
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
On Condensation of Anyons and Applications

Permalink
https://escholarship.org/uc/item/5vb419gt

Author
Bagheri, Aaron Robert

Publication Date
2023

Supplemental Material
https://escholarship.org/uc/item/5vb419gt#supplemental

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5vb419gt
https://escholarship.org/uc/item/5vb419gt#supplemental
https://escholarship.org
http://www.cdlib.org/

University of California

Santa Barbara

On Condensation of Anyons and Applications

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Mathematics

by

Aaron Robert Bagheri

Committee in charge:

Professor Zhenghan Wang, Chair

Professor Stephen Bigelow

Professor Shawn Xingshan Cui

Professor David R. Morrison

September 2023

The dissertation of Aaron Robert Bagheri is approved.

Professor Stephen Bigelow

Professor Shawn Xingshan Cui

Professor David R. Morrison

Professor Zhenghan Wang, Chair

September 2023

On Condensation of Anyons and Applications

Copyright © 2023

by

Aaron Robert Bagheri

iii

To my family

who have done so much for me throughout my life

To my teachers

who have made me who I am

To the human project of learning

H. A
�
J
	
¯
�
@

�
��. A

�
K 	Pð

	
à@PAK.

	P H. @Q
	
k XXQÃ XAK.

�
@ øAëA

	
JK.

Y
	
K 	QÃ YK. AJ

	
K

	
à@PAK. ð XAK.

	P @ é» Y
	
JÊK. ú

	
kA¿ Ñ

	
¢
	
� ÐY

	
Jº

	
¯@ úG

�

úæ�ðXQ
	
¯ -

iv

Acknowledgements

My PhD is built on the efforts of all humanity, both the ones who did math and the

ones who enabled them. Thank you to all who came before me.

Specifically, I must begin by thanking my advisor Zhenghan Wang for his guidance

and patience. Every meeting has been an uplifting experience, even as the bulk of my

work with him was during the COVID-19 pandemic and the slow return to normalcy

afterward. I would also thank the rest of my committee for their time and consideration,

with a special shout-out to Shawn Cui for the many insightful video calls to discuss

condensation and the Mathematica framework he built.

Outside of my committee, I would like to thank Dave Aasen for explaining to us how

to work with the condensed category and for giving his time to talking to me about math,

physics, and my work. Thank you Ashwin Trisal for always having an answer on hand

when I did not understand category theory.

Thank you also to Eric Rowell, Colleen Delaney, Yang Qiu, Lucas Fagan, Quinn Kolt,

Rafael Lainez, Katherine Reed, and Anna Maximova who have all helped with or been

present for various steps along the way to this dissertation.

Finally, thank you Medina Price for guiding me through the entire experience of

graduate school. Thank you to my cohort for going through it with me. Thank you to

my family for their support.

v

Aaron Bagheri
bagheri@math.ucsb.edu

EDUCATION University of California, Santa Barbara Sep 2017 – Sep 2023
� Doctor of Philosophy (Ph.D.) in Mathematics

� Thesis: On Condensation of Anyons and Applications
� Advisor: Dr Zhenghan Wang

Harvey Mudd College, Claremont, California Aug 2015 – May 2017
� Bachelor of Science (B.Sc.) in Mathematics

� Thesis: Classifying the Jacobian Groups of Adinkras
� Advisor: Dr Dagan Karp

Pitzer College, Claremont, California Aug 2013 – May 2015

EXPERIENCE Research Assistant
� University of California, Santa Barbara Sep 2020 – Sep 2023

� Principal Investigator: Dr Zhenghan Wang
� Research topics:

�• fusion categories and mathematical physics
�• condensation of anyons in modular tensor categories
�• topological quantum computation

Teaching Associate
� University of California, Santa Barbara Jun 2019 – Aug 2020

� Courses taught:
�• Math 3A: Differential calculus
�• Math 6A: Multivariable calculus

Teaching Assistant
� University of California, Santa Barbara Sep 2017 – Dec 2019

� Courses taught:
�• Math 34A: Calculus for social and life sciences
�• Math 3B: Integral calculus
�• Math 4A: Linear algebra
�• Math 4B: Differential equations
�• Math 6A: Multivariable calculus

�• Math 8: Introduction to higher mathematics
�• Math 111C: Galois theory
�• Math 117: Introduction to analysis
�• Math 118A: Real analysis

WRITING Elias Kokkas, Aaron Bagheri, Zhenghan Wang, George Siopsis. “Quantum
Computing with Two-dimensional Conformal Field Theories.” arXiv:2112.06144.

SPEAKING “Condensation of Anyons and Applications.” AMS Special Session on Fusion
Categories and Their Applications in Physics, Joint Mathematics Meetings 2022.

OUTREACH Laila Voss, Aaron Bagheri. “Surfaces: Construction, Metrics and Games.” 2020
Directed Reading Program.

Yanbo Cheng, Kaveh Sayeh, Aaron Bagheri. “A Basis for a Space of Curves on the
Torus and Klein Bottle.” 2021 Directed Reading Program.

Co-organizer of Quantum Algebra/Topology Seminar, various department events

Abstract

On Condensation of Anyons and Applications

by

Aaron Robert Bagheri

Phase transitions can be understood through the formation of Bose condensates.

Anyon condensation is similarly an important tool for transitioning between systems

modeled by modular tensor categories. The condensation process can be understood as

a functor from one modular tensor category to another fusion category with a modular

subcategory.

This dissertation focuses on understanding the condensation functor. After reviewing

modular tensor categories, we present and comment on the relationship between two

descriptions of the resulting category. We then present general results on the modular

data of the resulting category and demonstrate how to explicitly compute the new F -

and R-symbols. We finish off with some applications of our work and some speculations

about where they might go from here.

Chapter 4 is devoted to implementing the functorial definition of condensation so that

it can be carried out by a computer, and a full Mathematica implementation is provided

in Supplemental A: Mathematica Code. Supplemental B: (G2)3 Data provides categorical

data for the modular tensor category (G2)3, which is not otherwise widely available.

vii

Contents

Abstract vii

1 Introduction 1

2 Modular Tensor Categories 4

2.1 Definitions . 4

2.1.1 Fusion Categories . 4

2.1.2 MTCs as Pivotal Braided Fusion Categories 12

2.1.3 Invariants of Modular Tensor Categories 15

2.1.4 MTCs as Ribbon Fusion Categories 19

2.1.5 Unitarity . 20

2.2 Graphical Calculus . 21

2.2.1 Skeletalization . 26

2.3 Classification and Examples . 31

2.3.1 General Constructions . 31

2.3.2 Explicit Examples . 34

2.4 Motivation . 40

2.4.1 3-Manifold Invariants . 40

2.4.2 Fault-Tolerant Quantum Computing 41

2.5 Computer Implementation . 41

2.6 Algebras in Categories . 43

viii

2.7 Structure of Modular Tensor Categories 45

2.8 Tensor Functors . 47

2.8.1 Definition . 47

2.8.2 Skeletalization . 47

3 Condensation of Algebras 50

3.1 Premliminaries . 51

3.1.1 Condensable Algebras . 51

3.1.2 Condensation . 52

3.1.3 Motivations . 57

3.1.3.1 Topological Phases of Matter and Gauging 57

3.1.3.2 Witt Equivalence . 58

3.2 Equivalence of Definitions . 59

3.2.1 Discussion . 80

3.3 Condensation Examples . 82

3.3.1 Ising ⊠ Ising to Z4 . 82

3.3.2 Ising ⊠ Ising to Toric Code . 84

3.3.3 SU(2)k to Minimal Models . 85

3.4 Determining the Condensed Category . 86

3.4.1 Condensing a Boson . 86

3.4.1.1 Modular Data . 90

3.4.1.2 Duality . 103

3.4.2 Condensation over Deligne Products 106

4 Computing F- and R-Symbols 109

4.1 Graphical Calculus . 110

4.2 Condensation as a Functor . 113

4.3 Implementation . 115

ix

4.3.1 T -symbols and VLCs . 120

4.3.2 F -symbols . 121

4.3.3 R-symbols . 122

4.4 Gauge Freedom . 123

5 Applications 124

5.1 Quantum Computing with Conformal Field Theories 125

5.1.1 Minimal Models from Condensation 125

5.1.2 Braid Group Representations . 131

5.2 Near-Group Categories . 143

5.2.1 Equations Determining Near-Groups 144

5.2.1.1 Numerical Results . 145

5.2.1.2 General results . 152

5.2.2 Condensing (G2)3 . 156

5.3 Error Correcting Codes . 160

6 Future Directions 165

6.1 Further Understanding Condensation . 165

6.2 Modifications to Condensation . 166

6.3 Property F Conjecture and Quantum Computing 166

6.4 Structure of MTCs and the Witt Group 167

6.5 Theory of Near-Group Categories . 167

6.6 Moonshine for all Finite Groups . 167

Bibliography 169

x

Chapter 1

Introduction

Topological quantum computation was first introduced [32, 21, 20] and further devel-

oped [33, 41] as an elegant way to achieve naturally fault-tolerant quantum computation

through the braiding of quasi-particles called anyons. Anyons are quasi-particles that

exist in two spatial dimensions and are not restricted to Fermi-Dirac or Bose-Einstein

statistics. Because of this, they keep track of the topological data of braiding as they in-

teract with each other. The mathematical structure used to describe a system of anyons

is the unitary modular tensor category. Modular tensor categories are also important

as they provide 3-manifold invariants and TQFTS, and they are useful in the study of

braided fusion categories. As such, they are of interest to both mathematicians and

physicists.

Phase transitions can be understood through the formation of Bose condensates.

Anyon condensation is similarly an important tool for understanding transitions in topo-

logically ordered systems [8]. This condensation process is expressed by a condensation

functor from the parent modular tensor category [30, 38]. The target of the functor is

a new category in which the vacuum is the algebra formed by the old vacuum and the

condensing anyons. At the moment, the data of this new category is not well-understood

in general.

1

Of independent mathematical interest is condensation used in defining Witt equiva-

lence of modular tensor categories. Much is known about the interesting and sometimes

surprising structure of modular tensor categories and the Witt group, but a great deal

more remains unknown [12, 13]. Any further understanding of the equivalence relation

is useful.

Aside from these well-known settings, novel applications are suggesting condensation

as a tool with greater general usefulness. Some constructions on local conformal nets and

vertex operator algebras can be translated to condensations in modular tensor categories.

We also use it in this thesis as a tool to compute categorical data that has otherwise been

inaccessible.

In Chapter 2, we attempt to provide a friendly reference for definitions and some light

theory of modular tensor categories. Section 2.1 defines modular tensor categories, as

well as many relevant structures, properties, and invariants. Section 2.2 introduces the

graphical calculus used to work with modular tensor categories and provides graphical

counterparts to some of the definitions of Section 2.1. Sections 2.3 and 2.4 briefly provide

examples of MTCs, where they come from, and motivations for their study. Section 2.5

mentions the representability of category data in a way that is computer-friendly. Sec-

tion 2.6 defines algebras in categories. Algebras appear in the general MTC theory of

Section 2.7 and are a primary topic of study starting in Chapter 3. We end the chapter

with a couple defintions of tensor functors in Section 2.8

In Chapter 3, we introduce two definitions of condensation and demonstrate an ex-

plicit equivalence between them. These two definitions are known in the literature, but

such a side-by-side presentation is more difficult to find. We then give some results

that help determine the condensed category given a parent category and a condensable

algebra. Theorem 3.37 is the primary result of this section.

Chapter 4 is perhaps the biggest highlight of this thesis. We use the definitions of

[30] to lay out the theory and provide an implementation for explicitly computing all

2

F - and R-symbols of the condensed category from those of the parent category. The

Mathematica code that does this is provided in Supplemental A: Mathematica Code.

Chapter 5 discusses some novel applications of anyon condensation. Section 5.1 is

about quantum computing with the minimal model conformal field theories as in [34].

Section 5.2 introduces near-group categories and builds on the data of [19, 7]. It also

introduces the modular tensor category (G2)3, from which condensation gives a near-

group category with a maximal fusion coefficient on simple objects of 3. Full F -symbols

have never been written down for any such category. Section 5.3 uses the idea of [29] to

describe a way to produce condensable algebras from classical error correcting codes.

Finally, Chapter 6 concludes and lists a plethora of continuations of this work that

have yet to be explored.

3

Chapter 2

Modular Tensor Categories

In this chapter, we provide an introduction to the theory and structure of modular tensor

categories that is relevant to our work. Some basic knowledge of categories is assumed,

though definitions of the relevant structures and properties are presented to establish

notation. For the most part, we try to limit the numbering of remarks to those that will

be referenced in other parts of the text.

For our purposes, categories are small and base fields are always C. Of course, most

instances of the field C in the general category theory can be replaced by any algebraically

closed field k with characteristic zero. Many of the definitions in this chapter follow the

conventions of [17].

2.1 Definitions

2.1.1 Fusion Categories

Definition 2.1. A monoidal category is a sextuple (C,⊗,1, α, λ, ρ), where C is a category,

⊗ : C ×C → C is a bifunctor, 1 is an object, and α, λ, ρ are natural isomorphisms

αX,Y,Z : (X ⊗ Y)⊗ Z ∼−→ X ⊗ (Y ⊗ Z),

4

λX : 1⊗X ∼−→ X,

ρX : X ⊗ 1
∼−→ X,

such that the pentagon and triangle axioms hold, i.e. that for any objects W,X, Y, Z,

the following diagrams commute.

((W ⊗X)⊗ Y)⊗ Z

(W ⊗ (X ⊗ Y))⊗ Z (W ⊗X)⊗ (Y ⊗ Z)

W ⊗ ((X ⊗ Y)⊗ Z) W ⊗ (X ⊗ (Y ⊗ Z))

αW,X,Y ⊗idZ αW⊗X,Y,Z

αW,X⊗Y,Z αW,X,Y ⊗Z

idW ⊗αX,Y,Z

(X ⊗ 1)⊗ Y X ⊗ (1⊗Y)

X ⊗ Y

αX,1,Y

ρX⊗idY idX ⊗λY

The bifunctor ⊗ is the tensor product, the object 1 is called the tensor unit, and the nat-

ural isomorphisms α, λ, ρ are called the associativity isomorphism, left unit isomorphism,

right unit isomorphism, respectively.

The pentagon axiom is simply the statement that the way in which parentheses are

moved around does not matter, so long as the proper associators are used at each step.

Remark 2.2. A monoidal category can also be defined as a 2-category with a single

object. Conversely, every 2-category with a single object is naturally a monoidal 1-

category.

Before moving on, we mention two notions that are critically important later in this

thesis.

Definition 2.3. A monoidal category is called strict if the associativity isomorphism

αX,Y,Z is the identity on all triples X, Y, Z.

5

Definition 2.4. A category is called skeletal if each isomorphism class of objects consists

of a single object.

Remark 2.5. Every (small) monoidal category is equivalent to a strict monoidal category

and (assuming the axiom of choice) to a skeletal monoidal category, but not necessar-

ily a strict and skeletal monoidal category. Later when we work with modular tensor

categories, we must choose which adjective is more helpful.

While monoidal categories provide a tensor product, they are far too general for our

purposes. We would like to define tensor and fusion categories. These terms do not have

standard definitions, and different authors move adjectives around.

To define a tensor category we need definitions of C-linear, abelian, locally finite, and

rigid. In the interest of brevity, we only give moral definitions where it seems sufficient

for our needs. Proper definitions can be found in [17].

Definition 2.6 (moral). A category C is called additive if

1. C contains a zero object 0 ∈ Obj(C) with Hom(0, 0) = 0,

2. for every pair of objects X, Y ∈ Obj(C), Hom(X, Y) is an abelian group, and

morphism composition is biadditive,

3. for every pair of objects X, Y ∈ Obj(C), there exists a direct sum X ⊕ Y .

Thus a category is additive if its objects and morphisms can be added.

Definition 2.7. Let C be the field of complex numbers. An additive category C is called

C-linear if all hom spaces are C-vector spaces and composition of morphisms is C-linear.

Definition 2.8 (moral). An additive category C is called abelian if all kernels and cok-

ernels exist nicely.

Definition 2.9 (moral). A C-linear abelian category C is called locally finite if all hom

spaces are finite-dimensional.
6

Because we will need more from this definition, we devote a longer discussion to

rigidity.

Definition 2.10. Consider a monoidal category (C,⊗,1, α, λ, ρ) and an object X of C. A

left dual of X is a triple (X∗, evX , coevX), where X∗ is an object and evX : X∗⊗X → 1,

coevX : 1→ X ⊗X∗ are morphisms such that the compositions

X
(coevX ⊗ idX)◦λ−1

X−−−−−−−−−−−→ (X ⊗X∗)⊗X
αX,X∗,X−−−−−→ X ⊗ (X∗ ⊗X)

ρX◦(idX ⊗ evX)−−−−−−−−−→ X,

X∗ (idX∗ ⊗ coevX)◦ρ−1
X∗−−−−−−−−−−−→ X∗ ⊗ (X ⊗X∗)

α−1
X∗,X,X∗
−−−−−→ (X∗ ⊗X)⊗X∗ λX∗◦(evX ⊗ idX∗)−−−−−−−−−−→ X∗

(2.1)

are identity morphisms. The morphism evX is called evaluation. The morphism coevX

is called coevaluation.

Similarly, a right dual of X is a triple (∗X, ev′X , coev
′
X), where ∗X is an object and

ev′X : X ⊗ ∗X → 1, coev′X : 1→ ∗X ⊗X are morphisms such that the compositions

X
(idX ⊗ coev′X)◦ρ−1

X−−−−−−−−−−−→ X ⊗ (∗X ⊗X)
α−1
X,∗X,X−−−−−→ (X ⊗ ∗X)⊗X

λX◦(ev′X ⊗ idX)
−−−−−−−−−→ X,

∗X
(coev′X ⊗ id∗X)◦λ−1

∗X−−−−−−−−−−−→ (∗X ⊗X)⊗ ∗X
α∗X,X,∗X−−−−−→ ∗X ⊗ (X ⊗ ∗X)

ρ∗X◦(id∗X ⊗ ev′X)
−−−−−−−−−−→ ∗X

(2.2)

are identity morphisms.

Remark 2.11. Lemmas 2.27, 2.29, 2.30 and Definition 2.31 provide a moral definition

of a dual object in the setting of Remark 2.15.

Proposition 2.12. Consider a monoidal category (C,⊗,1, α, λ, ρ) and an object X of C.

1. If X has a left dual X∗, then

Hom(X∗ ⊗ Y, Z) ∼= Hom(Y,X ⊗ Z), Hom(Y ⊗X,Z) ∼= Hom(Y, Z ⊗X∗).

2. If X has a right dual ∗X, then

Hom(X ⊗ Y, Z) ∼= Hom(Y, ∗X ⊗ Z), Hom(Y ⊗ ∗X,Z) ∼= Hom(Y, Z ⊗X).

Proof. Proposition 2.10.8 of [17].
7

The evaluation and coevaluation morphisms allow us to define duals of morphisms as

well.

Definition 2.13. Consider a monoidal category C with objects X, Y that have left duals

X∗, Y ∗. Let f ∈ Hom(X, Y) be a morphism. The left dual of f is the morphism f ∗ ∈

Hom(Y ∗, X∗) defined by

f ∗ = (evY ⊗ idX∗) ◦ (idY ∗ ⊗f ⊗ idX∗) ◦ α−1
Y ∗,X,X∗ ◦ (idY ∗ ⊗ coevX) .

Similarly, suppose f ∈ Hom(X, Y) and X, Y have right duals ∗X, ∗Y . The right dual

of f is the morphism ∗f ∈ Hom(∗Y, ∗X) defined by

∗f = (id∗X ⊗ ev′Y) ◦ (id∗X ⊗f ⊗ id∗Y) ◦ α∗X,X,∗Y ◦ (coev′X ⊗ id∗Y) .

Definition 2.14. An object in a monoidal category is called rigid if it has left and right

duals. A monoidal category is called rigid if every object has left and right duals.

Remark 2.15. Duals are unique up to isomorphism. Once a braiding of Definition 2.37 is

introduced, the left dual is isomorphically a right dual as well. Since all of our categories

will be rigid and braided, we will often refer to the dual X∗ without questioning its

existence or specifying left or right. In this case, the isomorphisms of Proposition 2.12

hold through commuting tensor products. Note that the introduction of this sloppiness

allows us to forget which isomorphisms are implicitly being used. For an example of

braiding appearing in compatibility conditions on duality, see Remark 2.66.

For a graphical presentation of duals, refer to Equations 2.4, 2.5, 2.6. Now we can

finally define a tensor category.

Definition 2.16. A monoidal category C is called a tensor category if

• C is C-linear,

• C is abelian,

8

• C is locally finite,

• C is rigid,

• ⊗ : C ×C → C is bilinear on morphisms,

• EndC(1) ∼= C.

In general, tensor categories are defined over any algebraically closed characteristic zero

field, but we always take this field to be C.

Remark 2.17. The condition that EndC(1) ∼= C is independent of the other conditions

and can be omitted. In this case, the category is called a multi-tensor category and does

not guarantee the second part of Lemma 2.19 below.

Definition 2.18. An object a is called simple if its only subobjects are 0 and a.

Lemma 2.19 (Schur’s Lemma). For simple objects a, b in an abelian category, any

nonzero morphism f : a → b is an isomorphism. In particular, Hom(a, b) = 0 when

a ≇ b. In a tensor category, we also have Hom(a, b) ∼= C when a ∼= b.

We now need two more adjectives in order to define a fusion category. Again, refer

to [17] for proper definitions.

Definition 2.20 (moral). A C-linear abelian category is called finite if it is locally finite

and has finitely many isomorphism classes of simple objects.

Definition 2.21. An object in an abelian category is called semisimple if it is (isomorphic

to) a direct sum of simple objects. An abelian category is called semisimple if all objects

are semisimple.

Definition 2.22. A tensor category C is called a fusion category if

• C is finite,

• C is semisimple.
9

Remark 2.23. We depend extensively on the fact that every object can be written

uniquely (up to isomorphism) as a sum
⊕

i niai for simple objects ai. Together with

Lemma 2.19, Hom spaces of arbitrary object pairs decompose as direct sums of Hom

spaces of simple objects, which are each either 0 or C.

We depend so much on the simple objects that it becomes convenient to define some

terminology.

Definition 2.24. Consider a fusion category C. The label set L of C is the set (up to

bijection) of simple objects in a skeleton of C.

Explicitly, we choose a single representative ai from each isomorphism class of simple

objects of C. Then the label set is L = {ai}, and each ai is called a label. It is standard

to take a1 ∼= 1.

The rank of C is the cardinality of L.

Because the simple objects play such a hugely important role, we will often denote la-

bels with lowercase letters a, b, c, . . . to distinguish them from general objects X, Y, Z,

Definition 2.25. Consider a fusion category C with label set {ai}. For each i, j, k, the

fusion coefficient Naiaj
ak = N ij

k (note the abuse of notation) is the dimension

dim
(
Hom(ak, ai ⊗ aj)

)
.

That is, ai ⊗ aj ∼=
⊕

kN
ij
k ak.

In analogy with the names of the F -symbols (Definition 2.72) and R-symbols (Def-

inition 2.74), the fusion coefficients might be called N-symbols, but this name is not

standard.

Definition 2.26. A fusion category is multiplicity-free if it has no fusion coefficients

greater than 1.

There has been more work done lately on dropping semisimplicity, but we do not address

10

it here. There has also been more interest in modular tensor categories with multiplicity,

which we do address in this thesis.

Since we will need them later, we will also mention a few facts about duals. They are

quite foundational and may not be referenced every time they are used. Fix a braided

fusion category (Definition 2.38) with an object X and a label set {ai}. According to

Remark 2.15, we do not bother distinguishing left and right duals.

Lemma 2.27. If X is simple, then X∗ is also simple.

Lemma 2.28. If X ∼=
⊕

niai is an arbitrary object, then X∗ ∼=
⊕

nia
∗
i .

Proof. Lemmas 2.27 and 2.28 follow from ∗ being a (monoidal) equivalence between a

rigid (monoidal) category and its opposite.

Lemma 2.29. If X is simple, then

dim
(
Hom(X ⊗X∗, 1)

)
= dim

(
Hom(X,X)

)
= 1.

Lemma 2.30. If X is simple, then X∗ is the only simple object (up to isomorphism)

with

dim
(
Hom(X ⊗X∗, 1)

)
> 0.

Proof. Consider an object Y such that

dim
(
Hom(X ⊗ Y, 1)

)
≥ 2.

Then dim(Hom(X, Y ∗)) ≥ 2, so Y ∗ is not simple, and Y is not simple.

Consider a simple object Y such that

dim
(
Hom(X ⊗ Y, 1)

)
= 1.

Then dim(Hom(X, Y ∗)) = 1. Since X, Y ∗ are simple, we must have X ∼= Y ∗ or Y ∼=

X∗.

11

Motivated by the above lemmas, the following moral definition is often a convenient

characterization of the dual object.

Definition 2.31 (moral). Consider a simple object a in a braided fusion category. The

dual a∗ is the unique simple object (up to isomorphism) such that Naa∗
1

= 1.

2.1.2 MTCs as Pivotal Braided Fusion Categories

The first definition of a modular tensor category is as a special type of pivotal braided

fusion category.

Definition 2.32. A pivotal structure on a fusion category is a natural isomorphism δ

from id, the identity functor, to (−)∗∗, the double dual functor. On objects, this is a

choice of morphisms δX : X → X∗∗ such that δX⊗Y = δX ⊗ δY , δ1 = id1.

Remark 2.33. It is unknown whether or not every fusion category admits a pivotal

structure.

Definition 2.34. Consider a fusion category with a pivotal structure δ. The left quantum

trace, or simply the left trace, of a morphism f ∈ Hom(X,X) is the morphism

evX∗ ◦
(
(δX ◦ f)⊗ idX∗

)
◦ coevX .

The right quantum trace, or simply the right trace, of a morphism f ∈ Hom(X,X) is the

morphism

ev′X∗ ◦
(
idX∗ ⊗(δX ◦ f)

)
◦ coev′X .

Diagrams 2.7 give the graphical representations of these morphisms.

Remark 2.35. Notice that for any morphism f , both traces are members of Hom(1,1) ∼=

C. Identifying id1 with 1 ∈ C, the trace morphisms can be identified with complex

numbers. When traces are presented in categorical data, they are typically given as

numbers in this way.
12

Definition 2.36. A pivotal structure is called spherical if the left trace is equal to the

right trace. In this case, we simply refer to the trace. Remark 2.71 justifies the term

spherical for this property.

Definition 2.37. A braiding on a monoidal category is a natural isomorphism cX,Y : X⊗

Y
∼−→ Y ⊗X such that the following hexagonal diagrams commute for all objects X, Y, Z.

X ⊗ (Y ⊗ Z) (Y ⊗ Z)⊗X

(X ⊗ Y)⊗ Z Y ⊗ (Z ⊗X)

(Y ⊗X)⊗ Z Y ⊗ (X ⊗ Z)

cX,Y ⊗Z

αY,Z,XαX,Y,Z

cX,Y ⊗idZ

αY,X,Z

idY ⊗cX,Z

(X ⊗ Y)⊗ Z Z ⊗ (X ⊗ Y)

X ⊗ (Y ⊗ Z) (Z ⊗X)⊗ Y

X ⊗ (Z ⊗ Y) (X ⊗ Z)⊗ Y

cX⊗Y,Z

α−1
Z,X,Yα−1

X,Y,Z

idX ⊗cY,Z

α−1
X,Z,Y

cX,Z⊗idY

Satisfying the hexagons is simply the condition that braiding is compatible with the

associativity of the category.

Definition 2.38. A braided monoidal category is a monoidal category along with a choice

of braiding. A braided fusion category is a fusion category along with a choice of braiding.

We will only be considering the fusion case.

Remark 2.39. In similar fashion to Remark 2.2, braided monoidal categories are equiv-

alent to 3-categories with a single object and a single 1-morphism.

Definition 2.40. A braided fusion category is non-degenerate if the tensor unit is the

only simple object (up to isomorphism) that has a trivial double braiding with every

object. That is, given a simple object a, if

cb,a ◦ ca,b = ida⊗b for all b, (2.3)
13

then a ∼= 1.

Remark 2.41. In some sense, a non-degenerate braided fusion category is the opposite

of a symmetric fusion category (a braided fusion category in which Equation 2.3 holds for

all a). A symmetric fusion category is a maximally degenerate braided fusion category.

Definition 2.42. A modular tensor category (or MTC) is a non-degenerate braided

fusion category with a spherical pivotal structure.

Remark 2.43. The term modular refers to the non-degeneracy of the braiding. While

the modular tensor category we have defined is the most common, modular categories

that drop some conditions we have required have been studied as well. The term modular

category without the adjective tensor is sometimes used to refer to such a category.

Note also that a modular tensor category is, in fact, a fusion category, not just a

tensor category. For historical reasons, we use the term modular tensor category instead

of the term modular fusion category.

Remark 2.44. The definition of a modular tensor category requires the definitions of

many structures and properties of those structures. The following table is provided as a

reference to help keep in mind which of the above definitions are structures and which

are properties of those structures.

adjectives that
define structures

adjectives that describe
properties of structures

monoidal
tensor, fusion

(and subproperties)
rigidity*

pivotal spherical

braided non-degenerate

modular

Thus, a modular tensor category is just a category with monoidal, pivotal, and braiding

structures that are all sufficiently compatible.
14

Note that rigidity is the property that all appropriate morphism spaces contain proper

ev and coev morphisms. In the settings we work with, the dual of an object is (isomor-

phically) both a left dual and a right dual. When working at the level of morphisms,

we must decide which to use. This is apparent when we draw pictures in the graphical

calculus and must make a choice of whether to use ev or ev′. Refer, for example, to the

choice of one of the Diagrams 2.7 to denote a quantum trace. If one considers rigidity as

making this choice (as opposed to just the property of existence of duals), then it can be

thought of as a structure.

2.1.3 Invariants of Modular Tensor Categories

While a modular tensor category can be presented by explicitly providing definitions of

structures such as the associativity and braiding isomorphisms (addressed in Section 2.2.1

and the subject of Chapter 4), it is more common to present an MTC in terms of higher-

level invariants. We define the important ones here. Some are numbers, while others

are matrices whose rows and columns are labeled by representatives of the isomorphism

classes of simple objects. In some cases, we diverge from [17].

Definition 2.45. Consider a fusion category C with a label set {ai} and a spherical

pivotal structure. The quantum dimension, or simply dimension, of an object X is the

trace of idX . We denote the dimension

dimC(X)

or simply dim(X) if the category is clear from context. Other common notation in the

literature is dX . Diagram 2.8 gives the graphical representation of this definition.

The global quantum dimension of the category C is defined as

dim(C) =
√∑

i

dim(ai)2 .

Other notation includes DC or simply D.
15

Remark 2.46. Note that our global quantum dimension is the square root of the one

defined by [17, Definition 7.21.3]. The convention of [17] is quite common in the literature.

Definition 2.47. Consider a braided fusion category B with a spherical pivotal structure

δ. On any object X, we may define a morphism (up to units and associators)

ψX = X∗∗ coevX ⊗ idX∗∗−−−−−−−−→ X ⊗X∗ ⊗X∗∗ idX ⊗cX∗,X∗∗
−−−−−−−−→ X ⊗X∗∗ ⊗X∗ idX ⊗ evX∗−−−−−−→ X.

The topological twist of an object X is defined as the composition

θX = ψX ◦ δX .

Diagram 2.9 gives the graphical representation of this definition.

Remark 2.48. Note that θX ∈ Hom(X,X), which is one-dimensional when X is simple.

For simple objects, the topological twist is typically identified with a complex number as

a multiple of the identity morphism. Vafa’s theorem says that this complex number is

always a root of unity. Diagram 2.10 shows this graphically.

Remark 2.49. The twist is not multiplicative unless the category is symmetric. In

general, θX⊗Y = cY,X ◦ cX,Y ◦ (θX ⊗ θY).

Remark 2.50. In fact, there are two ways to define θ based on whether the braiding in

ψX is an over-crossing or an under-crossing. For a more in-depth summary of braided

pivotal categories, refer to [25, Appendix A.2].

Definition 2.51. Consider a modular tensor category B with label set {ai}. The modular

T -matrix is defined as

Ti,j = δi,jθai ,

the diagonal matrix of the topological twists of simple objects.

Definition 2.52. Consider a modular tensor category B with label set {ai}. Define a

16

matrix S̃ by a trace of a full braiding

S̃i,j = tr
(
caj ,a∗i ◦ ca∗i ,aj

)
.

The modular S-matrix is the normalized matrix

S =
S̃

dim(B)
,

where dim(B) is the global quantum dimension of B from Definition 2.45. Diagram 2.11

gives the graphical representation of this definition.

The above data satisfy a plethora of useful properties, some of which are listed below.

Proposition 2.53. Consider a modular tensor category with label set {ai}. We have the

following.

1. If ai ⊗ aj ∼=
⊕

kN
ij
k ak, then

dim(ai) dim(aj) =
∑
k

N ij
k dim(ak)

2.

S̃i,j = θ−1
ai
θ−1
aj

∑
k

N ij
k θak dim(ak)

3. The Verlinde formula:

N ij
k =

∑
l

Si,lSj,lSk,l
S2
1,l

4. The S-matrix is symmetric and unitary.

5. If det(S) = 0, then the first column of S is proportional to another column. Thus,

degeneracy of S comes from degeneracy of the double braiding in Definition 2.52.

Other than giving information about the S-matrix, the significance of the last property

can be seen in Remark 2.62. For more such relationships and their proofs, refer to, e.g.

[51, 2, 18, 5, 52].

