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Abstract

Groundwater management typically relies on water‐level data and spatially 
limited deformation measurements. While interferometric synthetic aperture 
radar has been used to study hydrological deformation, its limited temporal 
sampling can lead to biases in rapidly changing systems. Here we use 2011–
2017 COSMO‐SkyMed data with revisit intervals as short as 1 day to study 
the response of the Santa Clara Valley (SCV) aquifer in California to the 
unprecedented 2012–2015 drought. Cross‐correlation and independent 
component analyses of deformation time series enable tracking water 
through the aquifer system. The aquifer properties are derived prior to and 
during the drought to assess the success of water‐resource management 
practices. Subsidence due to groundwater withdrawal dominates during 
2011–2017, limited to the confined aquifer and west of the Silver Creek 
Fault, similar to predrought summer periods. Minimum water levels and 
elevations were reached in mid‐2014, but thanks to intensive groundwater 
management efforts the basin started to rebound in late 2014, during the 
deepening drought. By 2017, water levels were back to their predrought 
levels, while elevations had not yet fully rebounded due to the delayed 
poroelastic response of aquitards and their large elastic compressibility. As 
water levels did not reach a new lowstand, the drought led to only elastic 
and recoverable changes in the SCV. The SCV lost 0.09 km3 during the 
drought while seasonal variations amount to 0.02 km3. Analysis of surface 
loads due to water mass changes in the aquifer system suggests that 
groundwater drawdowns could influence the stress on nearby faults.

1 Introduction

On 17 January 2014 California Governor, Jerry Brown, declared a drought 
state of emergency following the historically low surface water levels 
experienced across the state. The drought started in winter 2012 when 
precipitation dropped below historic averages and continued through 2015 
with water resources more than 20% below average (Robeson, 2015). The 
drought, which is believed to have been caused by an offshore atmospheric 



high‐pressure system that redirected storms northward and away from 
California (Swain, 2015), posed significant challenges for water management
(Costa‐Cabral et al., 2016). When surface water levels are low, due to low 
snow, lake, and reservoir levels and reduced stream runoff, increased 
pressure is put on groundwater resources to satisfy urban, industrial, and 
agricultural needs. However, aquifer systems are fragile resources. If an 
aquifer system experiences a new record low in water levels, irreversible 
damage occurs to the system in the form of a permanent decrease in 
porosity and large land subsidence (Poland & Ireland, 1988; Wilson & 
Gorelick, 1996) as observed in the San Joaquin Valley (Farr, Jones, & Liu, 
2016).

Using interferometric synthetic aperture radar (InSAR), land subsidence has 
been detected in many urban areas around the world, with consequences 
ranging from damage to infrastructure to increases in flooding in coastal 
areas (e.g., Chaussard et al., 2013; Chaussard, Wdowinski, et al., 2014; 
Galloway & Hoffmann, 2006). Groundwater extraction can lead to subsidence
rates up to tens of centimeters per year (e.g., Bell et al., 2008), forcing 
implementation of controls on water extraction and artificial recharge (e.g., 
Shah, 2005). Subsidence can be due to elastic (recoverable) or inelastic 
(permanent) compaction with grain rearrangement if the hydraulic head 
drops below the previous lowest level (Poland & Ireland, 1988; Wilson & 
Gorelick, 1996). Both elastic and inelastic compaction lead to elevation 
changes proportional to variations in hydraulic head and to the thickness of 
the compacting layer.

Because of this relationship between ground deformation and water‐level 
changes, monitoring of hydraulically induced deformation provides an 
opportunity for assessing and informing water management practices. Here 
we evaluate the changes associated with the California drought in the Santa 
Clara Valley (SCV) aquifer system. The SCV is located in the south of the San 
Francisco Bay Area, CA, near the city of San Jose and was the first area in the
U.S. where subsidence due to groundwater withdrawal was recognized in the
early 1900s (Galloway & Hoffmann, 2006; Tolman & Poland, 1940). 
Deformation prior to the 2012–2015 drought was studied by Schmidt and 
Burgmann (2003) (1992–2000) and by Chaussard, Burgmann, et al. (2014) 
(1992–2011). These works provide a basis for our analysis and enable 
comparison between typical deformation and drought‐related deformation. 
While both of these studies relied on satellite‐based deformation 
measurements with InSAR, which enables deformation mapping with a high 
spatial resolution, the data sets available during those periods had sparse 
temporal sampling (up to 35 day repeat but with often longer gaps). Such a 
limited temporal sampling leads to biases when interpreting rapidly changing
systems, such as an aquifer system undergoing drought and recovery 
processes, and can affect the derived aquifer properties constrained from 
seasonal observations. Here we use the short revisit time of the Italian 
COSMO‐SkyMed (CSK) synthetic aperture radar (SAR) constellation to study 



the dynamic of the SCV aquifer over the period 2011–2017. This constellation
relies on four satellites in different orbits, allowing for repeat intervals as 
short as 1 day during a 16 day cycle (Milillo, Riel, et al., 2016).

