Amplitude amplification can be made exact in the setting where the success probability p =
sin2(θ) is known. This can be accomplished by computing p = sin2(θ) where θ < θ is the largest

angle less than θ such that π/2

θ
= 2k + 1 is an odd integer. Amplitude amplification can be made

exact by appending an ancilla qubit, running the algorithm for k steps with the operator U defined
below,

U |0〉l+1 = |φ〉 = (sin(θ) |x, 0〉+ cos(θ) |x′, 1〉)⊗
(√

p

p
|0〉+

√
1− p

p
|1〉
)

(2.5)

The reflection Sx is replaced by a reflection about |00〉, after k steps of amplitude amplification the
state |x, 00〉 is obtained.

Theorem 2.1.3. [Exact Amplitude Amplification, (4)] If there is unitary operator U such that

U |0〉l = |φ〉 = sin(θ) |x, 0〉 + cos(θ) |x′, 1〉 and sin(θ) is known then |x〉 can be generated in time

O(T (U)
sin(θ)), where T (U) is the time to implement U .

Amplitude estimation

The amplitude estimation algorithm (4) works in the same setting as amplitude amplification
and yields an estimate of the success probability sin2(θ). Amplitude estimation is not required
for the augmented QRAM or other algorithms in this chapter, however we introduce it here as it
extends amplitude amplification. Amplitude estimation will be used later for several applications
over chapters 3-5.

Suppose there is a unitary operator U such that U |0〉l = |φ〉 = sin(θ) |x, 0〉 + cos(θ) |x′, 1〉.
Amplitude estimation produces an estimate for the success probability sin(θ) by applying phase
estimation (discussed in section 3.1) to the two dimensional eigenspace of −SφSx = −US0U−1Sx
spanned by |x, 0〉 and |x′, 1〉. Recall that −SφSx is a rotation by an angle of 2θ on this subspace,

10

the action of SφSx on this subspace is given by:

−SφSx |x, 0〉 = cos(2θ) |x, 0〉 − sin(2θ) |x′, 1〉
−SφSx |x′, 1〉 = sin(2θ) |x, 0〉+ cos(2θ) |x′, 1〉 (2.6)

The eigenvalues are e±i2θ with eigenvectors:

−SφSx(|x, 0〉 ± i |x′, 1〉) = e±i2θ(|x, 0〉 ± i |x′, 1〉) (2.7)

Phase estimation with k = O(1/ε) achieves an estimate of 2θ within additive error ε. As |θ − θ| ≤
ε⇒ | sin2(θ)− sin2(θ′)| ≤ 2 sin(θ) cos(θ)ε+O(ε2) by the mean value theorem. Our applications use
amplitude estimation to obtain relative error estimates of the success probability.

Theorem 2.1.4. (Amplitude estimation, (4)) If there is unitary operator U such that U |0〉l =

|φ〉 = sin(θ) |x, 0〉 + cos(θ) |x′, 1〉, then sin2(θ) can be estimated to additive error ε sin2(θ) in time

O(T (U)
ε sin(θ)).

Our main application of amplitude estimation to obtain relative error estimates of the length of
the projection of vector |φ〉 onto the column space of matrix M ∈ Rm×n stored in the augmented
QRAM . The reflection Sφ is implemented using the augmented QRAM to prepare the state |φ〉,
while the reflection Sx is requires a quantum singular value estimation algorithm 3.3.1.

2.1.2 Density matrix preparation

A density matrix is a positive semidefinite matrix having trace 1. A density matrix represents a
mixed state in quantum information, a probabilistic mixture of states where state |vi〉 occurs with
probability pi is represented by the density matrix ρ =

∑
i pi |vi〉 〈vi|. The mixed state interpretation

of a density matrix can be used to reduce density matrix preparation to vector state preparation.

Claim 2.1.5. The density matrix ρ = AtA/Tr(AtA) for A ∈ Rm×n is a mixture of vector states

|ai〉 with probability pi = |ai|2
|A|2F

for i ∈ [m].

Proof. We express the mixture of vector states |ai〉 with probability pi as a density matrix and

show that it is equals ρ,

∑
i∈[m]

pi |ai〉 〈ai| =
∑
i∈[m]

pi
|ai|2

∑
j,k∈[n]

aijaik |j〉 〈k|

=
1

|A|2F

∑
j,k∈[n]

(AtA)jk |j〉 〈k| = ρ (2.8)

11

The second equality follows as (AtA)jk =
∑

i∈[m] aijaik and Tr(AtA) = |A|2F . Sampling i ∈ [m]

according to probabilities pi can either be accomplished classically or by creating the vector state

|p〉 =
∑

i∈[m]

√
pi |i〉 and measuring in the standard basis.

Applying claim 2.1.5 to At, ρ = AAt/Tr(AAt) can be prepared as a mixture of states |aj〉 with

probabilities pj = |aj |2
|A|2F

for j ∈ [n]. Density matrices AtA/Tr(AtA) and AAt/Tr(AAt) can also be

generated by tracing out the first and second register from the superposition,

|A〉 =
1√
|A|F

∑
i∈[m],j∈[n]

aij |i〉 |j〉 (2.9)

this follows as the register being traced out samples from the probability distribution in claim 2.1.5.
Density matrix preparation therefore reduces to vector state preparation, either using claim (2.1.5)
or by creating the vector state in equation (2.9) and tracing out the appropriate sub system.

The mixed state interpretation of density matrices can be used to prepare some classes of
density matrices without using an oracle QRAM . This is particularly useful for density matrices
corresponding to graph Laplacians and sums of density matrices.

Graph Laplacians

A graph G(V,E) with n vertices and m edges has vertex set V = [n] and edges set E ⊆ (V ×V)
with |E| = m. The Laplacian matrix L(G) := BBt where B ∈ Rn×m is the vertex edge incidence
matrix with the edges oriented arbitrarily,

Bv,e =

−1 if e = (v, u)

1 if e = (u, v)

0 otherwise

(2.10)

The sparsity and uniform norms of the columns of B can be utilized to prepare the normalized
Laplacian in time O(log n) for a graph stored in classical memory, access to an oracle QRAM is
not required.

Claim 2.1.6. Given a graph G(V,E) with n vertices and m edges stored as an edge list, the

normalized graph Laplacian L(G)/Tr(L(G)) can be prepared in time O(log n).

Proof. Each column of B has exactly two non zero entries and all columns have equal norm, claim

2.1.5 with A = Bt shows that L(G)/Tr(L(G)) is a mixture of states 1√
2
(|u〉 − |v〉) with probability

1/m for (u, v) ∈ E(G). To create a copy of the normalized Laplacian, sample an edge (u, v)

12

uniformly at random and apply the following quantum operations,

1√
2

(|0〉 − |1〉) |u, v〉 |0〉logn CCNOT−−−−−→ 1√
2
|0u〉 − |1v〉 H−→ 1√

2
|u〉 − |v〉 (2.11)

The first step applies two CCNOT operations on all the log n qubits in register 3, the first gate

is a bit flip conditioned on (0, ui) while the second is conditioned on (1, vi) for i ∈ [log n]. The

second step applies a Hadamard gate to the first qubit measures in the standard basis, obtaining

the desired state with probability 1/2. The time required is O(logm) for sampling an edge and

O(log n) for applying the required CCNOT gates.

Sums of density matrices

The probabilistic interpretation of density matrices can be used to prepare µρ + (1 − µ)σ for
µ ∈ [0, 1] if density matrices ρ, σ can be prepared.

Claim 2.1.7. Selecting ρ with probability µ and σ with probability (1 − µ) prepares the density

matrix µρ+ (1− µ)σ.

The density matrix I/n corresponds to the completely mixed state I = 1
n

∑
i |vi〉 〈vi| and can

be prepared efficiently by selecting |i〉 with probability 1/n. Thus, density matrices of the form
µρ+ (1− µ)I/n can be prepared, this will be utilized by quantum algorithms for ridge regression
and page rank in chapter 4.

2.2 Vector state preparation

In this section we present algorithms for two special cases of vector state preparation, these are
used as as subroutines in the augmented QRAM insert and query algorithms. The first special
case considers sparse vectors and provides an algorithm for generating |x〉 in time O(

√
nnz(x)).

The extension requires a quantum key value map implemented using classical data structures
in combination with the oracle QRAM . The second special case considers vector states having
constant dimension, such states are generated in constant time using an auxiliary quantum circuit
in section 2.2.2.

2.2.1 Sparse vector states

Consider the problem of preparing vector state |v〉 =
∑

i∈[n] vi |i〉 where v ∈ Rn is a sparse

vector with nnz(v) non zero entries. Amplitude amplification requires time Õ(
√
n) to generate the

13

0

0

0

0

0

Address, content

QRAM

Sparse v ∈ R10

v8

v7

v5

v3

v1

v8

v7

v5

v3

v1

5

4

3

2

1

Quantum key value map

Index

8

7

5

3

1

Address

5

4

3

2

1

Figure 2.2. Sparse vector state preparation using a quantum key value map.

vector state |v〉 for v ∈ Rn, we show that |v〉 can be prepared in time Õ(
√

nnz(v)). Our solution
reduces sparse vector state preparation to amplitude amplification on nnz(v) coordinates with the
help of a quantum key value map.

The reduction is illustrated in figure 2.2 where v is a sparse vector whose non zero entries
vti , i ∈ [nnz(v)] are stored in contiguous memory locations addressed by integers in [nnz(v)]. A
quantum key value map is maintained between pairs (Ki, Vi), i ∈ [nnz(v)], where Ki = i and
Vi = ti is the index of the entry of v stored at address Ki. The key value map allows queries in
quantum superposition, ∑

i∈[n]

αi |Ki〉 ↔
∑
i∈[n]

αi |Vi〉 (2.12)

Claim 2.2.2 shows that the key value map can be set up in time O(nnz(v)) and the query in (2.12)
can be implemented in time Õ(1). The state |v〉 is generated by first using amplitude amplification
to create the state |v′〉 =

∑
i∈[nnz(v)] vti |i〉 where j are the indices of the non zero entries of v in

time O(
√

nnz(v)). The state |v′〉 is converted to |v〉 using the quantum key value map (2.12), the
choice of the key value pairs ensures that |v′〉 is converted to

∑
i∈[nnz(v)] vti |ti〉 = |v〉.

We formalize the above reduction in the following claim and then provide an implementation
for the key value map in claim 2.2.2. The key value map is the conceptual primitive that enables
sparse vector state preparation, and will be used as a component of the augmented QRAM .

14

Claim 2.2.1. If x ∈ Rn has nnz(x) non zero entries, then k copies of |x〉 can be prepared in time

Õ(nnz(x) + k
√

nnz(x)|x|∞) time using an oracle QRAM and a quantum key value map in (2.2.2).

Proof. Let ti, i ∈ [nnz(x)] denote the indices of the non zero coordinates of x ∈ Rn, the non zero

coordinates of x are stored at addresses [X0, X0 +nnz(x)] in the QRAM . The address X0 + i stores

entry xti , the offset X0 indicates the starting location for storing x in the QRAM . A quantum key

value map is set up as in claim 2.2.2 to map (X0 + i)↔ ti in time O(nnz(x)). Given the key value

map, the state |x〉 is prepared in time
√

nnz(x)|x|∞ as follows,

1√
k

∑
i∈[k]

|i〉 QRAM−−−−→ 1√
k

∑
i∈[k]

|i+X0, xti〉

2.1.1−−−→ 1√
k

∑
i∈[k]

xti |X0 + i〉 2.2.2−−−→ 1√
k

∑
i∈[k]

xti |ti〉 (2.13)

Claim 2.2.2 describes the implementation of the quantum key value map 2.12, the key value map
requires some classical data structures in addition to the oracle QRAM . The additional classical
components are a circuit for computing a hash function, a bitmap Z to keep track of the memory
usage for the QRAM and a list L for resolving hash collisions.

The construction of the key value map is illustrated in figure 2.3, memory addresses for storing
key value pairs are determined using a hash function h, the constant c is an upper bound on the
maximum number of hash collisions. If there were no hash collisions, storing the key value pair
K,V at memory address h(V), h(K) would suffice to implement the key value map. Collisions are
resolved by a quantum analog of chaining in classical hash tables.

The key K is stored at memory addresses f(V) = ch(V) + o where the offset o ∈ [c− 1] selects
the first unoccupied memory address following ch(V), if the offset is non zero the entry (V, f(V))
is stored in the collision list L. Similarly the value V is stored at memory address f(K), the
bitmap Z keeps track of the memory usage and helps compute the offsets. The function f(K) is
computable by a quantum circuit that outputs f(K) if K ∈ L and otherwise outputs ch(K), the
list L is hard-wired into the circuit computing f(K).

Collisions are addressed using a list instead of memory queries as the function f(K) needs to be
computed (and erased) in quantum superposition, and this solution is simpler that making QRAM
queries for computing f(K). The size of the list L is expected to be small if the hash function
is collision resistant, the augmented QRAM uses a truncated version of the SHA hash functions.
Claim 2.2.2 is proved for general key value pairs, the domain from which the keys and values are
drawn will be clear from the application.

15

· · · · · ·
· · · · · ·
· · · · · ·

Vh(K)

Kh(V)

Hash function

Collision list

QRAM

c=5

K,V

V, f(V)

Figure 2.3. The quantum key value map.

Claim 2.2.2. Let (Ki, Vi), i ∈ [n] be a set of key value pairs, a bijective quantum key value map

can be set up in time Õ(n) such that the mappings,

∑
i∈[n]

αi |Ki〉 ↔
∑
i∈[n]

αi |Vi〉 (2.14)

can be implemented in time Õ(1) using the QRAM .

Proof. Let h(x) be a Õ(1) computable hash function that maps keys and values to [N/c], where N

is the size of the address space allocated for the key value map and c ∈ N is an upper bound on

the number of hash collisions. The following algorithm sets up the quantum key value map, the

bitmap Z keeps track of memory usage for the QRAM , that is zi = 1 if address i is occupied and

0 otherwise.

16

Algorithm 2.2.1 Quantum key value map

Require: Key value pairs (Ki, Vi) for i ∈ [n], hash function h, auxiliary data structures bitmap Z

and list L.

1: Repeat steps 2-4 for i ∈ [n].

2: Compute memory addresses f(x) := ch(x)+o where the offset o ∈ [c−1] is the first unoccupied

memory location after ch(x) for x = Ki, Vi. The offset o ∈ [c− 1] is computed using Z.

3: If o > 0 store the key value pair (x, f(x)) in the collision list L.

4: Store Vi at memory location f(Ki) and Ki at memory location f(Vi). Update Z.

5: The address f(x) is subsequently computed as: If x ∈ L then f(x) = L(x) else f(x) = ch(x).

Note that the collision list L facilitates the computation of f(x) by storing all collisions. After

setting up the key value map as above, the quantum key value mapping is achieved as follows,

∑
i∈[n]

αi |Ki〉
f(K)−−−→

∑
i∈[n]

αi |Ki, f(Ki)〉

QRAM−−−−→
∑
i∈[n]

αi |Ki, f(Ki), Vi〉

f(K),f(V)−−−−−−→
∑
i∈[n]

αi |Ki, f(Vi), Vi〉

QRAM−−−−→
∑
i∈[n]

αi |f(Vi), Vi〉

f(V)−−−→
∑
i∈[n]

αi |Vi〉 (2.15)

Each step involves querying the QRAM or the computation of f(x) in superposition, thus the

transformation can be achieved in time Õ(logN).

2.2.2 Constant size vector states

We show that the vector state |x〉 for x ∈ Rb can be created in time Õ(log b) using a specialized
quantum circuit of size O(b) and pre computed amplitudes. The method is useful for creating
constant sized superpositions and is illustrated for a 4 dimensional state |φ〉 in figure 2.4.

17

1.0

0.2

0.16 0.04

0.8

0.64 0.16

Let |φ〉 = 0.4 |00〉+ 0.2 |01〉+ 0.8 |10〉+ 0.4|11〉.

• Rotation: |00〉 →
√

0.2 |00〉+
√

0.8 |10〉

• Conditional rotation on qubit 2:
√

0.2 |00〉+
√

0.8 |10〉 →

0.4 |00〉+ 0.2 |01〉+
√

0.8 |10〉

• Conditional rotation on qubit 2:

0.4 |00〉+ 0.2 |01〉+
√

0.8 |10〉 → |φ〉

Figure 2.4. Constant size vector state preparation for 4-dimensional state |φ〉.

A complete binary tree on 2dlog be nodes is constructed where the internal nodes store the sum of
squared amplitudes of |φ〉, as shown in the figure. The amplitudes are then used to apply a sequence

of conditional rotations to the initial state |0〉dlog be to obtain |φ〉. The circuit for constructing |φ〉
is a sequence of controlled rotation gates, where the amplitudes are used to compute the rotation
angles. Claim 2.2.3 is the generalization of the method used for preparing |φ〉 in figure 2.4.

Claim 2.2.3. Given x ∈ Rb, k copies of state |x′〉 such that | |x′〉 − |x〉 |2 = O(1/poly(b)) can be

prepared in time Õ(b+ k log b) using an auxiliary quantum circuit of size O(b).

Proof. Assume that b = 2l so that |x〉 is a state on l qubits, the l qubits are denoted by |xi〉 , i ∈ [l].

The state |x′〉 is generated by starting with |0〉l and applying rotations to |xt+1〉 conditioned on the

value of the first t qubits |x1:t〉. For k ∈ {0, 1}t, i ∈ {0, 1} and t ∈ [0, l − 1], define,

lki := Pr[|xt+1〉 = i | |x1:t〉 = k] =
∑

j∈[2l],j1:t+1=ki

x2j
|x|2

(2.16)

where the probabilities are with respect to measurement in the standard basis. The rotations ap-

plied to |xt+1〉 are |0〉 →
√
lk0 |0〉+

√
lk1 |1〉, the sign is included for rotations applied to the l-th qubit

|0〉 → sgn(xk0)
√
lk0 |0〉+ sgn(xk1)

√
lk1 |1〉. The rotation angles θk = arccos(

√
lk0) are computed by

looking up a trigonometric table, the lki are accurate to additive error ε = 1/Õ(poly(b)).

Consider the state |x′〉 generated by this process, the probability that |x′〉 when measured in

18

the standard basis yields outcome y is,

Pr[|x′〉 = y] =

 ∏
i∈[0,l−1]

√
ly1:i+1 ± ε

2

= (1 +O(lε) +O(ε2))
∏

i∈[0,l−1]

Pr[|xi+1〉 = yi+1 | |x1:t〉 = y1:t]

= (1 +O(lε)) Pr[|x〉 = y] +O(ε2) (2.17)

The statistical distance | |x′〉 − |x〉 |2 is a constant for precision ε = Õ(1/
√
b) and is O(1/poly(b))

for ε = Õ(1/poly(b)).

Given amplitudes lki the circuit generating |x′〉 is a series of controlled rotation gates, the

circuit size is O(b) and the depth is O(log b). The amplitudes are computed using the relations

lki = x2ki/|x|2 if |k| = l − 1 and lki = lki0 + lki1 otherwise, these relations follow from (2.16). The

amplitudes can be computed in time O(b) by computing them bottom up with k decreasing from

(l − 1) to 0.

2.3 Augmented QRAM

The augmented QRAM is a quantum memory device that stores vectors v ∈ Rn and can be
used to prepare the vector state |v〉 = 1√

|v|

∑
i∈[n] vi |i〉 in time Õ(1). It can store several vectors of

different dimensions, if vi ∈ Rn is the i-th vector stored in an augmented QRAM and l = dlog ne
is the number of qubits in |vi〉, then the following transformation can be implemented as a unitary
operator in time Õ(1),

|i, 0l〉 → |i, vi〉 (2.18)

The speedup in vector state preparation is achieved by pre processing the vectors before loading
them into memory, the pre-processing is entirely classical.