17

Definition 2.54. The modular data of a modular tensor category B is the pair {S, T}

of the modular S- and T -matrices associated with B.

The term modular is chosen because the modular data of a modular tensor category

provides a projective representation of the modular group SL(2,Z). To see this, we first

define the following additional invariants.

Definition 2.55. Consider a modular tensor category B with label set {ai}. The charge

conjugation matrix Ci,j = δi,ĵ is the matrix associating each label ai with its dual. The

central charge c is a rational number mod 8 defined by

1

dim(B)
∑
i

θai dim(ai)
2 = e

2cπi
8 .

This whole quantity is called the multiplicative central charge and is denoted ξ = ecπi/4.

Now the following proposition constructs the representation.

Proposition 2.56. Consider a rank n modular tensor category with label set {ai}, mod-

ular data {S, T}, charge conjugation matrix C, and multiplicative central charge ξ. Then

(ST)3 = ξS2, S2 = C, C2 = In,

and the map ρ : PSL(2,Z)→ U(n) defined by0 −1

1 0

 7→ S,

1 1

1 0

 7→ T

is a linear representation to the group of unitary n× n matrices.

Remark 2.57. These high-level invariants have long been used to uniquely determine

the modular tensor category of interest. It was found relatively recently that there exist

different modular tensor categories with the same modular data. So-related categories

are called modular isotopes. Refer to [14] for more on modular isotopes.

18

2.1.4 MTCs as Ribbon Fusion Categories

For ease of reference in the unlikely event someone reads this thesis, we also mention

that there exist other definitions for modular tensor categories. One is by way of ribbon

fusion categories.

Definition 2.58. A braiding c and a pivotal structure δ are said to be compatible if the

morphism θ from Defintion 2.47 satisfies

θX∗ = (θX)
∗,

where ∗ denotes the dual.

Definition 2.59. A ribbon fusion category is a braided fusion category with a compatible

pivotal structure. That is, a braided fusion category with a choice of isomorphisms

δX : X → X∗∗ such that δX⊗Y = δX ⊗ δY , δ1 = id1, δX∗ = (δ∗X)
−1.

This compatibility is what the spherical property of Definition 2.36 gives.

Proposition 2.60. A semisimple pivotal braided category is ribbon if and only if it is

spherical.

Note that any ribbon fusion category has the necessary structures to define the mod-

ular data of 2.54. Indeed, ribbon fusion categories and spherical braided fusion categories

are sometimes called pre-modular.

Definition 2.61. A modular tensor category is a ribbon fusion category with an invertible

S-matrix.

Remark 2.62. A braided fusion category with a spherical pivotal structure is a ribbon

fusion category. In this setting, non-degeneracy of the braiding is equivalent to non-

degeneracy of the S-matrix. This should be expected from Item 5 of Proposition 2.53.

19

2.1.5 Unitarity

Finally, we close this section with a brief discussion of unitarity. Unitarity is typically

required for physical application of modular tensor categories, such as for use as anyon

models. Indeed, all modular tensor categories we work with in this thesis are unitary.

While explicit treatment of unitarity is limited in all that follows, it does appear in a

few places. The definition of unitary fusion category is due to [36], and the definition of

unitary ribbon fusion category is due to [51]. Note that we must now use a base field of

C.

Definition 2.63. A conjugation † on a fusion category is an assignment of a morphism

f † ∈ Hom(Y,X) to each morphism f ∈ Hom(X, Y) which is conjugate linear and satisfies

(
f †)† = f, (f ⊗ g)† = f † ⊗ g†, (f ◦ g)† = g† ◦ f †.

Definition 2.64. A unitary fusion category is a fusion category along with a choice of

conjugation such that f † ◦ f = 0 implies f = 0.

Definition 2.65. A Hermitian ribbon fusion category is a ribbon fusion category along

with a choice of conjugation such that

• coev†X = evX ◦cX,X∗ ◦ (θX ⊗ idX∗),

• ev†X = (idX∗ ⊗θ−1
X) ◦ c−1

X∗,X ◦ coevX ,

• c†X,Y = c−1
X,Y ,

• θ†X = θ−1
X .

Remark 2.66. The first two conditions in Definition 2.65 are compatibility conditions

between the evaluation and coevaluation morphisms of left and right duals. Refer to

Remark 2.15.

Definition 2.67. A Hermitian ribbon fusion category (or modular tensor category) is

called unitary if the form (f, g) 7→ tr(f ◦ g†) is positive-definite on all Hom spaces.
20

One helpful feature of unitary categories is that they are also pseudo-unitary. We

need a few more definitions.

Definition 2.68. Consider a fusion category C with label set {ai}. The Grothendieck

group of C is the free abelian group generated by the formal labels ai. The Grothendieck

ring of C is the Grothendieck group together with the multiplication induced by the

tensor product of C.

Roughly speaking, the Grothendieck ring of C is simply the natural ring obtained

from the skeleton of C together with the operations ⊕,⊗.

Definition 2.69. Consider the Grothendieck ring of a fusion category C with label set

{ai}. For each i, the Frobenius-Perron dimension FPdim(ai) is the maximal non-negative

eigenvalue of the matrix of left multiplication by ai (which is guaranteed to exist).

For an arbitrary object X, define FPdim(X) additively across ⊕.

The global Frobenius-Perron dimension is given by

FPdim(C) =
∑
i

FPdim(ai)
2.

For more on Frobenius-Perron dimensions, refer to [17]. As in Remark 2.46, note that

we have defined our global quantum dimension to be the square root of that in [17].

Definition 2.70. A fusion category C is called pseudo-unitary if dim(C)2 = FPdim(C).

2.2 Graphical Calculus

A standard graphical calculus is often used to conveniently work with modular tensor

categories. We adopt the optimistic convention, which reads morphisms from bottom to

top. The identity morphism on an object X is a single line labeled X, as follows.

X

21

For clarity and reduction of clutter, we will often label the strands of our diagrams at the

bottom and top. We will also omit arrows when the optimistic convention leaves little

ambiguity.

Tensor products of objects are drawn by placing the objects next to each other. The

identity morphism idX⊗Y = idX ⊗ idY is thus

X Y

X Y

.

Since 1⊗X ∼= X for tensor unit 1 and any object X, we can add and remove 1 strands

at will. Except when they are the subject of particular focus, 1 strands are typically not

drawn at all.

In general, morphisms will be represented by boxes. For example, a morphism f : W⊗

X → Y ⊗ Z may be drawn

W X

f

Y Z

.

When the meaning is clear, we will often omit boxes. We will do this especially with

trivalent vertices so that morphisms f : X ⊗ Y → Z and f : X → Y ⊗Z might be drawn

X Y

f

Z

=

X Y

f

Z

,

X

f

Y Z

=

X

f

Y Z

.

Our pictures will become even cleaner when the morphisms are clear from context and

we can leave off the label f entirely.

Recall that modular tensor categories are rigid. If X is an object of a modular tensor

category, the identity morphism on the dual X∗ is a single line labeled X going the

22

opposite direction, as follows.

X∗

=

X

Now, by not drawing 1 strands, the evaluation and coevaluation maps of Definition 2.10

can be depicted

X∗ X

evX

1

=

X X

evX

1

=

X X

,

1

coevX

X X∗

=

1

coevX

X X

=

X X

,

X ∗X

ev′X

1

=

X X

ev′X

1

=

X X

,

1

coev′X

∗X X

=

1

coev′X

X X

=

X X

,

(2.4)

and conditions 2.1,2.2 amount, respectively, to

X

X

=

X

X

,

X

X

=

X

X

,

X

X

=

X

X

,

X

X

=

X

X

.

(2.5)

23

Dual morphisms from Definition 2.13 may be drawn as follows.

Y ∗

f∗

X∗

=

Y

f

X

∗Y

∗f

∗X

=

Y

f

X

(2.6)

Graphical representations of evaluation and coevaluation in hand, we may present

cleaner definitions for the quantum trace and quantum dimension of Definitions 2.34,

2.36, and 2.45. The left and right traces of a morphism f ∈ Hom(X,X) are given

respectively by the pictures

X

f ,

X

f . (2.7)

Remark 2.71. The term spherical from Definition 2.36 is chosen to suggest that the

two diagrams of 2.7 are equal because they live on a sphere and the circle can be pulled

around to the other side.

Modular tensor categories are also braided. A braiding is a natural isomorphism

cX,Y : X ⊗ Y → Y ⊗X. These morphisms are often drawn

X Y

cX,Y

Y X

=

X Y

Y X

,

Y X

c−1
X,Y

X Y

=

Y X

X Y

.

We can now give the graphical representations of the invariants used to discuss mod-

ular tensor categories. The quantum dimension of an object X from Definition 2.45 is

24

defined by

dim(X) =

X

. (2.8)

The topological twist of an object X from Definition 2.47 is defined by the morphism

θX =

X

X

=

X

X

. (2.9)

Recall from Remark 2.48 that when X is a simple object, the space Hom(X,X) is one-

dimensional, so the morphism θX is a multiple of the identity on X. When X is a simple

object, the symbol θX can be identified with this complex number, and we can say

X

X

= θX

X

X

. (2.10)

The entries of the S̃-matrix from Definition 2.52 are defined by

S̃i,j =

ai aj

. (2.11)

25

2.2.1 Skeletalization

A somewhat subtle point is the associativity. Because it will be critically important for

us in Chapter 4, we discuss it at length here. The picture

X Y Z

X Y Z

is ambiguous because it could be referring to (X ⊗ Y)⊗ Z or X ⊗ (Y ⊗ Z). That is, we

should perhaps make some distinction of the form

X Y Z

αa,b,c

X Y Z

,

where proximity indicates the order of the tensor products. In practice, we often ignore

this distinction since a modular tensor category can always be taken to be strict without

loss of generality. Then the associativity isomorphism is the identity on all X, Y, Z, and

we need not worry about parentheses.

This fails when we wish to consider a skeletal MTC. In this case, we need not consider

isomorphism classes of objects. Our simple objects are exactly the labels a, b, c, If

we write a⊗ b =
⊕

cN
ab
c c (which is now a proper equality rather than an isomorphism),

then we may choose explicit morphisms

c

a b

(2.12)

in Hom(c, a ⊗ b). Recall that Hom(c, a ⊗ b) is a vector space of dimension Nab
c . When

Nab
c = 0, morphism 2.12 is necessarily zero, and we do not bother writing it. When

Nab
c = 1, morphism 2.12 defines a basis for Hom(c, a⊗ b). When Nab

c > 1, we may label

26

the vertex of picture 2.12 with morphisms α, β, γ, . . . to define a basis for Hom(c, a⊗ b).

When we do this, it should be clear from the picture that α is not referring to the

associativity isomorphism.

The point here is that pictures of the form of 2.12 set a basis in terms of which the

graphical calculus is defined. We may then work with the tensor product a ⊗ b using

explicit bases of vector spaces. The same trick gives us a concrete way to represent and

work with the associativity of the skeletal category in terms of pictures.

To understand the isomorphism from (a ⊗ b) ⊗ c to a ⊗ (b ⊗ c), we consider the

spaces Hom(d, (a⊗ b)⊗ c) and Hom(d, a⊗ (b⊗ c)). Morphisms in Hom(d, (a⊗ b)⊗ c) are

compositions of morphisms in Hom(e, a⊗b) and Hom(d, e⊗c). Morphisms in Hom(d, a⊗

(b ⊗ c)) are compositions of morphisms in Hom(f, b ⊗ c) and Hom(d, a ⊗ f). Thus for

each simple object d, we have a basis d

β

e

α

a b c

e,α,β

for Hom(d, (a⊗ b)⊗ c) and a basis d

δ

f

γ

a b c

f,γ,δ

for Hom(d, a⊗ (b⊗c)). Since (a⊗b)⊗c ∼= a⊗ (b⊗c) and the category is skeletal, the two

tensor products are equal as objects, and we have produced two bases for Hom(d, (a ⊗

b)⊗ c) = Hom(d, a⊗ (b⊗ c)). The associativity isomorphism αa,b,c is such that, for each

27

d, it sends the first basis to the second. That is, for each fixed α, β,

αa,b,c ◦ (α⊗ idc) ◦ β ∈ span
{
(ida⊗γ) ◦ δ

}
γ,δ

d

β

e

α

αa,b,c

a b c

∈ span

 d

δ

f

γ

a b c

f,γ,δ

So the associativity isomorphism can be understood as a family of change of basis matrices

F abc
d whose entries are the coefficients of

d

β

e

α

a b c

=
∑
f,γ,δ

F abc
d;(f,γ,δ),(e,α,β)

d

δ

f

γ

a b c

. (2.13)

Definition 2.72. The coefficients of Equation 2.13 are sometimes called F -symbols.

Most of the literature restricts to the simplest case of multiplicity-free categories

(Definition 2.26). In this case, we need not distinguish morphisms at the trivalent vertices,

and we arrive at the familiar equation

d

e

a b c

=
∑
f

F abc
d;f,e

d

f

a b c

. (2.14)

These six-index F -symbols are sometimes known as 6-j symbols. While we’re here, note

that our coefficients are matrix entries (F abc
d)f,e rather than (F abc

d)e,f . Defining F -symbols

this way makes F abc
d a change-of-basis matrix from the left to the right. The literature is

28

somewhat undecided on which convention to choose.

Since the F -symbols are a presentation of the associativity, they must satisfy the

pentagon and triangle axioms of Definition 2.1. In the multiplicity-free case, requiring

that the diagram

e

f

g

a b c d

e

f

j

a b c d

e

g h

a b c d

e

i

j

a b c d

e

i

h

a b c d

F abc
f ;j,g F gcd

e;h,f

F ajd
e;i,f F abh

e;i,g

F bcd
i;h,j

commute gives us the condition

F abh
e;i,gF

gcd
e;h,f =

∑
j

F bcd
i;h,jF

ajd
e;i,fF

abc
f ;j,g. (2.15)

29

Indeed, a multiplicity-free monoidal category can be defined as a collection of admissible

fusion coefficients Nab
c and 6-j symbols F abc

d;f,e. Refer to [52, Chapter 4] for this definition.

By specifying morphisms at each trivalent vertex, we can write down equations of the

same form for the F -symbols of a category with multiplicity as well.

Remark 2.73. Explicit monoidal structures (in the form of F -symbols) are generally

difficult to compute because their consistency equations look like Equation 2.15. Simul-

taneously solving many nonlinear equations is computationally challenging.

A similar tale can be spun for the braiding. Again if we write a ⊗ b =
⊕

cN
ab
c c, we

have two bases for Hom(c, a⊗ b) given by c

α

a b

α

,

 c

β

a b

β

.

Then, for each choice of α, we can again write

c

α

a b

=
∑
β

Rab
c;β,α

c

β

a b

. (2.16)

In the multiplicity-free case, we have the familiar

c

a b

= Rab
c

c

a b

. (2.17)

Definition 2.74. The coefficients of Equation 2.16 are sometimes called R-symbols.

30

These R-symbols define the braiding, and a braided fusion category can be defined

as a list of compatible N -, F -, and R-symbols (see Definition 2.25 of fusion coefficients

for the N -symbols). A set of t-symbols (not to be confused with the T -symbols of

Definition 2.101) called pivotal coefficients can also be given so that all structures in

Remark 2.44 are defined. Refer to [52, Chapter 4] for these definitions.

2.3 Classification and Examples

Significant effort has gone into the classification of modular tensor categories, e.g. [47,

23]. There is similarly interest in a classification of fusion categories, but this problem

is significantly more difficult. The situation is analogous to that of the classification of

finite abelian groups and the classification of all finite groups. As an example, a result

called Ocneanu rigidity says that for any given set of fusion rules, there exist finitely

many fusion categories (up to monoidal equivalence). For modular tensor categories,

there is the far stronger result that for any given rank, there exist finitely many modular

tensor categories (up to equivalence) [6].

The classification of modular tensor categories that is currently known will be helpful

in determining condensations. For examples, refer to Sections 3.3.1 and 3.3.2.

In the remainder of this section, we briefly discuss some sources of modular tensor

categories. We also provide a few examples of well-known MTCs to demonstrate the

presentation of their data and because we will be using them later.

2.3.1 General Constructions

The theory of modular tensor categories is a confusing array of developments by many

people in many different settings. For more information as in this subsection, one might

refer to, e.g. [17, 2, 13, 37, 48].

The first construction is just a way to put existing modular tensor categories together,

31

but we must define it since it will be used extensively throughout this thesis.

Definition 2.75 ([17, Definition 1.11.1]). Let C,D be locally finite abelian categories.

The Deligne tensor product, or simply Deligne product, of C and D is a pair (C⊠D,⊠),

where ⊠ is a bifunctor ⊠ : C ×D → C⊠D by (X, Y) 7→ X ⊠ Y that is right exact in

both variables and is universal with this property. For any bifunctor F : C ×D → A that

is right exact in both variables, there exists a unique right exact functor F : C⊠D → A

with F ◦⊠ = F .

Remark 2.76. For us, the categories C,D of Definition 2.75 will typically be modular

tensor categories, in which case the product C⊠D is also a modular tensor category. We

will usually take the following as our definitions.

• Obj(C⊠D) = {X ⊠ Y | X ∈ Obj(C), Y ∈ Obj(D)}

• HomC⊠D(X1 ⊠ Y1, X2 ⊠ Y2) = {f ⊠ g | f ∈ HomC(X1, X2), g ∈ HomD(Y1, Y2)}

The tensor product of C⊠D will be defined as follows.

• (X1 ⊠ Y1)⊗C⊠D (X2 ⊠ Y2) = (X1 ⊗C X2)⊠ (Y1 ⊗D Y2)

• (f1 ⊠ g1)⊗C⊠D (f2 ⊠ g2) = (f1 ⊗C f2)⊠ (g1 ⊗D g2)

This agrees with the definition from the proof of [17, Proposition 4.6.1].

The first standard construction of modular tensor categories is the quantum double.

See [2, Section 3.2] for more details.

Construction 2.77. The quantum double (or Drinfeld double) of a finite group is defined

as follows. Let G be a finite group, and let k[G] be its group algebra, which has a Hopf

algebra structure. The Hopf algebra dual to the group algebra is the function algebra

F (G). Then the quantum double D(G) is the semidirect product F (G)⋊ k[G], which is

F (G)⊗k k[G] as a vector space. Finally, Repf (D(G)), the category of finite-dimensional

representations of D(G), is a modular tensor category.
32

This construction can also be given by a Drinfeld center.

Definition 2.78. Let C be a monoidal category with associativity α. The Drinfeld center

Z(C) is the category with objects and morphisms as follows.

• Obj(Z(C)) consists of pairs (Z, γ) with Z ∈ Obj(C) and γX : X ⊗ Z → Z ⊗ X a

natural isomorphism such that the following diagram is commutative for all X, Y ∈

Obj(C).

X ⊗ (Z ⊗ Y) (X ⊗ Z)⊗ Y

X ⊗ (Y ⊗ Z) (Z ⊗X)⊗ Y

(X ⊗ Y)⊗ Z Z ⊗ (X ⊗ Y)

α−1
X,Z,Y

γX⊗idYidX ⊗γY

α−1
X,Y,Z

γX⊗Y

α−1
Z,X,Y

• HomZ(C)((Z, γ), (Z
′, γ′)) is the set of f ∈ HomC(Z,Z

′) such that for all X ∈ Obj(C),

(f ⊗ idX) ◦ γX = γ′X ◦ (idX ⊗f).

Thus the Drinfeld center of C has intertwiner morphisms between objects that are pairs

consisting of objects from C and choices of braidings that satisfy one of the hexagons

from Definition 2.37.

Theorem 2.79. There is a braided equivalence

Repf (D(G)) ∼= Z
(
Repf (G)

)
.

The Drinfeld center has more general usefulness, as seen in the next two theorems.

Theorem 2.80. The Drinfeld center of a spherical fusion category is a modular tensor

category.

Recall Definition 2.38 of a braided fusion category. The reverse category is defined as

follows.

33

Definition 2.81. Let B be a fusion category with a chosen braiding cX,Y . The reverse

Brev is the fusion category B along with the braiding crevX,Y = c−1
Y,X .

Theorem 2.82. If B is a modular tensor category (or any non-degenerate braided fusion

category), there is a braided equivalence Z(B) ∼= B⊠Brev.

Another common source of modular tensor categories is quantum groups at roots of

unity. In this thesis, we will see the categories SU(2)k (Sections 3.3.3, 5.1.1) and (G2)3

(Section 5.2.2, Supplemental B: (G2)3 Data). The construction is somewhat nontrivial.

Refer to [2, Section 3.3],[51, Section XI.6] for details or [48] for a summary.

Theorem 2.83. From a Lie algebra g and complex number q with q2 an ℓ-th root of unity

(with properties), a modular tensor category can be constructed from representations of

a quantum group Uq(g).

Finally, we mention the connection to vertex operator algebras because it is relevant

to the motivation for Section 5.3.

Theorem 2.84 ([26]). The representation category of a vertex operator algebra (with

properties) is a modular tensor category.

2.3.2 Explicit Examples

The data of the following categories are presented in the usual way found in, e.g. [47].

We first establish an order for the isomorphism classes of simple objects when we define

a label set. This is then the order in which the rest of the data are given. The i-th entries

of the set of quantum dimensions and the set of twists give the quantum dimension and

twist of the i-th label in the label set. The i, j-th entry of the S-matrix is the S-matrix

entry from Definition 2.52 corresponding to the i-th and j-th labels in the label set.

Finally, the F -matrices are also presented in the usual way. Recall Equation 2.14

34

from Section 2.2.1 defining the F -symbols in a multiplicity-free category.

d

e

a b c

=
∑
f

F abc
d;f,e

d

f

a b c

Now each matrix F abc
d has rows labeled by admissible choices for e and columns labeled by

admissible choices for f . Then the entry (F abc
d)f,e is the F -symbol F abc

d;f,e. Presenting the

matrices this way requires an order for the choices of e, f . The order we choose is again

the order determined by the label set. A single number is a 1×1 matrix and means there

is only one admissible choice on each side of the F -symbol equation. Omitted F -symbols

are 0 if they are not admissible or 1 if they are admissible.

All examples in this section (and most MTCs anyone works with) are multiplicity-free.

Refer to Section 5.2 and Supplemental B: (G2)3 Data for categories with multiplicity. For

more category data, refer to [47, 23].

Example 2.85. The category Vec of finite-dimensional C-vector spaces with linear

transformation morphisms is the trivial modular tensor category with C itself the only

simple object (up to isomorphism).

Example 2.86. The Fibonacci modular tensor category has the following data. We use

φ to denote the golden ratio 1+
√
5

2
.

Label set: L = {1, τ}

Fusion rules:
⊗ 1 τ

1 1 τ

τ τ 1⊕ τ

Quantum dimensions: {1, φ}

Total quantum dimension: D =

√
φ
√
5

35

Twists:
{
1, e

4πi
5

}
Central charge: c =

14

5

S-Matrix: 1√
2 + φ

1 φ

φ −1


F-Symbols: F τττ

τ =

 φ−1 φ−1/2

φ−1/2 −φ−1


R-Symbols: Rττ

1 = e−
4πi
5 , Rττ

τ = e
3πi
5

Example 2.87. The term Ising refers to any of eight inequivalent categories with the

same fusion rules. These eight categories are distinguished by the choice of θ for the

simple object σ. The data for the first of these categories (which is the one we will use

in this thesis) are as follows.

Label set: L = {1, σ, ψ}

Fusion rules:
⊗ 1 σ ψ

1 1 σ ψ

σ σ 1⊕ ψ σ

ψ ψ σ 1

Quantum dimensions:
{
1,
√
2 , 1

}
Total quantum dimension: D = 2

Twists:
{
1, e

πi
8 ,−1

}
Central charge: c =

1

2

S-Matrix:
1

2


1

√
2 1

√
2 0 −

√
2

1 −
√
2 1



36

F-Symbols: F σσσ
σ =

1√
2

1 1

1 −1

, Fψσψ
σ = F σψσ

ψ = (−1)

R-Symbols: Rψψ
1 = −1, Rψσ

σ = Rσψ
σ = −i, Rσσ

1 = e−
πi
8 , Rσσ

ψ = e
3πi
8

Example 2.88. Recall Definition 2.75. The category Ising⊠ Ising is the Deligne product

of two copies of the Ising MTC. Most of its data is multiplicative from Ising.

Label set: L = {1⊠ 1, 1⊠ σ, 1⊠ ψ, σ ⊠ 1, σ ⊠ σ, σ ⊠ ψ, ψ ⊠ 1, ψ ⊠ σ, ψ ⊠ ψ}

or, for readability,

L = {11, 1σ, 1ψ, σ1, σσ, σψ, ψ1, ψσ, ψψ}

Fusion rules: Ising fusion rules on components

⊗ 11 1σ 1ψ σ1 σσ σψ ψ1 ψσ ψψ

11 11 1σ 1ψ σ1 σσ σψ ψ1 ψσ ψψ

1σ 1σ 11⊕ 1ψ 1σ σσ σ1⊕ σψ σσ ψσ ψ1⊕ψψ ψσ

1ψ 1ψ 1σ 11 σψ σσ σ1 ψψ ψσ ψ1

σ1 σ1 σσ σψ 11⊕ ψ1 1σ ⊕ ψσ 1ψ⊕ψψ σ1 σσ σψ

σσ σσ σ1⊕σψ σσ 1σ⊕ψσ

11⊕ 1ψ

⊕

ψ1⊕ψψ

1σ⊕ψσ σσ σ1⊕σψ σσ

σψ σψ σσ σ1 1ψ⊕ψψ 1σ ⊕ ψσ 11⊕ ψ1 σψ σσ σ1

ψ1 ψ1 ψσ ψψ σ1 σσ σψ 11 1σ 1ψ

ψσ ψσ ψ1⊕ψψ ψσ σσ σ1⊕ σψ σσ 1σ 11⊕ 1ψ 1σ

ψψ ψψ ψσ ψ1 σψ σσ σ1 1ψ 1σ 11

Quantum dimensions:
{
1,
√
2 , 1,

√
2 , 2,

√
2 , 1,

√
2 , 1

}
Total quantum dimension: D = 4

Twists:
{
1, e

πi
8 ,−1, e

πi
8 , e

πi
4 ,−e

πi
8 ,−1,−e

πi
8 , 1
}

Central charge: c =
1

2
+

1

2
= 1

37

S-Matrix:

1

4



1
√
2 1

√
2 2

√
2 1

√
2 1

√
2 0 −

√
2 2 0 −2

√
2 0 −

√
2

1 −
√
2 1

√
2 −2

√
2 1 −

√
2 1

√
2 2

√
2 0 0 0 −

√
2 −2 −

√
2

2 0 −2 0 0 0 −2 0 2
√
2 −2

√
2 0 0 0 −

√
2 2 −

√
2

1
√
2 1 −

√
2 −2 −

√
2 1

√
2 1

√
2 0 −

√
2 −2 0 2

√
2 0 −

√
2

1 −
√
2 1 −

√
2 2 −

√
2 1 −

√
2 1


F-Symbols: F aa′,bb′,cc′

dd′;ff ′,ee′ = F abc
d;f,eF

a′b′c′

d′;f ′,e′ for all a, a′, b, b′, c, c′, d, d′, e, e′, f, f ′ from the

label set of Ising

R-Symbols: Raa′,bb′

cc′ = Rab
c R

a′b′

c′ for all a, a′, b, b′, c, c′ from the label set of Ising

Example 2.89. The category Ising ⊠ Ising is the Deligne product of the Ising MTC

with its complex conjugate. It has the same label set, fusion rules, quantum dimensions,

S-matrix, and F -symbols (since they are real) as Ising ⊠ Ising.

Twists:
{
1, e−

πi
8 ,−1, e

πi
8 , 1,−e

πi
8 ,−1,−e−

πi
8 , 1
}

Central charge: c =
1

2
− 1

2
= 0

R-Symbols: Raa′,bb′

cc′ = Rab
c R

a′b′
c′ for all a, a′, b, b′, c, c′ from the label set of Ising

Example 2.90. The category Z4 is a rank 4 modular tensor category with fusion rules

resembling the additive group Z4.

Label set: L = {1, ϵ, σ, σ∗}

38

Fusion rules:
⊗ 1 ϵ σ σ∗

1 1 ϵ σ σ∗

ϵ ϵ 1 σ∗ σ

σ σ σ∗ ϵ 1

σ∗ σ∗ σ 1 ϵ

Quantum dimensions: {1, 1, 1, 1}

Total quantum dimension: D = 2

Twists:
{
1,−1, e

πi
4 , e

πi
4

}
Central charge: c = 1

S-Matrix:

1

2



1 1 1 1

1 1 −1 −1

1 −1 −i i

1 −1 i −i


F-Symbols: F ϵσϵ

σ = F ϵσ∗ϵ
σ∗ = F σϵσ∗

ϵ = F σ∗ϵσ
ϵ = F σσσ

σ∗ = F σ∗σ∗σ∗

σ = (−1)

R-Symbols: Rϵϵ
1 = −1, Rσϵ

σ∗ = Rϵσ
σ∗ = Rσ∗ϵ

σ = Rϵσ∗

σ = −i

Rσσ
ϵ = Rσ∗σ∗

ϵ = e
πi
4 , Rσσ∗

1 = Rσ∗σ
1 = e−

πi
4

Example 2.91. The category Toric Code is another rank 4 modular tensor category,

but with Z2×Z2 fusion rules.

Label set: L = {1, e,m, ϵ}

Fusion rules:
⊗ 1 e m ϵ

1 1 e m ϵ

e e 1 ϵ m

m m ϵ 1 e

ϵ ϵ m e 1

Quantum dimensions: {1, 1, 1, 1}

39

Total quantum dimension: D = 2

Twists: {1, 1, 1,−1}

Central charge: c = 0

S-Matrix:

1

2



1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1


F-Symbols: F abc

d = (1) for all a, b, c, d

R-Symbols: Ree
1 = Rmm

1 = Rem
ϵ = Reϵ

m = Rϵm
e = 1

Rϵϵ
1 = Rme

ϵ = Rϵe
m = Rmϵ

e = −1

2.4 Motivation

2.4.1 3-Manifold Invariants

Modular tensor categories naturally define invariants of links, something we’ve almost

seen already in the graphical definitions of our category invariants (diagrams 2.7, 2.8,

2.11, etc). Given an oriented 3-manifold M , we also get invariants of M by writing M

as a surgery on S3 along a link L and computing the invariant of L.

The link invariant is defined roughly as follows. Consider a link L and a modular

tensor category B. Color the components of the link by simple objects of B. Then the

link L becomes a trace as in the diagrams 2.7 and can be identified with a complex

number. The sum over all colorings of the components of L is an invariant of L. Refer

to [51] for a very complete treatment.

The above is only the beginning of the invariants. Refer also to [51] for a discussion

on topological quantum field theories.

40

2.4.2 Fault-Tolerant Quantum Computing

Quantum information is an exciting field which aims to implement practical quantum

computation that offers significant advantages over classical computation. At the mo-

ment, one of the biggest hurdles in producing working quantum computers is that the

encoded states of the qubits quickly decohere. After any appreciable number of opera-

tions, information is mostly lost to noise.

The quantum state of a qubit is said to be topologically protected if a large energy

gap protects it from other states. The braiding of anyons is topologically protected, so

quantum gates generated by anyon exchange are as well. Algebraically, a sequence of

anyon exchanges is an element of a braid group. Extra algebraically, a sequence of anyon

exchanges is a matrix given by a representation of a braid group. Skeletal modular tensor

categories give anyon models from which these representations can be produced. For an

example, refer to Section 5.1.2.

Since quantum gates generated by anyon exchange are topologically protected, there

is interest in anyons whose braid representations are dense in the appropriate projective

unitary groups. Unitarity of the representation is ensured by unitarity of the modular

tensor category as in Definition 2.67. Since quantum computations are unitary operations

on sets of qubits, density of the representation allows us to approximate any computa-

tion to arbitrary precision by performing a sequence of anyon exchanges. Section 5.1.2

mentions an example.

2.5 Computer Implementation

We devote this section to a brief discussion on how modular tensor categories may be

represented on a computer. Thanks to the finiteness and semisimplicity conditions of

fusion categories, it can be reduced to linear algebra quite transparently. To see the

following discussion in practice, refer to Section 4.3 and specifically Constructions 4.3 and

41

4.4. For a complete Mathematica implementation, refer to Supplemental A: Mathematica

Code or [1]. Sections A.1.1 and A.1.2 may be particularly instructive.

Recall that in a semisimple category (Definition 2.21), all objects may be written as

direct sums of simple objects. In a finite category (Definition 2.20), there are finitely

many isomorphism classes of these simple objects. Fix a fusion category C of rank n,

and choose and ordered label set {a1, . . . , an}. Then every object X ∈ Obj(C) can be

represented by a list of n integers c1, . . . , cn representing the coefficients in a direct sum

decomposition X ∼=
⊕

ciai. Note that this assigns the same list to any two isomorphic

objects, so our computer implementation necessarily skeletalizes the category (Defini-

tion 2.4, Remark 2.5).

Recall that our fusion categories are also C-linear and locally finite, so all morphism

spaces are finite-dimensional vector spaces over C. In fact, Lemma 2.19 provides a nice

characterization. Let X ∼=
⊕

biai, Y ∼=
⊕

ciai be objects of C defined above. Then

Hom(X, Y) is (isomorphically) a direct sum
⊕

Hom(biai, ciai). Since each Hom(ai, ai)

is a one-dimensional C vector space, each fi ∈ Hom(ai, ai) is a complex multiple of the

identity. Then each fi ∈ Hom(biai, ciai) can be identified with a ci × bi complex matrix,

and each f ∈ Hom(X, Y) is identified with a graded linear map
⊕

fi. In Mathematica,

this is simply an n-element list of matrices.