After introducing the Santa Clara Valley, we present the results of the 2011–
2017 time series analysis, validate them with leveling data, and compare 
them with previous analyses. Second, we rely on the high spatial and 
temporal sampling of the InSAR analysis and on water well and 
extensometer data to analyze the effects of the drought on the SCV aquifer 
system. Third, we rely on cross‐correlation and independent component 
analyses to characterize water dynamics and short‐term spatiotemporal 
patterns embedded in the long‐term time series. Fourth, we compare aquifer
parameters retrieved from predrought analyses to aquifer parameters 
retrieved during the drought. Finally, we use water‐level data and 
deformation measurements to estimate the surface load changes 
experienced by the SCV both in years with typical seasonal deformation and 
during the drought.

2 The Santa Clara Valley

The Santa Clara Valley (SCV), also known as Silicon Valley, is a shallow basin 
bounded by the Santa Cruz Mountains and San Andreas Fault to the west and
the Diablo Range and Hayward‐Calaveras fault zones to the east, in the San 
Francisco Bay Area. The nontectonically active Silver Creek Fault (SCF) cuts 
through the SCV and is responsible for the formation of the Evergreen pull‐
apart basin to the east (Wentworth et al., 2010). The Santa Clara Valley 
aquifer system is composed of a confined aquifer in the center, topped by a 
clay layer formed during the last interglacial sea level high stand ~125 ka 
(Koltermann & Gorelick, 1992), surrounded by an unconfined aquifer. The 
aquifer system is composed of up to 700 m thick compressible deposits of 
alternating marine clays (aquitards) and nonmarine sands (aquifer) resulting 
from successive changes in depositional environments in response to sea 
level fluctuations (Koltermann & Gorelick, 1992; Wilson & Gorelick, 1996). 
The Franciscan bedrock constitutes the base of the aquifer system, peaking 
through at a single location, the “Communication Hills.”

Between 1915 and 1965, water levels in the SCV declined by up to 60 m, 
leading to subsidence of up to 3.8 m and to flooding of large land areas 
(Tolman & Poland, 1940; Poland & Ireland, 1988). From 1965 to 1990, 
reduction in pumping and imported water from the Sierra Nevada halted the 
subsidence. Chaussard, Burgmann, et al. (2014) summarize the water‐level 
change and deformation history of the valley between 1992 and 2011. Slow 
ground uplift dominated the 1992–2011 deformation near Sunnyvale (west of
the SCF) and in the Evergreen Basin (east of SCF) with rates of ~4 mm/yr 
between 1992 and 2000 (Chaussard, Burgmann, et al., 2014; Schmidt & 
Burgmann, 2003). Between 2000 and 2011 only the Evergreen Basin (east of
SCF) experienced continued uplift at ~1 mm/yr. The decrease in uplift rate in
the Evergreen Basin, the cessation of uplift in the Sunnyvale area, and the 



lack of agreement between this long‐term deformation and water‐level 
changes led Chaussard, Burgmann, et al. (2014) to conclude that this 
deformation resulted from the delayed poroelastic rebound of the aquifer 
system due to recovery of water levels after the 1960 lowstand.

Both Schmidt and Burgmann (2003) and Chaussard, Burgmann, et al. (2014) 
identified a strong seasonal signal present each year between 1992 and 
2011, limited to the confined aquifer and west of the SCF with an amplitude 
of ~3 cm. Every winter, following precipitations, uplift of ~3 cm compensates
the summer subsidence of similar amplitude and extent. The SCF sharply 
bounds the eastern extent of the seasonal deformation, acting as an 
effective barrier to across fluid flow, likely due to the presence of 
impermeable clay within the fault zone (Chaussard, Burgmann, et al., 2014).

Leveling, groundwater levels, and compaction from extensometers are used 
together with InSAR‐derived ground deformation to characterize the effect of
the drought on the SCV and evaluate the success of the water management 
practices used by the SCV water district to prevent the aquifer from reaching
irreversible compaction.

3 The 2011–2017 Ground Deformation in the SCV

3.1 InSAR Data and Method

InSAR enables measurements of satellite‐to‐Earth‐surface range change 
between subsequent flyovers of SAR spacecraft (or aircraft), assuming that 
the satellite orbits and topography are well removed (Burgmann, Rosen, & 
Fielding, 2000; Massonnet et al., 1993). We rely on 204 SAR images from the
CSK satellites of the Italian Space Agency acquired between 2011 and 2017. 
CSK is a constellation of four X band satellites (9.6 GHz with a wavelength of 
3.1 cm) and a mean incidence angle of 26.6° with repeat intervals as short 
as 1 day during a 16 day cycle. One ascending frame covers the SCV 
between 2011 and 2015 and two ascending frames between 2015 and 2017.
Descending data are only available between 2013 and 2015. We remove the 
topographic phase component using a digital elevation model based on data 
from the Shuttle Radar Topography Mission (SRTM1 version 4; ~30 m, 1 arc 
sec) (Jarvis et al., 2008).