The starting point for the construction of the augmented QRAM is the observation that given a
standard classical RAM , additional data structures can be introduced and the memory organization
modified to facilitate computation. Such augmentations are straightforward to implement and do
not require additional hardware, we refer to the memory model obtained by augmenting the RAM
to facilitate vector state preparation as the augmented RAM .

The construction of the augmented QRAM from the augmented RAM is completely analogous
to the construction of an oracle QRAM from a RAM as illustrated in figure 2.5. The obstacles

19

Classical RAM

Augmented RAM

Data structures,

hash functions,

memory organization.

proposals (10; 9)

proposals (10; 9)

Oracle QRAM

Augmented QRAM

Classical metadata,

hash functions,

memory organization.

Figure 2.5. A conceptual view of the augmented QRAM .

towards the realization of the augmented QRAM as a physical device appear to be the same as
the obstacles towards the construction of an oracle QRAM (10; 9).

This section is organized as follows, the components and organization of the augmented QRAM
are described in section 2.3.1. The augmentations are classical components added to the RAM to
facilitate vector state preparation, the translation to the quantum setting can be achieved following
the proposals in (10; 9) to construct the oracle QRAM . We provide algorithms for inserting a vector
into memory and implementing the query (2.18) in section 2.3.2. In section 2.3.3, we show that
the pre-processing for the augmented QRAM can be parallelized. We summarize and compare the
different vector state and density matrix preparation methods presented in this chapter in section
2.3.3.

The oracle QRAM provides a framework for studying quantum query complexity, where the
complexity of a problem is measured by the number of queries made to the QRAM for solving it.
The literature on quantum query complexity is extensive, with both algorithms and lower bounds
known for several problems. The augmented QRAM provides a framework for studying quantum
algorithms for problems with vector and matrix valued inputs, in this dissertation we provide some
examples of problems for which this framework provides speedups.

2.3.1 Augmented QRAM organization

Figure 2.6 illustrates the memory organization for the augmented QRAM , for the case where
three vectors vi ∈ R8, i ∈ [3] are stored in memory. The memory is organized into bins, bin Bk
stores all vector entries in the interval (2−k, 2−k+1], for example bin B2 stores vector entries in the
interval (0.25, 0.5]. The entries of a vector vi are stored in chunks of consecutive locations in the
bins, the offset oik is the starting location for the entries of vector vi in Bk, for example o32 = 3 in
figure 2.6.

The address space of the augmented QRAM is partitioned into three blocks, the first block
stores vector entries and is organized into bins. The second block maintains a key value map 2.2.2
to converts bin locations to vector entries, key value maps are maintained for all bins, figure 2.6

20

v3

v2

v1

.5 .3 .1 .2

.2 .1 .3 .4

.1 .1 .2 .4

Key value map

B2

.3

.5

.4

.3

.4

Index

3, 4

3, 3

2, 7

2, 6

1, 8

Memory Address

2, 5

2, 4

2, 3

2, 2

2, 1

0 0 0 0

0 0 0 0

0 0 0 0

Figure 2.6. Augmented QRAM memory organization

shows the key value map for bin B2. The third block stores metadata about vectors stored in the
augmented QRAM . The partitioning of the address space can be implemented logically or by using
separate physical devices. The idea for vector state preparation using the augmented QRAM is a
generalization of sparse vector state preparation: first create a weighted superposition over bins,
perform amplitude amplification over bins this in constant time (2.3) as bin entries are bounded and
finally use the key value map to map bin addresses to vector coordinates, the details are described
in algorithm 2.3.2.

Figure 2.7 illustrates all the components of the augmented QRAM , for the same set of three
vectors vi, i ∈ [3] as figure 2.6. The QRAM controller streams over the entries of the vectors vi in
order and assigns them to the correct bins, given vector entry x the bin Bk such that x ∈ Bk can
be computed easily from the binary representation of x. The controller also sets up a key value
map between (i, j)↔ (k, t) where vij is the t-th entry in Bk, that is it sets up the key value maps
as illustrated figure 2.6 for all bins.

The controller maintains some additional metadata for the vectors stored in the augmented
QRAM . Let m be the number of vectors stored in the augmented QRAM , m = 3 in figure 2.7.
The offset matrix O ∈ Rm×b has entries oik equal to the starting location for vi in Bk, and is shown
in figure 2.7. Some more classical metadata is stored by the controller, the count matrix C ∈ Rm×b
has entries cik counting the number of entries of vi in bin Bk and can be derived from the offset
matrix. The success probability vector p ∈ Rm has entries pi =

∑
k∈[b] 2

−2kcik, the norm vector
q ∈ Rm has entries qi = |vi|. The space requirements for maintaining the metadata are O(m) as the
number of bins is a constant, the metadata is stored in the third block of the augmented QRAM .

The pre-processing performed by the QRAM controller can be done at the hardware level if
the hash function for the key value map is implemented in hardware. The hash function also needs
to be computable by a quantum circuit for setting up key value maps as in claim 2.2.2. Single
chip implementations of the SHA-384 and SHA-512 family of hash functions have been proposed
in (28). The address space for a QRAM is much smaller than 384 bits, however the hardware
implementations in (28) can be used as a black box truncating the number of bits in the hash
function to the match the capacity of the QRAM . The single chip implementation can also be
used as a blueprint for a quantum circuit implementation of the SHA hash functions.

21

Controller
v1, v2, v3 ∈ R8

Key-value map

(i, j)↔ (k, t)

.1

.1

.1

.1

.2

.2

.2

.4

.3

.4

.5

.3

QRAM1 QRAM2
· · · · · · · · ·· · · · · · · · ·

Offsets
B1B2B3B4B5B5v1 0 1 1 1 0

v2 0 2 2 3 0
v3 0 4 3 4 0

Figure 2.7. Components of the augmented QRAM .

The SHA family of hash functions are believed to be collision resistant, that is it is com-
putationally hard to find keys such that f(k1) = f(k2). Our algorithms do not require collision
resistance as collisions are resolved using the an associative array D. Collisions are rare for SHA
hash function, so the size of D is expected to be small and the bound c on the number of hash
collisions in claim 2.2.2 can be chosen to be a small constant.

2.3.2 Insertion and query algorithms

We present algorithms for inserting a vector into the augmented QRAM and for implementing
the queries in (2.18). Inserting x into the augmented QRAM requires pre-processing x, the pre-
processing overhead is O(nnz(x)), in section 2.3.3 we show that the insertion algorithm can be
parallelized and the pre-processing overhead reduced to O(nnz(x)/p) if p parallel units are available.
The insertion algorithm normalizes the vectors x being stored in the augmented QRAM to have
unit norm, this is without loss of generality as the notion of vector states 2.0.2 is independent of
the norm. The normalization of vectors to unit length can also be performed classically as a part
of dataset preparation. The norms for the vectors stored in the augmented QRAM are stored as
metadata in vector q ∈ Rm.

22

Algorithm 2.3.1 Augmented QRAM insertion algorithm

Require: x is the N + 1 st vector inserted into the augmented QRAM , count matrix C and offset

matrix O are stored as metadata.

1: Compute offsets for x in Bk as oN+1,k = oN,k + cN,k. Initialize c(k) = 0 for k ∈ [b], the c(k) are

running counts of the number of elements of x in Bk.

2: Compute q(N + 1) = |x|, repeat steps 3-4 streaming over the non zero entries xj of x.

3: For each xj compute k such that xj/q(N + 1) ∈ Bk = [2−k, 2−k−1] and index t = oN+1,k + c(k).

Increment count c(k).

4: Set up a quantum key value map as in claim 2.2.2 between (N + 1, j) ↔ (k, t), store xj at

memory location (k, t) in the first memory block.

5: Update the count matrix setting cN+1,k = c(k), compute p(N + 1) =
∑

k∈[b] 2
−2kc(k).

Vector state preparation using the augmented QRAM utilizes the quantum key value map
set up in step 4 of the insertion algorithm and the circuit in claim 2.2.3 for preparing weighted
superpositions over bins. The algorithm for implementing the query |i, 0〉 → |i, x〉 where x is the
i-th vector stored in the augmented QRAM is presented next. We establish correctness and bound
the running time in claim 2.3.1.

23

Algorithm 2.3.2 Augmented QRAM vector state preparation

Require: x ∈ Rn is the i-th vector stored in the augmented QRAM .

1: Using counts c(k) = cik, create the weighted superposition 1√∑
k∈[b] 2

−2kc(k)

∑
k∈[b] 2

−k√c(k) |k〉

over bins using the circuit from claim 2.2.3.

2: Create the superposition 1√∑
k∈[b] 2

−2kc(k)

∑
k∈[b],t∈[c(k)] 2

−k |k, t〉, a superposition over the entries

in each bin, use exact amplitude amplification 2.1.3 to avoid measurements.

3: Query the QRAM , append an ancilla and apply a conditional rotation,

1√∑
k∈[b] 2

−2kc(k)

∑
k∈[b],t∈c(k)

2−k |k, t〉

 xj
2−k
|0〉+

(
1−

x2j
2−2k

)1/2

|1〉

 (2.19)

4: Using exact amplitude amplification 2.1.3 on (2.19) with success probability p(i) =∑
k∈[b] 2

−2kc(k) stored as metadata, obtain
∑

k∈[b],t∈[c(k)] xj |k, t〉.

5: Apply the quantum key value map set up by the insertion algorithm 2.3.2 to convert∑
k∈[b],t∈[c(k)] xj |k, t〉 →

∑
xj 6=0 xj |i, j〉 = |i, x〉.

Claim 2.3.1. Algorithm 2.3.2 implements |i, 0〉 → |i, x〉 , x ∈ RN for |x| = 1 in time Õ(logN).

Proof. The output of the algorithm 2.3.2 has amplitude of |i, j〉 proportional to xj up to a global

scaling factor, so the state generated is |i, x〉. As each element in Bk is at least 2−k−1 and |x| = 1,

∀k ∈ [b],
∑
xj∈Bk

x2j ≥ c(k)2−2k−2 ⇒ 4 ≥
∑
k∈[b]

2−2kc(k)⇒ 1∑
k 2−2kc(k)

≥ 1

4
(2.20)

the probability of measuring |0〉 in (2.19) is at least 1/4, thus the number of steps required for exact

amplitude amplification in step 4 is constant. Steps 1,2 require time O(1) for creating the weighted

superposition over bins as the number of bins b is a constant. The running time is Õ(logN) as

applying the key value mapping and querying the QRAM requires time Õ(logN).

Algorithm 2.3.2 can be implemented as a unitary, that is without using any measurements.
Measurements in step 2 can be avoided by setting up superpositions 1√

c(k)

∑
t∈[c(k)] |t〉 using the

value of c(k) and exact amplitude amplification 2.1.3. The unitary implementation of algorithm

24

2.3.2 allows implementation of queries in superposition,∑
i

αi |i, 0〉 →
∑
i

αi |i, vi〉 (2.21)

The unitary for the query algorithm uses the metadata stored in the count matrix C and success
probability vector p as inputs, the queries in superposition (2.21) can be implemented if the meta-
data is stored in quantum memory. Queries of the above kind are used in the quantum singular
value estimation algorithm in chapter 3, storing the metadata in classical memory suffices for all
other applications of the augmented QRAM .

2.3.3 Parallelized augmented QRAM

The augmented QRAM uses does not incur a large hardware overhead, however the pre-
processing overhead for inserting x is O(nnz(x)). We show that the pre-processing overhead can
be reduced to O(nnz(x)/p) by splitting x into p chunks and processing them in parallel. Such a
solution can be readily adapted for existing parallel devices like GPUs and multi-core processors.

The insertion algorithm 2.3.2 computes the norm of x and a hash function to set up a bijective
key value map between (N, j) ↔ (k, t) where x is the N -th vector being stored and xj is the t-th
entry in Bk. The quantum key value map can be parallelized as the hash function can be computed
locally and classical data structures used in the key value map can be made concurrent. The bin k
can be computed from xi using a comparison and the norm |x| can be easily computed in parallel.

The only non trivial step in parallelizing the insertion algorithm is computing the index t given
xj . The index computation appears to be an inherently sequential task as elements before x1:i−1
must be examined to determine the index of xj . However, index computation can be expressed as
computing the prefixes/cumulative sums an associative operator and the parallel prefix algorithm
of (21) can be used. The claim below is stated for the case of dense vectors x ∈ Rn with nnz(x) = n,
the proof can be adapted for the case of sparse evictors replacing n by nnz(x).

Claim 2.3.2. For x ∈ Rn, the mapping (N, j)↔ (k, t) where N is an arbitrary label, xj ∈ Bk and

t is the index of xj in Bk can be computed in time O(nnz(x)/p) with p parallel processing units.

Proof. Define vectors vj ∈ Zb for j ∈ [n] such that vj = ek if xj ∈ Bk, and let + be the associative

vector addition operator over Zb. The index t is the k-th coordinate of the cumulative sum
∑

i∈[j] vi,

it therefore suffices to compute all cumulative sums in time O(n/p). The cumulative sums are

computed using the parallel prefix algorithm (21). The parallel prefix algorithm with n/2 processors

computes cumulative sums in time O(log n) as described below.

25

Algorithm 2.3.3 Parallel prefix algorithm (21)

Require: Vector v1, v2, · · · , vn associative operation +, n/2 processors, assumes n = 2l is a power

of 2. Outputs w1, w2, · · · , wn, the cumulative sums of the vi in time O(log n).

1: Up pass: For d = 1, 2, · · · , log(n) and i ∈ [n/2d], v2di = v2di + v2di−2d−1 .

2: Store vn in auxiliary variable S and set vn = 0.

3: Down pass: For d = log(n), · · · , 1 and i ∈ [n/2d], set t = v2di−2d−1 , v2di−2d−1 = v2di and

v2di = v2di + t.

4: Output wi = vi+1 for i ∈ [n− 1] and wn = S.

It is straightforward to adapt the parallel prefix algorithm to compute cumulative sums in time

O(n/p+log p) if p processors are available. Each processor is assigned a chunk of size n/p, processor

i computes the sums Si of the elements assigned to it in time O(n/p). The parallel prefix algorithm

is used to compute the cumulative sums Ci of the Si, given Ci processor i computes cumulative

sums for the elements assigned to it with initial value Ci in time O(n/p).

Summary and Discussion

The table below summarizes the performance and extra resources required for the different
methods we proposed for vector state preparation. The running time for creating k copies of the
vector state is stated, to separate the pre-processing overheads from the time required for state
creation.

Method Running time Extra Resources

Amplitude amplification Õ(k
√
N |x|∞) None

Amplitude amplification Õ(nnz(x) + k
√

nnz(x)|x|∞) Key value map

Specialized circuit Õ(N + k) Quantum circuit size O(N)

Augmented QRAM Õ(nnz(x) + k) Metadata, key value map

Parallel Augmented QRAM Õ(nnz(x)/p+ k) p parallel units

Table 2.1. Comparison of vector state preparation algorithms for creating k copies of |x〉
for x ∈ RN .

The augmented QRAM is the preferred solution for vector state preparation as hardware

26

and pre-processing overheads incurred are small. The parallelized augmented QRAM is feasible
from the implementation point of view as all the augmentations over the oracle QRAM can be
implemented with currently available hardware. However the other methods are useful in certain
settings. Amplitude amplification is useful for operating on data that not stored explicitly in the
QRAM , but is derived using quantum operations from data stored in the QRAM . Some such
applications are presented in section 2.4.

The augmented QRAM can be used for density matrix preparation as described in section
2.1.2. Density matrix ρ = AtA/Tr(AtA) is prepared from A stored in the QRAM by sampling
i ∈ [m] with probability pi = |ai|2/|A|2F and generating |ai〉. The sampling can be done classically
or by storing the vector p ∈ Rm in the augmented QRAM and measuring |p〉 in the standard basis.

The running time and resources used by different density matrix preparation methods are
summarized in table 2.2. The expectations are with respect to the squared norm distribution
pi = |ai|2/|A|2F on the rows. The parallelized augmented QRAM is the preferred method for
density matrix preparation, except for the special cases of graph Laplacians that can be prepared
without a QRAM .

Method Expected running time Extra Resources

Amplitude amplification kÕ(
√
n|p|∞ + Ej∼p[

√
m|ai|∞]) QRAM

Graph Laplacian Õ(k log n) None

Augmented QRAM Õ(nnz(A) + k) Metadata, key value map

Parallel Augmented QRAM Õ(nnz(A)/p+ k) p parallel units

Table 2.2. Comparison of density matrix preparation algorithms for creating k copies of
ρ = AtA/Tr(AtA) for A ∈ Rm×n.

2.4 Operations on matrix states

In this section we discuss quantum operations that can be performed on matrix states |A〉 =∑
i,j aij |i, j〉, such operations are potentially useful for designing linear algebra algorithms. We

present algorithms for two operations, left and right multiplication by a unitary implementable by
a quantum circuit in section 2.4.1 and computation of states corresponding to matrix produces or
matrix vector products in section 2.4.2.

2.4.1 Multiplication by unitary operators

Given a matrix state |A〉 =
∑

i∈[m],j∈[n] aij |i, j〉 and unitaries U or V that can be implemented

as a quantum circuit, the following claim provides a method for generating states |UA〉 and |AV t〉.

Claim 2.4.1. For A ∈ Rm×n and unitaries U ∈ Rm×m, V ∈ Rn×n, states |UA〉 and |AV t〉 can be

27

generated by applying U, V to the first and second register of |A〉,

|UA〉 = (U ⊗ I) |A〉 , |AV t〉 = (I ⊗ V) |A〉 (2.22)

Proof. As U |i〉 =
∑

k∈[m] uki |k〉 we have,

(U ⊗ I) |A〉 =
∑

i∈[m],j∈[n]

aijU |i〉 |j〉 =
∑

k∈[m],j∈[n]

(uk.a.j) |k, j〉

=
∑

k∈[m],j∈[n]

(UA)kj |k, j〉 = |UA〉 (2.23)

Similarly as V |j〉 =
∑

k∈[n] vkj |k〉,

(I ⊗ V) |A〉 =
∑

i∈[m],j∈[n]

aij |i〉V |j〉 =
∑

i∈[m],k∈[n]

(ai.vk.) |i, k〉

=
∑

k∈[m],j∈[n]

(AV t)ik |i, k〉 = |AV t〉 (2.24)

The above claim and the following fact show that the ability to create |A〉 and implement
unitary U can be used to sample rows or columns of UA or AV t with probabilities proportional to
the squared Euclidean norms.

Fact 2.4.2. The probability of obtaining outcome i/j if the first/second register of |A〉 is measured

in the standard basis is:

Pr[i] =
|ai|2

|A|2F
,Pr[j] =

|aj |2

|A|2F
(2.25)

Corollary 2.4.3. There is a quantum algorithm that runs in time Õ(T (U)) where T (U) is the

time to implement U and produces samples from the distribution,

Pr[i] =
|(UA)i|2

|A|2F
,Pr[j] =

|(UA)j |2

|A|2F
(2.26)

In particular, quantum algorithms can perform Fourier sampling on the rows/columns of A by
choosing the unitary U to be the discrete Fourier transform.

28

2.4.2 States corresponding to matrix products

Suppose A ∈ Rm×n and B ∈ Rn×p are stored in a QRAM , the memory is organized as an
an augmented QRAM for multiple matrices/vectors. We present a method for creating |ADuB〉
where Du is a diagonal matrix with u ∈ Rn on the diagonal using amplitude amplification. Other
methods are not applicable as the entries of ADuB are not stored in the QRAM but are generated
from matrices A and B.

Claim 2.4.4. If A ∈ Rm×n and B ∈ Rn×p are stored in the QRAM , state |ADuB〉 for u ∈ Rn can

be created in time Õ(
√
mnpmaxijk aijbjk
|ADuB|F).