For a slightly different implementation, recall from Remark 2.2 that monoidal cate-

gories are equivalent to 2-categories with a single object. In [46], a Mathematica package

is presented to perform generalized linear algebraic operations on modular tensor cate-

gories within the 2-category 2Vec. In light of Remark 2.39, it may also be possible to

consider modular tensor categories within 3Vec. We have not explored this.

42

2.6 Algebras in Categories

Definition 2.92. An algebra in a monoidal category C is a triple (A,m, η), where A

is an object of C and m : A⊗A → A, η : 1 → A are morphisms in C such that the

following diagrams commute.

(A⊗A)⊗A A⊗(A⊗A)

A⊗A A⊗A

A

αA,A,A

m⊗idA idA ⊗m

m m

1⊗A A

A⊗A A

λA

η⊗idA idA

m

A⊗1 A

A⊗A A

ρA

idA ⊗η idA

m

The morphism m is called the multiplication of A, and the morphism η is called the unit

of A.

We may draw the morphisms m and η in the graphical calculus of Section 2.2. Since

these are the only morphisms we use with their respective domains and codomains, we

can typically leave off the m and η labels, as follows.

A A

m

A

=

A A

A

1

η

A

=

A

The conditions of Definition 2.92 are then

A A A

A

=

A A A

A

,

A

A

=

A

A

=

A

A

.

Reversing all arrows gives us the following definition.
43

Definition 2.93. A co-algebra in a monoidal category C is a triple (A,∆, ϵ), where A

is an object of C and ∆: A → A⊗A, η : A → 1 are morphisms in C such that the

following diagrams commute.

(A⊗A)⊗A A⊗(A⊗A)

A⊗A A⊗A

A

αA,A,A

∆⊗idA idA ⊗∆

∆∆

1⊗A A

A⊗A A

λA

ϵ⊗idA idA

∆

A⊗1 A

A⊗A A

ρA

idA ⊗ϵ

∆

idA

The morphism ∆ is called the co-multiplication of A, and the morphism ϵ is called the

co-unit of A.

In the graphical calculus, we draw

A
∆

A A

=

A

A A

,

A

ϵ

1

=

A

so that the conditions of Definition 2.93 are

A

A A A

=

A

A A A

,

A

A

=

A

A

=

A

A

.

We will be using objects with both of these properties.

Definition 2.94. A Frobenius algebra in a monoidal category C is a quintuple

44

(A,m, η,∆, ϵ) such that (A,m, η) is an algebra, (A,∆, ϵ) is a co-algebra, and

idA⊗m ◦∆⊗ idA = ∆ ◦m = ∆⊗ idA ◦ idA⊗m.

In the graphical calculus, this property is

A A

A A

=

A A

A A

=

A A

A A

.

2.7 Structure of Modular Tensor Categories

This section provides a glimpse of the interesting structure of modular tensor categories,

which is a field in its own right. For more such results, one might refer to, e.g. [39, 12,

13, 49, 44].

In Section 2.3.2, we likened modular tensor categories as a subset of fusion categories

to finite abelian groups as a subset of all finite groups. Continuing with this analogy,

there is a Witt group of modular tensor categories. Recall Definition 2.75 of the Deligne

tensor product and Definition 2.78 of the Drinfeld center.

Definition 2.95. Two modular tensor categories B1,B2 are called Witt equivalent if

there exist fusion categories C1, C2 such that there is a braided equivalence B1⊠Z(C1) ∼=

B2⊠Z(C2).

Witt equivalence is an equivalence relation, which allows us to define the following.

Definition 2.96. Witt equivalence classes together with the operation ⊠ form an abelian

groupW called the Witt group of modular tensor categories. By Theorem 2.82, the Witt

classes satisfy

• [B1][B2] = [B1⊠B2],
45

• 1W = [Vec],

• [B]−1 = [Brev],

where Brev is the reverse of B from Definition 2.81.

In fact, we may also consider the Witt group of non-degenerate braided fusion cate-

gories (Definition 2.40) and the Witt group of unitary modular tensor categories (Defi-

nition 2.67) by changing the choices of B1,B2 in Definition 2.95.

The Witt group W has interesting and surprising properties, a claim we support by

listing a few. Let us begin with some definitions we have seen before.

Proposition 2.97. If two pseudo-unitary (Definition 2.70) modular tensor categories

are Witt equivalent, then they share a central charge (Definition 2.55).

Mayhap more surprising is the following few properties.

Theorem 2.98. 1. The group W is abelian with infinite rank.

2. The torsion subgroup of W is an infinite 2-group with exponent 32 (any element of

W with finite order has order dividing 32).

3. The group W has infinitely-many elements with order 32.

It is straightforward to see that double constructions like the quantum double of

Construction 2.77 are Witt equivalent to Vec. Recall the other standard construction

of modular tensor categories from quantum groups (Definition 2.83). The following is a

conjecture that, in a sense, all modular tensor categories come from quantum groups.

Conjecture 2.99. The Witt group is generated by quantum group categories.

The reason we have demonstrated that the Witt group of modular tensor categories

is interesting is that equivalent characterizations of Witt equivalence can be given by

condensation, the primary subject of study in this thesis. See Section 3.1.3.2 for this

relationship.
46

2.8 Tensor Functors

2.8.1 Definition

Definition 2.100 ([17]). A tensor functor (T, J) is an exact and faithful k-linear monoidal

functor T with T (1) = 1, along with a functorial isomorphism J : T (−) ⊗ T (−) →

T (−⊗−) such that the following diagram commutes for all objects X, Y, Z.(
F (X)⊗ F (Y)

)
⊗ F (Z) F (X)⊗

(
F (Y)⊗ F (Z)

)

F (X ⊗ Y)⊗ F (Z) F (X)⊗ F (Y ⊗ Z)

F
(
(X ⊗ Y)⊗ Z

)
F
(
X ⊗ (Y ⊗ Z)

)

αF (X),F (Y),F (Z)

JX,Y ⊗idF (Z) idF (X) ⊗JY,Z

JX⊗Y,Z JX,Y ⊗Z

F (αX,Y,Z)

A tensor equivalence is a tensor functor that is also an equivalence of categories.

The requirement that a tensor functor be exact and faithful is imposed by (and

perpetuated by the disciples of) [17], but it is not universal.

2.8.2 Skeletalization

We see later that condensation, the primary subject of study in this thesis is a tensor

functor. It will help with computations to have a skeletal description of a tensor functor

in the spirit of Section 2.2.1. The description in this section is a slight modification of

[11, Chapter 4]. See there for greater detail.

Consider a tensor functor T : C → D between skeletal categories. Anticipating the

notation of [16] that we will attempt to explain in Section 4.1, take a label set {ai} for C

and a label set {ri} for D. For any two labels a, b ∈ {ai}, the map J is an isomorphism

J : T (a)⊗D T (b)→ T (a⊗C b).

As we did with the associativity and the braiding isomorphisms in Section 2.2.1, we would
47

like to draw trees to fix a basis for each side of the J isomorphism.

On the left, we have T (a) ⊗D T (b) in D. Write T (a) =
⊕

mjrj. For each rj (with

mj > 0), there is an obvious embedding rj ↪→ T (a). For each integer 1 < m < mj,

let Iarj(m) be the embedding of rj into the m-th copy of rj in T (a). Do the same for

T (b) =
⊕

njrj. Then for any r, s, t ∈ {rj} and choice of tensor product morphism

ρ : t→ r⊗D s (see Section 2.2.1), we can draw a picture in D as follows. In keeping with

[11], we use a dot to denote the morphism Iar (m), which is the step at which the tensor

functor is applied.

t

ρ

r

m

s

n

T (a) T (b)

On the right, we have T (a⊗C b). As in Section 2.2.1, we may choose tensor product

morphisms α : c → a ⊗C b for each c ∈ {ai} with Nab
c > 0. For each such c, we write

T (c) =
⊕

ℓjrj as we did with T (a) and T (b) above. Then for each t ∈ {rj}, this gives us

a picture in D as follows.

t

T (c)
ℓ

T (α)

T (a⊗C b)

Now for any three labels a, b of C and t of D, ranging over all admissible choices of

r, s,m, n, ρ on the one hand and c, ℓ, α on the other gives bases for the vector spaces

Hom(t, T (a)⊗D T (b)) = Hom(t, T (a⊗C b)). Composing the former with the isomorphism

J from Definition 2.100 gives two bases for Hom(t, T (a⊗C b)), and we can present J as a

list of change-of-basis matrices as we did with the associator and braiding in Section 2.2.1.

48

The picture here might be presented as follows.

t

ρ

r

m

s

n

J

T (a⊗C b)

=
∑
(c,ℓ,α)

T abt;(c,ℓ,α),(r,m,s,n,ρ)

t

T (c)
ℓ

T (α)

T (a⊗C b)

As with the associator in the F -symbols, we may present this in shorthand as the follow-

ing.

t

ρ

r

m

s

n

T (a) T (b)

=
∑
(c,ℓ,α)

T abt;(c,ℓ,α),(r,m,s,n,ρ)

t

T (c)
ℓ

T (α)

T (a⊗C b)

(2.18)

Definition 2.101. In analogy with the F -symbols and R-symbols, the coefficients of

Equation 2.18 will be called T -symbols.

When working with a multiplicity-free category, we need not specify the morphisms

denoted by Greek letters, and these T -symbols reduce to the following.

t

r

m

s

n

T (a) T (b)

=
∑
(c,ℓ,α)

T abt;(c,ℓ),(r,m,s,n)

t

T (c)
ℓ

T (a⊗C b)

Notably for us in Chapter 4, these T -symbols are coefficients that convert from a

basis in which the tensor product is applied after T to a basis in which T is applied after

taking a tensor product.

49

Chapter 3

Condensation of Algebras

Anyon condensation is really just the process of taking a category of modules over an

algebra to produce a sort of categorical quotient by the algebra. This process is expressed

by a tensor functor from the parent category to the new condensed module category. The

interest for those who call this functor condensation is in understanding phase transitions

in topologically ordered systems, which can be modeled by skeletal unitary modular

tensor categories.

This chapter consists of four main sections. In Section 3.1, we provide all of the

relevant definitions of condensable algebras and condensation in the setting of modu-

lar tensor categories. Of interest may be the side-by-side presentation of two well-known

equivalent definitions of condensation with unified notation. Section 3.2 gives this equiva-

lence explicitly and provides some discussion. Section 3.3 provides some useful examples

of condensation that continue to appear throughout this thesis. Finally, Section 3.4

presents results determining the data of the condensed category in terms of the data of

the parent category.

50

3.1 Premliminaries

3.1.1 Condensable Algebras

Definition 3.1. [11] Given a modular tensor category B, an algebra (A,m, η) (of Defi-

nition 2.92) is called condensable if it is

1. Commutative: m ◦ cA,A = m, where cA,A is the braiding,

2. Connected : Hom(1,A) ∼= C,

3. Separable: m admits a splitting ∆: A → A⊗A that is a morphism of (A,A)-

bimodules.

In the graphical calculus of Section 2.2, we may draw conditions 1 and 3 respectively as

A A

m

A

=

A A

m

A

and

A A

∆

m

A A

=

A A

m

∆

A A

=

A A

∆

m

A A

. (3.1)

In the future, we may not explicitly label m and ∆, and it should be understood that

A A

A

=

A A

m

A

,

A

A A

=

A
∆

A A

.

51

Remark 3.2. Note the similarity to the Frobenius algebra of Definition 2.94. Algebras

related to condensable algebras go by several names in the literature. Commutative

separable algebras are called étale in [13]. A condensable algebra is called Lagrangian

if FPdim(A)2 = FPdim(B) (see Definition 2.69 for FPdim). In [35], it is demonstrated

that condensable algebras come with a connected commutative symmetric normalized-

special Frobenius algebra structure as in [22]. Renormalizing gives the strongly separable

Frobenius algebra of [38].

Proposition 3.3. An algebra A ∼=
⊕

ai in a modular category is commutative if and

only if θai = 1 for all i.

Proof. [22, Proposition 2.25]

3.1.2 Condensation

In all that follows, we typically consider a modular tensor category B and a condensable

algebra (A,m, η). Since we work with both the parent category B and the new condensed

category, it is critical to keep track of which category our morphisms belong to. Where

the symbols Hom, ◦, ⊗, and c are not labelled, they refer to HomB, ◦B, ⊗B, and cB, the

hom set, composition, tensor product, and braiding of B.

We now provide two equivalent descriptions of the condensed category. The first is

RepA, the category of A-modules over B, developed by [5, 45, 30]. We use many of the

conventions of [30]. We present this definition first though we will focus on it more in

Chapter 4.

Definition 3.4. Consider a modular tensor category B with a condensable algebra

(A,m, η). The category RepA is defined with

• objects (X,µX), where X ∈ Obj(B) and µX ∈ HomB(A⊗X,X) such that

1. µX ◦ (m⊗ idX) = µX ◦ (idA⊗µX),

52

2. µX ◦ (η ⊗ idX) = idX ,

• intertwiner morphisms

HomRepA

(
(X,µX), (Y, µY)

)
=
{
f ∈ HomB(X, Y)

∣∣∣ f ◦ µX = µY ◦ (idA⊗f)
}
.

In the graphical calculus of B, an object of RepA is a pair (X,µX) such that

A A X

µX

X

=

A A X

µX

µX

X

X

µX

X

=

X

X

(3.2)

and a morphism f : (X,µX)→ (Y, µY) is a morphism of B such that

A X

µX

f

Y

=

A X

f

µY

Y

(3.3)

When it is unlikely to cause confusion, we may write HomA((X,µX), (Y, µY)) or even

HomA(X, Y) instead of HomRepA((X,µX), (Y, µY)). Morphisms µX will not be labeled,

and it should be understood that

A X

X

=

A X

µX

X

.

Definition 3.5. Consider the category RepA as defined in Definition 3.4. The subcat-

egory consisting of objects (X,µX) with µX ◦ cX,A ◦ cA,X = µX is called Rep0A. These

modules are referred to as dyslectic by [45] and local by [30]. They are called deconfined

objects in the physics literature.

53

Remark 3.6. [30, Theorem 4.5] shows that when the algebra A is condensable, the

category Rep0A is a modular tensor category.

The second definition of condensation, which we will be relying on for much of this

chapter, is due to [38]. Section 3.2 discusses the equivalence of these two definitions.

Definition 3.7. Consider a (strict) modular tensor category B with condensable algebra

(A,m, η). Define a co-monoid structure so that (A,m, η,∆, ϵ) is a strongly separable

Frobenius algebra (see Remark 3.2). Then consider a new tensor category B̃A defined as

follows.

• Obj
(
B̃A

)
= Obj (B)

• X ⊗B̃A
Y = X ⊗ Y

• HomB̃A
(X, Y) = Hom(A⊗X, Y)

• For f ∈ HomB̃A
(X, Y), g ∈ HomB̃A

(Y, Z), the composition

g ◦B̃A
f = g ◦ (idA⊗f) ◦ (∆⊗ idX)

A Y

g

Z

◦B̃A

A X

f

Y

=

A X

f

g

Z

• If f ∈ HomB̃A
(W,Y), g ∈ HomB̃A

(X,Z), the tensor product

f ⊗B̃A
g = (f ⊗ g) ◦ (idA⊗ cA,W ⊗ idX) ◦ (∆⊗ idW ⊗ idX)

54

A W

f

Y

⊗B̃A

A X

g

Z

=

A W X

f g

Y Z

The condensed category BA is the idempotent completion of B̃A, presented explicitly

below.

• Obj (BA) =
{
(X, p)

∣∣∣ X ∈ Obj(B), p = p2 ∈ EndB̃A
(X)

}
. In the graphical calculus

of the parent category, this is pairs (X, p) such that

A X

p

X

=

A X

p

p

X

. (3.4)

When p = (idX)B̃A
= (ϵ⊗ idX)B, we may write X instead of (X, idX).

• intertwiner morphisms

HomBA

(
(X, p), (Y, q)

)
=
{
f ∈ HomB̃A

(X, Y)
∣∣∣ f ◦B̃A

p = f = q ◦B̃A
f
}

These are morphisms from the parent category with

A X

p

f

Y

=

A X

f

Y

=

A X

f

q

Y

. (3.5)

55

Again where there is little chance of confusion, we will write HomA instead of HomBA ,

and we will not explicitly label p morphisms so that

A X

X

=

A X

p

X

.

Definition 3.8. Following the convention for RepA, we write B0
A for the deconfined

part of BA consisting of objects with consistent θ morphisms.

Remark 3.9. Notice that Definition 3.4 uses only the algebra structure on A while

Definition 3.7 also uses the co-algebra structure. Indeed the co-algebra structure is not

utilized at all by [30]. Section 3.2 explores the equivalence of these two definitions and

why the algebra structure by itself is not missing information in, e.g. Lemma 3.14,

Remark 3.19. Section 3.2.1 is devoted to further discussion of the relationship between

the two definitions of condensation.

In both definitions of condensation (since they are equivalent), the resulting category

is a fusion category. If A is condensable, the subcategory Rep0A or B0
A is modular.

Often, we are interested only in this modular part of the result, and we discard the other

objects.

Also in both definitions of condensation, we have described a construction of a new

category. Condensation is then best described as a tensor functor T : B → RepA or

T : B → BA.

Remark 3.10. We will use this functor more in Chapter 4. In Section 3.4, we will write

T (X) ∼=
⊕
j

njiYj

as a way to refer to images of objects under condensation generally in terms of a label

set {Yj} for the condensed category.

56

Remark 3.11. It is known ([11]) that the forgetful functor is right adjoint to the con-

densation functor. This is an application of tensor-hom adjunction.

3.1.3 Motivations

3.1.3.1 Topological Phases of Matter and Gauging

By cooling them near absolute zero, it is possible to have many bosons occupy the same

lowest quantum state. This forms a phase of matter called a Bose-Einstein condensate.

Bose-Einstein condensation can explain some interesting phenomena, such as supercon-

ductivity.

Anyon condensation takes its name from Bose-Einstein condensation. In a topological

phase of matter, anyons can form a condensate in the same way. This is the condensable

algebra A. The work of this thesis is to determine the new anyon system upon formation

of this condensate. For more on anyon condensation, refer to [8].

In the physics literature, condensation is also known as an inverse to a process called

gauging. Gauging is the sequential process of defectification followed by orbifolding. The

reverse process is called coring and consists of condensation followed by deconfinement.

The schematic for the relationship is as follows.

B0 BA = B0⊕B1

B

Defectification

Deconfinement

Orbifolding Condensation

Here B0 is the category Rep0A from Definition 3.5 or B0
A from Definition 3.8. The terms

orbifolding and condensation are also known as equivariantization and deequivariantiza-

tion, respectively. For this reason, condensation and its adjoint functor are sometimes

called D and E. For more on gauging, refer to [10, 3].

57

3.1.3.2 Witt Equivalence

Interestingly for us, Witt equivalence (Definition 2.95) can be expressed in terms of

condensation. In this subsubsection, we do not choose between Definition 3.4 and Defi-

nition 3.7, but we do use the notation BA and B0
A for the convenience of specifying the

category B and the algebra A. These results are due to [13].

Proposition 3.12. Consider a modular tensor category B with a condensable algebra A.

Then [B0
A] = [BA] in W, the Witt group of modular tensor categories.

Since gauging is the reverse of process of condensation, it is not surprising that Witt

class is also preserved by gauging.

It turns out that invariance of Witt class under condensation is quite significant. Witt

equivalence can be presented equivalently in terms of condensation. Recall Definition 2.81

of the reverse of a braided fusion category.

Theorem 3.13. Let B1,B2 be modular tensor categories. The following are equivalent.

Equivalences are all braided.

1. B1, B2 are Witt equivalent.

2. There exists a fusion category C such that B1⊠Brev
2
∼= Z(C).

3. There is a condensable algebra A in B1⊠Brev
2 with (B1⊠Brev

2)0A
∼= Vec (so that A

is a Lagrangian algebra defined in Remark 3.2).

4. There exist a modular tensor category B and condensable algebras A1,A2 in B such

that B0
A1
∼= B1 and B0

A2
∼= B2.

5. There exist condensable algebras A1 in B1 and A2 in B2 such that B1
0
A1
∼= B2

0
A2

.

Clearly, a better understanding of condensation should be helpful in understanding

the Witt group and may provide insight toward answering questions like Conjecture 2.99.

58

3.2 Equivalence of Definitions

The two definitions of condensation given in Section 3.1.2 yield equivalent categories [38],

but both descriptions are useful. The category BA is easier to compute examples of, but

the category RepA has provided a more clear theoretical framework. For some informal

thoughts on why, refer to the discussion of Section 3.2.1. To understand the translation

between the two presentations, we have produced an explicit functor F : BA → RepA

that fills in the equivalence proof from [38]. In this section, we construct this functor and

briefly discuss the relationship between the categories on either side.

Fix a modular tensor category B and a condensable algebra A with a strongly separa-

ble Frobenius algebra structure (A,m, η,∆, ϵ) as in [38]. Consider the categories BA and

RepA as defined in section 3.1.2. Denote by C the idempotent completion of a category

C.

Before proceeding, we establish a few facts we will need. The first of these illuminates

how facts about an algebra structure carry to a compatible co-algebra structure so that

RepA does not carry less information than BA. The next three are useful properties of

idempotent completions.

Throughout this section, we will often consider two objects X,X ′ and reserve Y for

a retract of a split idempotent. In order to keep expressions clean, we will often omit

parentheses in favor of an order of operations which performs tensor product before

composition. When in doubt, considering the domains of the morphisms in question

should clarify the intention. As long strings of tensor products and compositions become

particularly unwieldy, we will begin working with the graphical calculus of Section 2.2.

If desired, it should be straightforward to turn the pictures back into algebraic equations

and verify their validity.

Lemma 3.14. Consider a modular tensor category B with condensable algebra (A,m, η).

As in Remark 3.2, separability gives a co-algebra structure so that (A,m, η,∆, ϵ) is a

59

strongly separable Frobenius algebra of [38]. Suppose f ∈ Hom(A⊗X,A⊗X ′) such that

f ◦ (m⊗ idX) = (m⊗ idX′) ◦ (idA⊗f).

Then

(idA⊗f) ◦ (∆⊗ idX) = (∆⊗ idX′) ◦ f.

Loosely speaking, if f can slide past the multiplication, it can also slide past the co-

multiplication. Graphically, we have the following implication.

A A X

f

A X ′

=

A A X

f

A X ′

=⇒

A X

f

A A X ′

=

A X

f

A A X ′

Proof. Consider f as in the statement of the Lemma, and notice that

f = (m⊗ idX′) ◦ (idA⊗f) ◦ (idA⊗η ⊗ idX).

That is,

(m⊗ idX′) ◦ (idA⊗f) ◦ (idA⊗η ⊗ idX) =

A X

f

A X ′

=

A X

f

A X ′

= f,

(3.6)

60

where we have used the assumption on f and a property of the algebra A from Defini-

tion 2.92. Now

A X

f

A A X ′

=

A X

f

A A X ′

(by 3.6)

=

A X

f

A A X ′

(by 3.1)

=

A X

f

A A X ′

, (by 3.6)

as desired.

Lemma 3.15. In any category, given objects X, Y and morphisms r : X → Y , s : Y → X

with s ◦ r = p and r ◦ s = idY , then

r = idY ◦r = r ◦ s ◦ r = r ◦ p

and

s = s ◦ idY = s ◦ r ◦ s = p ◦ s.

61

Lemma 3.16. Any functor F : C → D induces a functor

F : C → D

(X, p) 7→ (F (X), F (p))

f 7→ F (f).

Proof. This is very straightforward.

(i) The pair (F (X), F (p)) is an object in D since F (X) ∈ Obj(D) and F (p) ◦ F (p) =

F (p ◦ p) = F (p).

(ii) For any f : (X, p)→ (Y, q), we have F (f) ∈ HomD(F (X), F (Y)) and

F (f) ◦ F (p) = F (f ◦ p) = F (f) = F (q ◦ f) = F (q) ◦ F (f).

(iii) Since id(X,p) = p, we have

F (id(X,p) = F (p) = id(F (X),F (p) .

(iv) For morphisms f, g,

F (g ◦ f) = F (g ◦ f) = F (g) ◦ F (f).

Lemma 3.17. Given any idempotent complete category C, there is a category equivalence

F : C → C from the idempotent completion of C to C.

Proof. We first define F . Consider an object (X, p) ∈ Obj(C). Since C is idempotent

complete, there exists an object Y ∈ Obj(C) and morphisms r, s such that s ◦ r = p and

r ◦ s = idY . For two objects (X, p), (X ′, p′) with morphism f : (X, p)→ (X ′, p′), consider

62

corresponding Y, r, s and Y ′, r′, s′. We define

F : (X, p) 7→ Y

f 7→ r′ ◦ f ◦ s.

This choice is well-defined since Y, r, s are unique up to isomorphism. Given any (X, p),

Y, r, s and Y ′, r′, s′ with s ◦ r = s′ ◦ r′ = p, r ◦ s = idY , and r′ ◦ s′ = idY ′ , we have a

morphism r′ ◦ s : Y → Y ′. The morphism r ◦ s′ : Y ′ → Y is an inverse since

r ◦ s′ ◦ r′ ◦ s = r ◦ p ◦ s = idY

and

r′ ◦ s ◦ r ◦ s′ = r′ ◦ p ◦ s′ = idY ′ ,

so Y ∼= Y ′.

To show that F is a category equivalence, we may show that it is both fully faithful

and essentially surjective.

(i) Given two objects (X, p), (X ′, p′) with images Y, Y ′, we need to verify that the

function

{f ∈ HomC(X,X
′) | f ◦ p = f = p′ ◦ f} → HomC(Y, Y

′)

f 7→ r′ ◦ f ◦ s

on hom sets is bijective. The function

HomC(Y, Y
′)→ {f ∈ HomC(X,X

′) | f ◦ p = f = p′ ◦ f}

f 7→ s′ ◦ f ◦ r

is clearly well-defined and is an inverse since

s′ ◦ r′ ◦ f ◦ s ◦ r = p′ ◦ f ◦ p = f

63

and

r′ ◦ s′ ◦ f ◦ r ◦ s = idY ′ ◦f ◦ idY = f.

(ii) Any object Y ∈ Obj(C) is the image of the object (Y, idY) ∈ Obj(C), so F is

essentially surjective.

As the lemmas suggest, the picture for this equivalence is as follows.

F

BA −−−−−−−→←−−−−−−− RepA −−−−−−−→←−−−−−−− RepA
G

It will be helpful to deal with some of these arrows separately. We will first define functors

F1 : BA → RepA, F2 : RepA → RepA and then let F = F2 ◦ F1. We will then define G

and show that it is adjoint to F .

Begin by considering a modification of the tensor functor in [30], F0 : B̃A → RepA,

defined by F0(X) = (A⊗X,m⊗ idX) and F0(f) = (idA⊗f)◦ (∆⊗ idX). By Lemma 3.16,

F0 induces a functor

F1 = F0 : BA → RepA

(X, p) 7→ ((A⊗X,m⊗ idX), idA⊗p ◦∆⊗ idX)

f 7→ idA⊗f ◦∆⊗ idX ,

which we can show is fully faithful and not quite essentially surjective.

(i) Given two objects (X, p) and (X ′, p′) with images ((A⊗X,m⊗ idX), idA⊗p ◦∆⊗

64

idX) and ((A⊗X ′,m⊗ idX′), idA⊗p′◦∆⊗ idX′), we need to verify that the function

HomBA

(
(X, p), (X ′, p′)

)
→ HomRepA

(
((A⊗X,m⊗ idX), idA⊗p ◦∆⊗ idX),

((A⊗X ′,m⊗ idX′), idA⊗p′ ◦∆⊗ idX′)
)

f 7→ idA⊗f ◦∆⊗ idX

(3.7)

on hom sets is bijective. Recall that a morphism f on the left hand side satisfies

equation 3.5, while a morphism f on the right hand side satisfies both equation 3.3

and the idempotent completion condition. So a morphism f on the right hand side

of 3.7 is a morphism f : A⊗X → A⊗X ′ such that

A A X

f

A X ′

=

A A X

f

A X ′

, (3.8)

A X

p

f

A X ′

=

A X

f

A X ′

=

A X

f

p′

A X ′

. (3.9)

To show the desired function is bijective, we propose an inverse function f 7→

ε⊗ idX′ ◦f as in [38]. We can verify that this is an inverse by composing

ε⊗ idX′ ◦(idA⊗f ◦∆⊗ idX) = f ◦ ε⊗ idA⊗ idX ◦∆⊗ idX = f

65

A X

X ′

f

=

A X

X ′

f
.

For the other composition, Lemma 3.14 gives us

idA⊗(ε⊗ idX′ ◦f) ◦∆⊗ idX =

A X

f

A X ′

=

A X

f

A X ′

= f. (3.10)

Finally, the image of the proposed inverse function lives in HomBA((X, p), (X
′, p′))

because

(ε⊗ idX′ ◦f) ◦BA p =

A X

f

X ′

= ε⊗ idX′ ◦f (by 3.9)

=

A X

f

X ′

=

A X

f

X ′

(by 3.9)

66

=

A X

f

X ′

= p′ ◦BA (ε⊗ idX′ ◦f). (by 3.10)

(ii) We see here that F1 is not quite essentially surjective (as far as we know). Let

((X,µ), p) be any object of RepA. Consider the object (X,µ) in BA. Then

F1

(
(X,µ)

)
= ((A⊗X,m⊗ idX), idA⊗µ ◦∆⊗ idX).

Now, consider the morphisms µ : A⊗X → X and idA⊗µ◦∆⊗ idX ◦η⊗ idX : X →

A⊗X, which give us compositions

µ ◦ (idA⊗µ ◦∆⊗ idX ◦η ⊗ idX) = µ ◦ η ⊗ idX = idX

and

(idA⊗µ ◦∆⊗ idX ◦η ⊗ idX) ◦ µ = idA⊗(µ ◦ idA⊗µ) ◦∆⊗ idA⊗X ◦η ⊗ idA⊗X

= idA⊗(µ ◦m⊗ idX) ◦∆⊗ idA⊗X ◦η ⊗ idA⊗X

= idA⊗µ ◦ (∆ ◦m)⊗ idX ◦η ⊗ idA⊗X

= idA⊗µ ◦∆⊗ idX .

These morphisms are not properly inverses, so F1 is not essentially surjective, but

we will later show that F is.

Next, since RepA is already idempotent complete, we may use Lemma 3.17 to produce

an equivalence F2. Consider an object ((X,µ), p) ∈ Obj(RepA) and choose Y ∈ Obj(B),

r : X → Y , s : Y → X so that s ◦ r = p and r ◦ s = idY . Consider the object (Y, r ◦ µ ◦

67

idA⊗s) ∈ Obj(RepA). This is an object as stated since it satisfies conditions 3.2.

(r ◦ µ ◦ idA⊗s) ◦ idA⊗(r ◦ µ ◦ idA⊗s) =

A A Y

s

r

s

r

Y

=

A A Y

s

p

r

Y

=

A A Y

s

p

r

Y

(by 3.3)

=

A A Y

s

r

Y

(by 3.2, Lemma 3.15)

= (r ◦ µ ◦ idA⊗s) ◦m⊗ idY

68

(r ◦ µ ◦ idA⊗s) ◦ η ⊗ idY =

Y

s

r

Y

=

Y

s

r

Y

= idY (by 3.2)

We also have r ∈ HomRepA((X,µ), (Y, r ◦ µ ◦ idA⊗s)) since

r ◦ µ = r ◦ p ◦ µ

= r ◦ µ ◦ idA⊗p

= (r ◦ µ ◦ idA⊗s) ◦ idA⊗r,

and s ∈ HomRepA((Y, r ◦ µ ◦ idA⊗s), (X,µ)) since

s ◦ (r ◦ µ ◦ idA⊗s) = p ◦ µ ◦ idA⊗s

= µ ◦ idA⊗p ◦ idA⊗s

= µ ◦ idA⊗s.

Thus, (Y, r ◦ µ ◦ idA⊗s) witnesses the splitting of p, and Lemma 3.17 says there is an

equivalence F2 : RepA → RepA defined by

F2 :
(
(X,µ), p

)
7→ (Y, r ◦ µ ◦ idA⊗s)

f 7→ r′ ◦ f ◦ s,

where r′ ◦ f ◦ s : (Y, r ◦ µ ◦ idA⊗s) → (Y ′, r′ ◦ µ′ ◦ idA⊗s′) arises from the splitting of

((X,µ), p) and ((X ′, µ′), p′).

Finally, we define F = F2 ◦ F1 to get a functor

F : BA → RepA

(X, p) 7→ (Y, r ◦m⊗ idX ◦ idA⊗s)

69

f 7→ r′ ◦ idA⊗f ◦∆⊗ idX ◦s.

Here we have taken f to be a morphism in BA from (X, p) to (X ′, p′). We are defining

r : A⊗X → Y , s : Y → A⊗X to satisfy s ◦ r = idA⊗p ◦∆ ⊗ idX and r ◦ s = idY and

r′ : A⊗X ′ → Y ′, s′ : Y ′ → A⊗X ′ to satisfy s′ ◦ r′ = idA⊗p′ ◦∆⊗ idX′ and r′ ◦ s′ = idY ′ .

Since F1, F2 are fully faithful, so is F .

Claim: The functor F is also essentially surjective.

Proof: Consider any object (X,µ) in RepA. We must find an isomorphic image under

F . Since µ : A⊗X → X satisfies equation 3.4, we may consider (X,µ) as an object in

BA and then consider

F
(
(X,µ)

)
= (Y, r ◦m⊗ idX ◦ idA⊗s).