We integrate a large number of interferograms in a time series analysis with 
the SARPROZ software (Perissin, Wang, & Wang, 2011) to measure the time 
variable deformation and the SRTM height error. A multitemporal 
interferometric SAR (InSAR) approach (Milillo, Bürgmann, et al., 2016) 
extending the standard linear permanent scatterer (PS) technique (Ferretti, 
Prati, & Rocca, 2000, 2001) is used to solve for nonlinear motion with no a 
priori information (Colesanti et al., 2003). This modified PS technique 
provides a convenient method to measure time‐dependent ground 
deformation with subcentimeter precision over large areas. We reference the
displacement time series to a pixel that exhibits high coherence and is 
collocated with the Bay Area Regional Deformation network GPS station 



LUTZ positioned on the bedrock of Communication Hills and showing minimal
vertical motion (Figure 1) and use a temporal coherence threshold of 0.8. We
extract the mean velocity map from nonlinear time series for each track and 
use ascending and descending data with overlapping time span (2013–2015)
to decompose the signal in its vertical and east‐west components (Wright, 
Parsons, & Lu, 2004).



3.2 Ground Deformation and Water‐Level Changes



Figure 1 shows the mean velocity maps for each frame, top: ascending frame
with 2011–2015 data, middle: descending frame with 2013–2015 data, and 
bottom: ascending frames with combined 2011–2017 data. The vertical 
mean velocity map covering 2013–2015 (overlap of ascending and 
descending data) is shown in Figure 2. As previously noted by Chaussard, 
Burgmann, et al. (2014), most of the deformation in the basin is vertical. 
Therefore, we rely on the data set with the longest time span, the ascending 
2011–2017 data (Figure 1, bottom), and assume that the observed 
deformation is vertical. The line of sight data are converted to vertical 
deformation considering the incidence angle of the satellite (e.g., Rosen et 
al., 2000). The gap in the data set is due to the fact that two neighboring 
frames of the CALIMAP CSK background acquisition campaign (Fielding et al.,
2014) are used to cover the 2015–2017 time period. During 2011–2017, 
motion away from the satellite, i.e. land subsidence (Figure 1), is observed, 
which is limited to the confined aquifer and mostly west of the SCF.



We first validate these observations by comparing vertical deformation from 
InSAR with elevation changes measured along three leveling lines surveyed 
annually in September to November by the SCV water district (Figure 2). The 
yearly and total 2011–2014 deformation measured by the two methods 
agree well with a standard deviation of ~5 mm (Figure 2). Random error of 
leveling data accumulates with the square root distance from the reference 
point along the line with typical values of 1–2 mm/√km adding up to a 
maximum of 5 mm, while the InSAR uncertainties are on the order of 2–5 
mm/yr based on comparison with GPS time series. Discrepancies between 
the InSAR and leveling observations are detected on the sides of the basin 
(Figure 2; east‐west transects, 2012–2013, 2013–2014, 2011–2014), likely 
associated with accumulation of uncertainties in the leveling lines relative to 
the reference point in the center of the basin and the differences in 
measurement epochs. The subsidence in the confined aquifer and the sharp 



deformation partitioning by the SCF are well resolved by both methods 
(Figure 2), therefore validating the InSAR time series results.

The observed subsidence during 2011–2017 represents a significant change 
from previous observations (Figure 3). Between 1992 and 2011 Chaussard, 
Burgmann, et al. (2014) detected mostly uplift, especially in the Evergreen 
Basin, east of the SCF (Figure 3c). The 2011–2017 net subsidence (Figure 3a)
resembles the deformation observed seasonally each summer by Chaussard,
Burgmann, et al. (2014) (Figure 3d) and Schmidt and Burgmann (2003). 
Similar seasonal deformation is also observed during 2011–2013 in our data 
set (Figure 3b). In such “normal” years, the summer subsidence (Figures 3b 
and 3d) is compensated by similar amplitude uplift in winter.

Figure 4 shows the time series of deformation and water well levels at two 
wells within the confined aquifer (Figures 4a and 4b) with extensometer data
(SUNNY (Figure 4a), anchored to a depth of ~183 m, and MARTHA (Figure 
4b), anchored to a depth of ~306 m) and at two wells in the unconfined 
aquifer (Figures 4c and 4d). The InSAR deformation (black triangles; Figure 
4) agrees with the extensometer data (red), but the extensometers show 
lower amplitude deformation as they do not sample the entire thickness of 
the aquifer (total thickness near SUNNY ~250 m, total thickness near 
MARTHA ~350 m). In the northwest of the confined aquifer (Figure 4a) and in
the unconfined aquifer (Figures 4c and 4d), the water levels (blue triangles) 



show smaller fluctuations than in the center of the confined aquifer (Figure 
4b).

Two years of typical seasonal deformation are observed between 2011 and 
mid‐2013 (Figure 4). In winter, elevations and water levels rise following 
precipitation, and in summer similar amplitude subsidence is observed. In 
2013, subsidence is observed until September and the onset of precipitation 
(Figure 4). Limited water‐level rise and uplift are detected associated with 
small precipitations between September 2013 and February 2014. A 
significant drop in water levels and elevations is observed afterward until 
August 2014 (Figure 4). Minimum elevations and water levels are reached in 
summer (July and August) 2014 (Figure 4). In late 2014 (September), the 
water levels start rising 1 month in advance of the onset of significant 
precipitations due to water imports and conservation programs (Figure 4). 
Uplift starts with the precipitation in November and December 2014 (Figure 
4). Water‐level rise and uplift continues until 2017 with limited seasonal 
fluctuations. By the end of 2016 the water levels are back to their 
predrought levels, while the elevation is back to previous summer levels but 
has not yet fully recovered the drought‐related subsidence.