Proof. The matrix product AB is a sum of outer products of the columns of A with the rows of B,

AB =
∑
t∈[n]

at ⊗ bt (2.27)

More generally for u ∈ Rn, ADuB =
∑

t∈[n] uta
t ⊗ bt, the matrix product is a special case for

u = 1√
n
~1. Creating a uniform superposition over three registers |i, j, k〉 and querying the QRAM

twice on registers 1, 2 and 2, 3 generate the state,

|φ〉 =
1

√
mnp

∑
i∈[m],j∈[n],k∈[p]

|i, j, k, aijbjk〉
(

aijbjk
maxijk aijbjk

|0〉+ β |1〉
)

(2.28)

Erase the auxiliary register using the QRAM , and post select on |0〉 and register j being in the

state |u〉. There is a unitary transformation such that U |0〉l = |φ〉 and the reflections involved

can be implemented easily, thus amplitude amplification can be used to create a copy of the state

|ADuB〉 in time Õ(
√
mnpmaxijk aijbjk
|ADuB|F). Using the same procedure the matrix product |AB〉 can be

created in time Õ(
n
√
mpmaxijk aijbjk
|AB|F).

The matrix product preparation procedure is particularly useful for matrices where all entries
are bounded in magnitude, if A is a density matrix ρ with bounded entries aij ≤ O(1√

nnz(A)
),

the state |A2〉 requires time O(1/
∑

i λ
2
i) to prepare. A useful corollary of the matrix product

preparation is the creating the state |Ax〉 where A ∈ Rm×n and x ∈ Rn is k-sparse.

Corollary 2.4.5. The state |Ax〉 for A ∈ Rm×n and k-sparse x ∈ Rn can be generated in time

Õ(
k
√
mmaxij aijxj
|Ax|2).

29

Chapter 3

Quantum singular value estimation

In this chapter, we present quantum algorithms that utilize the ability to create vector states
and density matrices from classical data stored in the augmented QRAM . Given M ∈ Rm×n with
singular value decomposition M =

∑
i σiuiv

t
i stored in the augmented QRAM , we present two

algorithms that given |vi〉 or |ui〉 estimate σi within additive error ε ‖M‖F in time Õ(poly(1/ε)).
These algorithms will be used to obtain quantum algorithms for linear algebra and machine learning
problems in chapters 4 and 5.

We begin by defining the singular value estimation problem and its quantum analog.

Definition 3.0.6. Singular value estimation (M, ε): Suppose M ∈ Rm×n has singular value de-

composition M =
∑

i σiuiv
t
i , given vector vi (respectively ui), output estimate σi ∈ [σi ± ε ‖M‖F].

The classical singular value estimation problem has access to the entries of the singular vector vi,
the quantum analog of the singular value estimation problem uses |vi〉 as input, the output for both
cases and an additive error ε ‖M‖F estimate for σi.

Definition 3.0.7. Quantum singular value estimation (M, ε): Suppose M ∈ Rm×n has singular

value decomposition M =
∑

i σiuiv
t
i , given vector |vi〉 (respectively |ui〉) output estimate σi ∈ [σi ±

ε ‖M‖F].

Generating inputs |vi〉 or |ui〉 without knowing the singular value decomposition of M is a
difficult task, however quantum singular value estimation can be invoked with a mixed state as
input. Quantum spectral sampling defined below is a useful special case of singular value estimation
using the density matrix ρ = MM t/Tr(MM t) as input. The density matrix ρ represents a mixture
of states |ui〉 with probability σ2i . Copies of ρ can be generated from M stored in the augmented
QRAM as described in chapter 2.

30

More generally, the eigenvalues of a density matrix in Rm×m define a probability distribution
on [m] as they are positive and sum to 1. The quantum spectral sampling problem is to sample an
eigenvector of from this distribution and obtain an estimate of the sampling probability.

Definition 3.0.8. Quantum spectral sampling (ρ, ε): Given copies of density matrix ρ with spectral

decomposition ρ =
∑

i∈[m] λi |vi〉 〈vi|, sample (|v〉 , λ) where Pr[|v〉 = |vi〉] = λi and λ ∈ λi ± ε.

Spectral sampling is used to obtain low rank approximation algorithms in chapter 4. Another
application of quantum singular value estimation is computing projections of a given vector state
|v〉 onto the column space of M . The projection algorithm is used to obtain algorithms for `2
regularized least squares and generalizations in chapter 5.

We provide two algorithms for quantum singular value estimation, both approaches use phase
estimation (20) for unitary operators simulated using the augmented QRAM . The first algorithm
requires an oracle for generating independent copies of ρ = M tM/Tr(M tM) for approximately
simulating the unitary operator e−i2πρ. The algorithm for simulating e−i2πρ using copies of ρ was
suggested in (23) but the analysis presented there does not establish coherence which is necessary
for phase estimation. We provide a provably correct analysis that uses the quantum Zeno effect
to establish coherence, and the Chernoff bounds and approximate phase estimation to bound the
approximation error. This is in contrast to existing Hamiltonian simulation techniques that rely
on Suzuki-Trotter expansions (3; 23). The running time for the the algorithm is Õ(1/ε3).

Our second algorithm for singular value estimation achieves an improved running time of Õ(1/ε),
it relies on a conceptual connection between the singular values of M and principal angles between
subspaces associated with M . The connection is established using Jordan’s lemma relating the
eigenspaces of two projectors (27; 39). The second algorithm 3.3.1 is faster and simpler to implement
than algorithm 3.2.1 and is therefore preferred for most of the applications in later chapters.

This chapter is organized as follows, in section 3.1 we discuss quantum concepts and techniques
used in our analyses. In section 3.2 we describe the spectral sampling and simulation algorithm
from (23) and discuss the problems with the analysis. In section 3.2.2, we provide a provably
correct analysis for quantum spectral sampling using the quantum Zeno effect and approximate
phase estimation. We also provide an efficient implementation for the algorithm without using
sparse Hamiltonian simulation techniques and discuss some extensions. In section 3.3.2 we present
the second algorithm for quantum singular value estimation using Jordan’s lemma.

3.1 Preliminaries

Basic quantum notation and the notions of states, density matrices and the partial trace were
introduced in section 1.1.2. In this section we introduce additional quantum concepts and techniques
that are required for our analyses.

The completely mixed state is represented by the density matrix I/n, it may be viewed as a

31

uniform mixture over any orthonormal basis |vi〉 , i ∈ [n] for Cn,

In =
1

n

∑
i∈[n]

|vi〉 〈vi| (3.1)

The swap operator S :=
∑

i,j∈[n] |i, j〉 〈j, i|, acts on two n qubit registers and swaps their

contents, that is S |ab〉 = |ba〉. The swap operator is an involution, that is S2 = I, the following
identity holds for all involution operators:

eiSt = cos tI + i sin tS (3.2)

The identity can be established using the series expansion of eiSt and is analogous to the statement
eiθ = cos(θ) + i sin(θ).

Phase estimation

Phase estimation (20) is a quantum algorithm that on input |v〉 an eigenvector of unitary
operator U estimates the eigenvalue to additive error ε, given a black box oracle for implementing
Uk for k = O(1/ε). The black box is implemented by a quantum circuit in most applications of phase
estimation, but the spectral sampling algorithm 3.2.1 implements the black box approximately. We
describe the phase estimation circuit as the analysis in section 3.2.2 requires showing that phase
estimation succeeds with an the approximate implementation of the black box.

The Fourier transform mod N is the unitary operator:

FTN (|j〉) =
1√
N

∑
k∈[N]

ωjk |k〉 (3.3)

where ω = e2πi/N is the N -th root of unity. The Fourier transform mod 2 is an application of the
Hadamard gate H |0〉 = 1√

2
(|0〉 + |1〉), H |1〉 = 1√

2
(|0〉 − |1〉). The Fourier transform FTN can be

implemented efficiently as a quantum circuit for all N .

The controlled unitary operator CU uses l control qubits to control the application of U on
|ψ〉, that is CU(|k〉 ⊗ |ψ〉) = |k〉 ⊗ Uk |ψ〉. Let U be a unitary operator and |v〉 be an eigenvector
of U with eigenvalue eiθ, the phase estimation algorithm for estimating θ is the following:

|0〉 |v〉 H⊗l−−→ 1√
2l

∑
k∈[2l]

|k〉 |v〉

CU−−→ 1√
2l

∑
k∈[2l]

|k〉Uk |v〉

=
1√
2l

∑
k∈[2l]

eiθk |k〉 |v〉

(FT
2l
)−1

−−−−−−→ |θ〉 |v〉 (3.4)

32

The analysis of phase estimation shows that if θ ∈ 2π
2l

[j, j + 1], then the phase estimation circuit
outputs j or j + 1 with constant probability, thus obtaining an additive error ε estimate of θ for
k = O(1/ε). The following series sum and trigonometric identities will be used for the analysis in
section 3.2.2.

Fact 3.1.1.
∑

t∈[n] t
2 = n.(n+1).(2n+1)

6 ≤ n3

2.95 for n > 100.

Fact 3.1.2. The sum of sines and cosines of angles in an arithmetic progression are given by:

∑
k∈[0,N−1]

sin(kθ) =
sin(Nθ/2)

sin(θ/2)
sin((N − 1)θ/2)

∑
k∈[0,N−1]

cos(kθ) =
sin(Nθ/2)

sin(θ/2)
cos((N − 1)θ/2) (3.5)

The following fact follows from the Chernoff bounds:

Fact 3.1.3. Consider a coin flipping experiment where pi is the probability of outcome i and define

δ := pi − pj where (i, j) are the two most frequent outcomes. The probability that i is the most

frequent outcome over O(log n/δ2) independent trials is at least 1− 1/poly(n).

Quantum Zeno effect

The philosopher Zeno posed the arrow paradox asserting that an arrow can never be in motion
as at every instant of time its position is measurable and therefore unchanging. If time is composed
of instants, and the arrow is at rest for all instants then how can the arrow be in motion? The
quantum Zeno effect was first introduced in (30), it refers to the fact that the state of a quantum
system remains invariant if it is measured continuously.

A discrete version of the quantum Zeno effect shows that if a quantum system in state |φ〉
evolves according to e−iHt/k |φ〉 and is measured at discrete time intervals in a basis containing |φ〉,
the state of the system remains invariant with high probability. The trade off between the error
probability and the rate of measurement is illustrated in the example below, if k measurements are
made, the probability of the state of the system changing is O(1/k).

The following experiment illustrates the discrete version of the quantum Zeno effect, suppose
|0〉 is rotated to |1〉 over k steps where each step is a rotation by an angle of π/2k, that is the
rotation gate Rπ/2k is applied k times.

In the first scenario, the qubit is measured in the standard basis after applying k rotations,
the outcome of the measurement is 1 as the state of the qubit is |1〉 after k rotations. In the
second scenario, the qubit is measured in the standard basis after each rotation. The probability of
obtaining outcome 1 on the first measurement is sin2(π/2k) ≤ π2/4k2, if the measurement outcome
is 0 the state collapses to |0〉 and the same argument can be applied for the next rotation. The

33

|1〉

|0〉θ

cos(θ) |0〉+ sin(θ) |1〉

The blue arrows represent a process where

k = 4 rotations by θ = π/9 are applied to

|0〉 followed by measurement in the stan-

dard basis. The red arrow represents a pro-

cess where a measurement is applied after

each rotation.

The probability of measuring |1〉 is 0.96 for

process 1. and at most 0.46 for process 2.

Figure 3.1. An illustration of the quantum Zeno effect.

probability of obtaining outcome 1 over the k steps of the process is at most π2/4k by the union
bound. The probability of obtaining measurement outcome 1 over k steps in the second scenario
can be made arbitrarily small by increasing the number of steps.

3.2 Quantum spectral sampling

An algorithm for simulating e−i2πρ using independent copies of density matrix ρ was proposed
in (23), where it is referred to as quantum self analysis. While such an algorithm can be used
for singular value estimation, algorithm 3.2.1 is presented for the special case of quantum spectral
sampling. The analysis in (23) does not establish the correctness of the algorithm , in particular it
does not show that the simulator preserves coherence, this is discussed in section 3.2.1. Our main
result theorem 3.2.1 provides a provably correct analysis for algorithm 3.2.1 and bounds the failure
probability.

34

Algorithm 3.2.1 Quantum spectral sampling (23)

Require: Oracle for producing copies of ρ ∈ Rn×n, precision ε, the spectrum of ρ consists of

eigenvector eigenvalue pairs (|vj〉 , λj), j ∈ [n].

1: Simulate the action of U = e−2πiρ on |φ〉 = |φ0〉 by iterating

|φt+1〉 = Tr2(e
−2πiS/k(|φt〉 〈φt| ⊗ ρ)e2πiS/k) (3.6)

for k = 200 log(n log(1/ε)/ε)
ε2

steps, output Uk |φ〉 = |φk〉.

2: Perform phase estimation with U replaced by Uk and precision ε on input σ = ρ. Repeat

phase estimation O(log n) times and select the most frequently observed estimate λj to obtain

a sample:

∑
j∈[n]

λj |vj〉 〈vj | ⊗ |λj〉 〈λj | (3.7)

Theorem 3.2.1. Algorithm 3.2.1 runs in time Õ(T (ρ)/ε3) where T (ρ) is the time to prepare ρ and

returns a sample (|v〉 , λ) with Pr[|v〉 = |vj〉] = λj and λ ∈ λj ± ε with probability at least 1−O(ε).

The identity matrix I/n can be viewed as a mixture of states |vi〉 , i ∈ [n] where the orthonormal
basis vi extends the singular vector basis for A if A is rank deficient. Thus, using the completely
mixed state I/n as input in step 2 of algorithm 3.2.1 yields a uniform sample from the eigenvectors.

Corollary 3.2.2. Algorithm 3.2.1 with input I/n in step 2 produces a sample (|v〉 , λ) where

Pr[|v〉 = |vj〉] = 1/n, with the same running time and guarantees on λ as in theorem 3.1.

The simulator in step 1 of algorithm 3.2.1 introduces an independent copy of ρ for each iteration,
applies the swap operator e−iS2π/k and traces out/measures the second system. The simulator can
not be described by a unitary operator acting on the first subsystem, it is an example of an
open quantum system described by the Kraus operator formalism (33). Establishing correctness
algorithm 3.2.1 requires that the unitary operator U = e−i2πρ be simulated coherently, that is if
the input σ = |φ〉 〈φ| where |φ〉 is a superposition over the eigenstates of ρ, the output should be
the coherent superposition U |φ〉 as opposed to a probabilistic mixture.

It is not clear a priori that the simulator in algorithm 3.2.1 preserves coherence, in fact the
analysis in (23) shows that the output of the simulator is close to the density matrix UσU∗ and
thus does not address the issue of coherence. Our main contribution is to show that algorithm
3.2.1 approximately simulates U coherently with high probability, thus justifying the use of the
simulator for phase estimation.

35

Before proving theorem 3.2.1, we try to formalize the correctness argument for algorithm 3.2.1
that was implicit in (23) and discuss why such an approach does not seem to work.

3.2.1 The need for coherence

The following identity can be proved by expanding the series e−iS2π/k up to second order terms
and computing the partial traces for individual terms on the left hand side, note that [σ, ρ] = σρ−ρσ
denotes the commutator.

Tr2(e
−iS2π/k(σ ⊗ ρ)eiS2π/k) = σ − i(2π/k)[σ, ρ] + (4π2/k2)(σ − ρ) +O(1/k3) (3.8)

The identity (3.8) is compared to the Suzuki Trotter expansion of e−iρ2π/kσeiρ2π/k up to second
order terms,

e−iρ2π/kσeiρ2π/k = σ − i(2π/k)[σ, ρ] + (2π2/k2)[ρ, [σ, ρ]] +O(1/k3) (3.9)

The following claim formalizes the correctness argument for algorithm 3.2.1 implicit in (23), we
argue that the claim is not sufficient for justifying the phase estimation step in algorithm 3.2.1.

Claim 3.2.3. Let σ0 = σ and σl be the state obtained after l iterations of step 1 of algorithm 3.2.1

and σl = e−i2πρl/kσei2πρl/k, then

‖σl − σl‖1 ≤
16π2l

k2
(3.10)

Proof. The equality of the first order terms in the identities (3.8) and (3.9) yields the following

bound for all j ∈ [l],∥∥∥σj − e−i2πρ/k1 σj−1e
i2πρ/k

∥∥∥
1
≤ 4π2

k2

(
ρ− σ − 1

2
[ρ, [σ, ρ]]

)
≤ 16π2

k2
(3.11)

The last inequality follows from the triangle inequality and sub multiplicativity for the trace norm,

that is ‖σ‖ = 1 and ‖σρσ‖1 ≤ 1. Denoting the unitary e−i2πρ/k by U and applying the triangle

inequality,

‖σl − σl‖1 ≤
∑
j∈[l]

∥∥∥U l−j(σj − Uσj−1U∗)(U l−j)∗∥∥∥
1

=
∑
j∈[l]

‖σj − Uσj−1U∗‖1 ≤
16π2l

k2
(3.12)

The second equality follows from the unitary invariance of the trace norm, the last inequality follows

from (3.11).

36

Phase estimation requires O(1/ε) iterations to achieve an additive error of ε, with the choice
of k = O(1/ε2) in algorithm 3.2.1, step 1 is repeated l = O(k/ε) = O(1/ε3) times. It is tempting
to conclude that algorithm 3.2.1 produces correct results with probability 1 − O(ε) as claim 3.2.3
shows that the trace norm error is O(l/k2) = O(ε).

However, the above argument does not directly establish the correctness of algorithm 3.2.1.
Phase estimation with U = e−i2πρ applies a unitary operation over the control register and an
input register (3.4), the unitary acting on the combined system is U =

∑
j∈[1/ε] |j〉 〈j| ⊗ e−i2πρj .

There are two possible ways of using claim 3.2.3 to obtain an algorithm that simulates the unitary
U on the combined system.

The first approach is to express the unitary U in the form eiρ for a density matrix ρ of the
form ρ = σ′ ⊗ ρ for some density matrix σ′ on the control register that can be prepared easily.
However, there does not seem to be a simple expression for ρ of this form, in particular the choice
ρ = I/n ⊗ ρ does not work. The second approach for simulating U is to swap independent copies
of ρ with the input register as in algorithm 3.2.1. Claim 3.2.3 does not establish coherence of the
outputs for this approach, for the setting of phase estimation it does not show that

∑
k∈[2l] |k, vj〉

coherently evolves to
∑

k∈[2l] e
−2πλjk |k, vj〉.

3.2.2 Overview of analysis

Our analysis of the quantum spectral sampling algorithm 3.2.1 splits into two steps, in section
3.2.3 we analyze the simulator Uk and show that if |φ〉 is a coherent superposition, then Uk |φ〉
is coherent and approximates U |φ〉 with high probability. The quantum Zeno effect is used to
establish coherence while the Chernoff bounds are used to show that Uk |φ〉 ≈ U |φ〉.

In section 3.2.4 we show that the simulator Uk can be used instead of U for phase estimation.
Instead of the state

∑
k∈[2l] e

−i2πλjk |k, vj〉 obtained using U for for phase estimation, with high

probability algorithm 3.2.1 produces the coherent superposition
∑

k∈[2l] e
−i2πλj(1±δ)k |k, vj〉, where

the relative phases e−i2πλj(1±δ)k are approximately correct. Finally we show that the approximate
implementation suffices for phase estimation with a small increase in error probability.

The analysis of algorithm 3.2.1 is not restricted to quantum spectral sampling, the algorithm
can also be used for singular value estimation and solving linear systems in ρ in the sense described
in (15). The running time for algorithm 3.2.1 is Õ(1/ε3), the running time is improved to Õ(1/ε)
using a different algorithm based on Jordan’s lemma in section 3.3.2.

Before presenting the proofs, we provide a high level overview using a simple two dimensional
example to illustrate all the important ideas involved in the analysis.