Now, we consider morphisms µ ◦ s : Y → X and r ◦ η⊗ idX : X → Y , which are composi-

tions of the morphisms we considered in considering the surjectivity of F1. We see these

are now isomorphisms because

(µ ◦ s) ◦ (r ◦ η ⊗ idX) = µ ◦ (idA⊗µ ◦∆⊗ idX) ◦ η ⊗ idX

=

X

X

=

X

X

(by 3.2)

and

(r ◦ η ⊗ idX) ◦ (µ ◦ s) =
(
r ◦ (idA⊗µ ◦∆⊗ idX) ◦ η ⊗ idX

)
◦ (µ ◦ s) (by Lemma 3.15)

70

=

Y

s

r

Y

=

Y

s

r

Y

(by 3.2)

=

Y

s

r

Y

=

Y

s

r

Y

(by 3.1)

= r ◦ s (by Lemma 3.15)

= idY .

■

Since F is both fully faithful and essentially surjective, it is a category equivalence.

Now consider the following definition for G with (X,µ) ∈ Obj(RepA) and f ∈

HomRepA((X,µ), (Y, λ)).

G : RepA → BA

(X,µ) 7→ (X,µ)

f 7→ f ◦ µ

Claim: G is a functor.

71

Proof:

(i) We have (X,µ) ∈ Obj(RepA). To have (X,µ) ∈ Obj(BA), we need µ = µ2 in BA.

Observe that

µ ◦BA µ = µ ◦ (idA⊗µ) ◦ (∆⊗ idX)

= µ ◦ (m⊗ idX) ◦ (∆⊗ idX) (by 3.2)

= µ,

where we have normalized to have m ◦∆ = idA.

(ii) For each f ∈ HomRepA((X,µ), (Y, λ)), we have

G(f) = f ◦ µ : A⊗X → Y

with

G(f) ◦BA µ = f ◦ µ ◦BA µ

= f ◦ µ ◦ (idA⊗µ) ◦ (∆⊗ idX) = f ◦ µ = G(f) (by part (i))

= λ ◦ (idA⊗f) ◦ (idA⊗µ) ◦ (∆⊗ idX) (by 3.3)

= λ ◦BA (f ◦ µ)

= λ ◦BA G(f),

which satisfies condition 3.5 and makes G(f) a morphism of BA.

(iii) Identity morphisms are preserved since

G
(
id(X,µ)

)
= G (idX)

= idX ◦µ

= µ

= id(X,µ),

72

where the first id(X,µ) is in RepA and the last id(X,µ) is in BA.

(iv) Morphism composition is preserved. For f ∈ HomRepA((X,µ), (Y, λ)) and g ∈

HomRepA((Y, λ), (Z, ν)),

G(g) ◦BA G(f) = (g ◦ λ) ◦BA (f ◦ µ)

=

A X

f

Y

g

Z

=

A X

f

g

Z

(by 3.3)

=

A X

f

g

Z

(by part (i))

= G(g ◦ f).

■

It remains only to show that G is adjoint to F . Consider objects (X, p) ∈ Obj(BA),

(X ′, p′) ∈ Obj(RepA). We need a natural bijection

HomRepA

(
(Y, r ◦m⊗ idX ◦ idA⊗s), (X ′, p′)

)
←→ HomBA

(
(X, p), (X ′, p′)

)
or

73

{
f : Y → X ′ | f ◦ (r ◦m⊗ idX ◦ idA⊗s) = p′ ◦ (idA⊗f)

}
←→{

g : A⊗X → X ′ | g ◦ (idA⊗p) ◦ (∆⊗ idX) = g = p′ ◦ (idA⊗g) ◦ (∆⊗ idX)
}
. (3.11)

Consider the map

φ(f) = f ◦ r

with inverse

φ−1(g) = g ◦ s.

These images live in the correct sets. To see φ(f) lives in HomBA((X, p), (X
′, p′)), we

must verify that f ◦ r satisfies the condition on g in the correspondence of 3.11. Observe

that

(f ◦ r) ◦ (idA⊗p) ◦ (∆⊗ idX) =

A X

r

f

X ′

= f ◦ r (Lemma 3.15)

=

A X

r

f

X ′

=

A X

r

f

X ′

(by 3.1)

74

=

A X

r
s

r

f

X ′

(by definition of r, s)

=

A X

r

f

X ′

(by condition in 3.11)

= p′ ◦ (idA⊗(f ◦ r)) ◦ (∆⊗ idX).

To see φ−1(g) lives in HomRepA((Y, r ◦m ⊗ idX ◦ idA⊗s), (X ′, p′)), we must verify that

75

g ◦ s satisfies the condition on f in the correspondence of 3.11. Observe that

(g ◦ s) ◦ (r ◦m⊗ idX ◦ idA⊗s) =

A Y

s

r
s

g

X ′

=

A Y

s

p

g

X ′

(by definition of r, s)

=

A Y

s

g

p′

X ′

(by condition in 3.11)

=

A Y

s

g

p′

X ′

=

A Y

s

g

p′

p′

X ′

(by 3.1,3.2)

76

=

A Y

s

g

p′

X ′

(by condition in 3.11)

= p′ ◦ (idA⊗(g ◦ s)).

These maps are also inverses since

φ−1(φ(f)) = f ◦ r ◦ s

= f,

φ(φ−1(g)) = g ◦ s ◦ r

= g ◦ idA⊗p ◦∆⊗ idX

= g. (by condition in 3.11)

Finally, we show φ is natural. Consider morphisms f : (X ′, p′) → (X, p) in BA and

g : (χ, µ)→ (χ′, µ′) in RepA. We must show that the following diagrams both commute.

HomRepA(FX, χ) HomBA(X,Gχ)

HomRepA(FX
′, χ) HomBA(X

′, Gχ)

φ

(Ff)∗ f∗

φ

HomRepA(FX, χ) HomBA(X,Gχ)

HomRepA(FX, χ
′) HomBA(X,Gχ

′)

φ

g∗ (Gg)∗

φ

Given h ∈ HomRepA(F (X, p), (χ, µ)) = HomRepA((Y, r ◦ m ⊗ idX ◦ idA⊗s), (χ, µ)), we

have

f ∗ ◦ φ(h) = f ∗(h ◦ r) = h ◦ r ◦BA f

77

=

A X ′

f

r

h

χ

=

A X ′

p′

f

r

h

χ

(BA or 3.11)

= h ◦
(
r ◦BA (f ◦BA p

′)
)
= h ◦

(
(r ◦BA f) ◦BA p

′
)

=

A X ′

p′

f

r

h

χ

=

A X ′

r′
s′

f

r

h

χ

(by definition of r′, s′)

= φ(h ◦ r ◦ idA⊗f ◦∆⊗ idX′ ◦s′)

= φ ◦ (Ff)∗(h),

and

(Gg)∗ ◦ φ(h) = (Gg)∗(h ◦ r)

= (g ◦ µ) ◦BA (h ◦ r)

78

=

A X

r

h

µ

g

χ′

=

A X

r
s

r

h

g

χ′

(h ∈ HomRepA)

=

A X

p

r

h

g

χ′

(by definition of r, s)

79

=

A X

p

r

h

g

χ′

=

A X

p

r

h

g

χ′

(by 3.1)

= g ◦ h ◦ r (by 3.15)

= φ(g ◦ h)

= φ ◦ g∗(h).

3.2.1 Discussion

It may be helpful to review an example condensation from Section 3.3 for context before

reading this discussion.

Fix a modular tensor category B and condensable algebra A. We may notice that the

functor F is built on top of the functor F0, which is equal on objects to the condensation

tensor functor of [30]. That is, the equivalence between two definitions of condensation

is built on the condensation functor from the parent category to the condensed category.

In the diagram
B

BA RepA

T≈F0

F

,

the categories BA and RepA are the equivalent condensations of B, but the functor F is

naturally induced by the functor F0.

80

This illustrates an important difference between BA and RepA that we will need to

navigate while trying to port results from one to the other (e.g. Lemma 3.28). Fix an

object X in the parent category B. Condensation as defined by RepA is a tensor functor

taking X to A⊗X. Morally (up to idempotent completion), condensation as defined by

BA alters Hom sets and leaves objects as in B so that (X, p) ∼= (Y, q) ∼= · · · are separate

isomorphic objects.

To make this difference more concrete, consider X = 1. The unit object in RepA

is A. The unit object in BA is (1, id1) ∼= (X, idX) ∼= · · · for each simple X in the

decomposition A ∼= 1⊕
⊕

X nXX.

Since BA roughly preserves the objects of B, we still need the functor F0 to give

the new objects of RepA that all have proper module structures. The functor F is

constructed to do this exactly when necessary and keep morphisms straight.

A next reasonable question may be “When is this necessary?” Consider a simple

object X of B for which p = (idX)B̃A
= ϵ ⊗ idX is a projection in EndB̃A

(X) so that

(X, idX) is simple in BA. Such an object is called nonsplitting since it remains simple

through the condensation. In this case, when considering the image of (X, idX) under

F , we can (or must, since the choice is unique up to isomorphism) take Y = A⊗X,

r, s = idA⊗X , and indeed F reduces exactly to the definition of F0. In order to refer to it

later, we immortalize this observation in a remark.

Remark 3.18. Consider a modular tensor category B with condensable algebra A, and

let X be an object that does not split during condensation. The functor F reduces to

the functor F0 on X.

It is when X does split (or admits multiple idempotents) that the full definition of the

functor F is needed. The idea is that the image of each idempotent gives a subobject

of X that does not exist in B. In BA, these objects are denoted by pairing X with each

idempotent. Since RepA is idempotent complete, the subobject should exist, and we

call it Y . In either case, these subobjects that admit only a single idempotent or module
81

structure, respectively, are the new simple objects.

On a different note, recall the observation in Remark 3.9 that the algebra structure of

[30] and the Frobenius algebra structure of [38] somehow both get us to the same place.

The discussion preceding Remark 3.18 suggests the following elucidation of Remark 3.9.

Remark 3.19. The condensation functor of [30] acts on objects by X 7→ (A⊗X,m ⊗

idX). The point of this functor is to create module structures, especially when there is no

such structure on X alone. The definition of BA circumvents the need to modify objects

by using the co-algebra structure of A to define idempotents where the algebra structure

of A alone fails.

3.3 Condensation Examples

We present a few insightful examples to provide a more complete picture of the process

of computing condensations. The process follows the construction of the condensed

category in Definition 3.7. All of these examples are condensations of self-dual bosons,

which are helpful for seeing how the process often runs and for understanding the results

of Section 3.4, but are also relatively well-behaved. For a somewhat less nice example,

see Section 5.2.2. For more examples, one may refer to, e.g. [11, Section 5.2].

In what follows, the symbol ⊠ is the Deligne tensor product of Definition 2.75. Data

for the categories being used can be found in Section 2.3.2.

3.3.1 Ising ⊠ Ising to Z4

Let B be the Ising MTC, and consider B⊠B, the Deligne product of two copies of the

Ising MTC with simple object representatives {1⊠ 1, 1⊠σ, 1⊠ψ, σ⊠ 1, σ⊠σ, σ⊠ψ, ψ⊠

1, ψ ⊠ σ, ψ ⊠ ψ}. For brevity, we will write these as {11, 1σ, 1ψ, σ1, σσ, σψ, ψ1, ψσ, ψψ}.

The object A = 11⊕ψψ has a condensable algebra structure. Following the construction

of BA in Definition 3.7, the category (B⊠B)A has the same objects as the parent category

82

B⊠B, but with new morphism spaces. Notably,

HomA(11, ψψ) = HomB⊠B(11⊕ ψψ, ψψ) ∼= C,

HomA(1σ, ψσ) = HomB⊠B(1σ ⊕ ψσ, ψσ) ∼= C,

HomA(1ψ, ψ1) = HomB⊠B(1ψ ⊕ ψ1, ψ1) ∼= C,

HomA(σ1, σψ) = HomB⊠B(σ1⊕ σψ, σψ) ∼= C,

HomA(σσ, σσ) = HomB⊠B(σσ ⊕ σσ, σσ) ∼= C2 .

So in the category ˜(B⊠B)A, we have 11 ∼= ψψ, 1σ ∼= ψσ, 1ψ ∼= ψ1, σ1 ∼= σψ,

and σσ not simple. Since HomA(σσ,X) = {0} for each of the simple objects X =

11, 1σ, 1ψ, σ1, we realize σσ will, in the idempotent completion, be the sum of two

simple objects which were not simple (or even in existence) before. Taking the idem-

potent completion of ˜(B⊠B)A gives us a category (B⊠B)A with six simple objects

(11, id), (1σ, id), (1ψ, id), (σ1, id), (σσ, p), (σσ, q).

To determine the modular subcategory (B⊠B)0A, we observe

θ11 = 1 = 1 = θψψ,

θ1σ = eπi/8 ̸= −eπi/8 = θψσ,

θ1ψ = −1 = −1 = θψ1,

θσ1 = eπi/8 ̸= −eπi/8 = θσψ,

θσσ = eπi/4 = eπi/4 = θσσ.

So, the modular tensor category resulting from the condensation of 11⊕ψψ in Ising⊠Ising

has four simple objects (11, id), (1ψ, id), (σσ, p), (σσ, q) and a corresponding T -matrix

Diag[1,−1, eπi/4, eπi/4]. By the classification of modular tensor categories [47], this must

be the Z4 MTC with fusion rules

(1ψ, id)⊗ (σσ, p) ∼= (σσ, q),

83

(1ψ, id)⊗ (σσ, q) ∼= (σσ, p),

(σσ, p)⊗ (σσ, q) ∼= (11, id),

(σσ, p)⊗ (σσ, p) ∼= (σσ, q)⊗ (σσ, q) ∼= (1ψ, id).

3.3.2 Ising ⊠ Ising to Toric Code

Let B be the Ising MTC, and consider B⊠B, the Deligne product of one copy of the Ising

MTC with one copy of the Ising MTC with complex conjugate modular data. We can

again condense the object A = 11⊕ ψψ and follow the same process as in Section 3.3.1.

The process is independent of modular data up to complex conjugation until we must

find the θ morphisms inherited from B⊠B.

To determine the modular subcategory (B⊠B)0A, we observe

θ11 = 1 = 1 = θψψ,

θ1σ = e−πi/8 ̸= −e−πi/8 = θψσ,

θ1ψ = −1 = −1 = θψ1,

θσ1 = e−πi/8 ̸= −e−πi/8 = θσψ,

θσσ = 1 = 1 = θσσ.

So, the modular tensor category resulting from the condensation of 11⊕ψψ in Ising⊠Ising

has four simple objects (11, id), (1ψ, id), (σσ, p), (σσ, q) with T -matrix Diag[1,−1, 1, 1].

By the classification of modular tensor categories [47], this must be the Toric Code MTC

with fusion rules

(1ψ, id)⊗ (σσ, p) ∼= (σσ, q),

(1ψ, id)⊗ (σσ, q) ∼= (σσ, p),

(σσ, p)⊗ (σσ, q) ∼= (1ψ, id),

(σσ, p)⊗ (σσ, p) ∼= (σσ, q)⊗ (σσ, q) ∼= (11, id).

84

3.3.3 SU(2)k to Minimal Models

Here we demonstrate the first in a family of examples. A more general treatment of

the relationship between SU(2)k and the minimal model conformal field theories can be

found in Corollary 3.35 and in Section 5.1.1.

Consider just the modular tensor categories SU(2)1 and SU(2)2. It is common to

name the simple objects in these categories {1, s} and {1, σ, ψ}, respectively. The data

we will need is given below.

s⊗ s = 1

θ1 =1 θs = i

σ ⊗ ψ = σ ψ ⊗ ψ = 1

σ ⊗ σ = 1⊕ ψ

θ1 = 1 θσ = e
3πi
8 θψ = −1

Now, let B be the modular tensor category SU(2)1⊠SU(2)1⊠SU(2)2 with condensable

algebra A = 111⊕ ssψ. Note that

HomA(111, ssψ) ∼= C,

HomA(11ψ, ss1) ∼= C,

HomA(1sσ, s1σ) ∼= C,

HomA(11σ, ssσ) ∼= C,

HomA(1s1, s1ψ) ∼= C,

HomA(1sψ, s11) ∼= C .

The θ values of the pairings in the right column do not match, so those objects are

relegated to the confined part of the condensed category. The θ values of the pairings

in the right column do match, so B0
A consists of three simple objects classes (111, id),

(11ψ, id), (1sσ, id) with θ values 1,−1, eπi/8, respectively. With fusion rules

(11ψ, id)⊗ (11ψ, id) ∼= (111, id),

(1sσ, id)⊗ (11ψ, id) ∼= (1sσ, id),

(1sσ, id)⊗ (1sσ, id) ∼= (111, id)⊕ (11ψ, id),

we have recovered the Ising MTC, which is also the minimal modelM(4, 3).

85

3.4 Determining the Condensed Category

Given a modular tensor category B and a condensable algebra A, we would like to

determine the data of the condensed category from the data of the original. To do so,

we establish some terminology motivated by the examples of Section 3.3.

In all of the examples, we find that some distinct simple objects become isomorphic

after condensation. For example, in the Ising⊠ Ising→ Z4 condensation of Section 3.3.1,

the objects 11 and ψψ are sent to the objects (11, id) and (ψψ, id), respectively. While

11 and ψψ are nonisomorphic simple objects of Ising ⊠ Ising, their images in the new

category are isomorphic. In this case, we may say that 11 and ψψ have been identified

and write [11] or [ψψ] to represent both of the two isomorphic images.

In the two Ising examples (Sections 3.3.1 and 3.3.2), we also saw the object σσ split

into two simple objects (σσ, p), (σσ, q). This is a common phenomenon that complicates

the condensation process. The results in this section aim to explore what happens when

objects split.

As usual, we will mostly be working in a modular tensor category B with condensable

algebra A. We also fix a label set {ai}i∈I for B.

3.4.1 Condensing a Boson

We focus on the simplest case (and the only one we have seen so far) where A = 1⊕B

for a boson B.

Definition 3.20. A simple object B in a modular category is called bosonic if θB = 1.

Remark 3.21. Proposition 3.3 implies that if A =
⊕

i niai is a condensable algebra,

then ai is bosonic for all i with ni ̸= 0.

Definition 3.22. A bosonic object B in a modular category is called a boson if dim(B) =

1.

86

Lemma 3.23. If a boson B is self-dual, then B ⊗B ∼= 1.

Proof. Since B is self-dual, we have B ⊗ B ∼= 1⊕
⊕

i niai. Since dim(B) = 1, we know

dim(B ⊗B) = 1. Since dim(1) = 1, we must have ni = 0 for all i.

Proposition 3.24. If B is a self-dual boson, then A = 1⊕B is condensable.

Proof. Consider the object A = 1⊕B for a self-dual boson B. By Lemma 3.23, the

object A is a direct sum of the simple objects of a subcategory equivalent to Rep(Z2)

and has a Z2 action. Then we may use, e.g. [31, Theorem 4.2].

Remark 3.25. The object A = 1⊕B need not be condensable if B is a boson that is

not self-dual. In fact, there exist conditions ensuring it is not, as in the no-go theorem

of [43]. One of the objects of work on condensation is to find necessary and sufficient

conditions for condensability that are easier to decide in practice than the separability

condition of Definition 3.1.

Lemma 3.26. If B is a self-dual boson and X is simple, then B ⊗X is also simple.

Proof. Let B be a self-dual boson and X be a simple object. Consider B⊗X ∼=
⊕

niai.

Then

X ∼= B ⊗B ⊗X ∼=
⊕

ni(B ⊗ ai).

But X is simple, so we must have ni = 1 for some i and nj = 0 for all j ̸= i. Then B⊗X

is simple.

Lemma 3.27. Let B be a modular tensor category with self-dual boson B, condensable

algebra A = 1⊕B, and simple object X. If X splits, then it splits into exactly two objects

(X, p), (X, q).

Proof. Consider the situation of the statement. If X splits, then the dimension of

HomBA(X,X) = HomB(A⊗X,X) is greater than one. Lemma 3.26 guarantees A⊗X ∼=

X ⊕X so that X splits into two objects (X, p), (X, q).
87

We now present two facts about dimensions that will be useful. The first is (at least

implicitly) known to [30, 38] and can be stated in greater generality than how it appears

here. The specific formulation presented here will be helpful to us for reasons articulated

in the discussion of Section 3.2.1. It will also help us resist the confusion wrought by

the conventional difference mentioned in Remark 2.46. Our global dimension agrees with

that of [30], while the global dimension of [38] agrees with that of [17]. Refer to [30] for

a minimally confusing presentation of the same results in RepA instead of BA.

Lemma 3.28. Let B be a modular tensor category with self-dual boson B, condensable

algebra A = 1⊕B, and simple object X. Then

dimB̃A
(X) = dimB(X).

If X does not split, then

dimBA([X]) = dimB(X).

If X does split, then

dimBA

(
(X, p)

)
+ dimBA

(
(X, q)

)
= dimB(X).

Proof. In Section 3.2, we used a functor F0 : B̃A → RepA. Since F0 is a tensor functor,

dimB̃A
(X) = dimRepA(F0(X)) = dimB(X),

where the second equality comes from [30, Theorem 1.18].

If X does not split, then Remark 3.18 completes the proof, and

dimBA([X]) = dimRepA(A⊗X) = dimB(X).

If X does split, then Lemma 3.27 says X splits into two objects (X, p), (X, q). Again

we can say

dimBA

(
(X, p)⊕ (X, q)

)
= dimBA

(
(X, idX)

)
= dimRepA(F0(X)) = dimB(X).

88

Lemma 3.29. Let B be a modular tensor category with condensable algebra A. Then

dim(B0
A) =

dim(B)
dimB(A)

.

Proof. [30, Theorem 4.5] by way of the tensor equivalence of Section 3.2.

Another known result that we will use later is the following.

Lemma 3.30. In any modular tensor category B with condensable algebra A, condensa-

tion preserves the central charge from Definition 2.55.

Proof. [30, Theorem 4.5]

We present one last lemma before diving in.

Lemma 3.31. Consider a modular tensor category with simple objects X, Y and a self-

dual boson B. Then

SX,Y = SB⊗X,Y .

Proof. We first note that (B ⊗X)∗ ∼= B ⊗X∗ since B is self-dual. Then

N
(B⊗X)∗,Y
Z = dim

(
Hom

(
Z, (B ⊗X)∗ ⊗ Y

))
= dim

(
Hom

(
B ⊗ Z,X∗ ⊗ Y

))
= NX∗,Y

B⊗Z .

Now since θB⊗Z = θZ and dim(B ⊗ Z) = dim(Z) for all simple objects Z,

S̃B⊗X,Y = θ−1
B⊗Xθ

−1
Y

∑
Z

N
(B⊗X)∗,Y
Z θZ dim(Z) (Proposition 2.53)

= θ−1
X θ−1

Y

∑
Z

NX∗,Y
B⊗Z θB⊗Z dim(B ⊗ Z)

= S̃X,Y .

Multiplying by the dimension of the category gives the result for the S-matrix.
89

3.4.1.1 Modular Data

In this section, we begin with a modular tensor category B with condensable algebra A,

and we try to determine the modular data of the condensed category B0
A. The primary

result is Theorem 3.37, but other results using different proof techniques are also included.

We begin with the following.

Theorem 3.32. Let B be a modular tensor category with condensable algebra A = 1⊕B

for a self-dual boson B. Suppose condensing A does not cause any simple objects to split.

Then for simple objects [X], [Y] ∈ Obj(B0
A), we have

S̃[X],[Y] = S̃X,Y , T[X] = TX .

Proof. Consider a modular tensor category B with a condensable algebra A = 1⊕B for a

self-dual boson B. Assume no simple objects split in the category BA. Then B⊗X ≇ X

for any simple objects X of B. Then by Lemma 3.26, for any simple object X,

HomA(X, Y) = HomB(A⊗X, Y) ∼= HomB(X ⊕B ⊗X, Y) ∼= C

exactly when Y ∼= X or Y ∼= B ⊗X. Note that no object is unpaired since B ⊗X ≇ X.

Thus, the deconfined simple objects of BA (up to isomorphism) are the pairs [X] =

{X,B⊗X} with θX = θB⊗X . The T -matrix follows immediately since T[X] = θX = θB⊗X .

For the S̃-matrix, we observe

S̃[X],[Y] = θ−1
[X]θ

−1
[Y]

∑
[Z]

N
[X]∗,[Y]
[Z] θ[Z] dim([Z]) (Proposition 2.53)

= θ−1
X θ−1

Y

∑
[Z]

N
[X]∗,[Y]
[Z] θ[Z] dim([Z]),

which is well-defined since θX = θB⊗X . Note that

N
[X]∗,[Y]
[Z] = dim

(
HomBA

(
(Z, idZ), (X

∗, idX∗)⊗ (Y, idY)
))

= dim
(
HomB

(
Z,X∗ ⊗ Y ⊕B ⊗X∗ ⊗ Y

))
90

= NX∗,Y
Z +NB⊗X∗,Y

Z . (B self-dual)

We have

NB⊗X∗,Y
Z = dim

(
HomB(Z,B ⊗X∗ ⊗ Y)

)
= dim

(
HomB(B ⊗ Z,X∗ ⊗ Y)

)
= NX∗,Y

B⊗Z

since B is self-dual, so

S̃[X],[Y] = θ−1
X θ−1

Y

∑
[Z]

(
NX∗,Y
Z +NX∗,Y

B⊗Z
)
θ[Z] dim([Z]).

Since each [Z] is an equivalence class {Z,B ⊗ Z}, the sum can be expanded. Using

Lemma 3.28 and the fact that θZ = θB⊗Z , dim(Z) = dim(B ⊗ Z), we find

S̃[X],[Y] = θ−1
X θ−1

Y

∑
[Z]

(
NX∗,Y
Z θZ dim(Z) +NX∗,Y

B⊗Z θB⊗Z dim(B ⊗ Z)
)

= θ−1
X θ−1

Y

∑
Z

NX∗,Y
Z θZ dim(Z),

and S̃[X],[Y] = S̃X,Y , as desired.

Remark 3.33. Theorem 3.32 aims to give full modular data for the condensed category,

so it is restricted to cases with no splitting objects. The S- and T -matrix entries still

hold for nonsplitting X, Y even when there are other objects that split. If the object Z

splits, tensor functoriality of condensation guarantees that either none or all of the split

objects from Z will count toward the sum of S̃[X],[Y]. Then Lemma 3.28 guarantees that

the sum of dimensions of the splitting objects will leave the overall sum unchanged. This

allows us to state Theorem 3.32 in slightly greater generality at the cost of the simple

classification of condensed simple objects.

Theorem 3.34. Let B be a modular tensor category with condensable algebra A = 1⊕B

for a self-dual boson B. If X, Y are simple objects of B that do not split and [X], [Y] ∈

Obj(B0
A), then

S̃[X],[Y] = S̃X,Y , T[X] = TX .

91

In calculating fusion coefficients, we found that N [X],[Y]
[Z] = NX,Y

Z + NX,Y
B⊗Z . Indeed if

X ⊗ Y (or X∗ ⊗ Z or Y ∗ ⊗ Z) is simple, at least one of the two summands is zero, and

N
[X],[Y]
[Z] is equal to the other. Consider the spaces

Hom(Z,X ⊗ Y) ∼= Hom(X∗ ⊗ Z, Y) ∼= Hom(Y ∗ ⊗ Z,X),

Hom(B ⊗ Z,X ⊗ Y) ∼= Hom(X∗ ⊗ Z,B ⊗ Y) ∼= Hom(Y ∗ ⊗ Z,B ⊗X).

Lemma 3.26 says B ⊗X,B ⊗ Y,B ⊗ Z are simple, so at most one of these Hom spaces

can be positive-dimensional. By choosing the right representative of [Z] = {Z,B ⊗ Z},

we can always have N [X],[Y]
[Z] = NX,Y

Z . This is simply confirming that the tensor product

in BA works as we want it to on nice nonsplitting objects.

Sadly, Theorem 3.34 makes no statements about splitting objects. The difficulty in

considering splitting objects comes from the somewhat opaque definition of the tensor

product as a coequalizer, which complicates the fusion coefficient calculation in the proof

(we will make use of the coequalizer in Chapter 4). However, the nonsplitting case is

already interesting as it includes the minimal model conformal field theories.

Corollary 3.35 ([34]). If B = SU(2)k ⊠ SU(2)1 ⊠ SU(2)k+1 and A = 000 + k1(k + 1),

then the modular data of B0
A are the same as those of the minimal modelM(k+3, k+2).

Proof. Refer to Section 5.1.1 for the condensation of SU(2)k⊠SU(2)1⊠SU(2)k+1 to the

minimal modelM(k + 3, k + 2).

Let us now tackle the more complicated situation in which there exist simple objects

X with B ⊗X ∼= X. We may begin to generalize with the following result of [42] using

the notation of Remark 3.10.

Lemma 3.36 ([42]). Consider a (restricted) condensation functor T : B → B0
A from a

rank n modular tensor category B with label set {Xi} to a rank m modular tensor category

B0
A with label set {Yj} so that

T (Xi) ∼=
⊕
j

njiYj.

92

Define an m× n condensation matrix n by

nj,i = nji .

Then,

SAn = nSB,

TAn = nTB,

where {SB, TB} is the modular data of the category B and {SA, TA} is the modular data

of the category B0
A.

The condensation matrix is demonstrated in Example 3.42, but a consequence of this

lemma is presented first. Recall from Lemma 3.27 that any splitting objects decompose

as the sum of exactly two simple objects in B0
A.

Theorem 3.37. Consider a modular tensor category B with a self-dual boson B and a

condensable algebra A = 1⊕B. If B has some nonsplitting objects 1, X, . . . and some

splitting objects Y, Z, . . . with S-matrix

SB =



1 B X B⊗X ··· Y Z ···

1 S1,1 S1,B S1,X S1,B⊗X S1,Y S1,Z

B SB,1 SB,B SB,X SB,B⊗X . . . SB,Y SB,Z . . .

X SX,1 SX,B SX,X SX,B⊗X SX,Y SX,Z

B⊗X SB⊗X,1 SB⊗X,B SB⊗X,X SB⊗X,B⊗X SB⊗X,Y SB⊗X,Z

...
...

. . .
...

Y SY,1 SY,B SY,X SY,B⊗X . . . SY,Y SY,Z . . .

Z SZ,1 SZ,B SZ,X SZ,B⊗X SZ,Y SZ,Z

...
...

...
. . .



,

93

then condensing A gives a new S-matrix of the form

SA =



[1] [X] ··· (Y,p) (Y,q) (Z,p) (Z,q) ···

[1] S1,1 + SB,1 S1,X + SB,X . . . S1,Y S1,Y S1,Z S1,Z . . .

[X] SX,1 + SB⊗X,1 SX,X + SB⊗X,X SX,Y SX,Y SX,Z SX,Z

...
...

. . .
...

(Y,p) SY,1 SY,X a b e f

(Y,q) SY,1 SY,X . . . b a f e . . .

(Z,p) SZ,1 SZ,X e f c d

(Z,q) SZ,1 SZ,X f e d c

...
...

...
. . .



,

where

a+ b = SY,Y ,

c+ d = SZ,Z ,

e+ f = SY,Z = SZ,Y ,

...

.

Proof. For simplicity, we disregard objects that are confined after condensation. We

94

begin by defining a condensation matrix

n =



1 B X B⊗X ··· Y Z ···

[1] 1 1 0 0 . . . 0 0 . . .

[X] 0 0 1 1 0 0

...
...

. . .
...

. . .

(Y,p) 0 0 0 0 1 0

(Y,q) 0 0 0 0 . . . 1 0 . . .

(Z,p) 0 0 0 0 0 1

(Z,q) 0 0 0 0 0 1

...
...

. . .
...

. . .


and a condensed S matrix SA given by



[1] [X] ··· (Y,p) (Y,q) (Z,p) (Z,q) ···

[1] S[1],[1] S[1],[X] . . . S[1],(Y,p) S[1],(Y,q) S[1],(Z,p) S[1],(Z,q) . . .

[X] S[X],[1] S[X],[X] S[X],(Y,p) S[X],(Y,q) S[X],(Z,p) S[X],(Z,q)

...
...

. . .
...

. . .

(Y,p) S(Y,p),[1] S(Y,p),[X] S(Y,p),(Y,p) S(Y,p),(Y,q) S(Y,p),(Z,p) S(Y,p),(Z,q)

(Y,q) S(Y,q),[1] S(Y,q),[X] . . . S(Y,q),(Y,p) S(Y,q),(Y,q) S(Y,q),(Z,p) S(Y,q),(Z,q) . . .

(Z,p) S(Z,p),[1] S(Z,p),[X] S(Z,p),(Y,p) S(Z,p),(Y,q) S(Z,p),(Z,p) S(Z,p),(Z,q)

(Z,q) S(Z,q),[1] S(Z,q),[X] S(Z,q),(Y,p) S(Z,q),(Y,q) S(Z,q),(Z,p) S(Z,q),(Z,q)

...
...

. . .
...

. . .



.

Now, we may observe the products

nSB =

AB BB

CB DB



95

with AB given by

S1,1 + SB,1 S1,B + SB,B S1,X + SB,X S1,B⊗X + SB,B⊗X

· · ·

SX,1 + SB⊗X,1 SX,B + SB⊗X,B SX,X + SB⊗X,X SX,B⊗X + SB⊗X,B⊗X
...

. . .


,

BB =



S1,Y + SB,Y S1,Z + SB,Z

· · ·

SX,Y + SB⊗X,Y SX,Z + SB⊗X,Z
...