4 Tracking Water Through the System

4.1 Cross‐Correlation Analysis Between Water‐Level Changes and 
Deformation

We rely on wells with daily water‐level data and perform a cross‐correlation 
analysis at each well to evaluate the time lag between water‐level changes 



and deformation in 2011–2014. Post‐2014, as previously noted, the 
deformation lags behind well level changes as the system is no longer 
controlled by precipitation but by conservation and recharge efforts. The 
deformation observed by the CSK‐InSAR time series has a temporal sampling
of 1 to 8 days. Figure 5a shows the correlation between water levels and 
vertical surface displacements in 2011–2014. On average over the SCV, the 
deformation lags only 1 day behind changes in water levels. However, when 
tracking the time lag at individual wells, a spatial pattern is detected (Figure 
5b). At wells in the unconfined aquifer and east of the SCF, the deformation 
and the water levels show no significant lag. In contrast, the time lag 
increases for wells in the confined aquifer, with a lag of 1 day for wells on the
margins of the confined aquifer and a lag of up to 3 days for wells in the 
center (Figure 5b). Such a cross‐correlation analysis with high temporal and 
spatial coverage therefore enables tracking water and deformation through 
the aquifer and highlights the system's dynamics and its properties.

4.2 Independent Component Analysis Method

Independent component analysis (ICA) is a statistical and computational 
technique for separating independent sources linearly mixed in an output 
signal. For instance, when recording ground deformation, ICA can separate 
out noise embedded in the data and also deformation originating from 
different independent sources that are mixed together. ICA defines a 
generative model for the observed data, in which the observations are 
assumed to be a mixture of some unknown variables, and the mixing system
is also unknown. The variables are assumed non‐Gaussian and mutually 
independent and are called independent components (ICs). ICA can be seen 
as an extension of the principal component analysis (PCA) and factor 
analysis (Reimann et al., 2008). However, ICA is capable of finding the 
underlying sources when these methods fail (Hyvärinen, Karhunen, & Oja, 
2004). ICA was introduced in the early 1980s to characterize a problem in 
the context of neural network modeling (Oja, 1982).

With a set of observations x1(t), x2 (t), …, xn (t) where each value of x 
corresponds to the deformation at a pixel (defined by its latitude and 



longitude) and t the time of observations (varying from 1 to the number of 
SAR acquisitions) and assuming that these observations are generated as a 
linear mixture of independent components, we can write

where A is an unknown mixing matrix and si(t) are the ICs. ICA consists of 
estimating both the matrix A and the si(t), when we only observe the xi(t). 
The number of independent components sn is equal to the number of hidden 
processes, which is not necessarily equal to the number of observations xm. 
The goal of the ICA is to find a linear transformation by which the variables si 
are as independent as possible. Independence is a stronger property than 
uncorrelatedness used in a PCA, as independence implies nonlinear 
uncorrelatedness. For example, if s1 and s2 are independent, then the 
nonlinear transformations g(s1) and h(s2) are uncorrelated (their covariance 
is zero) (Hyvärinen et al., 2004). Independence relates to the central limit 
theorem which states that any linear mixture of independent random 
variables is more Gaussian than the original variables (Hyvärinen et al., 
2004).

A first step in the ICA is to whiten the data to remove any correlations. The 
whitening process is simply a linear change of coordinate of the mixed data. 
Once the ICA solution is found in this “whitened” coordinate frame, we 
reproject the ICA solution back into the original coordinate system. The ICA is
used to rotate the whitened matrix by minimizing the Gaussianity of the 
projection on all axes. Unlike in PCA, in ICA the axes do not have to remain 
orthogonal. By rotating the axis and minimizing Gaussianity, ICA is able to 
recover the original statistically independent sources (ICs). ICs correspond to
the matrix that allows projecting the data in the initial space to one of the 
axis found by ICA. In this paper, we use the fixed‐point algorithm called 
FastICA (Hyvärinen & Oja, 1997) that has been tailored to exploit the non‐
Gaussianity for solving ICA.

From the preceding paragraphs, several properties of ICA can be deduced. 
First, ICA can only separate linearly mixed sources. Second, since ICA is 
dealing with clouds of points, changing the order in which the points are 
plotted has no effect on the outcome and the same applies for changing the 
component order. This is in contrast with the PCA method in which the index 
of a principal component relates to the percentage of variance explained. 
Third, since ICA separates sources by maximizing their non‐Gaussianity, 
perfectly Gaussian sources cannot be separated. Finally, even when sources 
are not independent, ICA finds a space where they are maximally 
independent. In our application, ICA enables separating the observed time‐
dependent surface displacement history into a number of components with 



distinct spatial and temporal patterns that relate to different underlying 
processes.