Illustrative example

The following two dimensional example illustrates all the important ideas in the analysis. Let
ρ be a rank 2 density matrix with spectral decomposition ρ = λ |v1〉 〈v1| + (1 − λ) |v2〉 〈v2|. Let
|φ〉 = α |v1〉 + β |v2〉 be the input state, on which we want to simulate the action of e−i2πρ. We

37

argue that algorithm 3.2.1 maintains coherence with high probability and simulates the action of
U = e−i2πρ approximately in the following sense,

U(α |v1〉+ β |v2〉) = αe−i2πλ |v1〉+ βe−i2π(1−λ) |v2〉
Uk(α |v1〉+ β |v2〉) = αe−i2πλ(1±δ) |v1〉+ βe−i2π(1−λ)(1±δ) |v2〉 (3.13)

The action of Uk is described by the above equation with probability 1 − O(1/k). The output
Uk |φ〉 is incoherent with probability O(1/k), if coherence is lost the output can be arbitrary.
Equation (3.13) shows that U |φ〉 ≈ Uk |φ〉 with high probability, a similar argument shows that
U t |φ〉 ≈ U tk |φ〉 for sufficiently large k, thus U can be replaced by Uk in a phase estimation circuit.
This overview establishes equation 3.13 for the two dimensional example (ρ, |φ〉), it glosses over the
technical details, the complete analysis is contained in sections 3.2.3 and 3.2.4.

Consider the first iteration of the simulator (3.6) on input |φ0〉 = |φ〉. The state |φ1〉 depends
on the contents of the second register, it equals |ψ1〉 = Tr2(e

−i2πS/k |φ〉 |v1〉) with probability λ
and |ψ2〉 = Tr2(e

−i2πS/k |φ〉 |v2〉) with probability (1 − λ). Using the decomposition of the swap
operator (3.2) the states |ψi〉 can be computed explicitly,

|ψ1〉 = Tr2(αe
−i2π/k |v1v1〉+ β cos(2π/k) |v2v1〉 − iβ sin(2π/k) |v1v2〉) (3.14)

If the second register when traced out/measured in the spectral basis for ρ remains in state |v1〉,
|ψ1〉 = (αe−i2π/k |v1〉+ β cos(2π/k) |v2〉). Coherence is maintained, a phase e−i2π/k is added to the
|v1〉 component of the superposition, the amplitude of the |v2〉 component decays by cos(2π/k) and
the state is renormalized to have norm 1. However, if the state of the second register changes to
|v2〉, coherence is lost and the superposition collapses with |ψ1〉 = |v1〉.

The probability of the second register being in state |v2〉 in equation (3.14) is at most
β2 sin2(2π/k) ≤ 4π2/k2 as sin(θ) ≤ θ for all θ > 0. A similar argument applies to |ψ2〉 and
shows that |ψ2〉 = (α cos(2π/k) |v1〉+ βe−i2π/k |v2〉) with probability at least 1− 4π2/k2.

Thus with probability at least 1− 4π2/k2, the effect of a single step of the simulator is to flip a
coin that selects (v1, v2) with probabilities (λ, 1−λ) and add a phase of e−i2π/k to the corresponding
component of the input. Let X1, X2 be random variables counting the number of times (v1, v2) get
selected over k such coin flips. The effect of k steps of the simulator, assuming that the state of
the second register remains invariant over each step is,

|φk〉 =
1
√
p

(
α cos(2π/k)X2e−2πiX1/k |v1〉+ β cos(2π/k)X1e−2πiX2/k |v2〉

)
(3.15)

where p is the probability that the system evolves as in the above equation (3.15). The probability

of losing coherence over a single iteration is at most 4π2

k2
, by the union bound the simulator preserves

coherence and evolution is described by equation (3.15) with probability at least 1 − 4π2/k. This
bound on the probability of maintaining coherence is an instance of the quantum Zeno effect and
is central to the analysis.

Let |φk〉 = α′e−2πiX1/k |v1〉 + β′e−2πiX2/k |v2〉, computing the ratio of the squared amplitudes
bounds the effect of renormalization of amplitudes,

1

1− 4π2/k
≥ 1

p
≥ (α′)2

α2
≥ (1− sin2(2π/k))k/2 ≥ 1− 2π2

k
(3.16)

38

where the last inequality follows from (1 − x)n ≥ 1 − nx for x > 0. The effect of renormalization
of amplitudes is O(1/k) by equation (3.16) and is negligible compared to the other sources of error
in the final analysis.

The renormalization of amplitudes can therefore be ignored in equation (3.15). By the Chernoff
bounds the random variable Xj are concentrated around its expected value λjk, that with high
probability the output state is of the form Uk |φ〉 = αe−i2πλ(1±δ) |v1〉 + βe−i2π(1−λ)(1±δ) |v2〉 for a
suitable value of δ, establishing equation (3.13).

3.2.3 Coherence using the Zeno effect

The simulator Uk in step 1 of algorithm 3.2.1 on input |φ0〉 = |φ〉 applies the operation,

|φt+1〉 = Tr2(e
−i2πS/k(|φt〉 〈φt| ⊗ ρ)ei2πS/k) (3.17)

for k iterations with independent copies of ρ and outputs |φk〉. Claim 3.2.4 shows that for input
|φ〉 =

∑
i αi |vi〉, the simulator Uk approximately simulates the action of U = e−i2πρ coherently,

that is with high probability the output |φk〉 is a coherent superposition close to U |φ〉.

Claim 3.2.4. Let |φ〉 =
∑

j αj |vj〉, the output of the simulator Uk |φ〉 is coherent and close to U |φ〉

with high probability,

Pr

Uk |φ〉 =
∑
j∈[n]

e−i2πλj(1±δj)βj |vj〉

 ≥ 1−

4π2

k
+
∑
j∈[n]

e−2πδ
2
jλjk/3

 (3.18)

Further, for evolution described by the above equation (3.18),
∑

j |α2
j − β2j | = O(1/k).

Proof. The simulator (3.35) is analyzed by treating the independent copies of ρ as samples from a

distribution over eigenstates |vj〉 , j ∈ [n] where |vj〉 is sampled with probability λj . Suppose the

t-th copy of ρ is in state |vl〉, and the input state |φt〉 =
∑

j∈[n] γj |vj〉 is coherent, then the effect

of the simulator (3.35) over the t-th iteration is described by,

|φt+1〉 = Tr2

(cos(2π/k)I − i sin(2π/k)S)(γl |vlvl〉+
∑
j 6=l

γj |vjvl〉)

 (3.19)

using the decomposition for e−i2πS/k from equation (3.2). If both registers are in the state |vl〉 the

swap operator acts as identity,

|φt+1〉 = Tr2

e−i2π/kγl |vlvl〉+
∑
j 6=l

cos(2π/k)γj |vjvl〉 −
∑
j 6=l

i sin(2π/k)γj |vlvj〉

 (3.20)

39

Conditioned on the event that the register being traced out remains in the state |vl〉 when measured

in the spectral basis for ρ, the output of the t-th iteration of the simulator is,

|φt+1〉 =
1√
N

e−i2π/kγl |vl〉+ cos(2π/k)
∑
j 6=l

γj |vj〉

 (3.21)

where N is a normalizing constant. The probability that the second register is in not in the state |vl〉

is at most sin2(2π/k)
∑

j 6=l γ
2
j ≤ 4π2/k2. Thus if the input state |φt〉 is coherent, with probability at

least 1−4π2/k2 coherence is maintained and the next iteration of the simulator evolves according to

(3.21). By the union bound, coherence is maintained over k steps starting with |φ〉 with probability

at least 1− 4π2/k.

Note that if the measurement outcome for the second register was orthogonal to |vl〉, coherence

would be lost and |φt+1〉 would collapse to |vl〉. Conceptually, coherence is maintained due to the

quantum Zeno effect (30; 32). Iteration t applies a small rotation U = e−i2πS/k to |φt, vl〉 and

measures the second register. Coherence is lost the if second register is measured to be in a state

orthogonal to |vl〉, the probability of losing coherence over k steps is controlled by decreasing the

rotation angle, or equivalently increasing k. The error probability over k steps of the simulator

decays as O(1/k) by the quantum Zeno effect.

Let Zjt for t ∈ [k] be a random variable that is 2π/k with probability λj and 0 otherwise and

let Xj =
∑

t∈[k] Zjt. It follows that with probability at least 1− 4π2/k the final state Uk(|φ〉) is in

a coherent superposition,

Uk |φ〉 =
1√
N

∑
j∈[n]

e−iXjλj cos(2π/k)k−Xjαj |vj〉

 (3.22)

By the Chernoff bounds applied to k flips of a coin with bias λj the random variables Xj are

concentrated around their expected value,

Pr[Xj 6∈ 2π(1± δ)λj] ≤ e−2πδ
2λjk/3 (3.23)

Equations (3.22) and (3.23) show that the output Uk |φ〉 is of the form
∑

j∈[n] e
−i2πλj(1±δj)βj |vj〉

described by equation (3.18) with probability at least 1−
(
4π2

k +
∑

j∈[n] e
−2πδ2jλjk/3

)
. Establishing

40

a bound on
∑

j∈[n] |α2
j − β2j | conditioned on evolution according to (3.22) completes the proof of

the claim.

Deferring all the measurements made on the k auxiliary registers to the end, the normalization

factor N in equation (3.22) is equal to the probability that Uk |φ〉 evolves according to (3.22). Thus,

1

1− 4π2/k
≥ 1

N
≥
β2j
α2
j

≥ cos(2π/k)2k ≥
(

1− 4π2

k2

)k
≥
(

1− 4π2

k

)
(3.24)

where the last inequality follows as (1−x)n > (1−nx) for x ≥ 0. The above inequalities imply that

for all j, |α2
j −β2j | ≤ 4π2

k max(α2
j , β

2
j). summing up over all j ∈ [n] it follows that

∑
j∈[n] |α2

j −β2j | =

O(1/k).

3.2.4 Approximate phase estimation

Claim 3.2.4 shows that the simulator in algorithm 3.2.1 preserves coherence and approximately
simulates e−2πiρ with high probability. A similar argument establishes coherence and closeness to
for the setting of phase estimation where controlled Uk operations are applied. We analyze phase
estimation for the setting where the unitary U = e−i2πρ is replaced by the simulator Uk. Let l be
the number of control qubits in the phase estimation circuit, so that the precision ε = 1/2l.

Claim 3.2.5. If unitary U = e−i2πρ is replaced by the simulator Uk in a phase estimation circuit

with precision ε = 1/2l, l ≥ 7 and k = 200 log(n log(1/ε)/ε)
ε2

, then on input |φ, 0〉 =
∑

j∈[n] αj |vj , 0〉,

output
∑

j∈[n] αj |vj , λj〉 such that |λj
2l
− λj | ≤ ε is obtained with probability at least (1−O(ε log n))

by repeating phase estimation O(log n) times and choosing the most frequent estimate.

Proof. If the controlled U = e−i2πρ operator were implemented exactly the state produced after

the first step of phase estimation is a coherent superposition,

|0, vj〉
FT,C−U−−−−−→ 1√

2l

∑
t∈[2l],j∈[n]

αje
−i2πλjt |t, vj〉 := |x〉 (3.25)

If U is replaced by Uk, we show that coherence is maintained and the output state |x〉 is close to |x〉.

The argument before equation (3.21) shows that coherence is maintained if the state of all the k.2l

41

registers containing independent copies of ρ remains invariant after application of e−i2πS/k. By the

Zeno effect the probability of maintaining coherence over 2lk steps is at least 1−4π22l/k ≥ 1− ε/5.

The state |x〉 after applying the Fourier transform and a controlled Uk operation is,

|0, vj〉
FT,C−Uk−−−−−−→ 1√

2l

∑
t∈[2l]

|t〉U tk |φ〉 := |x〉 (3.26)

Coherent evolution is described by (3.18), the states U tk |φ〉 are close to U t |φ〉 with probabilities

bounded by claim 3.2.4.

Pr

U tk |φ〉 =
∑
j∈[n]

e−i2πλjt(1±δjt)βjt |vj〉 , |δjt| ≤ δj ∀ t ∈ [2l]

 ≥ 1− ε/5− l
∑
j∈[n]

e−2πδ
2
jλjk/3 (3.27)

Controlled U tk operators for t ∈ [2l] are implemented by composing U tk for t = 2r, r ∈ [l], thus to

ensure that |δjt| ≤ δj for all t ∈ [2l], it suffices to show that |δjt| ≤ δj for t = 2r, r ∈ [l].

Choosing δj such that λjδj = ε
20 , our choice of k = 200 log(nl/ε)

ε2
= l

2(λjδj)2
can be used to bound

the error probability in (3.27),

e−2πδ
2
jλjk/3 = e

− 2π log(nl/ε)
6λj ≤ e− log(nl/ε) =

ε

nl
(3.28)

Thus equation (3.27) can be simplified to,

Pr

U tk |φ〉 =
∑
j∈[n]

e
−i2πλjt(1± ε

20λj
)
βjt |vj〉 , ∀t ∈ [2l]

 ≥ 1− 1.2ε (3.29)

The outputs of the exact and approximate phase estimation circuits are samples from FT−1
2l

(|x〉)

and FT−1
2l

(|x〉). As the Fourier transform is a unitary operator, the statistical distance between

the distributions FT−1
2l

(|x〉) and FT−1
2l

(|x〉) is equal to the squared `2 distance ||x〉 − |x〉|22 where

|x〉 , |x〉 are the exact and approximate states defined in equations (3.25), (3.26).

In order to bound the squared `2 distance we introduce the intermediate state,

|x′〉 :=
1√
2l

∑
t∈[2l],j∈[n]

αje
−i2πλjt(1± ε

20λj
) |t, vj〉 (3.30)

42

The squared `2 distance between |x′〉 and |x〉 is bounded by,

∣∣|x′〉 − |x〉∣∣2
2

=
1

2l

∑
t∈[2l],j∈[n]

|α2
j − β2jt|

= O(1/k) = O(ε2) (3.31)

using claim 3.2.4. The squared `2 distance between |x′〉 and |x〉 is bounded by,

∣∣|x′〉 − |x〉∣∣2
2

=
1

2l

∑
t∈[2l],j∈[n]

α2
j

∣∣∣(1− e−i 2πεt20)
∣∣∣2

≤ 1

2l

∑
t∈[2l]

(
2πεt

20

)2

≤ 0.1ε2

2l
23l

2.95
≤ 0.035 (3.32)

The first inequality follows as 2 sin(θ/2) < θ while the last inequality follows from fact 3.1.1 for

l ≥ 7. As l ≥ 7, it follows from equations (3.31) and (3.32) that ||x〉 − |x〉|22 ≤ 0.04.

The analysis of phase estimation in claim 3.2.6 shows that FT−1
2l

(|x〉) outputs
∑

j∈[n] αj |vj , λj〉

where for all j ∈ [n], |λj
2l
−λj | ≤ ε with probability at least 1−poly(n). Claim 3.2.6 continues to hold

for FT−1
2l

(|x〉) with success probability 0.76 instead of 0.8 in (3.34). The probability of maintaining

coherence over O(log n) repetitions of phase estimation required for claim 3.2.6 is 1 − O(ε log n),

the claim follows.

The following claim follows from the analysis of phase estimation (20), it is stated in a convenient
form for our analysis of algorithm 3.2.1 and is included for completeness. The proof of claim 3.2.6
continues to hold for phase estimation with approximate states generated using the simulator, this
is used in the proof of claim 3.2.5.

Claim 3.2.6. Phase estimation: Repeating phase estimation O(log n) times with input |φ〉 =∑
j∈[n] αj |vj〉, unitary U = e−i2πρ and precision ε, and selecting the most frequent estimate yields∑
j∈[n] αj |vj , λ′j〉 where |λ

′
j

2l
− λj | ≤ ε for all j ∈ [n] with probability at least 1− 1/poly(n).

Proof. Using the linearity of phase estimation we first consider the input |φ〉 = |vj〉, the intermediate

state |xj〉 =
∑

t∈[2l] e
−i2πλjt |t, vj〉 is obtained after applying the Fourier transform and the controlled

43

unitary U . The probability that the phase estimation circuit outputs k for k ∈ [2l] is,

Pr
[
FT−1

2l
(|xj〉) = k

]
=

∣∣∣∑t∈[2l] e
i2πt(λj− k

2l
)
∣∣∣2

22l

=

∣∣∣∑t∈[2l] cos(2πt(λj − k
2l

))
∣∣∣2 +

∣∣∣∑t∈[2l] sin(2πt(λj − k
2l

))
∣∣∣2

22l
(3.33)

Suppose λ′j/2
l is the best estimate for λj so that (λj −

λ′j
2l

) = α
2l+1 for α ∈ [0, 1]. Using fact 3.1.2

for θ := 2π(λj −
λ′j
2l

) = πα
2l

to estimate (3.33),

Pr
[
FT−1

2l
(|xj〉) = λ′j

]
=

sin2(θ2l−1)

22l sin2(θ/2)

≥ sin2(πα/2)

π2α2/4
≥ 4

π2
≈ 0.4 (3.34)

The last inequality follows from the fact that the function sin(x)/x tends to 1 for x = 0, is decreasing

in the interval [0, π] and attains the value 2/π at x = π/2. The probability of measuring one of the

end points of the interval λj ∈ 1
2l

[λ′j , λ
′
j + 1] is is at least f(α) + f(2− α) where f(x) = sin2(πα/2)

π2α2/4
,

this is a decreasing function of α in the interval [0, 1] and attains value 0.8 for α = 1 as illustrated

in figure 3.1a. The measured value is either λ′j or λ′j ± 1 with probability at least 0.8.

The most frequent measurement outcome is either λ′j or λ′j ± 1, the measurement probabilities

decay fast with α as illustrated in figure 3.1b. The gap δ in the statement of fact 3.1.3 can therefore

be taken to be a constant and repeating the process O(log n) times yields an estimate |λ
′
j

2l
−λj | ≤ ε

with probability 1− 1/n2. From linearity of phase estimation and the union bound it follows that

for input |φ〉 the output is
∑

j∈[n] αj |vj , λ′j〉 where |λ
′
j

2l
− λj | ≤ ε for all j ∈ [n] with probability

1− 1/n.

The proof of theorem 3.2.1 follows easily from claim 3.2.5, specialized to the case |φ〉 = |vj〉. The

number of independent copies of ρ used for 3.2.1 is Õ(k2l) = Õ(1/ε3).

Claim 3.2.7 shows that each iteration of the simulator in algorithm 3.2.1 can be implemented by
a simple quantum circuit without using techniques for sparse Hamiltonian simulation as suggested
in (23). Implementing algorithm 3.2.1 using claim 3.2.7, the running time is Õ(T (ρ)/ε3).

44

Figure 3.2. (a) Success probability for phase estimation as a function of α. (b) Decaying
measurement probabilities for phase estimation.

3.2.5 Implementing spectral sampling

Recall that the simulator Uk is a quantum circuit that on input |φ0〉 applies the operation,

|φt+1〉 = Tr2(e
−i2πS/k(|φt〉 〈φt| ⊗ ρ)ei2πS/k) (3.35)

for k iterations and outputs |φk〉. While the simulator can be implemented using sparse Hamiltonian
simulation techniques (3; 41) as observed in (23), the special structure of the swap operator can be
used to implement the simulator using a simple quantum circuit.

Claim 3.2.7. The simulator Uk |ψ〉 for |ψ〉 ∈ Cn ⊗ Cn can be implemented in time O(kT (ρ)).

Proof. The swap operator S has eigenvalues ±1, the +1 eigenspace consists of vectors of the form

|ab〉+|ba〉 , |aa〉 , a, b ∈ [n] while the−1 eigenspace consists of vectors of the form |ab〉−|ba〉 , a, b ∈ [n].