. . .


,

CB =



SY,1 SY,B SY,X SY,B⊗X

SY,1 SY,B SY,X SY,B⊗X

· · ·

SZ,1 SZ,B SZ,X SZ,B⊗X

SZ,1 SZ,B SZ,X SZ,B⊗X
...

. . .



, DB =



SY,Y SY,Z

SY,Y SY,Z

· · ·

SZ,Y SZ,Z

SZ,Y SZ,Z
...

. . .



,

and

SAn =

ABA BBA

CBA DBA


with

AA =



S[1],[1] S[1],[1] S[1],[X] S[1],[X]

· · ·

S[X],[1] S[X],[1] S[X],[X] S[X],[X]

...
. . .


,

96

BA =



S[1],(Y,p) + S[1],(Y,q) S[1],(Z,p) + S[1],(Z,q)

· · ·

S[X],(Y,p) + S[X],(Y,q) S[X],(Z,p) + S[X],(Z,q)

...
. . .


,

CA =



S(Y,p),[1] S(Y,p),[1] S(Y,p),[X] S(Y,p),[X]

S(Y,q),[1] S(Y,q),[1] S(Y,q),[X] S(Y,q),[X]

· · ·

S(Z,p),[1] S(Z,p),[1] S(Z,p),[X] S(Z,p),[X]

S(Z,q),[1] S(Z,q),[1] S(Z,q),[X] S(Z,q),[X]

...
. . .



,

DA =



S(Y,p),(Y,p) + S(Y,p),(Y,q) S(Y,p),(Z,p) + S(Y,p),(Z,q)

S(Y,q),(Y,p) + S(Y,q),(Y,q) S(Y,q),(Z,p) + S(Y,q),(Z,q)

· · ·

S(Z,p),(Y,p) + S(Z,p),(Y,q) S(Z,p),(Z,p) + S(Z,p),(Z,q)

S(Z,q),(Y,p) + S(Z,q),(Y,q) S(Z,q),(Z,p) + S(Z,q),(Z,q)

...
. . .



.

Setting the A and C blocks equal immediately gives the columns of SA corresponding to

nonsplitting objects. Symmetry of the S-matrix then gives block B. For the lower right

block, let us begin by noticing that

S(Y,p),(Y,p) + S(Y,p),(Y,q) = SY,Y = S(Y,q),(Y,p) + S(Y,q),(Y,q).

Since S(Y,p),(Y,q) = S(Y,q),(Y,p), we see that S(Y,p),(Y,p) = S(Y,q),(Y,q). For simplicity, let us

97

define

a = S(Y,p),(Y,p) = S(Y,q),(Y,q),

b = S(Y,p),(Y,q) = S(Y,q),(Y,p).

Similarly, we may define

c = S(Z,p),(Z,p) = S(Z,q),(Z,q),

d = S(Z,p),(Z,q) = S(Z,q),(Z,p).

For the other terms, we notice

S(Y,p),(Z,p) + S(Y,p),(Z,q) = SY,Z = S(Y,q),(Z,p) + S(Y,q),(Z,q),

S(Z,p),(Y,p) + S(Z,p),(Y,q) = SZ,Y = S(Z,q),(Y,p) + S(Z,q),(Y,q),

SY,Z = SZ,Y .

Since S(Y,p),(Z,p) = S(Z,p),(Y,p), we get S(Y,p),(Z,q) = S(Z,p),(Y,q). Since S(Y,q),(Z,q) = S(Z,q),(Y,q),

we get S(Y,q),(Z,p) = S(Z,q),(Y,p). Now define

e = S(Y,p),(Z,p) = S(Z,p),(Y,p) = S(Y,q),(Z,q) = S(Z,q),(Y,q),

f = S(Y,p),(Z,q) = S(Z,p),(Y,q) = S(Y,q),(Z,p) = S(Z,q),(Y,p).

This gives us the claimed SA matrix.

Remark 3.38. This theorem has been presented so as to demonstrate the role of the

boson B and the old S-matrix. By Lemma 3.31, we know SB⊗X,Y = SX,Y , so we can also

98

write

SA =



[1] [X] ··· (Y,p) (Y,q) (Z,p) (Z,q) ···

[1] 2S1,1 2S1,X . . . S1,Y S1,Y S1,Z S1,Z . . .

[X] 2SX,1 2SX,X SX,Y SX,Y SX,Z SX,Z

...
...

. . .
...

(Y,p) SY,1 SY,X a b e f

(Y,q) SY,1 SY,X . . . b a f e . . .

(Z,p) SZ,1 SZ,X e f c d

(Z,q) SZ,1 SZ,X f e d c

...
...

...
. . .


and keep in mind that the matrix is symmetric.

Remark 3.39. Note that Theorem 3.34 gives the new S̃-matrix, which is unchanged by

condensation. Theorem 3.37 gives the new S-matrix, which features a factor of 2 where

Theorem 3.34 does not.

To see that the two theorems agree, let us restrict our attention to the upper left

block of SA from Theorem 3.37. For nonsplitting objects, we have S[X],[Y] = 2SX,Y or

S̃[X],[Y] = 2dim(B0
A)SX,Y .

From Lemma 3.29, we know

dim(B0
A) =

dim(B)
dimB(A)

=
dim(B)

2
.

So

S̃[X],[Y] = dim(B)SX,Y = S̃X,Y ,

as we saw in Theorem 3.34.

To see what we can do with the lower right block of the new S-matrix, consider the

following corollary.

99

Corollary 3.40. Consider a modular tensor category B with a self-dual boson B and a

condensable algebra A = 1⊕B. If B has some nonsplitting objects 1, X, . . . and exactly

one splitting object Y , then B0
A has modular data

SA =



[1] [X] ··· (Y,p) (Y,q)

[1] S1,1 + SB,1 S1,X + SB,X . . . S1,Y S1,Y

[X] SX,1 + SB⊗X,1 SX,X + SB⊗X,X SX,Y SX,Y

...
...

. . .
...

(Y,p) SY,1 SY,X a SY,Y − a

(Y,q) SY,1 SY,X . . . SY,Y − a a


,

TA = Diag[T1,1, TX,X , . . . , TY,Y , TY,Y],

where a is solved as a root of a quadratic polynomial depending on whether (Y, p), (Y, q)

are self-dual or dual to each other.

Proof. The claimed SA comes directly from Theorem 3.37. Since S2
A = CA, the charge

conjugation matrix from Definition 2.55, exactly one of

S2
1Y + S2

XY + · · ·+ a2 + (SY Y − a)2, S2
1Y + S2

XY + · · ·+ a(SY Y − a) + (SY Y − a)a

is zero, and the other is one, depending on whether (Y, p), (Y, q) are self-dual or dual to

each other.

Remark 3.41. A similar result can be stated about any number of splitting objects. In

general, at least one of

S2
1Y + S2

XY + · · ·+ a2 + b2 + e2 + f 2 + · · · , S2
1Y + S2

XY + · · ·+ ab+ ba+ ef + fe+ · · ·

is zero. If exactly one is zero, then the other is one, and Y is self-dual. Both are zero if

and only if Y is dual to another splitting object.

Somewhat more difficult is the question of whether introducing T -matrices decides
100

the condensed SA matrix. In Example 3.42, we see a case where it does.

Example 3.42. Since Ising and Ising share an S matrix, so do Ising⊠ Ising and Ising⊠

Ising. If we condense 1⊠ 1⊕ ψ ⊠ ψ in a category with an Ising ⊠ Ising S-matrix (as in

Sections 3.3.1 and 3.3.2), the process from the proof of Theorem 3.37 gives us

n =



11 ψψ 1ψ ψ 1 σσ

[11] 1 1 0 0 0

[1ψ] 0 0 1 1 0

(σσ,p) 0 0 0 0 1

(σσ,q) 0 0 0 0 1


and ultimately

SA =
1

2



1 1 1 1

1 1 −1 −1

1 −1 a −a

1 −1 −a a


.

If CA is the condensed charge conjugation matrix (Definition 2.55), the condition S2
A =

CA now allows for two possibilities: a = ±1 or a = ±i. If a = ±1, then SA is the Toric

Code S-matrix and is the result of condensing Ising⊠ Ising. If a = ±i, then SA is the Z4

S-matrix and is the result of condensing Ising ⊠ Ising. Note that the choice of positive

or negative a is simply exchanging the interchangeable objects e and m in Toric Code or

1 and 3 in Z4.

Since Ising and Ising share an S-matrix, it is not surprising that SB alone does not

determine SA. In this case, the T -matrix decides the value of a by the identity

(ST)3 = ecπi/4S2,

where c is the central charge of the parent and condensed categories (Definition 2.55 and

Lemma 3.30).

101

If B = Ising ⊠ Ising, we get

TA = Diag[1,−1, 1, 1].

In Section 3.3.2, this was already enough for us to conclude that the condensation yields

the Toric Code MTC. However, that deduction relied on having a classification of modular

tensor categories of a sufficiently high rank. This time, we compute

(ST)3 =



1 0 0 0

0 1 0 0

0 0 1
2
+ a3

2
1
2
− a3

2

0 0 1
2
− a3

2
1
2
+ a3

2


and

e0πi/4S2 =



1 0 0 0

0 1 0 0

0 0 1
2
+ a2

2
1
2
− a2

2

0 0 1
2
− a2

2
1
2
+ a2

2


,

where the central charge c = 0 comes from the central charge c = 1/2− 1/2 of Ising⊠Ising.

Equality is achieved when a = 0, 1. Since a = 0 is not an option from earlier, we must

have a = 1, and SA is the Toric Code S-matrix.

If B = Ising ⊠ Ising, we get

TA = Diag[1,−1, eπi/4, eπi/4].

This is the case of Section 3.3.1. This time, we have central charge c = 1/2 + 1/2 = 1,

and a similar computation gives us a = −i, which recovers the Z4 S-matrix.

Remark 3.43. Obviously this approach is only pinning down condensation up to modu-

lar data. It is not sensitive to the modular isotopes mentioned in Remark 2.57. Chapter 4

discusses the computation of F - and R-symbols after condensation.

102

3.4.1.2 Duality

The previous section attempts to pin down the modular data after condensation. We

now shift gears and present some results about the relationships between parent and

condensed objects. Since some of our S-matrix results determined the new S-matrix up

to a choice of splitting objects being dual to each other or not, we give some attention to

the question of when objects are dual. Perhaps most obviously, we have the following.

Remark 3.44. Condensation is a tensor functor and preserves duality in the sense that

T (X∗) ∼= T (X)∗. Roughly speaking, dual objects map to dual objects, and dual objects

come from dual objects.

Let us now try to make this Remark a little more precise.

Proposition 3.45. Consider a modular tensor category B with a condensable algebra

A and any simple object X of B. Let T be the condensation functor and set T (X) ∼=⊕
i∈I(X, pi), T (X

∗) ∼=
⊕

j∈J(X
∗, p̂j). Without loss of generality, take no (X, pi) or

(X∗, p̂j) isomorphic to 0 so that I, J are minimal. Then |I| = |J |, and (X, pi)
∗ ∼= (X∗, p̂i)

for all i.

Proof. This follows from the fact that T (X∗) ∼= T (X)∗ and Lemma 2.28. The order of

the p̂j is arbitrary, so they can be selected to match the pi.

Remark 3.46. This proposition can of course be carried to non-simple objects at the

cost of less compact notation.

Notice that Proposition 3.45 is not exactly reversible because the condensed category

is an idempotent completion. Some objects do not have pre-images in the parent category.

When objects do not split, going backwards is possible.

Proposition 3.47. Consider a modular tensor category B with a condensable algebra A

and any nonsplitting simple objects X, Y . Then (X, idX), (Y, idY) are dual in BA if and

103

only if

dim
(
HomB(A⊗X ⊗ Y,1)

)
= dim

(
HomA

(
(X, idX)⊗ (Y, idY), (1, id1)

))
= 1.

In the more familiar self-dual object setting, we can be more precise.

Proposition 3.48. Consider a modular tensor category B with any self-dual object B

and condensable algebra A = 1⊕B. Let X, Y be simple objects of B with NB,X
X = 0 and

NB,Y
Y = 0. Then (X, idX), (Y, idY) are dual in BA if and only if either NX,Y

1
= 1, NX,Y

B =

0 or NX,Y
1

= 0, NX,Y
B = 1.

Proof. Note that

dim
(
HomB(A⊗X ⊗ Y,1)

)
= dim

(
HomB(X ⊗ Y ⊕B ⊗X ⊗ Y,1)

)
.

The objects [X], [Y] are dual exactly when this dimension is one, which is clearly not the

case if NX,Y
1

> 1.

Suppose NX,Y
1

= 1. Then dim(HomB(X ⊗ Y,1)) = 1, and the objects [X], [Y] are

dual exactly when

0 = dim
(
HomB(B ⊗X ⊗ Y,1)

)
= dim

(
HomB(X ⊗ Y,B)

)
.

Now suppose NX,Y
1

= 0. Then dim(HomB(X ⊗ Y,1)) = 0, and the objects [X], [Y]

are dual exactly when

1 = dim
(
HomB(B ⊗X ⊗ Y,1)

)
= dim

(
HomB(X ⊗ Y,B)

)
.

Remark 3.49. This proposition extends to any number of unique self-dual summands

of A.

Unsurprisingly, the situation is more complicated when there is splitting. Still, Propo-

sition 3.45 clarifies some situations.
104

Corollary 3.50. Consider a modular tensor category B with condensable algebra A. If

the simple object X is self-dual and splits, then the split simple objects are either self-dual

or dual to each other.

Proof. Proposition 3.45

Remark 3.51. Both can happen. When we condense 1⊠ 1⊕ ψ ⊠ ψ in Ising ⊠ Ising or

Ising⊠ Ising, the self-dual object σσ splits into two objects which are dual to each other

or self-dual, respectively. Refer to Sections 3.3.1 and 3.3.2.

Corollary 3.52. Consider a modular tensor category B with condensable algebra A. If

the simple objects X, Y are dual to each other, then condensation of A causes X, Y to

split into an equal number (possibly one) of simple objects.

Proof. Proposition 3.45

Corollary 3.53. Consider a modular tensor category B with condensable algebra A. If

the simple objects X, Y split and are dual to each other, then (X, pi) is dual to (Y, qi) for

all i.

Proof. Proposition 3.45

Proposition 3.54. Consider a modular tensor category B with a self-dual boson B and

condensable algebra A = 1⊕B. Let X be a simple object of B that splits in the con-

densation of A. Then X∗ also splits. That is, splitting objects are dual only to splitting

objects.

Proof. Consider B,A, X as in the statement. By Lemma 3.26, we have B ⊗ X ∼= X.

Then

1⊕
⊕

Xi
∼= X ⊗X∗

∼= (B ⊗X)⊗X∗

∼= X ⊗ (B ⊗X∗),

105

so X is also dual to B ⊗ X∗. Since duals are unique up to isomorphism, we have

B ⊗X∗ ∼= X∗, so X∗ splits.

3.4.2 Condensation over Deligne Products

Recall the Deligne product defined in Definition 2.75 and Remark 2.76. We have al-

ready seen this notion of product in the condensation examples of Section 3.3. In all

of these examples, the Deligne product being condensed is of some minimal size to be

interesting. However, it can also be interesting to consider many copies of known smaller

condensations. This appears in Section 5.3.

Proposition 3.55. Suppose A1 is a condensable algebra in the MTC B1 and A2 is a

condensable algebra in the MTC B2. Then B1⊠B2A1 ⊠A2
and B1A1

⊠B2A2
are isomorphic

categories.

Proof. We first verify that A1⊠A2 is condensable.

(1) Since A1 and A2 each have exactly one copy of their respective unit objects, so

does A1⊠A2. Thus, A1⊠A2 is connected.

(2) For all summands A1 ∈ A1 and A2 ∈ A2, we have θA1 = θA2 = 1. So, every

summand of A1⊠A2 has θ = 1 · 1 = 1, and A1⊠A2 is commutative.

(3) Suppose that m1 : A1⊗A1 → A1 admits a splitting ∆1 : A1 → A1⊗A1 and that

m2 : A2⊗A2 → A2 admits a splitting ∆2 : A2 → A2⊗A2 such that the following

diagrammatic representations of Equation 3.1 all commute.

A1⊗A1 A1⊗(A1⊗A1)∼=

(A1⊗A1)⊗A1

A1 A1⊗A1

id⊗∆1

m1

m1⊗id

∆1

A1⊗A1 (A1⊗A1)⊗A1∼=

A1⊗(A1⊗A1)

A1 A1⊗A1

∆1⊗id

m1

id⊗m1

∆1

106

A2⊗A2 A2⊗(A2⊗A2)∼=

(A2⊗A2)⊗A2

A2 A2⊗A2

id⊗∆2

m2

m2⊗id

∆2

A2⊗A2 (A2⊗A2)⊗A2∼=
A2⊗(A2⊗A2)

A2 A2⊗A2

∆2⊗id

m2

id⊗m2

∆2

Note the associator in the top right corner of each diagram. Up to equivalence, the

isomorphism can be taken to be the identity, but it may not be in general (refer to

Remark 2.5). In Chapter 4, we will be interested in skeletal categories specifically.

Now in B1⊠B2, the object A1⊠A2 has multiplication m = m1 ⊠ m2 with

splitting ∆ = ∆1 ⊠ ∆2. From Remark 2.76, morphisms are applied component-

wise and tensor products are defined appropriately so that the following diagrams

commute as well.

(A1⊠A2)⊗ (A1⊠A2)

=

(A1⊗A1)⊠ (A2⊗A2)

(A1⊠A2)⊗
(
(A1⊗A1)⊠ (A2⊗A2)

)

∼=(
(A1⊗A1)⊠ (A2⊗A2)

)
⊗ (A1⊠A2)

A1⊠A2 (A1⊗A1)⊠ (A2⊗A2)

=

(A1⊠A2)⊗ (A1⊠A2)

id⊗∆

m

m⊗id

∆

(A1⊠A2)⊗ (A1⊠A2)

=

(A1⊗A1)⊠ (A2⊗A2)

(
(A1⊗A1)⊠ (A2⊗A2)

)
⊗ (A1⊠A2)∼=

(A1⊠A2)⊗
(
(A1⊗A1)⊠ (A2⊗A2)

)

A1⊠A2 (A1⊗A1)⊠ (A2⊗A2)

=

(A1⊠A2)⊗ (A1⊠A2)

∆⊗id

m

id⊗m

∆

Thus A1⊠A2 has a proper splitting and is condensable.

Now we may write the objects and morphisms of all categories in sight (as defined by

107

Remark 2.76) and observe that they match. First,

Obj(BA) = pairs (X, p), where X ∈ Obj(B), p = p2 ∈ EndB̃A
(X)

HomBA

(
(X1, p1), (X2, p2)

)
=
{
f ∈ HomB̃A

(X1, X2) | f ◦ p1 = f = p2 ◦ f
}
,

where HomB̃A
(X, Y) = HomB(A⊗X, Y). So,

Obj(B1A1
⊠ B2A2

) = pairs (X1, p1)⊠ (X2, p2),

where X1 ∈ Obj(B1), p1 = p21 ∈ EndB̃1A1

(X1)

X2 ∈ Obj(B2), p2 = p22 ∈ EndB̃2A2

(X2),

HomB1A1
⊠B2A2

(
(X1, p1)⊠ (X2, p2), (Y1, q1)⊠ (Y2, q2)

)
=
{
f1 ⊠ f2 ∈HomB̃1A1

(X1, Y1)⊠ HomB̃2A2

(X2, Y2)
∣∣

(f1 ⊠ f2) ◦ (p1 ⊠ p2) = (f1 ⊠ f2) = (q1 ⊠ q2) ◦ (f1 ⊠ f2)
}
.

Since all objects and morphisms in the Deligne product B1⊠B2 are pairs of objects and

morphisms from B1 and B2, we have

Obj(B1⊠B2A1 ⊠A2
) = pairs (X1 ⊠X2, p1 ⊠ p2),

where X1 ⊠X2 ∈ Obj(B1⊠B2),

p1 ⊠ p2 = p21 ⊠ p22 ∈ EndB̃A
(X1 ⊠X2)

HomB1 ⊠B2A1 ⊠A2

(
(X1 ⊠X2, p1 ⊠ p2), (Y1 ⊠ Y2, q1 ⊠ q2)

)
=
{
f1 ⊠ f2 ∈HomB̃A

(X1 ⊠X2, Y1 ⊠ Y2)
∣∣

(f1 ⊠ f2) ◦ (p1 ⊠ p2) = (f1 ⊠ f2) = (q1 ⊠ q2) ◦ (f1 ⊠ f2)
}
.

Now the obvious inverse functors demonstrate the category isomorphism.

108

Chapter 4

Computing F- and R-Symbols

Chapter 3 gives us some general results about condensation, but they are mostly limited

to the simple case of a self-dual boson. This chapter takes a different approach to

understanding condensation. Instead of trying to find modular data alone, we attempt

to find an entire set of F - and R-symbols for the condensed category by applying the

condensation tensor functor to morphisms.

This chapter consists of three discussions. Section 4.1 gives background and the

current state of the literature. Section 4.2 discusses the definition of condensation as a

tensor functor and uses it to produce condensed objects and morphisms, including the

new associator and braiding. Section 4.3 provides an explanation of how to actually

implement Section 4.2 on a computer. The chapter concludes in Section 4.4 with a brief

discussion of the choices that were made along the way.

We also provide our full Mathematica implementation of an F - and R-symbol solver

in Supplemental A: Mathematica Code and at [1]. This is an exciting new tool for writing

down data of new and well-known categories that we do not know explicitly, as well as a

proof-of-concept for the feasibility of pinning down the condensed category.

Throughout this chapter, we abuse notation by writing e.g., (X,µX) ⊗A (Y, µY) =

(X ⊗A Y, µX⊗AY). The expression X ⊗A Y is not meaningful since X, Y are not objects

109

of RepA, but it is given a definition in diagram 4.5 below.

4.1 Graphical Calculus

We discussed the graphical calculus of modular tensor categories in Section 2.2. Given

a modular tensor category and a condensable algebra, we would like to understand the

condensed category. In particular, we would like to use the graphical calculus we already

have for B after condensation. Part of the difficulty here is that even when we begin with

a skeletal category, the condensation functor sends objects that get identified (in the

sense of Section 3.4) to isomorphic, but unequal, objects. Producing a graphical calculus

for the condensed category is indeed equivalent to skeletalizing the functor in the sense

of Section 2.8.2.

This idea appears in the physics literature. Vertex lifting coefficients (VLCs) are

introduced by [16] as a way to understand pictures in the graphical calculus of the

condensed category as linear combinations of pictures in the graphical calculus of the

parent category. VLCs are defined in [16] as the coefficients on the right hand side of the

following graphical equation.

t

r s

=
∑
a,b,c

[
r s t
a b c

]
c

a b

(4.1)

Notice that we are utilizing the graphical language of Section 2.2.1, which is a slight

deviation from our conventions in Chapter 3. We often draw tensor products as parallel

lines and avoid drawing direct sums of diagrams. In this case, we wish to understand the

new tensor product of A-modules in terms of the old tensor product of objects, so the

vertices in Equation 4.1 are explicit choices of morphisms t→ r ⊗ s and c→ a⊗ b. We

will discuss this more shortly.

110

Once all VLCs are determined, any picture of condensed tensor products can be

written as a large linear combination of parent tensor products. Notice that VLCs are

specifically a way to understand the condensed tensor product and any pictures composed

only of tensor products. The framework we build in this chapter understands induced

morphisms more generally.

In [16], VLCs are computed by writing down many relationships that would be true

in a category where the object A were the tensor unit. These equations must then be

solved simultaneously, a process that experience suggests can be quite difficult. One

might suspect that this solving should not be necessary since the definitions of RepA

and the condensation tensor functor in [30] directly define the morphisms of RepA. The

approach outlined in this chapter readily gives access to the categorical data of RepA

without the need to simultaneously solve many equations.

Let us now briefly digress to understand VLCs in a categorical context. While the

equality in equation 4.1 can be understood as an equality since the morphisms of RepA

are formally subsets of morphisms in B, it may be helpful to recognize that the two sides

are morphisms in different categories. On the right, we have pictures of the form

c

a b

. (4.2)

This is an explicit choice of morphism Bab
c : c → a ⊗ b for some c with nonzero Nab

c (if

Nab
c = 0, then Bab

c is the zero morphism, and we do not bother including it in the sum

of Equation 4.1). Recall that

Hom(c, a⊗ b) ∼= CNab
c .

Picture 4.2 establishes a choice of basis vector for Hom(c, a⊗ b) in the parent category B,

which all future pictures will be drawn in terms of. Since [16] assumes multiplicity-free

111

categories, Nab
c can be only 0 or 1. In this case, Picture 4.2 provides a full basis for

Hom(c, a ⊗ b). When Hom(c, a ⊗ b) has dimension n > 1, we can label a basis of n

different morphisms c→ a⊗ b

c

α

a b

,

c

β

a b

, · · · .

On the left of Equation 4.1, we have a tensor product in the condensed category. This

is again a choice of basis vector, but we can no longer choose arbitrarily because we would

like these pictures to be consistent with the ones we draw for the parent category B. This

requires some minimal amount of solving to make sure the morphisms we choose satisfy

condition 3.3 of RepA. We will typically try to choose these morphisms to maximize the

number of 1 coefficients.

For the sake of clarity, note that the sum of Equation 4.1 is slightly suspect. Within

each choice of a, b, c, we may take sums of morphisms in Hom(c, a ⊗ b). If T (a), T (a′)

both contain x, we must consider an element from the direct sum of two separate vector

spaces, Hom(c, a ⊗ b) and Hom(c, a′ ⊗ b). This distinction is unimportant because in

the direct sum of these vector spaces, addition of vectors from different components is a

direct sum.

Putting everything together, we can think of VLCs as coefficients determining the

condensation adjoint functor (Remark 3.11) on tensor product morphisms. That is,

E


t

r s


=
⊕
a,b,c

[
r s t
a b c

]
c

a b

.

Since the adjoint to condensation is the forgetful functor, we can get away with being loose

about using the E functor. To understand how to compute these coefficients, we must
112

talk about the categorical definition of condensation in the framework of Section 2.8.2

4.2 Condensation as a Functor

From the description of RepA (Definition 3.4) given by [30], we are able to work with

the condensed category quite concretely. Given a modular tensor category B and a

condensable algebra A with multiplication m, condensation is a tensor functor defined

by

T : B → RepA

X 7→ (A⊗X,m⊗ idX)

(4.3)

The problem with working entirely with this functor is that T provides a non-skeletal

description of RepA.

Example 4.1. Consider the Ising ⊠ Ising → Z4 condensation of Section 3.3.1. Acting

by functor 4.3 on the objects 11 and ψψ gives us

T (11) = (11⊕ ψψ,m⊗ id11),

T (ψψ) = (11⊕ ψψ,m⊗ idψψ).

These objects are not equal, but they are isomorphic.

This non-skeletal description presents a challenge since the morphisms of the new cat-

egory are determined by data that is finer than just isomorphism classes of simple objects

in the parent category. We wish then to consider a skeletal description of condensation

that allows us to use the old graphical calculus.

Consider a modular tensor category B with a condensable algebra (A,m, η). Let

(X,µX) and (Y, µY) be objects of RepA. To understand the condensed tensor product,

we observe that there are two obvious module structures on µ1, µ2 : A⊗X⊗Y → X⊗Y .

113

A X Y

X Y

µX

µ1 = µX ⊗ idY

A X Y

X Y

µY

µ2 = (idX ⊗µY) ◦ c−1
X,A

(4.4)

Then the condensed tensor product (X,µX)⊗A (Y, µY) is the cokernel of µ1 − µ2, as

in the following diagram.

A⊗X ⊗ Y X ⊗ Y

X ⊗A Y = (X ⊗ Y)/ im(µ1 − µ2)

µ1−µ2

q (4.5)

The morphism µX⊗AY is either µ1 or µ2 on the quotient A⊗X ⊗A Y (since the two are

now equivalent). In an abelian category, the cokernel of µ1 − µ2 is the coequalizer of µ1

and µ2, so we may equivalently consider the following diagram.

A⊗X ⊗ Y X ⊗ Y

X ⊗A Y

µ1

µ2
q

From here, we would like also to understand the new tensor product on morphisms.

Consider morphisms f ∈ HomA(V, V
′) and g ∈ HomA(W,W

′), which must satisfy

f ◦ µV = µV ′ ◦ (idA⊗f),

g ◦ µW = µW ′ ◦ (idA⊗g).

To define f ⊗A g, we consider the diagram

A⊗V ⊗W V ⊗W V ′ ⊗W ′

V ⊗A W V ′ ⊗A W
′

µ1

µ2

f⊗g

q q′

Note that

(f ⊗ g) ◦ µ1 = (f ⊗ g) ◦ (µV ⊗ idW)

114

= (µV ′ ⊗ idW ′) ◦ (idA⊗f ⊗ g),

(f ⊗ g) ◦ µ2 = (f ⊗ g) ◦ (idV ⊗µW) ◦ (cA,V ⊗ idW)

= (idV ′ ⊗µW ′) ◦ (cA,V ′ ⊗ idW ′) ◦ (idA⊗f ⊗ g).

Then q′ ◦ (f ⊗ g) ◦ µ1 = q′ ◦ (f ⊗ g) ◦ µ2 since q′ is the coequalizer of µ′
1 and µ′

2. By the

universal property of coequalizers, there exists a unique map f ⊗A g which makes the

square of the following diagram commute.

A⊗V ⊗W V ⊗W V ′ ⊗W ′

V ⊗A W V ′ ⊗A W
′

µ1

µ2

f⊗g

q q′

f⊗Ag

(4.6)

This defines the condensed tensor product of f and g.

Motivated by this, we also find the condensed associator and braiding according to

the following diagrams.

(X ⊗ Y)⊗ Z X ⊗ (Y ⊗ Z)

(X ⊗A Y)⊗ Z X ⊗ (Y ⊗A Z)

(X ⊗A Y)⊗A Z X ⊗A (Y ⊗A Z)

α

q1 q′1

q2 q′2

αA

X ⊗ Y Y ⊗X

X ⊗A Y Y ⊗A X

c

q q′

cA

(4.7)

4.3 Implementation

In this section, we make the previous theory more concrete by describing how it might

actually be implemented. Our Mathematica code is included in Supplemental A: Math-

ematica Code and (at the time of writing) can be accessed at [1]. Refer to Section 2.5

for a brief explanation of how we work with modular tensor categories in Mathematica.

To begin determining the condensed category, we first find its simple objects. The

category BA of Definition 3.7 makes this fairly straightforward. Once the simple objects

of BA have been found, they can be converted to simple objects of RepA by way of

115

functor 4.3. Nonsplitting objects can be mapped directly by functor 4.3, and the possible

module structures on splitting objects can be found.

Example 4.2. In Section 3.3.1, we demonstrated the condensation of 11⊕ψψ in Ising⊠

Ising. This gave us new simple objects (11, id), (1ψ, id), (σσ, p), (σσ, q), (1σ, id), (σ1, id),

with the first four objects forming the Z4 MTC.

Then the condensation functor 4.3 gives us nonsplitting simple object isomorphism

classes

11 7→ (11⊕ ψψ,m⊗ id11), 1ψ 7→ (1ψ ⊕ ψ1,m⊗ id1ψ),

1σ 7→ (1σ ⊕ ψσ,m⊗ id1σ), σ1 7→ (σ1⊕ σψ,m⊗ idσ1).

Directly solving for (nonzero) morphisms A⊗σσ → σσ gives us the two options

p =

11 σσ

σσ

⊕

ψψ σσ

σσ

, q =

11 σσ

σσ

⊕−

ψψ σσ

σσ

,

where the trivalent vertices are the tensor product morphisms chosen in B. So the

condensation functor 4.3 maps

σσ 7→ (σσ ⊕ σσ,m⊗ idσσ),

which decomposes as simple objects

(σσ ⊕ σσ,m⊗ idσσ) ∼= (σσ, p)⊕ (σσ, q).

Having found the new simple objects, we must now figure out how they behave. Since

we wish to give a skeletal description of the category, we fix representatives of the simple

object isomorphism classes. Let us first look at computing the new tensor product on

objects.

Construction 4.3. Consider a skeletal modular tensor category B with label set {Xi}
116

and condensable algebra A. Given objects X =
⊕

imiXi and Y =
⊕

i niXi, a morphism

f : X → Y can be represented as a graded linear map
⊕

i fi : Cmi → Cni . The morphism

q =
⊕

i qi from diagram 4.5 can be computed explicitly in this form.

The object X⊗Y =
⊕

i ℓiXi is given by the fusion rules of B. We may also construct

graded linear maps representing µ1, µ2, and µ1−µ2 from the definitions 4.4. Set µ1−µ2 =⊕
i fi. Then,

X ⊗A Y =
⊕
i

(ℓi − rank(fi))Xi, µX⊗AY = q ◦ µ1 = q ◦ µ2.

Setting ki = ℓi − rank(fi), we can find q :
⊕

i ℓiXi →
⊕

i kiXi as a graded linear map.

For each i, we can choose an orthonormal basis for im(fi)
⊥, the orthogonal complement

of im(fi). Then q =
⊕

i qi is the projection onto the span of this basis, with each qi given

simply by the conjugates of the basis vectors.

We must now also determine the tensor product on morphisms in RepA. For this,

we refer to diagram 4.6. Morphisms of RepA are formally a subset of morphisms of B,

and diagram 4.6 suggests which composition to choose.

Construction 4.4. Consider a skeletal modular tensor category B with label set {Xi}

and condensable algebra A. Given morphisms f =
⊕

i fi and g =
⊕

i gi, we first define

f ⊗ g as a tensor product in B. The discussion in Construction 4.3 allows us to find q, q′.