Our ICA considers 34,441 samples (pixels) per epoch and 204 epochs (SAR 
acquisition dates between 2011 and 2017). The number of ICs reflects the 
number of sources that contribute to the total observed deformation signal, 
when ignoring the noise sources. We consider that three ICs should be 
isolated based on the PCA results of Chaussard, Burgmann, et al. (2014) and
based on the percentage of eigenvalues retained by the different 
components (Figure 6a). We also examine additional components but find 
that the time series of eigenvectors for a fourth IC is highly variable and 
therefore unlikely to represent a real physical process of interest, and is 
likely associated with atmospheric noise (with high spatiotemporal 
variability). If more ICs are used than actual processes other independent 
components become biased because of the rule of independence. In the ICA 
with three components, the smallest number of (nonzero) eigenvalue 
retained is 330 and the largest is 6300, with 92.3% of the eigenvalues 
retained. In comparison, with four ICs, the component with the smallest 
number of eigenvalues retained is 131 and 93.9% of the eigenvalues are 
kept. Therefore, the addition of one component leads to only an increase of 
less than 2% in percentage of the eigenvalues retained, while in contrast, 
going from two to three components leads to an increase of over 4% of 
eigenvalues retained (88% versus 92.3%).



4.3 ICA Results

Figure 6 shows the results of the ICA with three components. The time series
of eigenvectors shows when the signal is observed and the time‐varying 
amplitude of the component (Figure 6b), while the map of the component's 
scores (Figure 6c) shows the spatial distribution of the signal from each 
component. The associated deformation history of each component can be 
recovered by multiplying the component score with its eigenvector at a 
given time taking into account the percentage of eigenvalues retained in the 
analysis (described above and applied here to the score axes). Positive score
values correspond to uplift for positive eigenvector values and subsidence 
for negative eigenvectors.

The first component (IC1) has the same spatial extent and similar time series
as observed in Figure 4 and therefore mostly represents the long‐term 
deformation previously described. However, the sum of the components and 
of the noise left out by fixing the decomposition to three components is 
needed to fully recover the long‐term deformation previously described. The 
second component (IC2) shows positive score values in the Evergreen Basin 
(east of the SCF) and always positive eigenvectors suggesting uplift of the 
Evergreen Basin between 2011 and 2017 at ~1 mm/yr. This uplift continues 
the 2000–2011 uplift detected by Chaussard, Burgmann, et al. (2014) at 



similar rates. The third component (IC3) shows large positive scores near the
southwest of the SCF with peaks in eigenvectors observed rapidly after 
precipitation, in advance of the peaks of IC1. This component suggests faster
deformation near the SCF compared to the rest of the basin. While the extent
of the IC3 score resembles the extent of the third principal component 
detected by Chaussard, Burgmann, et al. (2014) between 1992 and 2011, its 
temporal pattern is very different, with peaks occurring earlier than the 
mean seasonal peaks of deformation (IC1). This difference either reflects the 
bias in a PCA compared to an ICA associated with the forced orthogonality of 
the principal components or the lower temporal sampling (35 days 
maximum) of the 1992–2011 analysis. IC3 also shows positive scores of 
small amplitudes in parts of the Evergreen Basin, contributing to the net 
uplift together with IC2. IC1 and IC3 have positive correlation between 2011 
and 2013, despite the time lag of the peaks, and become dissimilar (almost 
anticorrelated) in mid‐2013. This change reflects that while the local 
deformation near the fault captured by IC3 remains controlled by 
precipitations, the deformation in the aquifer system captured by IC1 stop 
being regulated by precipitation during the drought (after mid‐2013).

We additionally perform a cross‐correlation analysis between the IC3 
eigenvectors and the daily water‐level data (Figure S1 in the supporting 
information). The time lag between water‐level changes and the IC3 
eigenvectors is of 0 day (Figure S1), whereas the lags between the SCV‐wide 
deformation and the water level for these wells is of 2 days (Figure 5). This 
observation confirms that IC3 captures a faster response of deformation near
the SCF than in the rest of the confined aquifer likely due to the properties of
the fault zone discussed in section 7.

5 Aquifer Properties

We use the high temporal sampling of our data set to reevaluate the 
fundamental hydrological properties of the confined aquifer system obtained 
by Chaussard, Burgmann, et al. (2014), who relied on InSAR data during 
1992–2011 with sparse temporal sampling. Figure 7a shows that the CSK 
temporal sampling allows for improved confidence in the confined aquifer 
storativity (S or Sk), estimated as the ratio of the deformation over the 
hydraulic head change (slope of the red line in Figure 7a and 7b) (e.g., 
Burbey, 2001; Freeze & Cherry, 1979; Helm, 1976; Hoffmann et al., 2001), 
and skeletal specific storage (Ssk). The storativity (S or Sk) corresponds to 
the volume of water taken into or released from storage per unit decline in 
hydraulic head, defined as the skeletal specific storage Ssk times the aquifer 
thickness in a confined aquifer. This method considers that water 
compressibility is negligible and that expansion and compression are only 
associated with the rock matrix (Chaussard, Burgmann et al., 2014). We 
perform three analyses of the Sk and Ssk values in the confined aquifer. 
First, we rely on the full‐time span (2011–2017) of the CSK and well data; 
second, we split the data set in two periods, one with typical seasonal 
deformation (2011–2013.4) and one with “drought and recovery” 



deformation (2013.4–2017). We compare these results to one another and 
compare these results to the 1992–2011 results of Chaussard, Burgmann et 
al. (2014). While small variations in the Sk and Ssk values are expected due 
to the improved sampling of the deformation data, changes in properties by 
an order of magnitude or more in the 2013.4–2017 data set would suggest 
inelastic deformation and permanent decrease in porosity of the aquifer due 
to the drought.

