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fundamental concept in population genetics is the
representation of the evolutionary history of a sample,
of asingle locus, as a tree. The theory describing such trees
is called “coalescence theory,” and the primary mathe-
matical model used is called “the coalescent,” or sometimes
“Kingman’s coalescent,” as it was first discovered by the British
mathematician Kingman (1982a,b). Coalescence theory is
used to understand the statistical properties of a sample from
a population and it underlies almost all the computational
methods used for analysis of population-level DNA sequence
data.

The discovery of Kingman’s coalescent is arguably one of
the most important theoretical discoveries in all of biology
over the past 50 years. It was the culmination of decades
of work on population genetic theory by Ewens (1972),
Watterson (1975), Gladstein (1978), Griffiths (1980), and
others. The basic idea of representing the history of a sample
as a tree had been percolating for a while. For example,
Gladstein (1978) described a process, akin to Kingman’s co-
alescent, of loss of evolutionary lineages in the population
over time. Griffiths (1980) derived mathematical properties
of the tree structure of a sample, but used a more compli-
cated, and less general, construction than the one eventually
discovered by Kingman (1982a,b). Today, we celebrate the
seminal contributions of Kingman in the development of the
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coalescent by appropriately naming the process after him.
However, by the early 1980s the field had matured to such
a degree that coalescence theory, in one form or another, was
being developed independently by several researchers, in-
cluding two graduate students: Hudson (1983a,b) work-
ing with John Gillespie at the University of California,
Davis, and Tajima (1983) working with Masatoshi Nei at
the University of Texas at Houston, both of whom would
become central in the development of modern population
genetic theory.

Tajima was trained in both phylogenetics and population
genetics and was therefore well positioned to make inroads
into problems regarding tree representations of the genea-
logical structure of a sample in a population. In his 1983 paper
in GENETICS (Tajima 1983), he developed many of the most
important results in coalescence theory, such as means and
variances of the time to most recent common ancestor of the
sample, and he illustrated how many classical population
genetic results could be easily rederived using coalescence
theory. He did so apparently independently of the work of
Kingman, which he was unaware of at the time. In addition,
he studied coalescence trees in models with two diverging
populations and derived the probabilities of different tree
topologies in this context. Probabilities of tree topologies in
models with multiple populations (or species), were also an
important part of the contemporaneous paper by Hudson
(1983b). Together, these papers provided the first mathemat-
ical descriptions of tree structures caused by what will later
become known as “incomplete lineage sorting” (ILS)—a very
important concept in our understanding of phylogenetic
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trees. They initiated decades of research on the interface
between phylogenetics and population genetics and on un-
derstanding ILS and its consequences. However, this is not
the main reason Tajima’s (1983) paper became so highly
cited. In a later section of the paper, Tajima provided the first
derivation of the variance of the average number of pairwise
differences () under the infinite sites model, and argued in
favor of using 7 as an estimator of the mutation scaled effec-
tive population size (0). This estimator came into common
use and is now often referred to as “Tajima’s estimator.” It
remains one of the standard statistical methods for analyzing
population genetic data.

Tajima (1983) was one of the founding papers of modern
population genetics and was arguably the first paper that
truly demonstrated the tremendous power of the coalescent
when deriving statistical properties of a sample of DNA
sequences. It also introduced the problem of incomplete
lineage sorting in biology. It remains one of the pillars of
modern population genetics and should be required read-
ing for any graduate student entering into the field of pop-
ulation genetics.
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