In constructing q for each i, choose an orthonormal basis {v1, . . . , vℓi−ki , w1, . . . , wki} for

Cℓi so that q is a projection onto span{w1, . . . , wki}. Then the quotient q has a natural

section q̂ which, for each i, is simply the inclusion of {w1, . . . , wki} into Cℓi . Then we

define f ⊗A g = q′ ◦ (f ⊗ g) ◦ q̂. Now if

q′ ◦ (f ⊗ g) ◦ q̂ ◦ q = q′ ◦ (f ⊗ g),

then we have found the unique map f ⊗A g from diagram 4.6.

Claim: q′ ◦ (f ⊗ g) ◦ q̂ ◦ q = q′ ◦ (f ⊗ g).

Proof: Write q =
⊕

i qi, q
′ =

⊕
i q

′
i, and f ⊗ g =

⊕
i(f ⊗ g)i. Fix an index i and an

117

orthonormal basis as in the construction of q. Then q̂◦q is zero on the vj and the identity

on the wj. The claim follows if q′i ◦ (f ⊗ g)i is zero on the vj.

By the discussion preceding diagram 4.6, we see that indeed q′ ◦ (f⊗g)◦ (µ1−µ2) = 0

or q′ ◦ (f ⊗ g) is zero on the image of µ1 − µ2. ■

In addition to determining how the new tensor product behaves on objects and mor-

phisms, we must write explicit morphisms for the tensor product (Z, µZ)→ (X,µX)⊗A

(Y, µY) in terms of the tensor product morphisms of B. These choices will determine the

vertex lifting coefficients of [16].

Suppose NXY
Z ̸= 0. Then dim(Hom(Z,X ⊗ Y)) ̸= 0, and a morphism can be chosen

for the tensor product. If B is multiplicity free, then NXY
Z = 1, and we identify the

morphism with 1 ∈ C. That is, the chosen tensor product morphism becomes our chosen

basis vector for Hom(Z,X ⊗ Y). In general, we can identify the NXY
Z standard basis

vectors with the tensor product morphisms from distinguished copies of Z in X ⊗ Y . In

RepA, we do not have the same freedom to choose whatever convenient morphisms we

like since the tensor product of B has already been fixed.

Construction 4.5. Consider a skeletal modular tensor category B with condensable

algebra A. For a morphism (Z, µZ) → (X,µX) ⊗A (Y, µY) in RepA, we are only free

to choose convenient coefficients for f : Z → X ⊗A Y up to the constraint f ◦ µZ =

µX⊗AY ◦ (idA⊗f). We fix such a choice for each triple (Z, µZ), (X,µX), (Y, µY) and use

these choices in all future computations.

All we need now are a few more induced morphisms that run much like Construc-

tion 4.4. We need to know how to define the tensor isomorphism of the condensation

tensor functor, the associativity of the new category, and the braiding of the new category.

Recall from Definition 2.100 that a tensor functor T is equipped with an isomorphism

J : T (−)⊗T (−)→ T (−⊗−). The condensation tensor functor of [30] defines a morphism

118

f : T (a)⊗A T (b)→ T (a⊗ b) by

f : (A⊗a)⊗A (A⊗b)
c−1
A a−−→ A⊗AA⊗a⊗ b

m−→ A⊗a⊗ b.

This definition is somewhat opaque since the objects being acted on are not always in

the correct category. We build this function as follows.

Construction 4.6. Let T : B → RepA be the condensation tensor functor. The J

isomorphism is the induced morphism f defined by the following diagram.

(A⊗a)⊗ (A⊗b) (A⊗(a⊗A))⊗ b (A⊗A)⊗ (a⊗ b)

(A⊗a)⊗A (A⊗b) A⊗(a⊗ b)

αA,a,A◦α−1
A⊗a,A,b

q

αA⊗A,a,b◦α−1
A,A,a◦c

−1
A,a

m

f

In the style of Construction 4.4, we now define

f = (m⊗ ida⊗b) ◦αA⊗A,a,b ◦ (α−1
A,A,a⊗ idb) ◦ (idA⊗c−1

A,a⊗ idb) ◦ (αA,a,A⊗ idb) ◦α−1
A⊗a,A,b ◦ q̂.

Finally, we would like a new associator and braiding.

Construction 4.7. This time, we apply the process of Construction 4.4 to diagram 4.7.

Then

αA = q′2 ◦ q′1 ◦ α ◦ q̂1 ◦ q̂2.

Construction 4.8. Now apply the process of Construction 4.4 to diagram 4.7 to get

cA = q′ ◦ c ◦ q̂.

With all of these building blocks, we have a great deal of power in what we can write

down about the condensed category. We can compute the T -symbols of the skeletalized

condensation tensor functor, which are equivalent to the VLCs of [16]. We can also

compute the F - and R-symbols of the condensed theory.

119

4.3.1 T -symbols and VLCs

We would like to determine the VLCs of [16]. However, the condensation tensor functor

does not directly relate old objects to new objects. Instead, we can compare old vertices

to new vertices using the skeletal description of a tensor functor.

Recall from Section 2.8.2 that a skeletal tensor functor may be defined by T -symbols

as follows.

t

ρ

r

m

s

n

J

T (a⊗C b)

=
∑
(c,ℓ,α)

T abt;(c,ℓ,α),(r,m,s,n,ρ)

t

T (c)
ℓ

T (α)

T (a⊗C b)

(4.8)

Here J : T (−)⊗T (−)→ T (−⊗−) is the functorial isomorphism we get with any tensor

functor, as in Definition 2.100.

Consider the case where the tensor functor is the condensation functor of [30]. Then

we have a tensor product t → r ⊗A s in RepA on the left of Equation 4.8 and a tensor

product c→ a⊗ b in B on the right. The J isomorphism is what [30] presents as

f : (A⊗a)⊗A (A⊗b)
c−1
A a−−→ A⊗AA⊗a⊗ b

m−→ A⊗a⊗ b.

This composition is made sense of in Construction 4.6.

Now let us see how to compute T -symbols. We first consider the picture on the left.

From bottom to top, this is a morphism

t r ⊗A s T (a)⊗A T (b) T (a⊗ b)ρ Iar (m)⊗AI
b
s(n) J , (4.9)

where ρ ∈ Hom(t, r ⊗A s) is a tensor product morphism as defined in Construction 4.5

and Iar (m) : r → T (a) is an embedding whose image is the m-th distinct copy of r in T (a)

(see Section 2.8.2).

120

Now let us consider the picture on the right. From bottom to top, this is a morphism

t T (c) T (a⊗ b)Ict (ℓ) T (α)
. (4.10)

By ranging over the choices of (r,m, s, n, ρ), (c, ℓ, α), morphisms 4.9 and 4.10 give two

different bases for HomA(t, T (a⊗b)). Then T abt is the change of basis matrix from the first

basis to the second. Writing Equation 4.8 in the form of Equation 2.18 and forgetting

the embedding dots gives us coefficients as defined by the original Equation 4.1.

4.3.2 F -symbols

Recall the following picture defining F -symbols.

d

β

e

α

a b c

=
∑
f,γ,δ

F abc
d;(f,γ,δ),(e,α,β)

d

δ

f

γ

a b c

In the condensed category, the picture on the left is a morphism

d e⊗A c (a⊗A b)⊗A c
β α⊗Aidc

,

where α, β are chosen according to Construction 4.5. Composing with the associator αA

from Construction 4.7 gives a morphism

d e⊗A c (a⊗A b)⊗A c a⊗A (b⊗A c)
β α⊗Aidc αA . (4.11)

The picture on the right is a morphism

d a⊗A f a⊗A (b⊗A c)
δ ida ⊗Aγ

, (4.12)

where again γ, δ are chosen according to Construction 4.5. By ranging over the choices

of (e, α, β), (f, γ, δ), morphisms 4.11 and 4.12 give two different bases for HomA(d, a⊗A

121

(b⊗A c)). Then F abc
d is the change of basis matrix from the first basis to the second.

In the case of a multiplicity-free condensed category, there is only a single choice for

each α, β, γ, δ, and our F -matrices reduce to F abc
d;f,e.

Refer to Supplemental Section A.2.2 for an implementation of this computation.

4.3.3 R-symbols

Recall the following picture defining R-symbols.

c

α

a b

=
∑
β

Rab
c;β,α

c

β

a b

.

In the condensed category, the picture on the left is a morphism

c b⊗A a a⊗A b
α cAb,a

, (4.13)

and the picture on the right is a morphism

c a⊗A b
β

. (4.14)

Here α, β are chosen according to Construction 4.5, and cA comes from Construction 4.8.

By ranging over the choices of α, β, morphisms 4.13 and 4.14 give two different bases

for HomA(c, a ⊗A b). Then Rab
c is the change of basis matrix from the first basis to the

second.

In the case of a multiplicity-free condensed category, α = β and Rab
c is a single number

determined by diagram 4.7.

Refer to Supplemental Section A.2.3 for an implementation of this computation.

122

4.4 Gauge Freedom

Recall from Chapter 2 that modular tensor categories are categories along with choices of

various structures (associativity, braiding, pivotal, etc). Obviously categories are equal

if all of their structures are equal. However, it is possible for categories with different

structures to be equivalent. When presenting the F - and R-symbols of a modular tensor

category, we are choosing which, of the many that give equivalent categories, to present.

In computing condensation data, the new F - and R-symbols are determined by choices

we make along the way.

Perhaps most obviously, we made a choice of basis in Construction 4.5. Note that

our approach here is different from that of [16]. In [16], equations of trivalent vertices are

used to solve for the vertices. In our approach, the definitions of the trivalent vertices are

inconsequential because the following computations are done with respect to whichever

bases were chosen for the vertices. Indeed, the selection of an associativity and braiding

isomorphism for the new category is independent of choices of morphisms for the vertices.

The T -, F - and R-symbols are then given in terms of these choices.

Let us return to where the associativity and braiding of the condensed category are

defined. Recall that in the discussion around Diagram 4.6, the morphisms f, g are mor-

phisms of RepA. Their intertwiner properties allow for a universal property argument

that there exists a unique induced morphism f ⊗A g. Since the associator and braid-

ing are not necessarily morphisms of RepA, the same argument fails, and there is not

necessarily a natural choice for the morphisms αA, cA in Diagrams 4.7.

In Construction 4.7 and Construction 4.8, the condensed associator and braiding

are selected as compositions involving the section q̂ of the quotient morphism chosen

in Construction 4.4. While different choices of q̂ could give category data that define

equivalent categories, it may be that some choices of q̂ do not. This question has not yet

been fully investigated. A question that might be of interest is whether modular isotopes

of the condensed category can be produced from different choices of q̂.

123

Chapter 5

Applications

There is no shortage of interesting usage for condensation. We have already seen it as a

physical process on topological phases of matter (Section 3.1.3.1) and as an equivalence

relation for braided fusion categories (Section 3.1.3.2).

In this chapter, we provide applications for our work that are quite novel. We begin

with the least novel but perhaps most exciting application. Section 5.1 applies some of

our general results from Section 3.4 in providing a connection to topological quantum

computing.

We then apply our computational work from Chapter 4 to the study of near-group

categories in Section 5.2. We see that condensation may be a way to access category

data that would otherwise be computationally out of reach.

Finally, Section 5.3 provides the opposite of an application, a co-application if you will.

An interesting and surprising scheme is laid out for producing condensable algebras from

classical error-correcting codes. This makes condensation an unexpected application of

error-correcting codes. We hope this condensation can, in turn, be applied to the problem

of generalizing the phenomenon of monstrous moonshine.

124

5.1 Quantum Computing with Conformal Field Theo-

ries

In Section 2.4.2, we mentioned naturally fault tolerant quantum computation as a mo-

tivation for studying modular tensor categories. In [34], a model for universal quantum

computation is developed from the minimal model conformal field theories. The min-

imal models are realized as a coset of SU(2)k theories, and braiding universality (see

Section 2.4.2) is demonstrated. Braid group representations are calculated and shown to

agree with monodromy representations from braiding conformal blocks. Refer to [34] for

the complete story.

5.1.1 Minimal Models from Condensation

Refer to Section 3.3.3 for a first example of this condensation. We begin this section with

a refresher on the data of the minimal models from [15].

The minimal model M(p, q) has primary fields Nm,n with m = 1, . . . , q − 1 and

n = 1, . . . , p− 1 and fusion rules

Nr,s ⊗Nm,n =

min(m+r−1,2q−1−m−r)∑
k

2
=|m−r|+1

min(n+s−1,2p−1−n−s)∑
l
2
=|n−s|+1

Nk,l,

where 2
= denotes incrementing the summation variables k and l by 2. The primary field

Nm,n has conformal dimension

hr,s(m) =
[(m+ 1)r −ms]2 − 1

4m(m+ 1)
.

If we reindex from 0, then the minimal model M(p, q) has primary fields Nm,n with

m = 0, . . . , q − 2 and n = 0, . . . , p − 2. The fusion rules and conformal dimensions are

125

given by

Nr,s ⊗Nm,n =

min(m+r,2(q−2)−m−r)∑
k

2
=|m−r|

min(n+s,2(p−2)−n−s)∑
l
2
=|n−s|

Nk,l,

hr,s(m) =
[(m+ 1)(r + 1)−m(s+ 1)]2 − 1

4m(m+ 1)
.

Finally, we will be interested in the minimal modelM(k + 3, k + 2), which has primary

fields Nm,n with m = 0, . . . , k and n = 0, . . . , k + 1 with fusion rules and dimensions

Nr,s ⊗Nm,n =

min(m+r,2k−m−r)∑
k

2
=|m−r|

min(n+s,2(k+1)−n−s)∑
l
2
=|n−s|

Nk,l, (5.1)

hr,s(m) =
[(k + 3)(r + 1)− (k + 2)(s+ 1)]2 − 1

4(k + 2)(k + 3)
. (5.2)

We also review the data of SU(2)k from [4]. The MTC SU(2)k has simple objects

0, 1
2
, . . . , k

2
with fusion rules

j1 ⊗ j2 =
min(j1+j2,k−j1−j2)∑

j=|j1−j2|

j

and twist

θj = e2πi
j(j+1)
k+2 .

Giving the objects integer labels, the MTC SU(2)k has simple objects 0, 1, . . . , k with

fusion rules

j1 ⊗ j2 =
min(j1+j2,2k−j1−j2)∑

j
2
=|j1−j2|

j,

where 2
= denotes incrementing the summation variable j by 2, and twist

θj = e2πi
j
2(j

2+1)
k+2 = eπi

j(j+2)
2(k+2) .

Lemma 5.1. In SU(2)k, we have k ⊗ s = r if and only if s = k − r. Moreover, when

s ̸= k − r, the product k ⊗ s contains no r term.

126

Proof. (⇐) Observe

k ⊗ (k − r) =
min(k+(k−r),2k−k−(k−r))∑

j
2
=|k−(k−r)|

j =

min(2k−r,r)∑
j
2
=r

j = r

since min(2k − r, r) = r for all r = 0, . . . , k.

(⇒) We have

k ⊗ s =
min(k+s,k−s)∑

j
2
=k−s

j.

If s < k−r, then k−s > r, and there is no r term in the product k⊗s. If s > k−r,

then k−s < r, so min(k+s, k−s) < r, and there is no r term in the product k⊗s.

Proposition 5.2. If B = SU(2)k ⊠ SU(2)1 ⊠ SU(2)k+1 and A = 000 + k1(k + 1), then

BA = B0⊕B1, where B0 has the same fusion rules as the Minimal ModelM(k+3, k+2).

Proof. (1) We begin by finding simple objects of BA and determining which objects of

B get identified. Let X and Y be objects and consider

HomBA(X, Y) = HomB(A⊗X, Y).

Since A⊗X = X+k1(k+1)⊗X, we have HomBA(X, Y) ∼= C exactly when Y ∼= X

or k1(k + 1) ⊗ X contains exactly one (isomorphic) copy of Y . Note that these

cases have no overlap since 1⊗X ̸= X for any X in SU(2)1. Lemma 5.1 gives us

the condition for the latter case. So, if X = rst, then HomBA(X, Y) ∼= C exactly

when Y ∼= rst or Y ∼= (k − r)(1 − s)(k + 1 − t). Note that every object is paired

since SU(2)1 has two simple objects, so B has an even number of simple objects.

(2) Now, to figure out which object classes compose the modular subcategory B0, we

compare θrst and θ(k−r)(1−s)(k+1−t). We have

θrst = eπi(
r(r+2)
2(k+2)

+
s(s+2)
2(3)

− t(t+2)
2(k+3))

127

and

θ(k−r)(1−s)(k+1−t) = eπi(
(k−r)(k−r+2)

2(k+2)
+

(1−s)(1−s+2)
2(3)

− (k+1−t)(k+1−t+2)
2(k+3)).

Notice

(k − r)(k − r + 2) = k(k − r + 2)− r(k − r + 2)

= k(k + 2)− 2rk + r(r − 2)

= k(k + 2)− 2r(k + 2) + r(r + 2)

= (k − 2r)(k + 2) + r(r + 2),

(1− s)(1− s+ 2) = (1− s+ 2)− s(1− s+ 2)

= 3− 2s+ s(s− 2)

= 3− 2s(1 + 2) + s(s+ 2)

= 3(1− 2s) + s(s+ 2),

and

(k + 1− t)(k + 1− t+ 2) = (k + 1)(k + 1− t+ 2)− t(k + 1− t+ 2)

= (k + 1)(k + 3)− 2t(k + 1) + t(t− 2)

= (k + 1)(k + 3)− 2t(k + 1 + 2) + t(t+ 2)

= (k + 1− 2t)(k + 3) + t(t+ 2).

Now,

θ(k−r)(1−s)(k+1−t) = eπi(
(k−2r)(k+2)+r(r+2)

2(k+2)
+

3(1−2s)+s(s+2)
2(3)

− (k+1−2t)(k+3)+t(t+2)
2(k+3))

= θrste
πi((k−2r)(k+2)

2(k+2)
+

3(1−2s)
2(3)

− (k+1−2t)(k+3)
2(k+3))

= θrste
πi k−2r+1−2s−k−1+2t

2

= θrste
(t−r−s)πi,

128

so θrst = θ(k−r)(1−s)(k+1−t) exactly when t− r − s, or equivalently, r + s+ t is even.

(3) For each r = 0, . . . , k and t = 0, . . . , k + 1, we may uniquely choose s = 0 or s = 1

so that r+ s+ t is even. Then, we may identify rst ∼ Nr,t inM(k + 3, k + 2). We

have

rst⊗mnp =
min(r+m,2k−r−m)∑

j
2
=|r−m|

min(t+p,2(k+1)−t−p)∑
l
2
=|t−p|

jsl,

where s is chosen to make j + s+ l even, and

Nr,t ⊗Nm,p =

min(m+r,2k−m−r)∑
j
2
=|m−r|

min(p+t,2(k+1)−p−t)∑
l
2
=|p−t|

Nj,l.

Proposition 5.3. The twists of the objects of B0 in Proposition 5.2 agree with those of

the corresponding objects in the minimal model M(k + 3, k + 2).

Proof. Using equation 5.2, we find

θNr,t = e2πihr,t(k+2)

= e
2πi

(
[(k+2+1)(r+1)−(k+2)(t+1)]2−1

4(k+2)(k+2+1)

)

= e
πi

(
(k+2+1)2(r+1)2−2(k+2+1)(k+2)(r+1)(t+1)+(k+2)2(t+1)2−1

2(k+2)(k+2+1)

)
.

Now,

(k + 2 + 1)2(r + 1)2 − 2(k + 2 + 1)(k + 2)(r + 1)(t+ 1) + (k + 2)2(t+ 1)2 − 1

2(k + 2)(k + 2 + 1)

=
(k + 2 + 1)2(r + 1)2 − 2(k + 2 + 1)(k + 2)(r + 1)(t+ 1) + (k + 2)2(t+ 1)2 − 1

2(k + 2)(k + 2 + 1)

+
r(r + 2)(k + 2 + 1)− r(r + 2)(k + 2 + 1) + t(t+ 2)(k + 2)− t(t+ 2)(k + 2)

2(k + 2)(k + 2 + 1)

=
r(r + 2)

2(k + 2)
− t(t+ 2)

2(k + 3)
+

(k + 2 + 1)(r + 1)2 − r(r + 2)

2(k + 2)

+
(k + 2)(t+ 1)2 + t(t+ 2)

2(k + 2 + 1)
− 1

2(k + 2)(k + 2 + 1)
− 2(r + 1)(t+ 1)

2
.

129

Considering two of the terms separately, we have

(k + 2 + 1)(r + 1)2 − r(r + 2)

2(k + 2)
=

(k + 2)(r + 1)2 + r2 + 2r + 1− r2 − 2r

2(k + 2)

=
(r + 1)2

2
+

1

2(k + 2)

and

(k + 2)(t+ 1)2 + t(t+ 2)

2(k + 2 + 1)
=

(k + 2)(t2 + 2t+ 1) + t2 + 2t

2(k + 2 + 1)

=
(k + 2 + 1)t2 + 2(k + 2 + 1)t+ k + 2

2(k + 2 + 1)

=
t2 + 2t+ 1

2
− 1

2(k + 2 + 1)
.

Now,

(k + 2 + 1)(r + 1)2 − r(r + 2)

2(k + 2)
+

(k + 2)(t+ 1)2 + t(t+ 2)

2(k + 2 + 1)

− 1

2(k + 2)(k + 2 + 1)
− 2(r + 1)(t+ 1)

2

=
(r + 1)2

2
+
t2 + 2t+ 1

2
− 2(r + 1)(t+ 1)

2

+
1

2(k + 2)
− 1

2(k + 2 + 1)
− 1

2(k + 2)(k + 2 + 1)

=
[(r + 1)− (t+ 1)]2

2
+
k + 2 + 1− k − 2− 1

2(k + 2)(k + 2 + 1)

=
(r − t)2

2
.

Finally, if we have r − t = 2n for an integer n, then we have s = 0 and

(r − t)2

2
= 2n2,

so

θNr,t = eπi(
r(r+2)
2(k+2)

− t(t+2)
2(k+3)

+2n2) = eπi(
r(r+2)
2(k+2)

− t(t+2)
2(k+3)) = θrst.

130

If we have r − t = 2n+ 1 for an integer n, then we have s = 1 and

(r − t)2

2
= 2n2 + 2n+

1

2
,

so

θNr,t = eπi(
r(r+2)
2(k+2)

− t(t+2)
2(k+3)

+2(n2+n)+ 1
2) = eπi(

r(r+2)
2(k+2)

+ 1
2
− t(t+2)

2(k+3)) = θrst.

In both cases, we have θNr,t = θrst, as desired.

5.1.2 Braid Group Representations

Anyons that are universal for quantum computing by braiding alone (see Section 2.4.2)

can be found in the minimal models. Given such anyons, a computation is a braid

and can be written as a unitary transformation as an image of a unitary braid group

representation. These braid group representations can be computed in the graphical

calculus of modular tensor categories. This computation agrees with the monodromy

representations in [34] and provides a far simpler way to compute them.

As an example, consider the tricritical Ising modelM(5, 4) ∼= Ising⊠Fib. It is known

that the Fibonacci anyon τ is universal for quantum computing by braiding alone [21].

Then its complex conjugate τ is also universal. Since ψ is a fermion, the anyon ψ ⊠ τ in

M(5, 4) is also universal for quantum computing by braiding alone, and the braid group

representation we get from it is equivalent to that from τ up to phases. A universal

quantum computation scheme from representations of the braid groups B3, B4, and B6

is developed in [34]. Representations of these three braid groups are computed below.

To understand the braid group representation, select a braid σ and an orthonormal

basis of fusion trees labeled by τ anyons. For each basis element, we compose with the

braid σ and then use the Fibonacci F -symbols and R-symbols to write the result as a

linear combination of the basis itself. Thus each braid is assigned a matrix which is the

change-of-basis matrix from a braided basis to the original unbraided one. Computing

this matrix for each of the braid group generators allows us to extend to any braid by

131

simple matrix multiplication. For data of the Fibonacci category, see Example 2.86.

Before we begin, we note a few nontrivial identities that simplify the matrices that

follow. Let φ be the golden ratio 1+
√
5

2
. Then

φ−1e−4πi/5 + e3πi/5 = e4πi/5,

e−4πi/5 + φ−1e3πi/5 = −1,

φ−1e−4πi/5 − φ−1e3πi/5 = e−3πi/5.

A Representation of the Braid Group B3

We wish to write the generators {σ1, σ2} of B3 in terms of a basis
τ τ τ

1

τ

,

τ τ τ

τ

τ

 .

To find σ1, we observe

τ τ τ

1

τ

= Rττ
1

τ τ τ

1

τ

= Rττ
1

1

0

 ,

τ τ τ

τ

τ

= Rττ
τ

τ τ τ

τ

τ

= Rττ
τ

0

1

 .

Thus, we have

σ1 7→

e−4πi/5 0

0 e3πi/5

 .

132

To find σ2, we observe

τ τ τ

1

τ

= F τττ
τ ;11 τ τ τ

1

τ

+ F τττ
τ ;τ1 τ τ τ

τ

τ

= F τττ
τ ;11R

ττ
1

τ τ τ

1

τ

+ F τττ
τ ;τ1R

ττ
τ

τ τ τ

τ

τ

= F τττ
τ ;11R

ττ
1

(F τττ
τ)−1

11

τ τ τ

1

τ

+ (F τττ
τ)−1

τ1

τ τ τ

τ

τ



+ F τττ
τ ;τ1R

ττ
τ

(F τττ
τ)−1

1τ

τ τ τ

1

τ

+ (F τττ
τ)−1

ττ

τ τ τ

τ

τ



=
(
F τττ
τ ;11R

ττ
1 (F τττ

τ)−1
11 + F τττ

τ ;τ1R
ττ
τ (F τττ

τ)−1
1τ

)1

0


+
(
F τττ
τ ;11R

ττ
1 (F τττ

τ)−1
τ1 + F τττ

τ ;τ1R
ττ
τ (F τττ

τ)−1
ττ

)0

1


=

 φ−1e4πi/5

φ−1/2e−3πi/5

 ,

τ τ τ

τ

τ

= F τττ
τ ;1τ τ τ τ

1

τ

+ F τττ
τ ;ττ τ τ τ

τ

τ

133

= F τττ
τ ;1τR

ττ
1

τ τ τ

1

τ

+ F τττ
τ ;ττR

ττ
τ

τ τ τ

τ

τ

= F τττ
τ ;1τR

ττ
1

(F τττ
τ)−1

11

τ τ τ

1

τ

+ (F τττ
τ)−1

τ1

τ τ τ

τ

τ



+ F τττ
τ ;ττR

ττ
τ

(F τττ
τ)−1

1τ

τ τ τ

1

τ

+ (F τττ
τ)−1

ττ

τ τ τ

τ

τ



=
(
F τττ
τ ;1τR

ττ
1 (F τττ

τ)−1
11 + F τττ

τ ;ττR
ττ
τ (F τττ

τ)−1
1τ

)1

0


+
(
F τττ
τ ;1τR

ττ
1 (F τττ

τ)−1
τ1 + F τττ

τ ;ττR
ττ
τ (F τττ

τ)−1
ττ

)0

1


=

φ−1/2e−3πi/5

−φ−1

 .

Thus, we have

σ2 7→

 φ−1e4πi/5 φ−1/2e−3πi/5

φ−1/2e−3πi/5 −φ−1

 .

A Representation of the Braid Group B4

We wish to write the generators {σ1, σ2, σ3} of B4 in terms of the basis

τ τ τ τ

1 τ

τ

,

τ τ τ τ

τ 1

τ

,

τ τ τ τ

τ τ

τ


.

134

To find σ1, we observe

τ τ τ τ

1 τ

τ

= Rττ
1

τ τ τ τ

1 τ

τ

= Rττ
1


1

0

0

 ,

τ τ τ τ

τ 1

τ

= Rττ
τ

τ τ τ τ

τ 1

τ

= Rττ
τ


0

1

0

 ,

τ τ τ τ

τ τ

τ

= Rττ
τ

τ τ τ τ

τ τ

τ

= Rττ
τ


0

0

1

 .

Thus, we have

σ1 7→


e−4πi/5 0 0

0 e3πi/5 0

0 0 e3πi/5

 .

Similarly, to find σ3, we observe

τ τ τ τ

1 τ

τ

= Rττ
τ

τ τ τ τ

1 τ

τ

= Rττ
τ


1

0

0

 ,

135

τ τ τ τ

τ 1

τ

= Rττ
1

τ τ τ τ

τ 1

τ

= Rττ
1


0

1

0

 ,

τ τ τ τ

τ τ

τ

= Rττ
τ

τ τ τ τ

τ τ

τ

= Rττ
τ


0

0

1

 .

Thus, we have

σ3 7→


e3πi/5 0 0

0 e−4πi/5 0

0 0 e3πi/5

 .

Now an abbreviated version of σ2:

τ τ τ τ

1 τ

τ

= F 1ττ
τ ;ττ

τ τ τ τ

1
τ

τ

(F 1ττ
τ ;ττ = 1)

= F τττ
τ ;11

τ τ τ τ

1
τ

τ

+ F τττ
τ ;τ1

τ τ τ τ

τ
τ

τ

= F τττ
τ ;11R

ττ
1

τ τ τ τ

1
τ

τ

+ F τττ
τ ;τ1R

ττ
τ

τ τ τ τ

τ
τ

τ

136

=
(
F τττ
τ ;11R

ττ
1 (F τττ

τ)−1
11 + F τττ

τ ;τ1R
ττ
τ (F τττ

τ)−1
1τ

)
τ τ τ τ

1 τ

τ

+
(
F τττ
τ ;11R

ττ
1 (F τττ

τ)−1
τ1

+ F τττ
τ ;τ1R

ττ
τ (F τττ

τ)−1
ττ

)
(F τττ

τ)−1
1τ

τ τ τ τ

τ 1

τ

+(F τττ
τ)−1

ττ

τ τ τ τ

τ τ

τ



=


φ−1e4πi/5

φ−1e−3πi/5

−φ−3/2e−3πi/5

 ,

τ τ τ τ

τ 1

τ

=


φ−1e−3πi/5

φ−1e4πi/5

−φ−3/2e−3πi/5

 ,

τ τ τ τ

τ τ

τ

=


−φ−3/2e−3πi/5

−φ−3/2e−3πi/5

φ−1e3πi/5 − φ−3

 .

137

Finally,

σ2 7→


φ−1e4πi/5 φ−1e−3πi/5 −φ−3/2e−3πi/5

φ−1e−3πi/5 φ−1e4πi/5 −φ−3/2e−3πi/5

−φ−3/2e−3πi/5 −φ−3/2e−3πi/5 φ−1e3πi/5 − φ−3

 .

It can be checked that in fact σ1σ3 = σ3σ1, σ1σ2σ1 = σ2σ1σ2, and σ2σ3σ2 = σ3σ2σ3.

A Representation of the Braid Group B6

We wish to write the generators {σ1, σ2, σ3, σ4, σ5} of B6 in terms of the basis

τ τ τ τ τ τ

1 1

1

1

1

,

τ τ τ τ τ τ

1 τ

τ

τ

1

,

τ τ τ τ τ τ

τ 1

τ

τ

1

,

τ τ τ τ τ τ

τ τ

1

1

1

,

τ τ τ τ τ τ

τ τ

τ

τ

1



138

To find σ1, we observe

τ τ τ τ τ τ

1 1

1

1

1

= Rττ
1

τ τ τ τ τ τ

1 1

1

1

1

= Rττ
1



1

0

0

0

0


,

The next four give factors of Rττ
1 , Rττ

τ , Rττ
τ , Rττ

τ , respectively. So

σ1 7→



e−4πi/5 0 0 0 0

0 e−4πi/5 0 0 0

0 0 e3πi/5 0 0

0 0 0 e3πi/5 0

0 0 0 0 e3πi/5


.

For σ3, we have factors Rττ
1 , Rττ

τ , Rττ
1 , Rττ

τ , and Rττ
τ . So

σ3 7→



e−4πi/5 0 0 0 0

0 e3πi/5 0 0 0

0 0 e−4πi/5 0 0

0 0 0 e3πi/5 0

0 0 0 0 e3πi/5


.

For σ5, we have factors Rττ
1 , Rττ

τ , Rττ
τ , Rττ

1 , and Rττ
τ . So

σ5 7→



e−4πi/5 0 0 0 0

0 e3πi/5 0 0 0

0 0 e3πi/5 0 0

0 0 0 e−4πi/5 0

0 0 0 0 e3πi/5


.

139

For σ2, we find

τ τ τ τ τ τ

1 1

1

1

1

=



φ−1e4πi/5

0

0

φ−1/2e−3πi/5

0


,

τ τ τ τ τ τ

1 τ

τ

τ

1

=



0

φ−1e4πi/5

φ−1e−3πi/5

0

−φ−3/2e−3πi/5


, (see B4)

τ τ τ τ τ τ

τ 1

τ

τ

1

=



0

φ−1e−3πi/5

φ−1e4πi/5

0

−φ−3/2e−3πi/5


, (see B4)

τ τ τ τ τ τ

τ τ

1

1

1

=



φ−1/2e−3πi/5

0

0

−φ−1

0


,

140

τ τ τ τ τ τ

τ τ

τ

τ

1

=



0

−φ−3/2e−3πi/5

−φ−3/2e−3πi/5

0

φ−1e3πi/5 − φ−3


. (see B4)

Now,

σ2 7→



φ−1e4πi/5 0 0 φ−1/2e−3πi/5 0

0 φ−1e4πi/5 φ−1e−3πi/5 0 −φ−3/2e−3πi/5

0 φ−1e−3πi/5 φ−1e4πi/5 0 −φ−3/2e−3πi/5

φ−1/2e−3πi/5 0 0 −φ−1 0

0 −φ−3/2e−3πi/5 −φ−3/2e−3πi/5 0 φ−1e3πi/5 − φ−3


.