We obtain similar results in the analyses for the three different time spans in 
the CSK data set (Figure S2), suggesting that the drought did not result in 
inelastic changes to the aquifer system. Figure 7b shows the Sk and Ssk 
values obtained with our 2011–2017 analysis (left) compared with the values
obtained by Chaussard, Burgmann et al. (2014) with 1992–2011 data, shown 
with the same scale. The maximum uncertainties of the Sk values are of 10−3

and of 0.2 × 10−5 for the Ssk. While some differences are evident, no large 



changes are detected. Both analyses suggest large Sk and Ssk values near 
the coast, in the Bay mud deposits known to be rich in clays (Borcherdt, 
1970), and near the SCF where clays had also been suggested to explain the 
seasonal deformation partitioning (Chaussard, Burgmann et al., 2014 ). The 
main differences observed are smaller Sk and Ssk values near the SCF and 
larger values in the center of the confined aquifer. These differences are 
likely due to the different spatial sampling of the well data used and the 
increased temporal sampling of the CSK time series which leads to better 
constraints and confidence in the resulting properties (Figure 7a).

6 Water Storage and Load Changes

We use the water well data together with the surface deformation 
measurements, which provide constraints on water‐level changes between 
the wells and enables interpolation (Chaussard, Burgmann et al., 2014), to 
evaluate the load changes associated with water storage fluctuations in the 
valley. Crustal deformation due to load changes from fluctuations in surface 
water and snow loads has been detected with GPS (Amos et al., 2014; Borsa,
Agnew, & Cayan, 2014) and appears to influence microseismicity (Amos et 
al., 2014). However, local load changes, such as the ones in aquifer systems,
are poorly resolved in regional models (Amos et al., 2014) as GPS stations 
are widely spaced and sites located in the aquifer cannot be used to 
constrain the elastic surface water load deformation.

We consider the water mass change as the product of the effective porosity 
and the water‐level change (Bear, 2013). In the unconfined aquifer, the 
porosity is comparable to the storativity, which is approximately equal to the
specific yield (Sy) (drainable porosity) (Ferris et al., 1962). The specific yield 
in the SCV has been previously estimated as being 0.02 for clay layers and 
0.1 for sand‐gravel layers (Hanson, Li, & Faunt, 2004; Johnson, 1967). The 
sand‐gravel layers constitute the majority of the aquifer thickness in the 
unconfined aquifer; therefore, we use a specific yield of 0.1 for the 
unconfined aquifer, which is an upper bound. In the confined aquifer, the 
effective porosity comes from consolidation tests of cores. Newhouse et al. 
(2004) showed that the effective porosity in the SCV confined aquifer ranges 
from 0.2 to 0.4 for different depths. We use a mean effective porosity of 0.3 
in the confined aquifer and estimate the storage and load changes for 
different time periods defined as follows: four load increase periods (water‐
level rise) in winter 2011 (September 2011 to April 2012), 2012 (October 
2012 to February 2013), 2013 (September 2013 to February 2014), and from
mid‐2014 (August) to 2017 and three load decrease periods (drop in water 
levels) in summer 2012 (April to October), 2013 (February to September), 
and 2014 (February to August). For these periods, peak‐to‐peak values of the
water levels (Δh) are used and the deformation is used to guide the spatial 
interpolation between wells (Chaussard, Burgmann, et al., 2014). These load 
changes are equivalent to the equivalent water thickness used by geodetic 
surveys (e.g., Amos et al., 2014; Famiglietti et al., 2011), which is the 
thickness of a layer of water that must be added or removed to account for 



the observed changes in gravity. In the confined aquifer the water released 
or taken into storage comes from aquifer skeleton compression and water 
expansion rather than gravity drainage.

Figure 8 shows that the storage and load changes (top three rows) are 
limited to the confined aquifer and west of the SCF. The winter load increase 
(red, rise in water levels) is smaller than the summer load decrease (blue), 
each year between 2011 and 2014. A large load decrease (drop in water 
levels) is observed between winter 2011 and summer 2014, corresponding to
a total loss in water storage of ~0.09 km3 during the drought (Figure 8, 
bottom row). The post‐2015 storage and load increase due to water‐level 
recovery is of similar extent and amplitude as the drought‐induced decrease.
These observations confirm that the confined aquifer was the most affected 
by the drought because of increased pumping compared to the unconfined 
aquifer and that the drought led to only elastic load changes in the SCV. 
Water conservation and recharge efforts (see section 7) led to a rebound of 
the aquifer starting in late 2014, during the 2012–2015 drought period, and 
the aquifer had fully recovered by 2017.



7 Discussion

In the unconfined aquifer, the deformation is of smaller amplitude and 
precisely tracks the water‐level changes (Figure 4, bottom right). This 
agreement between the water‐level changes and the elevation fluctuations 
suggests rapid infiltration of water and instantaneous equilibration with 
water levels (water table), which is consistent with the large hydraulic 
conductivity of aquifer layers. In contrast, in the center of the confined 
aquifer (Figure 4, top right) the deformation tracks the water levels prior to 
the drought, but a significant increase in subsidence is observed starting 
mid‐2013 compared to the observed lowering of the water levels. This 
increased compaction is likely due to the effect of aquitard layers and 
reflects the difference in storativity and elastic skeletal specific storage of 
the confined aquifer. The elastic compressibility of aquitards is larger than 



the elastic compressibility of aquifer layers by about 1 order of magnitude 
(Pavelko, 2004; Riley, 1998). Therefore, aquitard layers of the confined 
aquifer likely experience more compaction than aquifer layers even in the 
elastic domain of deformation. Thus, the amplified subsidence during the 
drought compared to the water‐level drops, observed only in the confined 
aquifer, illustrates the higher elastic compressibility of aquitards compared 
to aquifers.