Let |ψ〉 = α |ψ+〉+ β |ψ−〉 be the decomposition of the input state in the spectral basis of the swap

operator, e−i2πS/k |ψ〉 can be obtained using the following sequence of operations,

1√
2

(|0〉+ |1〉) |ψ〉 C−Swap−−−−−→ α√
2

(|0〉+ |1〉) |ψ+〉+
β√
2

(|0〉 − |1〉) |ψ−〉

H,C−Phase−−−−−−−→ α√
2
|0〉 e−i2π/k |ψ+〉+

β√
2
|1〉 ei2π/k |ψ−〉

H,C−Swap−−−−−−−→ 1√
2

(|0〉+ |1〉) (αe−i2π/k |ψ+〉+ βei2π/k |ψ−〉)

H−→ |0〉 e−i2πS/k |ψ〉 (3.36)

45

A single iteration (3.35) of the simulator can be implemented in time O(T (ρ)), thus Uk can be

implemented in time O(kT (ρ)).

Difference of density matrices

A weighted sum of density matrices µρ + (1 − µ)σ is a density matrix and can be simu-
lated using algorithm 3.2.1. The weighted difference of density matrices µρ − (1 − µ)σ is not
positive semidefinite, but a variant of algorithm 3.2.1 can be used to simulate it given oracles
for producing ρ, σ. The modified algorithm is the following: with probability µ perform op-
eration |φt+1〉 = Tr2(e

−i2πS/k(|φt〉 〈φt| ⊗ ρ)ei2πS/k), with probability 1 − µ perform operation
|φt+1〉 = Tr2(e

i2πS/k(|φt〉 〈φt| ⊗ σ)e−i2πS/k). The operations are implemented using claim 3.2.7
and correctness follows from the analysis of algorithm 3.2.1.

3.3 Quantum singular value estimation

In this section, we present another algorithm 3.3.1 for quantum singular value estimation for
M ∈ Rm×n with ‖M‖F = 1 stored in the augmented QRAM . The normalization ‖M‖F = 1
is analogous to using ρ = M tM/Tr(M tM) in algorithm 3.2.1, both algorithms rely on phase
estimation and achieve a relative error ±ε ‖M‖F for singular value estimation.

The running time for algorithm 3.3.1 is Õ(1/ε) improving upon the Õ(1/ε3) time required for
algorithm 3.2.1. The algorithm is applicable for all M ∈ Rm×n stored in the augmented QRAM .
Quantum singular value estimation can be used to implement spectral sampling and projection
onto the column space of M , applications of the algorithm to linear algebra and machine learning
are described in chapters 4 and 5. Algorithm 3.3.1 is preferred over algorithm 3.2.1 for most
applications as it is faster and simpler to implement.

The main idea used in algorithm 3.3.1 is the connection between singular values of M and
principal angles between certain subspaces associated with M . The connection is established us-
ing Jordan’s lemma that describes the relation between the eigenspaces of two projectors, and is
discussed in section 3.3.2.

Singular value estimation thus reduces to estimating the principal angles between subspaces
associated with M . In section 3.3.3 we show that reflections in these subspaces can be implemented
efficiently using the augmented QRAM . Phase estimation applied to a product of these reflections
is used to estimate the angles between the subspaces, and thus the singular values of M in algorithm
3.3.1.

The ideas used for the quantum singular value estimation algorithm are well known in the
quantum computing literature, variants of Jordan’s lemma has been used in (39; 27) while using the
product of reflection operators to estimate angles is the well known amplitude estimation algorithm
(4). We also note that Wang (40) recently used these ideas to estimate effective resistances for
graphs.

46

vi = Pvi
θ

wi = Qwi

QPvi

PQPvi

QPQwi

The two dimensional invariant subspaces

in Jordan’s lemma are spanned by eigen-

vectors (vi, wi) for PQP,QPQ with

eigenvalue λi = cos2(θ). The projectors

P and Q map back and forth between vi

and wi, the angle θ is the principal angle

corresponding to this subspace.

Figure 3.3. The two dimensional invariant subspaces in Jordan’s lemma.

3.3.1 Jordan’s lemma

Jordan’s lemma 3.3.1 shows that any two projectors P,Q ∈ Rd×d can be simultaneously block
diagonalized with blocks of dimension at most 2. It is a fundamental fact in linear algebra and was
first discovered by Jordan in 1875 (18).

The lemma has been rediscovered several times and has found numerous applications in the
quantum computing literature including gap amplification for QMA (27), accelerating quantum
walks (39), verification of quantum computers (34) and the design of span programs (1). In the
linear algebra literature, Jordan’s lemma is used to define principal angles between subspaces.
Principal angles have recently been used for analyzing the power method for computing the largest
k singular values (14) and in statistical techniques like canonical correlation analysis (17).

Lemma 3.3.1. Jordan’s lemma (18) If P,Q ∈ Rd×d are projectors, then there is a decomposition

of Rd into a direct sum of subspaces of dimension at most 2 that are invariant under P and Q.

We require an explicit description of the two dimensional subspaces in the decomposition guar-
anteed by Jordan’s lemma. The following claim reveals the structure of the two dimensional in-
variant subspaces in Jordan’s lemma, the invariant subspaces are geometric quantities and are
independent of the bases used for representing P and Q.

Lemma 3.3.2. If P,Q ∈ Rd×d are projectors onto subspaces P,Q and PQP =
∑

λi>0 λiviv
t
i is the

spectral decomposition for PQP , then wi := Qvi/|Qvi|2 is an eigenvector for QPQ with eigenvalue

λi and the subspace Span(vi, wi) is invariant under the action of P and Q.

Proof. The matrix PQP is positive semidefinite as it can be factorized as (PQ)(PQ)t, thus all the

eigenvalues λi ≥ 0. Let k be the number of non zero eigenvalues (rank) of PQP . If PQPvi = λivi

47

and λi 6= 0, then left multiplying by P shows that vi = Pvi, that is vi is in the range of P . There

is a bijection between non zero eigenvectors of PQP and QPQ, for all i ∈ [k],

QPQ(Qvi) = QPQvi = QPQ(Pvi) = Q(PQPvi) = λiQvi (3.37)

thus Qvi is an eigenvector for QPQ with eigenvalue λi, the eigenvector wi = Qvi/|Qvi|2 is the unit

vector in direction Qvi.

The subspace Span(vi, wi) = Span(vi, Qvi) is invariant under the action of P and Q as Pvi =

vi, QQvi = Qvi, and PQvi = PQPvi = λivi. The action of P and Q on Span(vi, wi) is illustrated in

figure 3.3.2. Note that these subspace can be one dimensional if vi ∈ P∩Q and are two dimensional

otherwise.

The principal/canonical angles between subspaces P,Q ∈ Rd are geometric quantities that quantify
the overlap between the subspaces, they are defined recursively as follows in the linear algebra
literature.

Definition 3.3.3. Given subspaces P,Q ∈ Rd there is a sequence of principal vectors vi ∈ P, wi ∈

Q, i ∈ [k] and angles θi such that,

cos(θi) = max
v∈P,w∈Q

(〈v|w〉 | |v| = |w| = 1, v ⊥ vj , w ⊥ wj , j ∈ [i− 1]) (3.38)

Note that the above definition is basis independent, thus the principal angles are geometric quan-
tities that do not depend on the bases chosen for P,Q. Jordan’s lemma yields an algorithm for
computing the principal vectors and angles, given orthonormal bases for P,Q.

Definition 3.3.4. The pairs of principal vectors for subspaces P,Q are (vi, Qvi), i ∈ [k] where vi

are as in claim 3.3.2. The principal angles are,

cos(θi) =
〈vi|Qvi〉
|Qvi|

=
√
〈vi|PQPvi〉 =

√
λi (3.39)

The equivalence of the two notions of principal angles in definitions 3.3.4 and 3.3.3 will be clear
from claim 3.3.6 relating principal angles to the singular value decomposition.

48

3.3.2 Singular values and principal angles

In this section, we show that the singular values of M ∈ Rm×n with ‖M‖F = 1 are equal to
the principal angles between sub-spaces P,Q ∈ Rmn associated with M . The subspaces P,Q are
defined to be Col(A), Col(B), where M = AtB is a factorization for M given by the following
claim.

Claim 3.3.5. For M ∈ Rm×n with ‖M‖F = 1, there is a factorization M = AtB with A ∈

Rmn×m, B ∈ Rmn×n such that AtA = Im and BtB = In.

Proof. Let p ∈ Rm be the vector with coordinates pi = |mi|, note that p is a unit vector as

‖M‖F = 1. Define A ∈ Rmn×m to have column vectors ai = |i,mi〉 for i ∈ [m] and B ∈ Rmn×n

have column vectors bj = |p, j〉 for j ∈ [n]. The columns of A and B are orthonormal by definition

and thus AtA = Im and BtB = In. The factorization of M = AtB follows as,

(AtB)ij = 〈i,mi|p, j〉 = |mi|
mij

|mi|
= mij (3.40)

The following claim shows that the singular values of M are equal to the principal angles between
subspaces P,Q, thus reducing singular value estimation to principal angle estimation.

Claim 3.3.6. If θi are the principal angles between P = Col(A),Q = Col(B), A and B have

orthonormal columns and M = AtB has singular value decomposition M =
∑

i σiuiv
t
i , then

cos(θi) = σi.

Proof. As the columns of A are orthonormal, the projector P onto Col(A) is,

P = AAt =
∑
i∈[m]

|ai〉 〈ai| (3.41)

Similarly Q = BBt is the projector onto the Col(B). Let M = AtB =
∑

i σiuiv
t
i be the singular

value decomposition for M . The principal angles between Col(A) and Col(B) can be computed in

terms of the spectrum of PQP using claim 3.3.2. The eigenvectors of PQP are Aui with eigenvalues

σ2i ,

PQPAui = AMM tAtAui = AMM tui = σ2iAui (3.42)

49

where AtA = I by the orthonormality of the columns of A. The eigenvectors of QPQ are QAui =

BM tui = σiBvi with eigenvalues σ2i . The principal vector pairs are (Aui, Bvi) and the principal

angles are cos(θi) =
√
σ2i = σi by definition (3.3.4).

3.3.3 Singular value estimation

The singular value estimation algorithm 3.3.1 uses the augmented QRAM to implement the
reflections (2P−I) and (2Q−I) about the subspaces P,Q, the product of the reflections U = (2P−
I)(2Q−I) is a unitary operator. The two dimensional subspaces of principal vectors Span(Aui, Bvi)
are invariant under the action of U , with U acting as a clockwise rotation by an angle of 2θi on these
subspaces. Phase estimation with unitary U and precision ε on input |Aui〉 produces an estimate
|θi| ∈ [2θi ± ε], the singular value σi for M is estimated as σi = cos(θi).

Given M ∈ Rm×n stored in an augmented QRAM , the following claim shows that multiplica-
tions |x〉 → |Ax〉 and the reflections 2P − I and 2Q− I can be implemented efficiently.

Claim 3.3.7. If M ∈ Rm×n is stored in an augmented QRAM and has factorization M = AtB as

in claim 3.3.5 then multiplications |x〉 → |Ax〉 , |Bx〉 and reflections in Col(A) and Col(B) can be

implemented in time Õ(1).

Proof. The columns of A and B are orthonormal, so AAt = In and BBt = Im. The columns of

A are |ai〉 = |i,mi〉 for i ∈ [m] can be prepared using the mi stored in the augmented QRAM .

Multiplication by A can be implemented as a unitary using algorithm 2.3.2 to query the augmented

QRAM in superposition as in (2.21),

|x, 0logn〉 →
∑
i∈[m]

xi |i,mi〉 = |Ax〉 (3.43)

The reflection in Col(A) is implemented as UR0U
−1 where U is the unitary implementing multi-

plication by A and R0 is the reflection in the state |0〉logm. Multiplication by B is simpler, it maps

|0, x〉 → |p, x〉 independent of |x〉 using the augmented QRAM 2.3.2 to prepare |p〉 in an auxiliary

register, reflection in Col(B) is UR0U
−1 where U is the unitary operator for multiplication by

B.

50

Algorithm 3.3.1 Quantum singular value estimation

Require: M ∈ Rm×n with ‖M‖F = 1 stored in augmented QRAM , singular vector |ui〉 ∈ Rm, M

has factorization M = AtB as in claim 3.3.5.

1: Append an auxiliary register and use claim 3.3.7 to obtain |Aui〉.

2: Perform phase estimation to additive error ε with input |Aui〉 and unitary operator U = (2P −

I)(2Q− I) where P and Q are projections onto Col(A), Col(B) to obtain |Aui, 2θi〉.

Uk is implemented using the augmented QRAM as in claim 3.3.7.

3: Repeat step 2 O(log n) times and select the most frequent estimate for 2θi.

4: Output σi = cos(θi) as an estimate for σ.

Phase estimation guarantees that |θi − θi| ≤ ε as σi = cos(θ) the error in estimating σi is,

|σi − σi| ≤ sin(θi ± ε)|θi − θi| ≤ ε
√

1− σ2i ≤ ε (3.44)

Algorithm 3.3.1 therefore produces an additive error ε estimate of the singular value in time O(1/ε).
The algorithm is implemented using unitary operators, it is therefore coherent and extends to
superpositions over singular vectors. Success probability for step 2 of algorithm 3.3.1 is 0.8 by the
analysis of phase estimation, it is boosted to 1−1/poly(n) by repeating O(log n) times and choosing
the most frequent estimate. We have proved the following theorem,

Theorem 3.3.8. For M ∈ Rm×n with ‖M‖F = 1 stored in the augmented QRAM , algorithm 3.3.1

has running time Õ(1/ε) and outputs |ui, σi〉 with σi ∈ [σi±ε] with probability at least 1−1/poly(n).

Algorithm 3.3.1 improves upon the running time of algorithm 3.2.1 and is preferred over it for
most applications. Spectral sampling can be implemented using singular value estimation as dis-
cussed earlier. Another important application of singular value estimation is the computation of
projections onto the column space of M which we describe next.

3.3.4 Quantum projections

The projection of a state |v〉 onto the column space Col(M) is MM+v, algorithm 3.3.2 com-
putes the quantum state |MM+v〉 corresponding to the projection and estimates the length of the
projection. The projection is computed using quantum singular value estimation and amplitude
amplification, the length of the projection is estimated using amplitude estimation. The running
time for the quantum projection algorithm 3.3.2 is Õ(1/σmin|MM+v|), polynomial in the spectral
gap and the length of the projection.

51

Algorithm 3.3.2 Quantum projection onto Col(M).

Require: (M ∈ Rm×n, v ∈ Rm, ‖M‖F = 1) stored in QRAM , outputs |MM+v〉 and additive error

δ|MM+v|2 estimate for |MM+v|2, σmin is the smallest non zero singular value for M .

1: Reflection in Col(M): To reflect |φ〉 =
∑

i αi |ui〉 in Col(M) use quantum singular value esti-

mation 3.3.1 with precision ε = O(σmin(M)) to obtain
∑

i∈[m] bi |vi, σi〉.

If σi 6= 0, apply a phase flip to register 1 and erase register 2.

2: Obtain |MM+v〉 using amplitude amplification 2.1.1 performing reflection in |v〉 using the

augmented QRAM and reflection in Col(M) as in step 1.

3: Estimate |MM+v|2 to additive error δ|MM+v|2 using amplitude estimation 2.1.1 implementing

reflections as in step 2.

The algorithm succeeds if all the reflections in Col(M) are implemented correctly, by theorem 3.3.8
the reflections are correct with probability 1 − 1/poly(n). The number of iterations required for
amplitude amplification is O(1/|MM+v|) while the number of iterations for amplitude estimation
is O(1/|MM+v|δ), yielding the following running time guarantees for algorithm 3.3.2.

Theorem 3.3.9. Algorithm 3.3.2 outputs |MM+v〉 in time Õ(1/σmin|MM+v|) and an addi-

tive error δ|MM+v|2 estimate for |MM+v|2 in time Õ(1/σmin|MM+v|δ) with probability 1 −

O(1/|MM+v|δpoly(n)).

The running time of the quantum projection algorithm is depends on the spectral gap O(1/σmin)
and the length of the projection |MM+v|. The spectral gap is controlled using `2 regularization
as in chapter 5 while relative error approximations of the length of the projection are used for
estimating leverage scores in chapter 4.

52

Chapter 4

Linear Algebra Algorithms

In this chapter, we present quantum algorithms for low rank matrix approximation based on
importance sampling from the leverage score distribution for matrices A ∈ Rm×n stored in the
augmented QRAM . Low rank approximation by column sampling is an application of quantum
machine learning where the output is not a quantum state but a sample from [n], thus providing an
elegant solution to the problem of extracting classically useful information from a quantum state.

An (approximate) sampler from the leverage score distribution can be used obtain algorithms
for low rank approximation by column/row selection (6). Such an approximations is called a CX
decomposition in the linear algebra literature. There are no known classical algorithms for sampling
from the leverage score distribution faster than algorithms that approximate all the leverage scores,
the fastest known algorithms for approximating leverage scores (25) require time polynomial in
matrix dimensions. The quantum CX decomposition algorithm has running time polynomial in
problem parameters as opposed to classical algorithms that are polynomial in matrix dimensions.

Importance sampling algorithms according to the leverage score distribution has found several
applications in the linear algebra literature including CUR decompositions (6), approximate least
squares (7) and graph sparsification (38). Importance sampling requires relative error ε approxi-
mations for the leverage scores, we provide a quantum algorithm that achieves a quadratic speedup
for relative error approximation of the leverage scores.

Our results are summarized in table 3.1, the input to the problem is matrix A ∈ Rm×n with
‖A‖F = 1 stored in the augmented QRAM , the problems are parametrized by a rank parameter k,
the threshold τ = σ2k is the k-th largest singular value. The condition number κ(AkA

t
k) = σ21/σ

2
k,

η =
∑

i∈[k] σ
2
i is the fraction of the mass of the singular value spectrum in the space spanned by the

largest k singular vectors while ∆k = σ2k+1 − σ2k is the spectral gap at the k-th singular value. The
running times of all the algorithms are polynomial in these problem parameters, the cases where
this constitutes a speedup over classical algorithms will be discussed subsequently.

53

Problem Quantum Algorithm Classical Algorithm

Approximate leverage score sampler Õ(κ(AkA
t
k)/ητ) O(mn log n)

CX decomposition Õ(κ(AkA
t
k)/τε

2) O(mn log n+ k/ε2)

Exact leverage score sampler Õ(
√
m/k/∆k) O(mnk)

Relative error ε approximation Õ(
√
m/k/ε∆k) O(mn log n)

Quadratic form approximation Õ(
√
mk/ε3∆k) O(mn log n+ k/ε2)

Approximate least squares Õ(
√
mk/ε3∆k) O(mn log n+ k/ε2)

CUR decomposition Õ(
√
mk/ε5∆k) O(mn log n+ k/ε4)

Table 4.1. Running times for quantum and classical importance sampling algorithms.

This chapter is organized as follows: section 4.1 recalls the notion of statistical leverage scores,
section 4.2 presents quantum algorithms for leverage score sampling and CX decomposition while
section 4.3 presents algorithms for leverage score approximation and the other applications of
importance sampling using leverage scores listed in table 4.1.

4.1 Leverage Scores

Basic linear algebra notation and the singular value decomposition were introduced in section
1.1. In this section, we recall the notion of statistical leverage scores required for the quantum
algorithms for low rank approximation.

Let A ∈ Rm×n have singular value decomposition A = UΣV t so that A =
∑

i∈[r] σiuiv
t
i .

The optimal rank k approximation to A is Ak =
∑

i∈[k] σiuiv
t
i , the approximation is optimal in

the sense Ak = argminrank(A′)=k ‖A−A′‖ for any unitarily invariant matrix norm. The row and
column leverage scores with respect to the rank k approximation for A are defined as follows,

`k(i) =
1

k

∑
t∈[k]

u2it =
1

k
|AkA+

k ei|
2

`k(j) =
1

k

∑
t∈[k]

v2jt =
1

k
|A+

k Akej |
2 (4.1)

The row leverage score `k(i) is the squared `2 norm of the row i of Uk, the truncation of U to the
first k columns. Similarly the column leverage score `k(j) is the squared `2 norm of row j of Vk, the
truncation of V to the first k columns. The scores are normalized so that `k and `k are probability
distributions on [m] and [n], the leverage score distribution for A is denoted by `k(A).