And finally for σ4,

τ τ τ τ τ τ

1 1

1

1

1

=



φ−1e4πi/5

φ−1/2e−3πi/5

0

0

0


,

τ τ τ τ τ τ

1 τ

τ

τ

1

=



φ−1/2e−3πi/5

−φ−1

0

0

0


,

141

τ τ τ τ τ τ

τ 1

τ

τ

1

=



0

0

φ−2e3πi/5 − φ−2

φ−1e−3πi/5

φ−3/2e3πi/5 + φ−5/2


,

τ τ τ τ τ τ

τ τ

1

1

1

=



0

0

φ−1e−3πi/5

φ−1e4πi/5

−φ−3/2e−3πi/5


,

τ τ τ τ τ τ

τ τ

τ

τ

1

=



0

0

φ−3/2e3πi/5 + φ−5/2

−φ−3/2e−3πi/5

φ−1e3πi/5 − φ−3


.

Now, σ4 maps to

φ−1e4πi/5 φ−1/2e−3πi/5 0 0 0

φ−1/2e−3πi/5 −φ−1 0 0 0

0 0 φ−2e3πi/5 − φ−2 φ−1e−3πi/5 φ−3/2e3πi/5 + φ−5/2

0 0 φ−1e−3πi/5 φ−1e4πi/5 −φ−3/2e−3πi/5

0 0 φ−3/2e3πi/5 + φ−5/2 −φ−3/2e−3πi/5 φ−1e3πi/5 − φ−3


.

It can be checked that both braid relations hold for all pairs of σ1, σ2, σ3, σ4, and σ5.

142

5.2 Near-Group Categories

There is a class of fusion categories constructed from finite abelian groups called near-

group categories. While definitions are not well-established, one might find some in, e.g.

[50]. We will take the following as our definition.

Definition 5.4. Given a finite abelian group G and integer n, a near-group category

NG(G, n|G|) is any fusion category with label set G ∪ {x} and fusion rules

g ⊗ h ∼= gh,

g ⊗ x ∼= x⊗ g ∼= x,

x⊗ x ∼=

(⊕
g∈G

g

)
⊕ n|G|x

for all g, h ∈ G.

Note we have only defined the near-group category with Nxx
x a multiple of the order

of the group. It is known that this is necessary to achieve a fusion category, so we do not

consider other cases.

Example 5.5. The Tambara-Yamagami category TY(G) is the near-group category

NG(G, 0). TY(Z2) is the Ising MTC.

Example 5.6. The near-group category NG({0}, 1) is the Fibonacci MTC.

Example 5.7. The near-group category NG(Z2, 2) is the category known as 1
2
E6. It is

already complicated as it has multiplicity.

Conjecture 5.8. A fusion category NG(Zp, p) exists for all primes p.

Section 5.2.1 presents one approach to resolving Conjecture 5.8. Section 5.2.2 provides

another.

143

5.2.1 Equations Determining Near-Groups

Work has been done on writing and solving polynomial equations which determine differ-

ent classes of near-group categories. A summary can be found in [27]. A set that we are

interested in was first defined in [28] and later worked on by [19]. The equations differ

based on who has been working on them but amount to the following. Definitions are

given below.

a(1) = 1, a(g) = a(−g), a(g + h) ⟨g, h⟩ = a(g)a(h),
∑
g

a(g) =
√
|G| η−3,

b(0) = −1

d
,

∑
h

⟨g, h⟩b(h) =
√
|G| ηb(g), a(g)b(−g) = b(g),

∑
g

b(g + h)b(g) = δh,0 −
1

d
,
∑
g

b(g + h1)b(g + h2)b(g) = ⟨h1, h2⟩b(h1)b(h2)−
η

d
√
|G|

Here, G is a group and g, h, hi ∈ G. The paper [19] finds all solutions for all groups

up to order 13, and [7] adds solutions for most groups up to order 30. We restrict our

attention to groups of prime order since we are interested in answering Conjecture 5.8.

Our numerical results agree with [19, 7], though we add solutions for |G| = 19, which [7]

has left out.

From here on, we use p to refer to the prime order of G. For NG(Zp, p), we set

d = (p +
√
p2 + 4p)/2 to be the dimension of the noninvertible simple object x. We

would now like to choose η3 = ecπi/4 so that η is a third root of the multiplicative central

charge from Definition 2.55. We resist this urge and settle for η being a third root of the

multiplicative central charge in order to keep our equations consistent with the literature.

Finally, a, b, ⟨·, ·⟩ are complex numbers. We choose a(g) = e2πimg
2/p for an integer

m and ⟨g, h⟩ = a(g)a(h)a(g + h). What remains is to solve for b(g), g ∈ Zp so that the

equations involving b are all satisfied.

We first provide a summary of numerical results for b. These results are followed by

some general statements and conjectures.

144

5.2.1.1 Numerical Results

For each of the following solutions, we also have a solution given by b′(g) = b(−g).

Choosing different m can give permutations of the a function, which gives permutations

of the b solutions. The general results of Section 5.2.1.2 address these solutions. No other

solutions have been intentionally omitted.

p = 3 (3 mod 8)

m = 1

No solutions for η = i, ie2πi/3.

η = ie4πi/3,

b(0) ≈ −0.26376, b(1) ≈ −0.55272− 0.16683i, b(2) ≈ 0.42084 + 0.39526i

m = 2

No solutions for η = −i,−ie4πi/3.

η = −ie2πi/3,

b(0) ≈ −0.26376, b(1) ≈ −0.55272 + 0.16683i, b(2) ≈ 0.42084− 0.39526i

This is the complex conjugate of m = 1, η = ie4πi/3.

p = 5 (5 mod 8)

m = 1

No solutions for η = 1.

η = e2πi/3,

b(0) ≈ −0.17082, b(1) ≈ −0.01268− 0.44703i, b(2) ≈ 0.23894− 0.37803i

145

b(3) ≈ −0.28569 + 0.34407i, b(4) ≈ 0.42124 + 0.15021i

Taking η = e4πi/3 gives the (rearranged) complex conjugate of the above.

m = 2

No solutions for η = −e2πi/3,−e4πi/3.

η = −1,

b(0) ≈ −0.17082, b(1) ≈ 0.13820− 0.42533i, b(2) ≈ 0.13820 + 0.42533i

b(3) ≈ 0.13820 + 0.42533i, b(4) ≈ 0.13820− 0.42533i

The complex conjugate of this solution appears by taking m = 3. This should be consid-

ered a rearranged complex conjugate even though the symmetry of this case obfuscates

it.

146

p = 7 (7 mod 8)

m = 1

No solutions for η = ie2πi/3, ie4πi/3.

η = i,

b(0) ≈ −0.12678, b(1) ≈ 0.35945− 0.11686i, b(2) ≈ −0.31133− 0.21432i

b(3) ≈ −0.08353 + 0.36862i, b(4) ≈ −0.34079 + 0.16346i,

b(5) ≈ 0.18751− 0.32817i, b(6) ≈ 0.31548− 0.20817i

m = 6

No solutions for η = −ie2πi/3,−ie4πi/3.

The solution for η = −i is the complex conjugate of the m = 1 solution.

p = 11 (3 mod 8)

m = 1

No solutions for η = i.

η = ie2πi/3,

b(0) ≈ −0.08387, b(1) ≈ −0.05339− 0.29675i, b(2) ≈ −0.16303− 0.25363i

b(3) ≈ 0.19404− 0.23078i, b(4) ≈ −0.11063 + 0.28048i, b(5) ≈ 0.28473 + 0.09920i,

b(6) ≈ −0.13871− 0.26771i, b(7) ≈ 0.02712 + 0.30029i, b(8) ≈ −0.12932 + 0.27237i,

b(9) ≈ 0.29845− 0.04288i, b(10) ≈ 0.11552 + 0.27850i

η = ie4πi/3,

b(0) ≈ −0.08387, b(1) ≈ 0.19809− 0.22731i, b(2) ≈ −0.24269 + 0.17892i

b(3) ≈ −0.28715− 0.09194i, b(4) ≈ −0.2919 + 0.07552i, b(5) ≈ −0.17208− 0.24759i,

147

b(6) ≈ 0.26956 + 0.13509i, b(7) ≈ 0.25880 + 0.1547i, b(8) ≈ −0.20292− 0.22301i,

b(9) ≈ 0.02371 + 0.30058i, b(10) ≈ 0.28954 + 0.08412i

m = 10

No solutions for η = −i.

The solution for η = −ie2πi/3 is the complex conjugate of the solution for m = 1,

η = ie4πi/3.

The solution for η = −ie4πi/3 is the complex conjugate of the solution for m = 1,

η = ie2πi/3.

148

p = 13 (5 mod 8)

m = 1

No solutions for η = e2πi/3, e4πi/3.

η = 1,

b(0) ≈ −0.07177, b(1) ≈ 0.16523− 0.22276i, b(2) ≈ 0.26626 + 0.07764i

b(3) ≈ 0.12648− 0.24683i, b(4) ≈ −0.27179 + 0.05525i, b(5) ≈ −0.21893− 0.17027i,

b(6) ≈ 0.02205 + 0.27647i, b(7) ≈ 0.27711− 0.01144i, b(8) ≈ −0.27298 + 0.04903i,

b(9) ≈ −0.08761 + 0.26315i, b(10) ≈ −0.27564 + 0.03073i,

b(11) ≈ −0.16701− 0.22143i, b(12) ≈ 0.24983 + 0.12046i

A rearrangement of the complex conjugates is also a solution for η = 1.

m = 2

No solutions for η = −e2πi/3,−e4πi/3.

η = −1,

b(0) ≈ −0.07177, b(1) ≈ 0.25259 + 0.11456i, b(2) ≈ 0.11571 + 0.25206i

b(3) ≈ −0.21083 + 0.18020i, b(4) ≈ 0.25000− 0.12008i, b(5) ≈ −0.11157 + 0.25392i,

b(6) ≈ 0.03203− 0.27550i, b(7) ≈ −0.09703− 0.25982i, b(8) ≈ 0.14560− 0.23606i,

b(9) ≈ −0.21401− 0.17642i, b(10) ≈ 0.03831 + 0.27469i,

b(11) ≈ 0.08054 + 0.26540i, b(12) ≈ 0.04921− 0.27295i

A rearrangement of the complex conjugates is also a solution for η = −1.

149

p = 17 (1 mod 8)

m = 1

No solutions for η = 1.

η = e2πi/3,

b(0) ≈ −0.05572, b(1) ≈ 0.08844− 0.22584i, b(2) ≈ −0.15849 + 0.18359i,

b(3) ≈ −0.24086− 0.02848i, b(4) ≈ 0.22510− 0.09030i, b(5) ≈ 0.11245− 0.21489i,

b(6) ≈ −0.09140− 0.22466i, b(7) ≈ −0.05366− 0.23652i, b(8) ≈ 0.20685− 0.12664i,

b(9) ≈ −0.10701 + 0.21765i, b(10) ≈ −0.19900 + 0.13864i, b(11) ≈ 0.08380 + 0.22760i,

b(12) ≈ −0.07105− 0.23190i, b(13) ≈ 0.17728 + 0.16552i, b(14) ≈ 0.23153− 0.07225i,

b(15) ≈ −0.19743 + 0.14088i, b(16) ≈ 0.16405 + 0.17864i

The solution for η = e4πi/3 is the (rearranged) complex conjugate of the above.

m = 3

No solutions for η = −1.

η = −e2πi/3,

b(0) ≈ −0.05572, b(1) ≈ −0.18355− 0.15853i, b(2) ≈ −0.05371 + 0.23651i,

b(3) ≈ 0.18821− 0.15298i, b(4) ≈ 0.23525− 0.05900i, b(5) ≈ −0.21586− 0.11059i,

b(6) ≈ −0.24132 + 0.02427i, b(7) ≈ −0.20412− 0.13099i, b(8) ≈ −0.22741− 0.08431i,

b(9) ≈ 0.14332 + 0.19566i, b(10) ≈ 0.01847− 0.24183i, b(11) ≈ 0.12606 + 0.20720i,

b(12) ≈ 0.24174 + 0.01961i, b(13) ≈ 0.05204 + 0.23689i, b(14) ≈ −0.24055− 0.03098i,

b(15) ≈ 0.24218 + 0.01306i, b(16) ≈ 0.06009 + 0.23497i

The solution for η = −e4πi/3 is the (rearranged) complex conjugate of the above.

150

p = 19 (3 mod 8)

m = 1

No solutions for η = ie2πi/3, ie4πi/3.

η = i,

b(0) ≈ −0.05012, b(1) ≈ −0.21986− 0.06547i, b(2) ≈ 0.19622 + 0.11886i,

b(3) ≈ −0.22922− 0.00947i, b(4) ≈ 0.01705 + 0.22878i, b(5) ≈ −0.00510 + 0.22936i,

b(6) ≈ −0.01303− 0.22904i, b(7) ≈ −0.19824 + 0.11547i, b(8) ≈ 0.11594− 0.19796i,

b(9) ≈ 0.21655− 0.07576i, b(10) ≈ 0.05762− 0.22206i, b(11) ≈ 0.06712− 0.21938i,

b(12) ≈ 0.22930 + 0.00720i, b(13) ≈ −0.15097 + 0.17274i, b(14) ≈ −0.20799 + 0.09681i,

b(15) ≈ 0.20085− 0.11086i, b(16) ≈ 0.22765 + 0.02839i,

b(17) ≈ −0.06706− 0.21940i, b(18) ≈ −0.18670 + 0.13332i

m = 18

No solutions for η = −ie2πi/3,−ie4πi/3.

The solution for η = −i is the complex conjugate of the solution above.

p = 23 (7 mod 8)

m = 1

η = i,

b(0) ≈ −0.04174, b(1) ≈ 0.02385− 0.20715i, b(2) ≈ 0.18008 + 0.10512i,

b(3) ≈ 0.15973− 0.13404i, b(4) ≈ −0.17080 + 0.11961i, b(5) ≈ 0.18461 + 0.09694i,

b(6) ≈ −0.20839 + 0.00712i, b(7) ≈ −0.20709− 0.02431i, b(8) ≈ 0.05372− 0.20148i,

b(9) ≈ 0.17228 + 0.11747i, b(10) ≈ −0.11588− 0.17335i, b(11) ≈ −0.09699 + 0.18458i,

151

b(12) ≈ −0.17754 + 0.10936i, b(13) ≈ 0.20845− 0.00529i, b(14) ≈ −0.15468 + 0.13983i,

b(15) ≈ −0.18633 + 0.09359i, b(16) ≈ −0.12358 + 0.16795i, b(17) ≈ 0.19398− 0.07649i,

b(18) ≈ 0.10736− 0.17875i, b(19) ≈ 0.16990− 0.12088i, b(20) ≈ −0.03931− 0.20478i,

b(21) ≈ −0.01048− 0.20825i, b(22) ≈ 0.07885 + 0.19303i

Solutions for η = ie2πi/3 that we did not find can be found in [7].

m = 22

The solution for η = −i is the complex conjugate of the solution above.

5.2.1.2 General results

Proposition 5.9. If a choice of η, a(g), b(g) is a solution to the equations at the beginning

of Section 5.2.1, then so is the choice of η, a(g), b(−g).

Proof. Trivial since
∑

g∈Zp
f(g) =

∑
g∈Zp

f(−g). For example, suppose that for each

g ∈ Zp, we have ∑
h

⟨g, h⟩b(h) = √p ηb(g).

Fixing some g ∈ Zp, we also have

∑
h

⟨−g, h⟩b(h) = √p ηb(−g).

Then ∑
h

⟨g, h⟩b(−h) =
∑
h

⟨−g,−h⟩b(−h) = √p ηb(−g).

As noted at the beginning of Section 5.2.1.1, the b(−g) solutions were omitted from that

section.

Proposition 5.10. If a choice of η, a(g), b(g) is a solution to the equations at the begin-

ning of Section 5.2.1, then so is η, a(g), b(g).
152

Proof. Trivial. For example, suppose

∑
h

⟨g, h⟩b(h) = √p ηb(g).

It follows that ∑
h

⟨g, h⟩ b(h) = √p ηb(g).

Since ⟨g, h⟩ = a(g)a(h)a(g + h), the set η, a, b also satisfy the equation. All equations

follow similarly.

Remark 5.11. Note that the rearranged complex conjugate solutions noted in Sec-

tion 5.2.1.1 are not solutions guaranteed by Proposition 5.10. The complex conjugate

solutions of Proposition 5.10 are governed by Proposition 5.12 and Corollary 5.14.

Proposition 5.12. Up to permutation of outputs, there exist exactly two functions a(g) =

e2πi
mg2

p for each odd prime p. These two functions correspond to the Legendre symbols

(m
p
) = ±1, and the intersection of their images is only a(0) = 1. They are complex

conjugates of each other exactly when (1
p
) ̸= (−1

p
).

Proof. Let p be an odd prime. Then (m
p
) = 1 if and only if there exists an integer x such

that x2 ≡ m (mod p), which is true if and only if for each g ∈ Z×
p , we have

a(g) = e2πi
x2g2

p = e2πi
(xg)2

p .

When (m
p
) = −1, a(g) cannot be written in the form e2πi

(xg)2

p unless g = 0. So the image

of a when (m
p
) = −1 is disjoint from the image of a when (m

p
) = 1 (for nonzero input g).

Claim: For each m, the image of a contains (p− 1)/2 elements not equal to 1.

Proof: Fix m ∈ {1, . . . , p − 1} and recall that a(g) = a(−g). We wish to show that

the values mg2 are otherwise distinct mod p. Take g, h ∈ {1, . . . , p − 1}. We see that

mg2 ≡ mh2 (mod p) if and only if g2 ≡ h2 (mod p), or g = ±h. Thus a(g) takes on

exactly (p− 1)/2 values for g = 1, . . . , p− 1. ■

153

Now, choicesm1,m2 with (m1

p
) = 1 and (m2

p
) = −1 give functions a1(g), a2(g) with images

of size (p+ 1)/2 intersecting only on g = 0.

Since a(g) = a(−g), the domain of a can contain no more than (p + 1)/2 elements

with distinct images. Thus, for each m, the function a is , and its range is determined

by (2m
p
).

For the last claim, note that e2πi
g2

p is the complex conjugate of e2πi
(p−1)g2

p for all g.

Thus, the two distinct a functions are complex conjugates exactly when m = 1 and

m = p− 1 belong to different Legendre classes.

Corollary 5.13. The two functions a(g) are complex conjugates exactly when p ≡ 3

(mod 4).

Proof. It is known that, for any integer n,

p ≡ 1 (mod 4) =⇒
(
n

p

)
=

(
−n
p

)
,

p ≡ 3 (mod 4) =⇒
(
n

p

)
̸=
(
−n
p

)
.

Corollary 5.14. Let p ≡ 3 (mod 4) be prime. Consider m1,m2 ∈ Z×
p so that (2m1

p
) ̸=

(2m2

p
). The solutions for η, a, b are exactly those for m1 together with the complex conju-

gates η, a, b for m2.

Proof. Let p,m1,m2 be as defined in the statement. Proposition 5.12 says there exist

exactly two distinct functions a1, a2 defined by m1,m2, respectively. The functions a1, a2

are complex conjugates by Corollary 5.13. Finally, Proposition 5.10 guarantees that the

complex conjugate of any solution corresponding to m1 also appears as a solution to m2,

and vice versa.

Lemma 5.15. When p ≡ 1 (mod 4), the image of each of the two functions a(g) guar-

anteed by Proposition 5.12 is closed under complex conjugation.

154

Proof. Fix a prime p ≡ 1 (mod 4). Then (−1
p
) = 1, and there exists an integer x such

that x2 ≡ −1 (mod p). Fix such an x. Now fix g ∈ Z×
p . We wish to find h ∈ Zp such

that

e2πi
mh2

p = e−2πimg2

p .

Consider h ∈ Zp with xg ≡ h (mod p). On the one hand, (xg)2 ≡ h2 (mod p). On the

other hand, x2g2 ≡ −g2 (mod p). Thus, h2 ≡ −g2 (mod p), and there exists an integer

n such that h2 = −g2 + np. Finally,

e2πi
mh2

p = e2πi
m(−g2+np)

p = e−2πimg2

p ,

and the complex conjugate of each image under a is also an image under a.

Corollary 5.16. When p ≡ 1 (mod 4), each solution a, η, b gives another solution with

a, η, and a permutation of b (or equivalently, η, b, and a permutation of a).

Proof. Consider a prime p ≡ 1 (mod 4) and a solution a, η, b. By Lemma 5.15, there is

a permutation σ ∈ Sp with a(σ(g)) = a(g). Then a(σ(g)), η, b is a solution.

In addition to these proven results, we also note the following pattern. In all of the

numerical results, solving the two equations

∑
h

⟨g, h⟩b(h) = √p ηa(g)b(−g),
∑
g

b(g + h)a(g)b(−g) = δh,0 − d−1

was enough to guarantee

a(g)b(−g) = b(g),
∑
g

b(g + h1)b(g + h2)b(g) = ⟨h1, h2⟩b(h1)b(h2)−
η

d
√
p
.

This suggests the following conjecture.

Conjecture 5.17. In the case of Zp, the first two equations imply the latter two.

155

5.2.2 Condensing (G2)3

Another approach to answering Conjecture 5.8 is to try to extend Examples 5.6 and 5.7.

More examples of near-group categories NG(G, |G|) for small order groups may provide

some insight toward the conjecture.

While the F -symbols for the near-group category NG(Z2, 2) are known, significant

effort was required to find them [24]. See Remark 2.73 for a word on why this is generally

a difficult problem.

The same data for the near-group category NG(Z3, 3) are unknown. In fact, full F -

symbols are not known for any category with any multiplicities greater than 2. However,

it is known that NG(Z3, 3) can be realized as a condensation of (G2)3, a modular tensor

category constructed from the exceptional Lie group G2. The complete data for (G2)3

can be found in Supplemental B: (G2)3 Data or at [1]. A summary is provided here.

(G2)3 Data

Label set: L = {a, b, c, d, e, f}

Fusion rules:

156

⊗ a b c d e f

a a b c d e f

b b a⊕ b⊕ c⊕ e
b⊕ c⊕ d

⊕e⊕ f
c⊕ d⊕ f b⊕ c⊕ f c⊕d⊕e⊕f

c c
b⊕ c⊕ d

⊕e⊕ f

a⊕ b⊕ 2c

⊕d⊕ e⊕ 2f

b⊕ c⊕ d

⊕e⊕ f

b⊕ c⊕ d

⊕e⊕ f

b⊕ 2c⊕ d

⊕e⊕ f

d d c⊕ d⊕ f
b⊕ c⊕ d

⊕e⊕ f
a⊕ b⊕ c⊕ d c⊕ e⊕ f b⊕ c⊕ e⊕ f

e e b⊕ c⊕ f
b⊕ c⊕ d

⊕e⊕ f
c⊕ e⊕ f a⊕ c⊕d⊕ e b⊕ c⊕d⊕f

f f c⊕d⊕e⊕f
b⊕ 2c⊕ d

⊕e⊕ f
b⊕ c⊕ e⊕ f b⊕ c⊕d⊕f

a⊕ b⊕ c

⊕d⊕ e⊕ f

Quantum dimensions:

{
1,

3 +
√
21

2
,
7 +
√
21

2
,
3 +
√
21

2
,
3 +
√
21

2
,
5 +
√
21

2

}

Total quantum dimension: D =

√
21
(
5 +
√
21
)

2

Twists:
{
1, e

4πi
7 , e

4πi
3 , e

16πi
7 , e

8πi
7 , 1

}
S Matrix:

√
5−
√
21

42



1 3+
√
21

2
7+

√
21

2
3+

√
21

2
3+

√
21

2
5+

√
21

2

3+
√
21

2
α 0 β γ −3−

√
21

2

7+
√
21

2
0 −7−

√
21

2
0 0 7+

√
21

2

3+
√
21

2
β 0 γ α −3−

√
21

2

3+
√
21

2
γ 0 α β −3−

√
21

2

5+
√
21

2
−3−

√
21

2
7+

√
21

2
−3−

√
21

2
−3−

√
21

2
1


,

with

α = D ·
√
S
7

157

= D ·

√√√√√ 5

21
+

3

√
1+3i

√
3

2

3 3
√
49

+
1

3 3

√
7+21i

√
3

2

≈ 6.8316646397,

β = D ·
(α
S
− α

)
= D · 1− S√

7S

≈ −4.7276586176,

γ = D · (S − 3)α

= D · (S − 3)
√
S√

7

≈ 1.6872818254,

where S = 2 + 2 sin

(
3π

14

)
is the silver constant.

From the above, we note that f is not a boson, but it is bosonic. The object A = a⊕f

has a condensable algebra structure with multiplication

a a

a

+
√
2

f f

a

+

a f

f

+

f a

f

+
4
√
3

f f

f

.

Following the examples in Section 3.3, we compute Hom spaces. Some of the relevant

ones are

HomA(a, a) ∼= HomA(a, f) ∼= C,

HomA(b, b) ∼= HomA(d, d) ∼= HomA(e, e) ∼= C,

HomA(b,X) ∼= HomA(d,X) ∼= HomA(e,X) ∼= Hom(b⊕ c⊕ d⊕ e⊕ f,X),

HomA(c, c) ∼= C3,

HomA(c,X) ∼= Hom(b⊕ 3c⊕ d⊕ e⊕ f,X),

158

HomA(f, f) ∼= C2,

HomA(f,X) ∼= Hom(a⊕ b⊕ c⊕ d⊕ e⊕ 2f,X).

In condensing, the objects b, d, e remain simple but become isomorphic. The image of the

object c is a direct sum of three simple objects, one of which is isomorphic to b ∼ d ∼ e.

The object f gives a direct sum of two simple objects, one of which is isomorphic to the

tensor unit and one of which is isomorphic to b ∼ d ∼ e. That is, if NG(Z3, 1) has label

set {0, 1, 2, X}, the condensation functor maps

T (a) = (a⊕ f,m⊗ ida) ∼= 0 simple,

T (b) = (b⊕ c⊕ d⊕ e⊕ f,m⊗ idb) ∼= X simple,

T (c) = (b⊕ 3c⊕ d⊕ e⊕ f,m⊗ idc) ∼= 1⊕ 2⊕X,

T (d) = (b⊕ c⊕ d⊕ e⊕ f,m⊗ idd) ∼= X simple,

T (e) = (b⊕ c⊕ d⊕ e⊕ f,m⊗ ide) ∼= X simple,

T (f) = (a⊕ b⊕ c⊕ d⊕ e⊕ 2f,m⊗ idf) ∼= 0⊕X.

Indeed, there exist two nontrivial module structures on c. The objects 1 and 2 of

NG(Z3, 3) can be identified with the simple modules

(c, µ1), µ1 ≈

a c

c

+ (−0.27944− 1.09709i)

f c

1

c

+ (0.88766− 0.34537i)

f c

2

c

,

(c, µ2), µ2 ≈

a c

c

+ (−0.27944 + 1.09709i)

f c

1

c

+ (0.88766 + 0.34537i)

f c

2

c

.

At the time of writing, our Mathematica implementation lacked the efficiency to run the

full F -symbol computation. As can be seen in Supplemental B: (G2)3 Data, much of

the (G2)3 data is not pretty. It lends itself very well to producing abysmally conditioned

159

matrices.

Ultimately, we do hope to find the data for NG(Z3, 3) and provide insight to answering

the question of Conjecture 5.8.

5.3 Error Correcting Codes

One unexpected source of condensable algebras is classical error correcting codes. In

classical computing, an error correcting code is an encoding of data bits in such a way

that a receiver of the data may detect, and ideally correct, any errors that may have been

introduced in transmission.

Example 5.18. The Hamming(7,4) error correcting code uses three parity bits to en-

code four data bits. A total of seven bits are used to transmit four bits of data. The

Hamming(7,4) generator matrix is

G =



1 1 0 1

1 0 1 1

1 0 0 0

0 1 1 1

0 1 0 0

0 0 1 0

0 0 0 1



.

160

Encoding a bitstring d1d2d3d4 is achieved by multiplying

G



d1

d2

d3

d4


=



d1 + d2 + d4

d1 + d3 + d4

d1

d2 + d3 + d4

d2

d3

d4



.

When a seven-bit string is received, parity bits 1, 2, and 4 can be checked for consistency.

When a bitstring is received, multiplying by the matrix

H =


1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1


adds each parity bit to the data bits that determine it. If transmission was error-free, the

result is the zero vector. If a single error occurred, the resulting vector indicates which

bit is in error.

In addition to the encoding algorithm, the term code will refer also to the full set of

possible encoded bitstrings. That is, the Hamming(7,4) code is the image of the generator

matrix G,

{0000000, 0001111, 0010110, 0011001, 0100101, 0101010, 0110011, 0111100,

1000011, 1001100, 1010101, 1011010, 1100110, 1101001, 1110000, 1111111}.

For reasons that are not yet clear, we now add a parity bit to the end of each element to

arrive at a doubly even code.

C = {00000000, 00011110, 00101101, 00110011, 01001011, 01010101, 01100110, 01111000,

161

10000111, 10011001, 10101010, 10110100, 11001100, 11010010, 11100001, 11111111}

As in [29], we map 00 7→ 00, 11 7→ 20, 10 7→ 11, 01 7→ 31 to get a subset of Z8
4.

Ĉ = {00000000, 00312011, 00112031, 00200020, 31001120, 31313131, 31113111, 31201100,

11003120, 11311131, 11111111, 11203100, 20002000, 20310011, 20110031, 20202020}

Again as in [29], we let Σ4
2 = {00, 22}4 and consider the set Ĉ + Σ4

2, a subgroup of Z8
4

with 256 elements.

Finally, recall our Ising ⊠ Ising → Z4 condensation from Section 3.3.1. Let B be

the Ising modular tensor category, and consider the 16-fold Deligne product (B⊠B)⊠8.

Proposition 3.55 demonstrates that condensation of the algebra (11 ⊕ ψψ)⊠8 gives the

MTC Z⊠8
4 .

Recall the data of the Z4 modular tensor category.

L = {0, 1, 2, 3}

d1 = d2 = d3 = d4 = 1

θ0 = 1 θ2 = −1

θ1 = θ3 = eπi/4

Considering the set Ĉ + Σ4
2 as a set of objects of the MTC Z⊠8

4 , we may observe that

every element has dimension 1 and θ = 1. Since Z4 is unitary, it is also pseudo-unitary,

and we need not distinguish between the dimension and the Frobenius-Perron dimension

of objects (see 2.70). We now proceed treating Ĉ+Σ4
2 as a subgroup of the Grothendieck

group (Definition 2.68) of Z⊠8
4 .

Consider the object

A =
⊕

x∈Ĉ+Σ4
2

x,

the direct sum of all elements of this bosonic subgroup.

162

Claim: It follows from [9, Corollary 3.8] that A has the structure of a Lagrangian algebra

(Remark 3.2) in Z⊠8
4 .

Proof: Certainly A is commutative by Proposition 3.3 and connected since it contains a

single copy of 00000000. Since all objects have dimension 1, we also have

FPdim(A)2 = 2562 = 48 = FPdim
(
Z⊠8

4

)
.

Finally, the object A is written as a direct sum with a coefficient of nx = 1 on each

element x of the set Ĉ + Σ4
2. Taking any x, y ∈ Ĉ + Σ4

2, we have

nxny = 1 ≤
∑
z∈Z⊠8

4

Nxy
z nz

since the sum includes z = xy. ■

This object A as a Lagrangian algebra is also condensable. Recall Lemma 3.29 gov-

erning global dimensions after condensation. Since

dim
((

Z⊠8
4

)0
A

)
=

dim
(
Z⊠8

4

)
dimZ⊠8

4
(A)

= 1,

the condensation yields Vec, the trivial MTC. So we are able to sequentially condense

B⊠16 (11⊕ψψ)⊠8

−−−−−−→ Z⊠8
4

Hamming−−−−−→ Vec.

We might now ask how else we can generate Lagrangian algebras of Z4 to a power.

In the Hamming(7,4) example, we added a parity bit to the end of every word to arrive

at a doubly even code. In fact, the parity bit can be added in any of the eight positions

to form an eight-bit string. These eight options all give distinct Lagrangian algebras.

A similar process can be run using the Golay code. The Golay code operates similarly

163

to the Hamming code with generator matrix

G =



1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 1 1 1 1 1 0 0 0 1

0 1 0 0 1 1 1 1 1 0 1 0

0 0 1 0 0 1 1 1 1 1 0 1

1 0 0 1 0 0 1 1 1 1 1 0

1 1 0 0 1 0 0 1 1 1 0 1

1 1 1 0 0 1 0 0 1 1 1 0

1 1 1 1 0 0 1 0 0 1 0 1

1 1 1 1 1 0 0 1 0 0 1 0

0 1 1 1 1 1 0 0 1 0 0 1

0 0 1 1 1 1 1 0 0 1 1 0

0 1 0 1 0 1 0 1 0 1 1 1

1 0 1 0 1 0 1 0 1 0 1 1



.

The image of this matrix is a subgroup of Z24
2 , which gets mapped to a subgroup of Z24

4 .

From here, we produce a subgroup of Z24
4 with order 224 and again have a Lagrangian

algebra for the sequential condensation

B⊠48 (11⊕ψψ)⊠24

−−−−−−−→ Z⊠24
4

Golay−−−→ Vec.