The time lag observed between water levels and deformation in the confined
aquifer (Figure 5b) also suggests a role of the aquitard layers. Aquitard 
layers have a low hydraulic conductivity compared to aquifer layers, 
resulting in a slower equilibration with water levels. This results in a delayed 
poroelastic deformation observed both in the cross‐correlation analysis 
(Figure 5b) and in the lag between water‐level rise and uplift (Figure 4). Both
of these characteristics, the large elastic compressibility and low hydraulic 
conductivity of aquitards compared to aquifer layers, explain the delayed 
recovery of the elevation compared to the water levels in the confined 
aquifer without requiring inelastic deformation.

The ICA efficiently isolates deformation patterns embedded in the long‐term 
time series with less bias than PCA, as no orthogonality between the 
components is imposed. However, the ICA requires independent information 
to constrain the number of IC to extract. Therefore, PCA can be used to 
inform ICA. The ICA applied to the 2011–2017 SCV deformation reveals two 
signals of interest. First, the IC2 shows that the long‐term uplift of the 
Evergreen Basin previously detected by Schmidt and Burgmann (2003) and 
Chaussard, Burgmann, et al. (2014) continued despite the drought. The uplift
rate is of similar amplitude (~1 mm/yr) as the one constrained by Chaussard,
Burgmann, et al. (2014) between 2000 and 2011. This prolonged uplift is 
made possible by the fact that the drought mostly affected the confined 
aquifer west of the SCF. Therefore, the continuing long‐term poroelastic 
rebound due to the slow recovery of earlier aquitard compaction and 
relatively modest pumping of the aquifer system in the Evergreen Basin was 
unchanged during the drought.

The second pattern of interest isolated by the ICA is IC3 and the fact that IC3
is uncorrelated with IC1 starting mid‐2013. IC3 captures a faster response of 
deformation near the SCF than in the rest of the confined aquifer controlled 
by precipitation (IC3 peaks occur at the onset of rainfall). The positive 
correlation between IC1 and IC3 between 2011 and 2013 reflects that the 
deformation in the aquifer system was regulated by precipitation recharge at
that time. However, the anticorrelation between IC1 and IC3 after 2013 
reflects that deformation in the aquifer system was regulated by pumping 
and imports rather than precipitation, and only the near SCF response 
captured by IC3 remained controlled by precipitation (Santa Clara Valley 
Water District, 2016).



The faster deformation near the SCF could be associated with a high vertical 
hydraulic conductivity near the fault, leading to increased along‐fault flow, 
often described in fault damage zones due to the presence of fracture zones 
(Bense et al., 2013; Caine, Evans, & Forster, 1996). This high vertical 
hydraulic conductivity in the SCF does not preclude the low horizontal 
hydraulic conductivity of the fault demonstrated by Chaussard, Burgmann, et
al. (2014), which effectively stops across‐fault fluid flow and is likely due to 
clay smearing in the fault core (e.g., Bense, Van den Berg, & Van Balen, 
2003; Knipe, 1993; Lindsay, Murphy, & Walsh, 1993; Lehner & Pilaar, 1991; 
Smith, 1980). Our observations suggest that the SCF is both a barrier to 
across‐fault fluid flow and a conduit to along‐fault flow.

The quantification of aquifer properties before and during the drought show 
no substantial change, suggesting that no inelastic deformation occurred in 
the SCV during the drought. Comparison of the 2011–2017 depth to water 
levels to data since 1915 (Figure 9) for a well in the center of the confined 
aquifer shows that the lowest water level experienced during the drought 
(~36 m) is significantly shallower than the lowest level experienced in 1964 
(~72 m). This observation confirms that all the deformation in the SCV 
during the drought remained elastic. The lowest level experienced during the
2012–2015 drought is of similar amplitude as the ones of the 1934–1936 and
1988 lowstands.

InSAR data can be used to determine basin‐wide aquifer properties and their 
change in time, which provides an alternative method to meet the 
requirements of the Sustainable Groundwater Management Act that 
advocates for monitoring of all aquifers in the state of California (Moran & 
Cravens, 2015). The sole limitation of this technique for continuous 
monitoring of the SCV is InSAR data accessibility, as monitoring has been 
demonstrated for over 25 years with X, C, and L band data through this 
study and the work of Chaussard, Burgmann, et al. (2014). Applicability to 
other regions will depend on both data availability and noise contributions, 
especially in the form of decorrelation associated with seasonal vegetation 
changes. The SCV is highly urbanized, which leads to continuous correlation 



and low noise levels. In contrast, the agricultural areas of California's Central 
Valley are highly vegetated with significant seasonal changes in land cover. L
band InSAR has been shown to successfully enable continuous monitoring 
over vegetated areas (e.g., Chaussard et al., 2013; Chaussard, Wdowinski et 
al., 2014) but the long repeat intervals of existing data sets (ALOS 1 and 2) 
limit resolution. C band data have also shown promising results (e.g., Farr, 
2016; Reeves et al., 2014) and with the increasing number of SAR systems, 
such as the European Satellite Agency's Sentinel‐1 constellation, monitoring 
similar to the one of the SCV will become increasingly successful.