The columns of Uk are orthonormal and span the column space of Ak, thus k`k(i) is the
squared length of the projection of ei onto Col(Ak). Similarly, k`k(j) is the projection of ej
onto the Row(Ak). Importance sampling from the leverage score distribution has been used to
obtain algorithms for low rank matrix approximation (6), approximate least squares (7) and graph
sparsification (38).

54

The β approximate leverage score distribution has sampling probabilities pi ≥ β`k(i). Sampling
from the β approximate leverage score distribution suffices for the algorithms mentioned above, the
number of samples required for relative error (1 + ε) approximation scales as O(k log k/βε2) where
k is the rank parameter.

Our quantum algorithms use the interpretation of leverage scores as the squared norms of the
rows of Uk for approximately sampling from the leverage score distribution and the interpretation
of the leverage score as the length of the projection onto the column/row space for leverage score
approximation.

4.2 Sampling based algorithms

4.2.1 Leverage score sampling

Algorithm 4.2.1 samples approximately from the leverage score distribution `k(A) for matrix
A ∈ Rm×n stored in the augmented QRAM . The algorithm is parametrized by a threshold pa-
rameter τ ∈ [0, 1], it uses spectral sampling to select singular vectors having singular values greater
than τ followed by a rejection sampling step to approximately sample from `k(A).

Algorithm 4.2.1 Approximate leverage score sampler

Require: A ∈ Rm×n stored in augmented QRAM , ρ = AAt/Tr(AAt), threshold τ ∈ [0, 1] and k

such that τ ∈ [λk(ρ), λk+1(ρ)].

Ensure: Samples from β = 0.95τk approximate leverage score distribution `k(A).

1: Perform spectral sampling to obtain |ui, λi〉 by running algorithm 3.3.1 with input ρ and ε =

τ/20 . Discard the second register and repeat if λi ≤ (τ − ε).

2: Measure the first register in the standard basis to obtain s ∈ [m], with probability min(1, τ/λi)

output s, otherwise discard and repeat step 1.

The rank k is not a parameter for the algorithm but is specified indirectly by the choice of τ ∈ [0, 1],
the threshold τ can be chosen empirically by repeating the algorithm O(log n) times, and selecting τ
so that the success probability in step 1 is a constant. The same algorithm with ρ = AtA/Tr(AtA)
yields approximate samples from the distribution `k(A).

Theorem 4.2.1. Algorithm 4.2.1 samples from the the β = 0.95τk approximate leverage score

distribution `k(A) and has expected running time Õ(λmax(ρ)/ητ2) where η =
∑

i∈[k] σ
2
i /|A|2F .

Proof. Let A =
∑

i σiuiv
t
i be the SV D for A, then the input ρ to the spectral sampling algorithm

55

is a mixture of |ui〉 with probability λi(ρ) = σ2i /|A|2F . The acceptance probability for step 1 is

at least η(1 − 1/poly(n)) by theorem 3.3.8, while the acceptance probability for step 2 is at least

τ/λmax(ρ). The expected number of trials required for getting an output from algorithm 4.2.1 is

therefore O(λmax(ρ)/ητ).

Denoting the first register of the sample |ui, λi〉 by |φ〉 and conditioning on λi ∈ [λi ± ε], the

probability that algorithm 4.2.1 outputs j ∈ [m] can be bounded by,

Pr[s = j] ≥ (1− 1/poly(n))
∑
λi≥τ

Pr[s = j | |φ〉 = |ui〉] Pr[|φ〉 = |ui〉]

≥ (1− 1/poly(n))
∑
λi≥τ

τ

λi
u2ijλi

≥ (1− 1/poly(n))
20

21
τk`k(j) = β`k(j) (4.2)

where β ≈ 0.95τk, the last step follows as the approximation error ε = τ/20. Algorithm 4.2.1

therefore produces a single sample from the β approximate leverage score distribution in expected

time Õ(λmax(ρ)/ητ2).

4.2.2 CX decomposition

Columns sampled according to the approximate column leverage score distribution `k(A)
achieve relative error low rank approximations as demonstrated in (6). Factorizations A = CX
approximating A by a subset of columns are called CX decompositions in the linear algebra liter-
ature.

The CX decomposition algorithm in (6) computes C = ASD where S and D are sampling and
rescaling matrices for the β approximate leverage score distribution `k(A). The analysis establishes
the guarantee ‖A− CC+A‖F ≤ (1 + ε) ‖A−Ak‖F with constant probability, if k = O(k log k/βε2)
columns are selected. As CC+ is the projection onto the column space of A it is independent
of rescaling the columns of C, and the result continues to hold for matrix C = AS that samples
columns from A.

Theorem 4.2.2 (CX decomposition, (6)). Let A ∈ Rm×n and C ∈ Rm×c be a matrix consisting

of c = O(k log k/βε2) columns of A where each column is sampled from a probability distribution

on [n] with pj ≥ β`k(j), then with probability at least 0.7,

∥∥A− CC+A
∥∥
F
≤ (1 + ε) ‖A−Ak‖F (4.3)

56

Leverage score sampling 4.2.1 can be used to construct CX decompositions for matrix A ∈ Rm×n
stored in the augmented QRAM . The rank k for the CX decomposition is chosen so that the largest
k singular vectors account for a constant fraction of the Frobenius norm, that is

∑
i∈[k] λk ≥ η for

a constant η where λk are eigenvalues for ρ = AtA/Tr(AtA).

A rank k, ε approximate CX approximation (4.3) for A can be constructed in time
Õ(λmax(ρ)k log k/ηβε2τ2) = Õ(λmax(ρ)/τ3ε2) using the leverage score sampler, as β = O(τk)
by (4.2) and η is a constant. We have the following theorem.

Theorem 4.2.3. There is an Õ(κ(AkA
t
k)/ητ

2ε2) time quantum algorithm that finds C ∈ Rc×n

consisting of c = O(k log k/βε2) columns of A such that with probability at least 0.7,

‖A−Ak‖F ≤
∥∥A− CC+A

∥∥
F
≤ (1 + ε) ‖A−Ak‖F (4.4)

Note that the running time of the CX decomposition algorithm is Ω(λmax(ρ)k3/ε2) as τk < 1. If τk
is a small constant the running time is polynomial in the rank. Classical algorithms for computing
the CX decomposition require time SV D(A, k), the time required to compute the largest k singular
vectors of A. The article (13) reviews the best known deterministic and randomized classical
algorithms for SV D(A, k) which require time O(mnk) and O(mn log n).

The running time for the classical and quantum CX decomposition algorithms when the singular
value spectrum exhibits a power law decay are compared in section 4.2.3. The comparison indicates
that for the regime m = O(n) the quantum algorithm achieves a speedup only if the singular value
spectrum of A decays fast. If m� n, the quantum algorithm achieves a speedup over the classical
CX decomposition algorithm for all cases.

Theorem 4.2.3 yields a fast quantum algorithm for selecting rows/columns from a large matrix
that approximate the subspace Ak spanned by the first k principal components. Projection onto
Ak is used in several machine learning algorithms like spectral clustering and principal components
regression. The column space of C is a good approximation to Ak and can be used as a proxy for Ak
for these algorithms. The quantum part of the algorithm identifies significant columns faster than
any classical method, this reduces dimensions of the dataset which can then be processed classically.
Interpretability is another advantage of CX decompositions, as selecting columns corresponds to
identifying important features.

The CX decomposition is the only algorithm that can be implemented using the leverage
score sampler alone, while importance sampling according to leverage scores has found several
applications in linear algebra, these algorithms require relative estimates of the sampling probability.
Using the interpretation of leverage scores as projections onto Ak, we provide quantum algorithms
for relative error approximations to leverage scores in section 4.3.

4.2.3 Comparison with classical algorithms

Our algorithms for leverage score sampling and CX decomposition have running time poly-
nomial in problem parameters η, τ and k, a priori it is not clear how these algorithms compare

57

to classical CX decomposition algorithms. We compare our quantum algorithm to the classical
CX decomposition algorithm, for matrices where the singular law spectrum exhibits a power law
decay, real world datasets often exhibit power law decay. The comparison clarifies the nature of
the quantum speedup for CX decomposition.

Power law decay

Consider a matrix M ∈ Rm×n whose singular values exhibit a power law decay with exponent α,
that is σ2k ∝ 1/kα. Power law decay of the singular value spectrum has been observed empirically
for several real world datasets, this can be proved rigorously for special cases, for example (29)
showed that eigenvalues of graphs with a power law degree distribution follow a power law. We
compute the parameters for the quantum CX decomposition algorithm where the singular value
spectrum follows a power law with exponent α.

Normalizing so that the Frobenius norm ‖M‖F = 1 is 1 and approximating using the integral∫ x
0 t

αdt = xα+1/(1 + α),

1 =
∑
k∈[n]

σ2k =
∑
k∈[n]

C

kα
= O(n1−α) (4.5)

The singular values are σ2k = O(1
n1−αkα), all the parameters in the running time of the CX

decomposition algorithm can be computed given the singular values. The condition number

κ(AkA
t
k) =

σ2
1

σ2
k

= kα, the threshold τ = O(1/n1−αkα) and η = O(k1−α/n1−α). For η to cap-

ture a constant fraction of the mass Frobenius norm, k = O(n1−α). The running time for the
leverage score sampler is,

κ(AkA
t
k)

ητ
= k3α−1n2−2α = n(1−α)(3α+1) (4.6)

The CX decomposition algorithm invokes the leverage score sampler O(k log k/ε2) times and has
running time O(n(1−α)(3α+2)), assuming ε to be a constant. The spectral gap ∆k = σ2k+1 − σ2k =
O(1/n1−αk1+α) taking derivatives.

Figure 4.1 (a) compares the running times of the classical and quantum algorithms for power
law exponents α ∈ [0, 1] for m = O(n). The algorithms have running time O(nβ), the running
time exponent β for is compared for different values of α. The blue line is the classical randomized
algorithm that requires time O(mn log n) = O(n2). The red curve is the exponent for the quantum
leverage score sampler while the green curve is the exponent for the quantum CX decomposition
algorithm. The figure indicates that the quantum algorithm achieves speedups for α > 0.4. Note
that the performance of the quantum algorithm improves ifm� n, the quantum CX decomposition
algorithm achieves a speed up for all values of α if m = O(n2).

The singular value spectrum of many real world datasets can be modeled by power laws, for
example the exponent α for the web graph is close to 0.5 (29). We empirically compute α for for
a term document matrix where documents are randomly sampled wikipedia articles and terms are
commonly occurring words (with stop words removed). Figure 4.1 (b) plots log(σ2k) vs log k for

58

such a matrix and shows that the singular value spectrum can be modeled by a power law with
α ≈ 0.5. The quantum CX decomposition has running time O(n1.75) for α = 1/2 and thus offers
a speedup over the classical algorithm with running time O(mn) = O(n2).

Figure 4.1. (a) Quantum and classical CX decomposition for power law decay of singular
value spectrum. (b) SV D for term document matrix exhibiting power law decay.

4.3 Importance sampling

Importance sampling according to the leverage score distribution has found several applications
in the linear algebra literature including approximate least squares, CUR decompositions and
approximation of quadratic forms. The importance sampling algorithms sample rows from `k(A)
and use the sampling probabilities for rescaling the sampled rows, they therefore require computing
the leverage scores. In section 4.3.1, we present a quantum algorithm for sampling exactly from
the leverage score distribution and approximating the leverage scores to relative error ε. In section
4.3.2 we show that approximate leverage scores can be used for the linear algebra applications and
obtain quantum algorithms with running times as in table 4.1 for algorithms involving importance
sampling from the leverage score distribution.

4.3.1 Leverage score approximation

Leverage scores can be approximated using the quantum projection algorithm 3.3.2 as k`k(i)
is the projection of ei onto Col(Ak) by (4.1). The rank k is specified implicitly using a threshold
τ ∈ [0, 1] as in algorithm 4.2.1. Algorithm 4.3.1 samples exactly from the distribution `k(A) and
provides a relative error estimate for the corresponding leverage score.

59

Algorithm 4.3.1 Leverage score sampling and relative error approximation.

Require: A ∈ Rm×n stored in augmented QRAM with ‖A‖F = 1, τ ∈ [0, 1] and k such that

τ ∈ [σk(A), σk+1(A)], precision ∆k = (σk+1(A)− σk(A)) and relative error ε.

1: Let v ∈ Rm be a random unit vector, prepare |v〉 =
∑

i∈[m] αi |ui, σi〉 using algorithm 3.3.1 with

precision ∆k, post-select on σi ≥ τ to obtain |AkA+
k v〉, use amplitude estimation to estimate

k/m within relative error ε.

2: Measure |AkA+
k v〉 in the standard basis to obtain sample s ∼ `k(A).

3: Estimate k`k(s), the squared length of the projection of es onto Col(Ak) to relative error ε

using amplitude estimation as in algorithm 3.3.2, divide by estimated value of k from step 1 to

approximate `k(s).

Theorem 4.3.1. Algorithm 4.3.1 samples s ∼ `k(A) exactly in expected time Õ(
√
m/k/∆k) and

obtains a relative error 2ε estimate for `k(s) in expected time Õ(
√
m/k/ε∆k).

Proof. A random unit vector v ∈ Rm is obtained by sampling coordinates from the normal dis-

tribution N(0, 1) and scaling v to have unit length. Let v =
∑

i αiui in the left singular basis

of A, the state |v〉 can be prepared in time Õ(1) if the coordinates of v are stored in a QRAM .

The projection |AkA+
k v〉 onto Col(Ak) is a random vector in Col(Ak), measuring |AkA+

k v〉 in the

standard basis samples from `k(A),

Pr[|AkA+
k v)〉 = i] =

m

k
Ev

∑
j∈[k]

αj |uj〉

2

i

=
m

k
Ev

∑
j

α2
ju

2
ji

 = `k(i) (4.7)

The m/k factor arises due to renormalization of the vector state to have norm 1 and the second

equality follows as E[αjαj′] =
δjj′
m . The expected squared length of the projection of |v〉 onto

Col(Ak) is k/m, thus the expected running time for step 1 is Õ(
√
m/k/∆k) for |A+

k Akv〉 and

Õ(
√
m/k/∆kε) for estimating k to relative error ε. Note that step 1 is algorithm 3.3.2 with

precision ∆k = (σk+1 − σk), the choice of precision ensures that the reflections in Col(Ak) are

implemented correctly.

60

Amplitude estimation estimates k`k(s) to relative error ε in time O(1/
√
k`k(s)∆kε). As i ∼

`k(A), the expected running time can be computed using,

Es∼`k(A)[
1√
k`k(s)

] =
∑
i∈[m]

`k(i)√
k`k(i)

=
1√
k

∑
i∈[m]

√
`k(i) ≤

√
m

k
(4.8)

The last inequality is a consequence of Cauchy Schwartz, as
∑

i

√
`k(i) ≤

√
m
√∑

i∈[m] `k(i) =
√
m,

thus a relative error ε estimate for k`k(i) is obtained in time O(
√
m/k/∆kε). Dividing by the

relative error ε estimate for k obtained in step 2, the leverage score `k(s) is approximated to

relative error 2ε.

Computing the leverage scores exactly in the classical setting requires time SV D(A, k) which
is O(mnk) and O(mn log n) for the best known deterministic and randomized algorithms (13).
Relative error approximations for leverage scores can be computed in time O(mn log n) using ran-
dom projections (25). The quantum approximate leverage score sampler 4.3.1 has running time
O(
√
m/k/ε∆k) and thus achieves a polynomial speedup over the classical algorithms at the expense

of introducing dependence on the spectral gap. The quantum algorithm 4.3.1 is particularly useful
for the exact rank k case where the spectral gap ∆k is expected to be 1/poly(k).

We next show that relative error approximations of the leverage scores suffice for most of the lin-
ear algebra applications of importance sampling. The importance sampling algorithms can therefore
use algorithm 4.3.1 as a black box yielding quantum algorithms for quadratic form approximation,
approximate least squares and approximate least squares with running times as presented 4.1.

4.3.2 Importance sampling algorithms

Importance sampling from the leverage score distribution has several applications to linear
algebra (6; 7) , these importance sampling algorithms require samples from `k(A) and the values
of the corresponding leverage scores. The importance sampling algorithms use exact sampling
probabilities, we show that the analyses can be adapted to use approximate sampling probabilities.

We first show that quadratic forms can be approximated using approximate leverage scores,
followed by approximate least squares and the CUR decompositions. The proofs contained in this
section are adaptations of the analyses (6; 7) using relative error approximations of leverage scores
instead of exact values, they are included for completeness and the reader’s convenience.

Approximating quadratic forms

Sampling O(k log k/ε2) rows from A ∈ Rm×n according to `k(A) and rescaling the rows using
relative error ε estimates for `k(i) suffices to approximate the quadratic form xtAkA

t
kx within error

61

1 ± 2ε. Approximation of the quadratic form will subsequently be used to obtain results about
approximate least squares and CUR decompositions. The approximation relies on Rudelson’s
sampling lemma,

Lemma 4.3.2. [Rudelson’s sampling lemma (35)] Let Y = {y1, y2, · · · , ym} be a set of vectors in

Rn such that |yi|2 ≤M and w be a distribution on Y such that
∥∥Ey∼w[yyt]

∥∥
2
≤ 1. If wi, i ∈ [d] are

independent samples from w then there is an absolute constant C such that,

E

[∥∥∥∥1

d

∑
wiw

t
i − Ey∼w[yyt]

∥∥∥∥
2

]
≤MC

√
log d

d
(4.9)

Further, a concentration bound holds,

Pr

[∥∥∥∥1

d

∑
wiw

t
i − Ey∼w[yyt]

∥∥∥∥
2

≥ t
]
≤ 2e−t

2d/M2C2 log d (4.10)

Rudelson’s sampling lemma can be used the quadratic form xtAkA
t
kx, the next claim is an

adaptation of the argument in (38) for the case of low rank approximation, using approximate
leverage scores instead of exact effective resistances.

Claim 4.3.3. Let Ak be the optimal rank k approximation for A ∈ Rm×n and Π be the projector

onto Col(Ak). If S is a diagonal matrix with Sii = ni
dpi

where pi ∈ (1± ε)`k(i) and ni is the number

of times i is sampled over d = O(k log k logm/ε2) draws from `k(A), then with probability at least

1− 1/poly(m),

∥∥AtkSAk −AtkAk∥∥2 = ‖ΠSΠ−ΠΠ‖2 ≤ 2ε (4.11)

Proof. It suffices to establish a spectral norm bound of the form ‖ΠSΠ−ΠΠ‖2 ≤ 2ε, as xtAtkAkx

can be written as yty where y = Akx ∈ Col(Ak).

xtAkSA
t
kx

xtAkA
t
kx
∈ (1± 2ε)⇔ ytΠSΠy

ytΠΠy
∈ (1± 2ε) (4.12)

Note that |πi|2 = k`k(i) as Π is a symmetric matrix and the column πi is the projection of

ei onto Ak . The spectral norm bound is established using Rudelson’s sampling lemma to

Y =

{
yi = πi√

`k(i)
, i ∈ [m]

}
the set of columns of Π normalized to have length

√
k, let w be the

62

distribution on Y such that Prw[yi] = `k(i) and wi, i ∈ [d] be samples from w,

ΠSΠ =
∑
i∈[m]

ni
dpi

πiπ
t
i =

(1± ε)
d

∑
i∈[d]

wiw
t
i

ΠΠ =
∑
i∈[m]

πtiπ = Ey∼w[yyt] (4.13)

Applying Rudelson’s sampling lemma 4.3.2 with M =
√
k,

E[‖ΠSΠ−ΠΠ‖2] ≤ O

(√
k log d

d

)
+ ε

∥∥∥∥∥∥1

d

∑
i∈[d]

wiw
t
i

∥∥∥∥∥∥
2

(4.14)

The concentration bound (4.10) shows that for d = O(k log k logm/ε2) the spectral norm

‖ΠSΠ−ΠΠ‖2 ≤ 2ε with probability at least 1− 1/poly(m) and the claim follows.