While this is a pretty picture, it is unclear why this is interesting and why we have even

introduced Ising when we could have left the picture at a condensation of many copies

of Z4. The hope is to translate this condensation in general to a form of monstrous

moonshine. This is touched on briefly in Section 6.6.

164

Chapter 6

Future Directions

As we have already asserted, there is no shortage of interesting applications of conden-

sation. Some that we have mentioned are the study of the structure theory of modular

tensor categories (Section 3.1.3.2), the understanding of topological phases of matter

(Section 3.1.3.1) and how they may be used to build quantum computers (Section 5.1),

the computation of category data that is otherwise exceedingly challenging to find (Sec-

tion 5.2), and the study of moonshine by way of error-correcting codes (Section 5.3).

Excitingly, all of this that we have presented is merely the beginning. Here we mention

a host of problems we are aware of and hope to work on soon.

6.1 Further Understanding Condensation

It is not immediately obvious which algebras in a given modular tensor category are

condensable because of the separability condition. We mentioned in Remark 3.25 that

[43] gives a condition which is sufficient to conclude that an algebra A = 1⊕B is not

condensable for a bosonic object B. Going forward, we would like to fully characterize

condensable algebras (and not just the simple ones of the form 1 ⊕ B) in a way that is

easier to use in practice.

Though we can compute all the F - and R-symbols of the new category, we would like

165

to have closed forms for the data in general.

Finally, there is much optimization work left to be done on the Mathematica code in

Supplemental A: Mathematica Code. Once it has been done, we would like to compute

the F -symbols of the near group category NG(Z3,3) from those of (G2)3.

6.2 Modifications to Condensation

There seem to exist several natural modifications to condensation and the way we have

defined condensed morphisms in Chapter 4.

Perhaps the natural way to define the condensed tensor product is by

c a⊗ b

T (c) T (a⊗ b) T (a)⊗A T (b)

⊗

T T

T (⊗)

idA ⊗⊗
f

idA ⊗ ida ⊗η⊗idb

The morphism f in [30, Theorem 1.6] uses the unit η of the algebra structure since

[30] does not use a co-algebra structure at all. Another possibility might be to use the

co-multiplication ∆ to define f = (idA⊗cA,a ⊗ idb) ◦ (∆⊗ ida⊗ idb).

Other modifications one might make are switching the braiding in Diagram 4.4 or

choosing different quotient sections as in Section 4.4.

It may be interesting to see which of these modifications yield equivalent categories,

which do not, and whether any are interesting.

6.3 Property F Conjecture and Quantum Computing

A braided fusion category is said to have property F if the associated braid group rep-

resentations on End(X⊗n) have finite image for all n ∈ N and objects X [40]. There is

a conjecture that a braided fusion category has property F if and only if its Frobenius-

Perron dimension is an integer. This is significant as it seems that having property F is

166

characteristic of modular categories whose physical realizations would not allow universal

quantum computation. Section 5.1.2 and [34] use some work on braid group representa-

tions coming from modular tensor categories. We would like to study these more broadly

and investigate the property F conjecture.

6.4 Structure of MTCs and the Witt Group

Classification of modular tensor categories has been a longstanding problem of interest

[47], and braided fusion categories as a group seem to admit interesting structure (Sec-

tion 2.7). At this point, there are enough elegant theorems about how these categories

arise and behave to indicate that there exist more to be discovered. We would like to fur-

ther contribute to this picture, perhaps through a better understanding Witt equivalence

(Section 3.1.3.2).

6.5 Theory of Near-Group Categories

The numerical results of Section 5.2.1.1 were obtained through the use of Mathematica’s

equation solvers. More sophisticated approaches should be able to push the results fur-

ther. We would also like to optimize the algorithms for computing condensed F -symbols

so we can find data for the category NG(Z3, 3). With this additional example on hand,

we hope to be better equipped to address Conjecture 5.8.

6.6 Moonshine for all Finite Groups

It was seen in Section 5.3 that lattices derived from the Hamming and Golay codes give

subgroups of Zn4 that are condensable bosonic algebras of modular tensor categories.

These are notable, as the Golay lattice is the Leech lattice, which corresponds to the

moonshine vertex operator algebra, whose group of automorphisms is the Monster group.

167

The Hamming lattice is the E8 lattice. Following the sequential condensation process on

MTCs to one on conformal field theories gives a form of monstrous moonshine.

We would like to explore the existence of doubly or triply even codes in general that

give sequential condensations from Ising⊠8n to Vec, with the hope that this would shine

some sunlight on the program of generalizing moonshine to other finite groups.

168

Bibliography

[1] Aaron Bagheri. condensation-of-modular-tensor-categories. url: https://github.

com/aaron-bagheri/condensation-of-modular-tensor-categories.

[2] Bojko Bakalov and Alexander Kirillov. Lectures on Tensor Categories and Modular

Functor. May 2000. url: https://www.math.stonybrook.edu/~kirillov/

tensor/tensor.html.

[3] Maissam Barkeshli et al. “Symmetry fractionalization, defects, and gauging of topo-

logical phases”. en. In: Physical Review B 100.11 (Sept. 2019), p. 115147. issn:

2469-9950, 2469-9969. doi: 10.1103/PhysRevB.100.115147. url: https://link.

aps.org/doi/10.1103/PhysRevB.100.115147 (visited on 09/04/2023).

[4] Parsa Hassan Bonderson. “Non-Abelian Anyons and Interferometry”. en. PhD the-

sis. California Institute of Technology, June 2007. doi: 10.7907/5NDZ-W890. url:

https://resolver.caltech.edu/CaltechETD:etd-06042007-101617 (visited

on 09/04/2023).

[5] Alain Bruguières. “Catégories prémodulaires, modularisations et invariants des

variétés de dimension 3”. In: Mathematische Annalen 316.2 (Feb. 2000), pp. 215–

236. issn: 0025-5831, 1432-1807. doi: 10.1007/s002080050011. url: http://

link.springer.com/10.1007/s002080050011 (visited on 05/23/2023).

[6] Paul Bruillard et al. “Rank-finiteness for modular categories”. en. In: Journal of

the American Mathematical Society 29.3 (July 2015), pp. 857–881. issn: 0894-0347,

169

https://github.com/aaron-bagheri/condensation-of-modular-tensor-categories
https://github.com/aaron-bagheri/condensation-of-modular-tensor-categories
https://www.math.stonybrook.edu/~kirillov/tensor/tensor.html
https://www.math.stonybrook.edu/~kirillov/tensor/tensor.html
https://doi.org/10.1103/PhysRevB.100.115147
https://link.aps.org/doi/10.1103/PhysRevB.100.115147
https://link.aps.org/doi/10.1103/PhysRevB.100.115147
https://doi.org/10.7907/5NDZ-W890
https://resolver.caltech.edu/CaltechETD:etd-06042007-101617
https://doi.org/10.1007/s002080050011
http://link.springer.com/10.1007/s002080050011
http://link.springer.com/10.1007/s002080050011

1088-6834. doi: 10.1090/jams/842. url: https://www.ams.org/jams/2016-29-

03/S0894-0347-2015-00842-6/ (visited on 08/28/2023).

[7] Paul Garrett Budinski. “Exotic Fusion Categories and Their Modular Data”. In:

(2021). doi: 10.7939/R3-7P7K-FG18. url: https://era.library.ualberta.ca/

items/daeeb131-2efc-40b8-aef0-9d0a5f502b47 (visited on 07/09/2023).

[8] F.J. Burnell. “Anyon Condensation and Its Applications”. en. In: Annual Review

of Condensed Matter Physics 9.1 (Mar. 2018), pp. 307–327. issn: 1947-5454, 1947-

5462. doi: 10 . 1146 / annurev - conmatphys - 033117 - 054154. url: https : / /

www.annualreviews.org/doi/10.1146/annurev-conmatphys-033117-054154

(visited on 08/08/2023).

[9] Iris Cong, Meng Cheng, and Zhenghan Wang. “Hamiltonian and Algebraic Theories

of Gapped Boundaries in Topological Phases of Matter”. en. In: Communications in

Mathematical Physics 355.2 (Oct. 2017), pp. 645–689. issn: 0010-3616, 1432-0916.

doi: 10.1007/s00220-017-2960-4. url: http://link.springer.com/10.1007/

s00220-017-2960-4 (visited on 11/08/2022).

[10] Shawn X. Cui et al. “On Gauging Symmetry of Modular Categories”. en. In: Com-

munications in Mathematical Physics 348.3 (Dec. 2016), pp. 1043–1064. issn: 0010-

3616, 1432-0916. doi: 10 . 1007 / s00220 - 016 - 2633 - 8. url: http : / / link .

springer.com/10.1007/s00220-016-2633-8 (visited on 09/04/2023).

[11] Shawn Xingshan Cui, Modjtaba Shokrian Zini, and Zhenghan Wang. “On gen-

eralized symmetries and structure of modular categories”. en. In: Science China

Mathematics 62.3 (Mar. 2019), pp. 417–446. issn: 1674-7283, 1869-1862. doi: 10.

1007/s11425-018-9455-5. url: http://link.springer.com/10.1007/s11425-

018-9455-5 (visited on 11/08/2022).

[12] Alexei Davydov, Dmitri Nikshych, and Victor Ostrik. “On the structure of the Witt

group of braided fusion categories”. en. In: Selecta Mathematica 19.1 (Mar. 2013),

170

https://doi.org/10.1090/jams/842
https://www.ams.org/jams/2016-29-03/S0894-0347-2015-00842-6/
https://www.ams.org/jams/2016-29-03/S0894-0347-2015-00842-6/
https://doi.org/10.7939/R3-7P7K-FG18
https://era.library.ualberta.ca/items/daeeb131-2efc-40b8-aef0-9d0a5f502b47
https://era.library.ualberta.ca/items/daeeb131-2efc-40b8-aef0-9d0a5f502b47
https://doi.org/10.1146/annurev-conmatphys-033117-054154
https://www.annualreviews.org/doi/10.1146/annurev-conmatphys-033117-054154
https://www.annualreviews.org/doi/10.1146/annurev-conmatphys-033117-054154
https://doi.org/10.1007/s00220-017-2960-4
http://link.springer.com/10.1007/s00220-017-2960-4
http://link.springer.com/10.1007/s00220-017-2960-4
https://doi.org/10.1007/s00220-016-2633-8
http://link.springer.com/10.1007/s00220-016-2633-8
http://link.springer.com/10.1007/s00220-016-2633-8
https://doi.org/10.1007/s11425-018-9455-5
https://doi.org/10.1007/s11425-018-9455-5
http://link.springer.com/10.1007/s11425-018-9455-5
http://link.springer.com/10.1007/s11425-018-9455-5

pp. 237–269. issn: 1022-1824, 1420-9020. doi: 10.1007/s00029- 012- 0093- 3.

url: http://link.springer.com/10.1007/s00029-012-0093-3 (visited on

09/04/2023).

[13] Alexei Davydov et al. “The Witt group of non-degenerate braided fusion cate-

gories”. en. In: Journal für die reine und angewandte Mathematik (Crelles Journal)

2013.677 (Jan. 2013). issn: 1435-5345, 0075-4102. doi: 10.1515/crelle.2012.014.

url: https://www.degruyter.com/document/doi/10.1515/crelle.2012.014/

html (visited on 04/20/2023).

[14] Colleen Delaney, Sung Kim, and Julia Plavnik. “Zesting produces modular isotopes

and explains their topological invariants”. In: (2021). doi: 10.48550/ARXIV.2107.

11374. url: https://arxiv.org/abs/2107.11374 (visited on 08/15/2023).

[15] Philippe Di Francesco, Pierre Mathieu, and David Sénéchal. Conformal Field The-

ory. en. Graduate Texts in Contemporary Physics. New York, NY: Springer New

York, 1997. isbn: 978-1-4612-7475-9. doi: 10.1007/978-1-4612-2256-9. url:

https : / / link . springer . com / 10 . 1007 / 978 - 1 - 4612 - 2256 - 9 (visited on

11/08/2022).

[16] I. S. Eliëns, J. C. Romers, and F. A. Bais. “Diagrammatics for Bose condensation

in anyon theories”. en. In: Physical Review B 90.19 (Nov. 2014), p. 195130. issn:

1098-0121, 1550-235X. doi: 10.1103/PhysRevB.90.195130. url: https://link.

aps.org/doi/10.1103/PhysRevB.90.195130 (visited on 09/04/2023).

[17] P. I. Etingof et al., eds. Tensor categories. en. Mathematical surveys and mono-

graphs volume 205. Providence, Rhode Island: American Mathematical Society,

2015. isbn: 978-1-4704-2024-6.

[18] Pavel Etingof, Dmitri Nikshych, and Viktor Ostrik. On fusion categories. en. Apr.

2017. doi: https://doi.org/10.48550/arXiv.math/0203060. url: http:

//arxiv.org/abs/math/0203060 (visited on 11/08/2022).

171

https://doi.org/10.1007/s00029-012-0093-3
http://link.springer.com/10.1007/s00029-012-0093-3
https://doi.org/10.1515/crelle.2012.014
https://www.degruyter.com/document/doi/10.1515/crelle.2012.014/html
https://www.degruyter.com/document/doi/10.1515/crelle.2012.014/html
https://doi.org/10.48550/ARXIV.2107.11374
https://doi.org/10.48550/ARXIV.2107.11374
https://arxiv.org/abs/2107.11374
https://doi.org/10.1007/978-1-4612-2256-9
https://link.springer.com/10.1007/978-1-4612-2256-9
https://doi.org/10.1103/PhysRevB.90.195130
https://link.aps.org/doi/10.1103/PhysRevB.90.195130
https://link.aps.org/doi/10.1103/PhysRevB.90.195130
https://doi.org/https://doi.org/10.48550/arXiv.math/0203060
http://arxiv.org/abs/math/0203060
http://arxiv.org/abs/math/0203060

[19] David E. Evans and Terry Gannon. “Near-group fusion categories and their dou-

bles”. en. In: Advances in Mathematics 255 (Apr. 2014), pp. 586–640. issn: 00018708.

doi: 10.1016/j.aim.2013.12.014. url: https://linkinghub.elsevier.com/

retrieve/pii/S000187081300460X (visited on 09/04/2023).

[20] Michael Freedman et al. “Topological quantum computation”. en. In: Bulletin of

the American Mathematical Society 40.1 (Oct. 2002), pp. 31–38. issn: 0273-0979,

1088-9485. doi: 10.1090/S0273-0979-02-00964-3. url: https://www.ams.org/

bull/2003-40-01/S0273-0979-02-00964-3/ (visited on 08/20/2023).

[21] Michael H. Freedman, Michael Larsen, and Zhenghan Wang. “A Modular Functor

Which is Universal¶for Quantum Computation”. In: Communications in Mathemat-

ical Physics 227.3 (June 2002), pp. 605–622. issn: 0010-3616, 1432-0916. doi: 10.

1007/s002200200645. url: http://link.springer.com/10.1007/s002200200645

(visited on 08/16/2023).

[22] Jürg Fröhlich et al. “Correspondences of ribbon categories”. en. In: Advances in

Mathematics 199.1 (Jan. 2006), pp. 192–329. issn: 00018708. doi: 10.1016/j.

aim.2005.04.007. url: https://linkinghub.elsevier.com/retrieve/pii/

S0001870805001027 (visited on 09/04/2023).

[23] Terry Gannon, Gerald Hohn, and Yamauchi Hiroshi. The online database of Vertex

Operator Algebras and Modular Categories (Version 0.5). url: https://www.

math.ksu.edu/~gerald/voas/ (visited on 08/09/2023).

[24] Tobias J. Hagge and Seung-Moon Hong. “Some non-braided fusion categories of

rank 3”. en. In: Communications in Contemporary Mathematics 11.04 (Aug. 2009),

pp. 615–637. issn: 0219-1997, 1793-6683. doi: 10.1142/S0219199709003521. url:

https://www.worldscientific.com/doi/abs/10.1142/S0219199709003521

(visited on 09/04/2023).

172

https://doi.org/10.1016/j.aim.2013.12.014
https://linkinghub.elsevier.com/retrieve/pii/S000187081300460X
https://linkinghub.elsevier.com/retrieve/pii/S000187081300460X
https://doi.org/10.1090/S0273-0979-02-00964-3
https://www.ams.org/bull/2003-40-01/S0273-0979-02-00964-3/
https://www.ams.org/bull/2003-40-01/S0273-0979-02-00964-3/
https://doi.org/10.1007/s002200200645
https://doi.org/10.1007/s002200200645
http://link.springer.com/10.1007/s002200200645
https://doi.org/10.1016/j.aim.2005.04.007
https://doi.org/10.1016/j.aim.2005.04.007
https://linkinghub.elsevier.com/retrieve/pii/S0001870805001027
https://linkinghub.elsevier.com/retrieve/pii/S0001870805001027
https://www.math.ksu.edu/~gerald/voas/
https://www.math.ksu.edu/~gerald/voas/
https://doi.org/10.1142/S0219199709003521
https://www.worldscientific.com/doi/abs/10.1142/S0219199709003521

[25] André Henriques, David Penneys, and James Tener. “Categorified trace for mod-

ule tensor categories over braided tensor categories”. In: Documenta Mathematica

21.2016 (Sept. 2016), pp. 1089–1149. issn: 1431-0635.

[26] Yi-Zhi Huang. “Vertex operator algebras, the Verlinde conjecture, and modular

tensor categories”. en. In: Proceedings of the National Academy of Sciences 102.15

(Apr. 2005), pp. 5352–5356. issn: 0027-8424, 1091-6490. doi: 10.1073/pnas.

0409901102. url: https://pnas.org/doi/full/10.1073/pnas.0409901102

(visited on 08/27/2023).

[27] Masaki Izumi. A Cuntz algebra approach to the classification of near-group cate-

gories. arXiv:1512.04288 [math]. Dec. 2015. url: http://arxiv.org/abs/1512.

04288 (visited on 07/07/2023).

[28] Masaki Izumi. “The Structure of Sectors Associated with Longo-Rehren Inclusions

II: Examples”. en. In: Reviews in Mathematical Physics 13.05 (May 2001), pp. 603–

674. issn: 0129-055X, 1793-6659. doi: 10.1142/S0129055X01000818. url: https:

//www.worldscientific.com/doi/abs/10.1142/S0129055X01000818 (visited on

07/09/2023).

[29] Yasuyuki Kawahigashi and Roberto Longo. “Local conformal nets arising from

framed vertex operator algebras”. en. In: Advances in Mathematics 206.2 (Nov.

2006), pp. 729–751. issn: 00018708. doi: 10.1016/j.aim.2005.11.003. url:

https://linkinghub.elsevier.com/retrieve/pii/S0001870805004007 (vis-

ited on 11/08/2022).

[30] Alexander Kirillov and Viktor Ostrik. “On a q-Analogue of the McKay Corre-

spondence and the ADE Classification of sl2 Conformal Field Theories”. en. In:

Advances in Mathematics 171.2 (Nov. 2002), pp. 183–227. issn: 00018708. doi:

10.1006/aima.2002.2072. url: https://linkinghub.elsevier.com/retrieve/

pii/S0001870802920724 (visited on 11/08/2022).

173

https://doi.org/10.1073/pnas.0409901102
https://doi.org/10.1073/pnas.0409901102
https://pnas.org/doi/full/10.1073/pnas.0409901102
http://arxiv.org/abs/1512.04288
http://arxiv.org/abs/1512.04288
https://doi.org/10.1142/S0129055X01000818
https://www.worldscientific.com/doi/abs/10.1142/S0129055X01000818
https://www.worldscientific.com/doi/abs/10.1142/S0129055X01000818
https://doi.org/10.1016/j.aim.2005.11.003
https://linkinghub.elsevier.com/retrieve/pii/S0001870805004007
https://doi.org/10.1006/aima.2002.2072
https://linkinghub.elsevier.com/retrieve/pii/S0001870802920724
https://linkinghub.elsevier.com/retrieve/pii/S0001870802920724

[31] Alexander Kirillov Jr. On G–equivariant modular categories. arXiv:math/0401119.

Jan. 2004. url: http://arxiv.org/abs/math/0401119 (visited on 06/06/2023).

[32] A.Yu. Kitaev. “Fault-tolerant quantum computation by anyons”. en. In: Annals

of Physics 303.1 (Jan. 2003), pp. 2–30. issn: 00034916. doi: 10.1016/S0003-

4916(02)00018-0. url: https://linkinghub.elsevier.com/retrieve/pii/

S0003491602000180 (visited on 09/04/2023).

[33] Alexei Kitaev. “Anyons in an exactly solved model and beyond”. en. In: Annals of

Physics 321.1 (Jan. 2006), pp. 2–111. issn: 00034916. doi: 10 . 1016 / j . aop .

2005 . 10 . 005. url: https : / / linkinghub . elsevier . com / retrieve / pii /

S0003491605002381 (visited on 08/16/2023).

[34] Elias Kokkas et al. Quantum Computing with Two-dimensional Conformal Field

Theories. en. arXiv:2112.06144 [quant-ph]. Dec. 2021. url: http://arxiv.org/

abs/2112.06144 (visited on 11/13/2022).

[35] Liang Kong. “Anyon condensation and tensor categories”. en. In: Nuclear Physics

B 973 (Dec. 2021). arXiv:1307.8244 [cond-mat], p. 115607. issn: 05503213. doi:

10.1016/j.nuclphysb.2021.115607. url: http://arxiv.org/abs/1307.8244

(visited on 04/20/2023).

[36] Michael Müger. “From subfactors to categories and topology I: Frobenius algebras

in and Morita equivalence of tensor categories”. en. In: Journal of Pure and Applied

Algebra 180.1-2 (May 2003), pp. 81–157. issn: 00224049. doi: 10.1016/S0022-

4049(02)00247-5. url: https://linkinghub.elsevier.com/retrieve/pii/

S0022404902002475 (visited on 08/28/2023).

[37] Michael Müger. “From subfactors to categories and topology II: The quantum dou-

ble of tensor categories and subfactors”. en. In: Journal of Pure and Applied Al-

gebra 180.1-2 (May 2003), pp. 159–219. issn: 00224049. doi: 10.1016/S0022-

174

http://arxiv.org/abs/math/0401119
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1016/S0003-4916(02)00018-0
https://linkinghub.elsevier.com/retrieve/pii/S0003491602000180
https://linkinghub.elsevier.com/retrieve/pii/S0003491602000180
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1016/j.aop.2005.10.005
https://linkinghub.elsevier.com/retrieve/pii/S0003491605002381
https://linkinghub.elsevier.com/retrieve/pii/S0003491605002381
http://arxiv.org/abs/2112.06144
http://arxiv.org/abs/2112.06144
https://doi.org/10.1016/j.nuclphysb.2021.115607
http://arxiv.org/abs/1307.8244
https://doi.org/10.1016/S0022-4049(02)00247-5
https://doi.org/10.1016/S0022-4049(02)00247-5
https://linkinghub.elsevier.com/retrieve/pii/S0022404902002475
https://linkinghub.elsevier.com/retrieve/pii/S0022404902002475
https://doi.org/10.1016/S0022-4049(02)00248-7
https://doi.org/10.1016/S0022-4049(02)00248-7
https://doi.org/10.1016/S0022-4049(02)00248-7

4049(02)00248-7. url: https://linkinghub.elsevier.com/retrieve/pii/

S0022404902002487 (visited on 08/10/2023).

[38] Michael Müger. “Galois extensions of braided tensor categories and braided crossed

G-categories”. en. In: Journal of Algebra 277.1 (July 2004), pp. 256–281. issn:

00218693. doi: 10.1016/j.jalgebra.2004.02.026. url: https://linkinghub.

elsevier.com/retrieve/pii/S0021869304001383 (visited on 08/20/2023).

[39] Michael Müger. “On the Structure of Modular Categories”. en. In: Proceedings of

the London Mathematical Society 87.02 (Sept. 2003), pp. 291–308. issn: 0024-6115,

1460-244X. doi: 10.1112/S0024611503014187. url: http://doi.wiley.com/

10.1112/S0024611503014187 (visited on 09/04/2023).

[40] Deepak Naidu and Eric C. Rowell. “A Finiteness Property for Braided Fusion Cat-

egories”. en. In: Algebras and Representation Theory 14.5 (Oct. 2011), pp. 837–855.

issn: 1386-923X, 1572-9079. doi: 10.1007/s10468- 010- 9219- 5. url: http:

//link.springer.com/10.1007/s10468-010-9219-5 (visited on 09/04/2023).

[41] Chetan Nayak et al. “Non-Abelian anyons and topological quantum computation”.

en. In: Reviews of Modern Physics 80.3 (Sept. 2008), pp. 1083–1159. issn: 0034-

6861, 1539-0756. doi: 10.1103/RevModPhys.80.1083. url: https://link.aps.

org/doi/10.1103/RevModPhys.80.1083 (visited on 08/16/2023).

[42] Titus Neupert et al. “Boson condensation in topologically ordered quantum liquids”.

en. In: Physical Review B 93.11 (Mar. 2016), p. 115103. issn: 2469-9950, 2469-9969.

doi: 10.1103/PhysRevB.93.115103. url: https://link.aps.org/doi/10.

1103/PhysRevB.93.115103 (visited on 09/04/2023).

[43] Titus Neupert et al. “No-go theorem for boson condensation in topologically ordered

quantum liquids”. In: New Journal of Physics 18.12 (Dec. 2016), p. 123009. issn:

1367-2630. doi: 10.1088/1367-2630/18/12/123009. url: https://iopscience.

iop.org/article/10.1088/1367-2630/18/12/123009 (visited on 09/04/2023).

175

https://doi.org/10.1016/S0022-4049(02)00248-7
https://doi.org/10.1016/S0022-4049(02)00248-7
https://doi.org/10.1016/S0022-4049(02)00248-7
https://doi.org/10.1016/S0022-4049(02)00248-7
https://linkinghub.elsevier.com/retrieve/pii/S0022404902002487
https://linkinghub.elsevier.com/retrieve/pii/S0022404902002487
https://doi.org/10.1016/j.jalgebra.2004.02.026
https://linkinghub.elsevier.com/retrieve/pii/S0021869304001383
https://linkinghub.elsevier.com/retrieve/pii/S0021869304001383
https://doi.org/10.1112/S0024611503014187
http://doi.wiley.com/10.1112/S0024611503014187
http://doi.wiley.com/10.1112/S0024611503014187
https://doi.org/10.1007/s10468-010-9219-5
http://link.springer.com/10.1007/s10468-010-9219-5
http://link.springer.com/10.1007/s10468-010-9219-5
https://doi.org/10.1103/RevModPhys.80.1083
https://link.aps.org/doi/10.1103/RevModPhys.80.1083
https://link.aps.org/doi/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/PhysRevB.93.115103
https://link.aps.org/doi/10.1103/PhysRevB.93.115103
https://link.aps.org/doi/10.1103/PhysRevB.93.115103
https://doi.org/10.1088/1367-2630/18/12/123009
https://iopscience.iop.org/article/10.1088/1367-2630/18/12/123009
https://iopscience.iop.org/article/10.1088/1367-2630/18/12/123009

[44] Siu-Hung Ng et al. “Higher central charges and Witt groups”. en. In: Advances

in Mathematics 404 (Aug. 2022), p. 108388. issn: 00018708. doi: 10.1016/j.

aim.2022.108388. url: https://linkinghub.elsevier.com/retrieve/pii/

S0001870822002043 (visited on 08/29/2023).

[45] B. Pareigis. “On Braiding and Dyslexia”. en. In: Journal of Algebra 171.2 (Jan.

1995), pp. 413–425. issn: 00218693. doi: 10.1006/jabr.1995.1019. url: https:

//linkinghub.elsevier.com/retrieve/pii/S0021869385710198 (visited on

05/23/2023).

[46] D. Roberts. “Representing modular tensor categories: a computer algebra system

for topological quantum computing”. English. http://purl.org/dc/dcmitype/Text.

Oxford University, UK, 2011. url: https://ora.ox.ac.uk/objects/uuid:

c9b6eaf8-29d4-4637-a576-5a35d3c957bb (visited on 12/18/2022).

[47] Eric Rowell, Richard Stong, and Zhenghan Wang. “On Classification of Modular

Tensor Categories”. en. In: Communications in Mathematical Physics 292.2 (Dec.

2009), pp. 343–389. issn: 0010-3616, 1432-0916. doi: 10.1007/s00220-009-0908-

z. url: http://link.springer.com/10.1007/s00220-009-0908-z (visited on

09/04/2023).

[48] Eric C. Rowell. “From Quantum Groups to Unitary Modular Tensor Categories”.

In: (2005). doi: 10.48550/ARXIV.MATH/0503226. url: https://arxiv.org/abs/

math/0503226 (visited on 08/10/2023).

[49] Eric C. Rowell, Yuze Ruan, and Yilong Wang. “The Witt classes of so(2r)2r”.

en. In: Communications in Algebra 50.12 (Dec. 2022), pp. 5246–5265. issn: 0092-

7872, 1532-4125. doi: 10.1080/00927872.2022.2083630. url: https://www.

tandfonline.com/doi/full/10.1080/00927872.2022.2083630 (visited on

09/04/2023).

176

https://doi.org/10.1016/j.aim.2022.108388
https://doi.org/10.1016/j.aim.2022.108388
https://linkinghub.elsevier.com/retrieve/pii/S0001870822002043
https://linkinghub.elsevier.com/retrieve/pii/S0001870822002043
https://doi.org/10.1006/jabr.1995.1019
https://linkinghub.elsevier.com/retrieve/pii/S0021869385710198
https://linkinghub.elsevier.com/retrieve/pii/S0021869385710198
https://ora.ox.ac.uk/objects/uuid:c9b6eaf8-29d4-4637-a576-5a35d3c957bb
https://ora.ox.ac.uk/objects/uuid:c9b6eaf8-29d4-4637-a576-5a35d3c957bb
https://doi.org/10.1007/s00220-009-0908-z
https://doi.org/10.1007/s00220-009-0908-z
http://link.springer.com/10.1007/s00220-009-0908-z
https://doi.org/10.48550/ARXIV.MATH/0503226
https://arxiv.org/abs/math/0503226
https://arxiv.org/abs/math/0503226
https://doi.org/10.1080/00927872.2022.2083630
https://www.tandfonline.com/doi/full/10.1080/00927872.2022.2083630
https://www.tandfonline.com/doi/full/10.1080/00927872.2022.2083630

[50] Jacob A. Siehler. Braided Near-group Categories. arXiv:math/0011037. Nov. 2000.

url: http://arxiv.org/abs/math/0011037 (visited on 06/29/2023).

[51] Vladimir G. Turaev. Quantum Invariants of Knots and 3-Manifolds. De Gruyter,

July 2016. isbn: 9783110435221. doi: 10 . 1515 / 9783110435221. url: https :

//www.degruyter.com/document/doi/10.1515/9783110435221/html (visited on

08/02/2023).

[52] Zhenghan Wang, ed. Topological quantum computation. Regional conference series

in mathematics / Conference Board of the Mathematical Sciences no. 112. Prov-

idence, R.I: Published for the Conference Board of the Mathematical Sciences by

the American Mathematical Society with support from the National Science Foun-

dation, 2010. isbn: 9780821849309.

177

http://arxiv.org/abs/math/0011037
https://doi.org/10.1515/9783110435221
https://www.degruyter.com/document/doi/10.1515/9783110435221/html
https://www.degruyter.com/document/doi/10.1515/9783110435221/html

Xð 	Q
	
®
	
K

�
�ëAg. ð ÈCg.

	áÓ
	á��
	
P̄ 	Pð Xñ� @P

	
àðXQÃ XñJ.

	
K Õç

	
'YÓ

�
@ 	P@

XñK. ék� QîE.
	P@ Õ

	
æ
�
J
	
P̄ ð

	
àYÓ

�
@ 	áKA¿ Xñ

	
J
�
�
	
� Õæ

�
�ñÃ ðX

	Q�
	
K úæ�» i� Jë

	Pð

ÐAJ
	
k -

	Abstract
	Introduction
	Modular Tensor Categories
	Definitions
	Fusion Categories
	MTCs as Pivotal Braided Fusion Categories
	Invariants of Modular Tensor Categories
	MTCs as Ribbon Fusion Categories
	Unitarity

	Graphical Calculus
	Skeletalization

	Classification and Examples
	General Constructions
	Explicit Examples

	Motivation
	3-Manifold Invariants
	Fault-Tolerant Quantum Computing

	Computer Implementation
	Algebras in Categories
	Structure of Modular Tensor Categories
	Tensor Functors
	Definition
	Skeletalization

	Condensation of Algebras
	Premliminaries
	Condensable Algebras
	Condensation
	Motivations
	Topological Phases of Matter and Gauging
	Witt Equivalence

	Equivalence of Definitions
	Discussion

	Condensation Examples
	Ising to Z4
	Ising to Toric Code
	SU(2)k to Minimal Models

	Determining the Condensed Category
	Condensing a Boson
	Modular Data
	Duality

	Condensation over Deligne Products

	Computing F- and R-Symbols
	Graphical Calculus
	Condensation as a Functor
	Implementation
	T-symbols and VLCs
	F-symbols
	R-symbols

	Gauge Freedom

	Applications
	Quantum Computing with Conformal Field Theories
	Minimal Models from Condensation
	Braid Group Representations

	Near-Group Categories
	Equations Determining Near-Groups
	Numerical Results
	General results

	Condensing G23

	Error Correcting Codes

	Future Directions
	Further Understanding Condensation
	Modifications to Condensation
	Property F Conjecture and Quantum Computing
	Structure of MTCs and the Witt Group
	Theory of Near-Group Categories
	Moonshine for all Finite Groups

	Bibliography