The water management practices of the SCV water district ensured that the 
aquifer system did not suffer from permanent loss of porosity associated with
the drought. The recovery period started at the end of summer 2014 (August
to September) before the onset of precipitation. It was achieved through 
reduced groundwater pumping and increased water import. In 2015 water 
pumping was reduced ~42% compared to 2014 and 27% compared to 2013 
(Santa Clara Valley Water District, 2016; V. De La Piedra, personal 
communications, 2017). Limits were set on days for outdoor irrigation, a 
large outreach campaign was deployed to encourage reduced water usage, 
and the SCV water district invested in efficient irrigation equipment and turf 
replacement. Additionally, due to the very limited local supplies, over 80% of
the recharge in the SCV was from imported water in 2015. The 2015 
managed recharge (0.068 km3) was almost tripled compared to 2014 (Santa 
Clara Valley Water District, 2016). The total recharge in 2015 reached 0.12 
km3, ~43% of the groundwater storage at the end of the year. Import of 
surface water was used for direct recharge, as well as supplemental supplies 
through exchanges and transfers, and treated and recycled water was used 
for irrigation. Such conservation programs, outreach efforts, and water 
imports cost the SCV water district $18.9 million in 2015. These response 
activities were extremely successful and ensured rapid recovery and no 
permanent damage to the aquifer system.

The storage and load change analysis reveals that the loads experienced by 
the SCV are large, on the order of meters of equivalent water thickness. 
Before the drought ~4 m of seasonal load change was observed, 
approximately canceling out at the end of each year. During the drought and
subsequent recovery, load changes were on the order of ~6 m, fully 
recovering by mid‐2016. The equivalent total water volume loss between 
2011 and the peak drawdown in 2014 is about ~0.09 km3 while seasonal 
load change prior to the drought are on the order of ~0.02 km3. These large 
load changes are due to the combined effects of the large well‐level 
fluctuations, the significant thickness of the aquifer and aquitard layers, and 
the large effective porosity of the basin, especially in the confined aquifer. 
The dimensions (~10 km across) and amplitude (several meters) of 
equivalent water height changes involved suggest that the SCV load changes
are comparable to that of some of California's reservoirs (e.g., Argus, Fu, & 
Landerer, 2014; Wahr et al., 2013). For comparison, Shasta Lake level 



changes can reach 20 m, with a comparable surface area. Such large load 
changes are nonnegligible even if local and should therefore be integrated 
into large‐scale models as they could influence the seismicity on nearby 
active faults. The SCV confined aquifer is as close as ~10 km east of the San 
Andreas Fault and ~7 km west of the Hayward‐Calaveras fault zone 
(Chaussard, Burgmann, Fattahi, Johnson, et al., 2015; Chaussard, Burgmann,
Fattahi, Nadeau, et al., 2015), but as the aquifer extent is small, it leads to 
only minimal load changes. However, in the San Joaquin Valley, given the 
significantly larger spatial extent of the load (~40 times the area of the SCV) 
and the much larger load fluctuations induced by prolonged groundwater 
withdrawal (Farr et al., 2016), aquifer load changes may play a role on the 
stress fluctuations of the San Andreas Fault system, as close as ~15 km to 
the west. Load changes in the Central Valley have been estimated in the 
regional GPS‐derived model, but only stations outside of the valley are used 
to estimate the load distribution and the Gravity Recovery and Climate 
Experiment (GRACE)'s resolution of 300–500 km is too coarse. Therefore, a 
full InSAR‐GPS‐GRACE integration should be used to address this problem.

8 Conclusions

The 2011–2017 COSMO‐SkyMed InSAR time series analysis of surface 
deformation over the SCV aquifer demonstrates that remotely sensed 
deformation with a high temporal sampling can be used to track water 
through an aquifer system, improves groundwater monitoring and aquifer 
characterization, and allows us to assess the success of water management 
practices. In the SCV, the confined aquifer was the most affected by the 
2012–2015 drought due to pumping, with minimum water levels and surface 
elevations reached by summer 2014. Thanks to a substantial effort of the 
water district to reduce water pumping, through conservation programs and 
outreach efforts, and to increase water imports and managed recharge of 
the aquifer, the drought did not lead to irreversible changes of the aquifer 
system. By 2017, water levels were back to their predrought levels, while the
surface elevation had not yet fully recovered due to the delayed poroelastic 
response of aquitards and their amplified elastic compressibility. Analysis of 
predrought and during‐drought storativity and load changes confirms that 
the drought led to only elastic changes in the SCV, demonstrating that InSAR
time series can be used to assess the “health” of aquifers and track changes 
in water storage. Finally, this work also shows that seasonal water mass and 
load changes associated with aquifer systems can be large, suggesting that 
even localized drawdowns can influence regional stress and may be able to 
affect seismicity rates. Worldwide InSAR monitoring of aquifers can help 
water management efforts and ensure sustainability of precious global 
groundwater resources.
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