In addition to the above result, approximating least squares by importance sampling according to
leverage scores requires that the sampling matrix S preserve matrix vector products, this will be
follow from the following result about approximate matrix multiplication from (5),

Theorem 4.3.4. (5) If A ∈ Rm×n, B ∈ Rm×p, p is a distribution on [n] with pi ≥ β |a
i|2
|A|2F

and

S ∈ Rm×m is a diagonal matrix with Sii = ni
dpi

where ni is the number of times i is sampled in d

draws from p,

E[‖AB −ASB‖2F] ≤ 1

βd
‖A‖2F ‖B‖

2
F (4.15)

Approximate least squares

The least squares problem Ax = b where A ∈ Rm×n and b ∈ Rm has solution given by,

xopt = argminx∈Rn |Ax− b|2 = A+b (4.16)

Consider the sketched least squares problem ZtAx = Ztb, where the sketched matrix ZtA ∈ Rr×n
is obtained by sampling and rescaling the rows of A. Let sj ∼ `k(A), j ∈ [r] be samples from the
leverage score distribution and pi ∈ (1± ε)`k(i), i ∈ [m] be relative error estimates for the leverage
scores, the entries of Z ∈ Rm×r are,

Zij =
δisj√
rpi

(4.17)

Note that Z can be constructed using the quantum algorithm 4.3.1 to sample and approximate
leverage scores. The matrix Z can be factorized as Z = DS where S ∈ Rm×r is a sampling matrix

63

with Sij = δisj and D ∈ Rm×m is a diagonal rescaling matrix with entries Dii = 1√
rpi

. The solution

to the sketched least squares problem is,

xopt = argminx∈Rn |ZtAx− Ztb|2 = (ZtA)+Ztb (4.18)

The sketched problem can be solved in time poly(r, n) instead of poly(m,n) time required for the
original problem, the following claim shows that with high probability the solution to the sketched
problem approximates the least squares solution (4.16).

Claim 4.3.5. Let Ax = b be a least squares problem with A ∈ Rm×n, b ∈ Rm such that rank(A) = k,

let r = O(k log k/ε2) and Z ∈ Rm×r be a sketching matrix as in (4.17), then with probability at

least 0.75,

|Axopt − b|2 ≤ (1 + 7ε)|Axopt − b|2 (4.19)

Proof. It suffices to show that |A(xopt − xopt)|2 ≤ 7ε|Axopt − b|2 as by the triangle inequality,

|Axopt − b|2 ≤ |Axopt − b|2 + |A(xopt − xopt)|2 (4.20)

Let A = UΣV t be the singular value decomposition for A and b = Axopt+b
⊥ where b⊥ is orthogonal

to Col(A), the sketched least squares problem (4.18) is equivalent to,

xopt = argminx∈Rn |ZtA(x− xopt)− Ztb⊥| (4.21)

As Col(U) = Col(A), the above least squares problem can be reformulated as an optimization

problem over Rk,

yopt = argminy∈Rk |ZtUy − Ztb⊥| = (ZtU)+Ztb⊥ (4.22)

The equivalence of the two formulations (4.21) and (4.22) of the sketched least squares problem

implies that A(xopt−xopt) = Uyopt. Multiplication by U acts as an isometry, that is |Uyopt| = |yopt|

as columns of U tU = Ik,

|A(xopt − xopt)|2 = |Uyopt|2 = |yopt|2

= |(ZtU)+Ztb⊥|2

≤ |U tZZtb⊥|2 +
∥∥(ZtU)+ − U tZ)

∥∥
2
|Ztb⊥|2 (4.23)

64

The terms |Ztb⊥|2, |UZtZb⊥|2 and
∥∥(ZtU)+ − UZt

∥∥
2

are bounded separately to complete the proof.

The expected value for |Ztx|2 for x ∈ Rm can be computed using the entries of the sampling matrix

Z (4.17),

E[|Ztx|22] = E

∑
j∈[r]

((zj)t.x)2

= r

∑
i∈[m]

`k(i)x
2
i

rpi
∈ (1± ε)|x|22 (4.24)

By Markov’s inequality,

Pr

[
|Ztb⊥|2 ≤

(1 + ε/2)|b⊥|2√
δ

]
≥ 1− δ (4.25)

The term |U tZZtb⊥|2 is bounded by invoking theorem 4.3.4 with A = U t and B = b⊥. Note that

the distribution p in the statement of 4.3.4 is the (1 − ε) approximate leverage score distribution,

as pi ≥ (1− ε)`k(i),

E[|U tb⊥ − U tZZ⊥b⊥|22] = E[|U tZZ⊥b⊥|22]

≤ 1

(1− ε)r
∥∥U t∥∥2

F
|b⊥|2

≤ (1 + ε)
k

r
|b⊥|2 ≤ ε2(1 + ε)|b⊥|2 (4.26)

where the first equality uses U tb⊥ = 0 and the last inequality follows as r = O(k log k/ε2). An

application of Markov’s inequality yields,

Pr

[
|U tZZ⊥b⊥|2 ≤

ε(1 + ε/2)√
δ

|b⊥|2
]
≥ 1− δ (4.27)

In order to bound
∥∥(ZtU)+ − UZt

∥∥
2
, it suffices to show that the minimum singular values of U tZ

is at least 1− ε. Let Π = UU t be the projector onto the column space of U ,

σ2min(U tZ) = λmin(U tZZtU) = λmin((U tU)U tZZtU))

= λmin(UU tZZtUU t) = λmin(ΠZZtΠ) (4.28)

The rank of ZtU is at most k as it is obtained by sampling from rows of a rank k matrix. Claim

4.3.3 shows that with probability at least 1− 1/poly(m), ZtU has rank k and establishes a bound

65

on the
∥∥(ZtU)

∥∥2
2
,

∥∥ΠZZtΠ−ΠΠ
∥∥
2
≤ 2ε⇒ λmin(ΠZZtΠ) ≤ 1− 2ε (4.29)

Thus σmin(ZtU) ≤
√

1− 2ε ≤ 1− ε and the spectral norm
∥∥(ZtU)+ − UZt

∥∥
2

can be bounded as,

∥∥(ZtU)+ − UZt
∥∥
2

=
1

σmin(UZt)
− σmin(UZt) ≤ 2ε (4.30)

Choosing δ = 0.25 so that 1/
√
δ = 2 and plugging in the bounds (4.25),(4.27),(4.30) in equation

(4.23), with probability at least 1− δ = 0.75 we obtain,

|A(xopt − xopt)|2 ≤ 2ε(1 + ε/2)|b⊥|2 + (2 + ε)2ε|b⊥|2 ≤ (1 + 7ε)|b⊥|2 (4.31)

The claim follows.

CUR decomposition

A factorization of the form A = CUR where C and R are obtained by sampling c columns and
r rows from A and U ∈ Rc×r such that ‖A− CUR‖ ≤ (1±ε) ‖A−Ak‖ for a suitable norm, is called
a CUR decomposition. Like the CX decomposition, a CUR decomposition is an interpretable low
rank approximation for A. The CUR decomposition algorithm (6) is obtained by first computing
the CX decomposition followed by approximate least squares to compute U and R. The algorithm
4.3.2 uses exact sampling probabilities for computing U and R, however estimates of the sampling
probabilities can be used as in shown claim 4.3.5.

The correctness of algorithm 4.3.2 follows from the approximate least squares 4.3.5 and the CX
decomposition,

‖A− CUR‖F =
∥∥A− CXopt

∥∥
F
≤ (1 + 7ε)

∥∥A− CC+A
∥∥
F

≤ (1 + 9ε) ‖A−Ak‖F (4.32)

The matrices R and C consist of rows and columns of A, the matrix U = (DRSRC)+DR is a
weighted pseudo-inverse of the intersection of R and C. The Moore Penrose pseudo-inverse is not
multiplicative, that is (AB)+ 6= B+A+ in general, multiplicativity holds for the cases where (i) A
has orthonormal columns. (ii) B has orthonormal rows. (iii) A has full column rank and B has full
row rank. Multiplicativity does not hold for (DRSRC)+ so U does not simplify to (SRC)+, therefore
knowledge of the sampling probabilities is required for computing U in the CUR decomposition.

Discussion

The importance sampling algorithms using the leverage score distribution including approxima-
tion of quadratic forms, approximate least squares and CUR decompositions can be implemented

66

Algorithm 4.3.2 CUR decomposition (6)

1: Compute a CX decomposition C for A with c = O(k log k/ε2) columns.

2: Approximate the least squares problem minX ‖A− CX‖F to obtain Xopt = (ZtC)+ZtA where

Z ∈ Rm×r where r = O(c log c/ε2) and Z has entries given by equation (4.17).

3: Using the factorization Z = DS obtain U = (DStC)+D and R = StA, with probability at least

0.5 the CUR decomposition satisfies,

‖A− CUR‖F ≤ (1 + 9ε) ‖A−Ak‖F (4.33)

using relative error ε approximations to the leverage scores. The running times of the quantum
importance sampling algorithms stated in table 4.1 follow from the analyses. Classically leverage
scores can be approximated in time O(mn log n) (25), the quantum algorithms achieve a quadratic
speedup with respect to the matrix dimensions but have a polynomial dependence on the spectral
gap.

We note that relative error approximations of the leverage scores appears to be necessary
for importance sampling algorithms. The running time for our algorithms is constrained by the
precision required for relative error estimates of `k(i) which areO(k/m) in expectation. The spectral
gap 1/∆k may be polynomial in the matrix dimensions in general so the quantum algorithms do
not achieve a speedup for all matrices. However, the quantum algorithms achieve a speedup for
the special case of rank k matrices where the spectral gap is 1/poly(k). The dependence on ε is
similar for both quantum and classical algorithms, the quantum algorithms pick up an additional
factor of O(1/ε) for relative error ε approximations of the leverage scores.

67

Chapter 5

Machine Learning Algorithms

In this chapter, we present quantum algorithms for machine learning problems generalizing
least squares with `2 regularization. Our applications include ridge regression, page rank vectors
and polynomial kernels, and are different from those previously considered in the literature (23; 22;
24; 42).

The algorithms presented in this chapter produce quantum states as answers in contrast to
classical algorithms that output vectors or matrices. The coordinates of v ∈ Rn are not directly
accessible given a vector state |v〉, extracting classically useful information from |v〉 requires an
amplitude estimation/Grover search like operation and requires time O(

√
n). We show that the

vector states can be used to estimate training and test errors. The quantum algorithms can therefore
be used to compare different models and select the regularization parameter.

This chapter is organized as follows, in section 5.1 introduces some quantum primitives are used
by our algorithms, while section 5.2 presents quantum algorithms for ridge regression, page rank
and polynomial kernels.

5.1 Preliminaries

Given an oracle that maps |i, 0logn〉 → |i, xi〉 , i ∈ [0, 1] for x0, x1 ∈ Rn the vector state
|αx0 + βx1〉 where α2 + β2 = 1 can be prepared as follows,

(α |0, x0〉+ β |1, x1〉)
H−→ 1√

2
(|0〉 |αx0 + βx1〉+ |1〉 |αx0 − βx1〉) (5.1)

and post selecting on the first qubit being in state |0〉. The state |αx0 + βx1〉 is obtained with
probability |αx0 + βx1|2/2, this method is a variant of the the swap test (11) and is well known in
the literature. The oracle |i, 0logn〉 → |i, xi〉 , i ∈ [0, 1] can be instantiated with a QRAM or by an
algorithm like 3.3.2 that produces a vector state as output.

68

The standard swap test uses α = β = 1/2 and the probability of measuring |0〉 is (1+〈x0|x1〉2)/2,
the test can be used to estimate the inner product between vector states,

Claim 5.1.1. The inner product between vector states |v〉 , |w〉 can be estimated to additive error ε

by performing the swap test on O(log n/ε2) copies of the states.

The following geometric fact is used to bound the error in the analysis of the quantum ridge
regression algorithm, the proof is a straightforward calculation.

Fact 5.1.2. For all u, v ∈ Rn such that u.v ≥ 0,∣∣∣∣ u|u|2 − v

|v|2

∣∣∣∣2
2

≤ |u− v|22
min(|u|22, |v|22)

(5.2)

Proof. Wlog assume that |u|22 = (1 + δ)|v|22 for δ ≥ 0 and let θ be the angle between u and v, note

that cos(θ) ≥ 0 as u.v ≥ 0.

|u− v|22
min(|u|22, |v|22)

= 2 + δ − 2
√

1 + δ cos(θ)

≥ 2− 2 cos(θ) + δ(1− cos(θ))

> 2− 2 cos(θ) =

∣∣∣∣ u|u|2 − v

|v|2

∣∣∣∣2
2

(5.3)

where the first inequality follows as
√

1 + δ ≤ 1 + δ/2 for all δ > 0 and the second as cos(θ) ∈ [0, 1]

as u.v ≥ 0.

5.2 Regression with `2 regularization

We present quantum algorithms for ridge regression and its generalization to polynomial kernels.
We also discuss the special case of page rank vectors for undirected graphs which can be viewed
as an `2 regularized linear system over the graph Laplacian (26). The output of the quantum
algorithm is a vector state corresponding to the solution and a priori its usefulness is not clear.
We show that the quantum algorithm can be used to select the regularization parameter and to
compare the performance of different models.

5.2.1 Ridge regression

The classical regression problem is to find an estimator or regression function that predicts
a response variable b ∈ R as a function of input variables a ∈ Rn. The input to the regression

69

problem is a training set (A ∈ Rm×n, b ∈ Rm) consisting of examples (ai ∈ Rn, bi ∈ R), i ∈ [m].
Linear regression assumes that the response is a linear function of the input variables and seeks
θ ∈ Rn that minimizes the least squares loss function,

L(x) =
1

m

∑
i∈[m]

(ai.x− bi)2 =
1

m
|Ax− b|2 (5.4)

Setting the gradient ∂L(x)
∂x to 0 in (5.4), the solution θ to the linear regression problem satisfies

At(Aθ − b) = 0 yielding the closed form solution θ = (AtA)+Atb.

Linear regression can be solved in time O(mn+n3) using direct methods like Gaussian elimina-
tion and in time O(mnκ) using iterative methods like stochastic gradient descent, iterative methods
are preferred for large datasets. Regularization adds an additional penalty term to the least squares
objective function (5.4) to handle ill conditioned problems. The `2-regularized least squares (ridge
regression) with regularization parameter µ minimizes the following objective function,

L(µ, x) =
1

m

∑
i∈[m]

(ati.x− bi)2 + µ|x|2 =
1

m
|Ax− b|2 + µ|x|2 (5.5)

Setting the gradient ∂L(µ,x)
∂x to 0 in (5.4), the solution θ(µ) to the ridge regression problem satisfies

At(Aθ(µ)− b) +mµθ(µ) = 0 yielding a closed form solution θ(µ) = (AtA+mµI)−1Atb, note that
AtA+mµI is a full rank matrix and thus invertble.

Let A =
∑

i σiuiu
t
i be the singular value decomposition of A, then the matrix AtA+mµI has

spectral decomposition
∑

i(σ
2
i +mµ)viv

t
i . Decomposing y = Atb =

∑
i αiui as a linear combination

of the left singular vectors of A, the ridge regression solution (5.5) can be expressed as,

θ(µ) = (AtA+mµI)−1Atb =
∑
i

αi
mµ+ σi(A)2

vi (5.6)

The above expression for θ(µ) in terms of the singular vectors of A can be used to verify that,

θ(µ) = At(AAt +mµI)−1b (5.7)

this alternate expression will useful for polynomial kernels. Ridge regression is computationally
easier than least squares as the matrix to be inverted has a smaller condition number. From the
Bayesian perspective, ridge regression imposes a Gaussian prior on the least squares solution. The
book (16) is a comprehensive reference for regression algorithms and regularization methods.

The regularization parameter µ for ridge regression is typically selected by cross validation, the
data set is randomly partitioned into a training set A and a validation set V . The ridge regression
problem is solved on the training set to obtain θ(µ). The training error is |Aθ(µ) − b|2 and the
validation error is |V θ(µ)−bV |2, where bV denotes the response vector for the validation set. Model
selection involves computing the solutions (5.6) for different values of µ and selecting the model
that minimizes the validation error.

There is a tradeoff involved in the choice of the regularization parameter µ. Overfitting occurs
for models with small values of µ, that is the training error is small but the validation error is
large and the model does not generalize well. Models with a large values of µ under-fit and have
large training and validation errors. More sophisticated model selection criteria have been proposed
in the statistics literature, however model selection based on the validation error is a reasonable
choice.

70

Quantum ridge regression

Algorithm 5.2.1 Quantum ridge regression

Require: (A, b, y = Atb) with ‖A‖2F = m stored in QRAM , regularization parameter µ ∈ [0, 1],

validation set V , matrices M = (A,−b)
‖(A,−b)‖F

and MV = (V,−bV)
‖(V,−bV)‖F

, precision δ < 0.4.

Ensure: Outputs |θ(µ)〉 such that | |θ(µ)〉 − |θ(µ)〉 |2 ≤ δ and additive error δ estimate of the

validation error.

1: Let |y〉 =
∑

i αi |vi〉 where vi are the right singular vectors of A, obtain
∑

i αi |vi〉 |σi〉 where

σi ∈ [σi(A)/ ‖A‖F ± ε] using singular value estimation 3.3.1 with precision ε = µδ/2.

2: Append an ancilla qubit and apply the conditional rotation,

∑
i

αi |vi〉 |σi〉

(
µ

σi2 + µ
|0〉+

(
1− µ2

(σi2 + µ)2

)1/2

|1〉

)
(5.8)

post select on |0〉 using amplitude amplification and erase σi to obtain |z〉 = |θ(µ)〉.

3: Estimate p, the probability of obtaining |0〉 in (5.8) to relative error δ2 using amplitude esti-

mation, this requires time Õ(1/δ3µ2) as p ≥ µ2/4.

4: Prepare the linear combination |z′〉 =
√
p√

1+p
|θ(µ)〉+ 1√

1+p
|(n+ 1)〉 as in (5.1).

5: Let |z′〉 =
∑

i βi |wi〉 where wi are the right singular vectors of MV , obtain
∑

i βi |wi, σi〉 using

singular value estimation 3.3.1 for MV with precision δ.

Append an ancilla qubit and apply the conditional rotation,

∑
i

βi |wi〉 |σi〉
(
σi |0〉+

(
1− σi2

)1/2 |1〉) (5.9)

Use amplitude estimation to obtain an additive error δ estimate of the probability of obtaining

outcome |0〉 when the ancilla qubit is measured.

The ridge regression solution (5.6) is not scale invariant, that is if A, b are scaled to A/c, b/c the
solution θ(µ) does not scale to θ(µ)/c, therefore a suitable normalization is made while preparing
the data set A. Algorithm 5.2.1 assumes that the dataset is normalized so that ‖A‖2F = m, this
is a reasonable choice of normalization as it corresponds to scaling each feature vector ai ∈ Rn to
have unit length. The notation (A, b) in algorithm 5.2.1 represents concatenation, it denotes the
matrix obtained by appending b ∈ Rm to the columns of A.

Claim 5.2.1. Algorithm 5.2.1 outputs |θ(µ)〉 such that | |θ(µ)〉 − |θ(µ)〉 |22 ≤ 2δ2 in time Õ(1/µ2δ)

71

and an additive error O(δ) estimate of the normalized validation error η(µ)2 =
|V θ(µ)−bV |22

(|θ(µ)|+1)‖(V,−bV)‖2F

in time Õ(1/µ2δ3).

Proof. Note that |θ(µ)〉 = |mθ(µ)〉 = 1√
θ(µ)

∑
i

αi
µ+σ2

i
|vi〉 by (5.6) where σi = σi(A)

‖A‖F
are the normal-

ized singular values of A, estimated in step 1 of algorithm 5.2.1. The squared distance between |θ(µ)〉

and |θ(µ)〉 can be bounded using fact 5.1.2, the assumption δ < 0.4 and the estimate σ2i ∈ [σ2i ± 2ε]

guaranteed by the singular value estimation algorithm,

| |θ(µ)〉 − |θ(µ)〉 |22 ≤
1

m2 min
(
|θ(µ)|2, |θ(µ)|2

)∑
i

(
αi

σ2i + µ
− αi
σ2i + µ± 2ε

)2

≤
(

2ε

µ(1− 2ε/µ)

)2

≤ δ2(1 + δ)2 < 2δ2 (5.10)

The probability of measuring |0〉 in step 2 is at least (µ
1+µ)2 ≥ µ2/4, so amplitude amplification

requires O(1/µ) iterations to prepare |θ(µ)〉. The running time is Õ(1/µ2δ) as each iteration invokes

the singular value estimation algorithm with precision O(µδ).

Let z = 1√
|θ(µ)|+1

(θ(µ), 1) be the unit vector in the direction (θ(µ),1)
|θ(µ)| , the squared norm |MV z|22

equals the normalized validation error η(µ)2. Algorithm 5.2.1 approximates η(µ)2 by estimating

|MV z
′|22 where z′ is the unit vector in the direction

(
θ(µ)

|θ(µ)|
, 1√

p

)
. The bound |z−z′|2 ≤ O(δ2) follows

from fact 5.1.2 and equation (5.10) and can be used to bound |MV z
′|22 − |MV z|2,

|MV z
′|22 − |MV z|2 ≤ (|MV z|+ |MV z

′|)σmax(MV)δ = O(δ) (5.11)

where the final equality follows as σmax(MV) ≤ 1 and |MV z| ≤ 1 for all z ∈ Rn.

If z′ =
∑

i βiwi be the decomposition of z′ as a linear combination of the singular vectors of MV ,

then |MV z
′|22 =

∑
i β

2
i σ

2
i . The probability of measuring |0〉 in step 5 of algorithm 5.2.1

∑
i β

2
i σi

2

approximates |MV z
′|22, ∣∣∣∣∣∑

i

β2i σi
2 − |MV z

′|22

∣∣∣∣∣ ≤ 2δ (5.12)

the inequality follows as σi ∈ σi ± δ and
∑

i β
2
i = 1. Algorithm 5.2.1 estimates

∑
i β

2
i σi

2 within

additive error δ, the output estimate is within ±3δ of |MV z
′|22 by (5.12). It follows from (5.11)

72

that the additive error in estimating η(µ)2 is O(δ), amplitude estimation in step 3 is the most time

consuming step in the algorithm and requires time Õ(1/δ3µ2).

The quantum ridge regression algorithm can be used to select the regularization parameter µ
by estimating the normalized validation error η(µ) and selecting µ for which the error is minimum.
The value η(µ) lies in the interval [σmin(MV), σmax(MV)], relative error estimates of η(µ) are
obtained in worst case time Õ(1/µ2σ3min). The actual time may requirements may be smaller and
the quantum algorithm may achieve a speedup over classical algorithms over several computations
of ridge regression solutions for different values of µ.

We note that most of the computational effort in ridge regression goes towards computing
models for different values of µ and selecting µ achieving the best tradeoffs. The quantum algorithm
thus complements classical algorithms providing a fast method for comparing models with different
values of µ, having selected µ classical algorithms can be used to compute the coordinates of the
solution θ(µ) ∈ Rn.

5.2.2 Pagerank

The computation of the page rank vector (31) for undirected graphs can be regarded as an
instance of `2 regularized linear system in the Laplacian matrix of the graph as shown in (26). A
quantum state corresponding to the page rank vector can therefore be computed using methods
similar to the ridge regression algorithm 5.2.1.

We recall the notion of page rank vector and its interpretation (26) as an `2 regularized linear
system on the normalized Laplacian matrix. Given a graph G(V,E) the adjacency matrix A ∈ Rn×n
has entries aij = 1 if i ∼ j and 0 otherwise, the diagonal matrix D ∈ Rn×n has entries dii = deg(i)
where the degree deg(i) is the number of edges incident to vertex i. The lazy random walk matrix
is defined as Z := (I +AD−1)/2.

The pagerank vector pr(α, s) is the stationary distribution for a random walk that with prob-
ability α teleports to seed distribution s and with probability (1− α) carries out a step of the lazy
random walk Z, that is:

pr(α, s) = αs+ (1− α)Zpr(α, s) (5.13)

The teleportation constant α is analogous to a regularization parameter, walks starting at s with
length O(1/α) contribute to the pagerank vector. Computing the pagerank is equivalent to solving
a linear system over a regularized Laplacian,

(I − (1− α)Z)pr(α, s) = αs

⇒
(

1 + α

2
I − 1− α

2
AD−1

)
pr(α, s) = αs

⇒
(

1 + α

1− α
I −AD−1

)
pr(α, s) =

2α

1− α
s (5.14)

73

The combinatorial Laplacian L = D − A is normalized to D−1/2LD−1/2. Substituting β = 2α
1−α in

equation (5.14), the page rank vector can be expressed in terms of the normalized Laplacian,

pr(α, s) = β((1 + β)I −AD−1)−1s
= β(βI +D−1/2LD−1/2)−1s (5.15)

Thus computing pagerank vectors is equivalent to solving a linear system, comparing with the ridge
regression problem (5.6), the regularization parameter µ = β

Tr(D−1/2LD−1/2)
= β

n , the ridge regres-

sion algorithm therefore yields a quantum algorithm for computing the vector state corresponding
to the approximate page rank vector.

Claim 5.2.2. There is a quantum algorithm with running time Õ(n2/β2δ) that outputs a vector

state |pr(α, s)〉 such that | |pr(α, s)〉 − |pr(α, s)〉 |2 ≤ δ.

Page rank vectors can be approximated classically in time Õ(m log n) using fast Laplacian linear
system solvers (19) or iterative methods so the quantum algorithm does not constitute a speedup
over classical algorithms. The page rank example illustrates that the quantum ridge regression
algorithm does not achieve a speed up for all cases. Speedups are achieved when the regularization
parameter µ = c ‖A‖F .

5.2.3 Polynomial Kernels

Linear regression assumes that the relationship between the input variables and the response is
linear, that is the response y is a linear combination of the features xi, i ∈ [n]. Kernels generalize the
linear model expressing the response as a linear combination of features in an implicit N dimensional
feature space specified by the mapping φ : Rn → RN . The kernel k(x, x′) = 〈φ(x)|φ(x′)〉 corresponds
to the inner product in the implicit feature space, algorithms that can be specified in terms of the
inner product can be kernelized replacing the inner product 〈x|y〉 by k(x, y).

The quantum singular value estimation algorithms 3.2.1 and 3.3.1 are not specified in terms of
inner products, so these algorithms can not be kernelized in the classical sense. However, algorithm
3.3.1 can be used to compute models corresponding to the degree d polynomial kernels k(x, x′) =
〈x|x′〉d. More generally a degree d polynomial defines a valid kernel k(x, x′) if and only if it is a linear
combination of Legendre polynomials with positive coefficients (37). We restrict our discussion to
polynomial kernels of the form k(x, x′) = 〈x|x′〉d whose feature spaces correspond to all degree d
monomials.

Ridge regression can be generalized to non linear feature spaces replacing inner products in the
loss function (5.5) by the inner product in the expanded feature space,

L(µ, x) =
1

m

∑
i∈[m]

(φ(ai).x− bi)2 + µ|x|2 (5.16)

The kernel matrix K ∈ Rm×m has entries Kij = k(ai, aj), and the feature matrix Φ ∈ Rm×N has
rows φ(xi) so thatK = ΦΦt. The solution to kernel regression is given by θ(µ) = argminx∈RNL(µ, x)

74

and is analogous to the ridge regression solution (5.7),

θ(µ) = Φt(K +mµI)−1b (5.17)

Density matrices K/Tr(K) can be prepared efficiently using the augmented QRAM for kernels of
the form k(x, y) = 〈x|y〉d.

Claim 5.2.3. Let A ∈ Rm×n be stored in an augmented QRAM and K ∈ Rm×m have entries

Kij = 〈ai|aj〉d, the density matrix K/Tr(K) can be prepared in time Õ(1).

Proof. The matrix K/Tr(K) can be prepared by tracing out the last d systems from the following

state that can prepared making d queries to the QRAM ,

|Φ〉 =
∑

i∈[m],j∈[n]d
(a⊗di)j |i, j〉 =

∑
i∈[m]

|i, a⊗di 〉 (5.18)

As K = ΦΦt, this is an application of the density matrix preparation method in equation (2.9).

Given copies of the density matrix K/Tr(K), algorithm 3.2.1 can be used to perform singular value
estimation and create the quantum state corresponding to the feature space representation of θ(µ).
If b =

∑
i∈[m] βivi in the spectral basis for K, then:

Φθ(µ) = K(K +mµ)−1b =
∑
i∈[m]

λi(K)βi
λi(K) +mµ

vi (5.19)

Assuming that the data is normalized so that |ai| = 1,∀i ∈ [m], the trace of the polynomial kernel
Tr(K) =

∑
i∈m〈ai|ai〉d = m, thus the state (5.19) can be prepared by performing singular value

estimation for K/Tr(K), applying a conditional rotation and post selecting as in step 2 of algorithm
5.2.1,

|b〉 5.2.1−−−→
∑
i

βi |vi〉 |σi〉

(
σi

µ+ σi
|0〉+

(
1− σi

µ+ σi

2
)1/2

|1〉

)
(5.20)

The squared distance between the state |Φθ(µ)〉 obtained by post selecting on |0〉 and the state
|Φθ(µ)〉 can be bounded as follows for ε = µδ,

| |Φθ(µ)〉 − |Φθ(µ)〉 |2 =
∑
i

β2i

(
σi

µ+ σi
− σi ± ε
µ+ σi ± ε

)2

≤
∑
i

β2i

(
ε

µ− ε

)2

≤ δ2

(1− δ)2
(5.21)

For δ < 1/2 the output state is within squared distance O(δ2) of the state |Φθ(µ)〉 corresponding
to the solution. If the angle between b and Col(K) is θ, then the probability of measuring |0〉 in

(5.20) is at least cos2(θ)σmin(K)2

(µ+1)2
, the number of iterations required for amplitude amplification is

O(1/ cos(θ)λmin(K)). We therefore have the following claim,

75

Claim 5.2.4. Given A ∈ Rm×n, b ∈ Rm stored in the augmented QRAM and the degree d

polynomial kernel Kij = 〈ai|aj〉d, there is a quantum algorithm that outputs |Φθ(µ)〉 such that

| |Φθ(µ)〉 − |Φθ(µ)〉 |2 = O(δ2) in time Õ(1/µ3δ3σmin(K) cos(θ)).

Note that unlike the algorithm for ridge regression, we do not obtain a vector state corresponding
to the solution θ(µ). However, Φθ(µ) ∈ Rm is an approximation to b and the inner product 〈Φθ(µ)|b〉
provides a measure for the quality of fit. The inner product can be estimated using the swap test
5.1.1, the quantum algorithm can therefore be used for model selection by comparing polynomial
kernels with different degrees and regularization parameters.

Classical computation of polynomial kernel models is computationally expensive as requires
space O(m2) to store the dense kernel matrices and time O(m3) for matrix inversion, the quan-
tum algorithms complement the classical algorithms by providing a method for selecting model
parameters without incurring the large classical computation overheads.

Summary and discussion

The running times of the quantum algorithms for `2 regularized regression problems are summa-
rized in the table 5.1. The classical algorithms compute exact solutions for the regression problems,
the quantum algorithms produce vector states as answers and can be used to compare models and
select regularization parameters. Quantum algorithms do not provide a speedup for all the prob-
lems, for example in the case of page rank computation, classical algorithms for approximate page
rank computation are faster.

Problem Quantum Algorithm Classical Algorithm

Ridge regression Õ(1/µ2δ) O(mn2)

Approximate Pagerank Õ(n2/β2δ) O(m log(1/δ)/β)

Polynomial kernels Õ(1/µ3δ3σmin(K) cos(θ)) O(m3)

Table 5.1. Running times for quantum and classical regression algorithms.

The quantum regression algorithms are of limited utility as they produce vector states as answers
and obtaining regression coefficients from the vector states requires polynomial time. However,
the quantum algorithms may complement classical algorithms for comparing models and selecting
regularization parameters.

76

Bibliography

[1] A. Belovs and B. W. Reichardt, “Span programs and quantum algorithms for st-connectivity
and claw detection,” in Algorithms–ESA 2012. Springer, 2012, pp. 193–204.

[2] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, “Strengths and weaknesses of
quantum computing,” SIAM journal on Computing, vol. 26, no. 5, pp. 1510–1523, 1997.

[3] D. W. Berry, G. Ahokas, R. Cleve, and B. C. Sanders, “Efficient quantum algorithms for
simulating sparse hamiltonians,” Communications in Mathematical Physics, vol. 270, no. 2,
pp. 359–371, 2007.

[4] G. Brassard, P. Hoyer, M. Mosca, and A. Tapp, “Quantum amplitude amplification and esti-
mation,” arXiv: quant-ph:0005.055, 2000.

[5] P. Drineas, R. Kannan, and M. W. Mahoney, “Fast monte carlo algorithms for matrices i:
Approximating matrix multiplication,” SIAM Journal on Computing, vol. 36, no. 1, pp. 132–
157, 2006.

[6] P. Drineas, M. W. Mahoney, and S. Muthukrishnan, “Relative-error cur matrix decomposi-
tions,” SIAM Journal on Matrix Analysis and Applications, vol. 30, no. 2, pp. 844–881, 2008.

[7] P. Drineas, M. W. Mahoney, S. Muthukrishnan, and T. Sarlós, “Faster least squares approxi-
mation,” Numerische Mathematik, vol. 117, no. 2, pp. 219–249, 2011.

[8] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and D. Preda, “A quantum adi-
abatic evolution algorithm applied to random instances of an np-complete problem,” Science,
vol. 292, no. 5516, pp. 472–475, 2001.

[9] V. Giovannetti, S. Lloyd, and L. Maccone, “Architectures for a quantum random access mem-
ory,” Physical Review A, vol. 78, no. 5, p. 052310, 2008.

[10] ——, “Quantum random access memory,” Physical review letters, vol. 100, no. 16, p. 160501,
2008.

[11] D. Gottesman and I. Chuang, “Quantum digital signatures,” arXiv preprint quant-ph/0105032,
2001.

[12] L. K. Grover, “A fast quantum mechanical algorithm for database search,” Proceedings of the
twenty-eighth annual ACM symposium on Theory of computing, pp. 212–219, 1996.

77

[13] N. Halko, P.-G. Martinsson, and J. A. Tropp, “Finding structure with randomness: Proba-
bilistic algorithms for constructing approximate matrix decompositions,” SIAM review, vol. 53,
no. 2, pp. 217–288, 2011.

[14] M. Hardt, “Robust subspace iteration and privacy-preserving spectral analysis,” arXiv preprint
arXiv:1311.2495, 2013.

[15] A. W. Harrow, A. Hassidim, and S. Lloyd, “Quantum algorithm for linear systems of equa-
tions,” Physical review letters, vol. 103, no. 15, p. 150502, 2009.

[16] T. Hastie, R. Tibshirani, and J. J. H. Friedman, The elements of statistical learning. Springer
New York, 2001, vol. 1.

[17] H. Hotelling, “Relations between two sets of variates,” Biometrika, pp. 321–377, 1936.

[18] C. Jordan, “Essai sur la géométrie à n dimensions,” Bulletin de la Société mathématique de
France, vol. 3, pp. 103–174, 1875.

[19] J. A. Kelner, L. Orecchia, A. Sidford, and Z. A. Zhu, “A simple, combinatorial algorithm
for solving sdd systems in nearly-linear time,” in Proceedings of the forty-fifth annual ACM
symposium on Theory of computing. ACM, 2013, pp. 911–920.

[20] A. Y. Kitaev, “Quantum measurements and the abelian stabilizer problem,” arXiv preprint
quant-ph/9511026, 1995.

[21] R. E. Ladner and M. J. Fischer, “Parallel prefix computation,” Journal of the ACM (JACM),
vol. 27, no. 4, pp. 831–838, 1980.

[22] S. Lloyd, M. Mohseni, and P. Rebentrost, “Quantum algorithms for supervised and unsuper-
vised machine learning,” Arxiv preprint:1307.0411, 2013.

[23] ——, “Quantum self analysis,” Arxiv preprint:1307.1401, 2013.

[24] ——, “Quantum support vector machine for big feature and big data classification,” Arxiv
preprint:1307.0471, 2013.

[25] M. W. Mahoney, P. Drineas, M. Magdon-Ismail, and D. P. Woodruff, “Fast approximation of
matrix coherence and statistical leverage.” in ICML, 2012.

[26] M. W. Mahoney and L. Orecchia, “Implementing regularization implicitly via approximate
eigenvector computation,” Proceedings of the 28th International Conference on Machine Learn-
ing, pp. 121–128, 2011.

[27] C. Marriott and J. Watrous, “Quantum arthur–merlin games,” Computational Complexity,
vol. 14, no. 2, pp. 122–152, 2005.

[28] M. McLoone and J. V. McCanny, “Efficient single-chip implementation of sha-384 and sha-
512,” in Proceedings. 2002 IEEE International Conference on Field-Programmable Technology,
2002. IEEE, 2002, pp. 311–314.

[29] M. Mihail and C. Papadimitriou, “On the eigenvalue power law,” in Randomization and ap-
proximation techniques in computer science. Springer, 2002, pp. 254–262.

78

[30] B. Misra and E. C. G. Sudarshan, “The zeno paradox in quantum theory,” Journal of Mathe-
matical Physics, vol. 18, no. 4, pp. 756–763, 2008.

[31] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation ranking: Bringing
order to the web.” Stanford InfoLab, 1999.

[32] A. Peres, Quantum theory: concepts and methods. Springer, 1995, vol. 57.

[33] J. Preskill, “Lecture notes for physics 229: Quantum information and computation,” California
Institute of Technology, 1998.

[34] B. W. Reichardt, F. Unger, and U. Vazirani, “A classical leash for a quantum system: Com-
mand of quantum systems via rigidity of chsh games,” arXiv preprint arXiv:1209.0448, 2012.

[35] M. Rudelson and R. Vershynin, “Sampling from large matrices: An approach through geomet-
ric functional analysis,” Journal of the ACM (JACM), vol. 54, no. 4, p. 21, 2007.

[36] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer,” SIAM journal on computing, vol. 26, no. 5, pp. 1484–1509, 1997.

[37] A. J. Smola, Z. L. Ovari, and R. C. Williamson, “Regularization with dot-product kernels,”
Advances in Neural Information Processing Systems, pp. 308–314, 2001.

[38] D. Spielman and N. Srivastava, “Graph sparsification by effective resistances,” Proceedings of
the 40th annual ACM symposium on Theory of computing, pp. 563–568, 2008.

[39] M. Szegedy, “Quantum speed-up of markov chain based algorithms,” in Foundations of Com-
puter Science, 2004. Proceedings. 45th Annual IEEE Symposium on. IEEE, 2004, pp. 32–41.

[40] G. Wang, “Quantum algorithms for approximating the effective resistances of electrical net-
works,” arXiv preprint arXiv:1311.1851, 2013.

[41] N. Wiebe, D. W. Berry, P. Høyer, and B. C. Sanders, “Simulating quantum dynamics on a
quantum computer,” Journal of Physics A: Mathematical and Theoretical, vol. 44, no. 44, p.
445308, 2011.

[42] N. Wiebe, A. Kapoor, and K. Svore, “Quantum nearest-neighbor algorithms for machine
learning,” arXiv preprint arXiv:1401.2142, 2014.

79

