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ABSTRACT OF THE DISSERTATION

Optimization Problems Concerning Tag SNP Selection, Haplotype Inference, and
Detection of Horizontal Gene Transfers

by

Wei Bung Wang

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, June 2011

Professor Tao Jiang, Chairperson

In this dissertation, we study several topics in genetics, including tag SNP se-

lection, haplotype inference, error detection, and horizontal gene transfer detection. We

formulate these problems as computational optimization problems, discuss the complexity,

present our novel algorithms, and demonstrate the experimental results.

We first study the genome-wide tag SNP selection problem, propose a new model

of multi-marker correlation for the problem, and present a greedy algorithm to select a

smallest possible set of tag SNPs according to the model. Our experimental results on

several real datasets from the HapMap project demonstrate that the new model yields

more succinct tag SNP sets than the previous methods.

We then study how to infer haplotypes from genotype data which may contain

genotyping errors, de novo mutations and missing alleles. We assume that there are no

recombinants in the genotype data, which is usually true for tightly linked markers.

We prove the problem is NP-hard, and propose a heuristic algorithm, the core of

vi



which is an integer linear program (ILP) using the system of linear equations over Galois

field GF(2). Our experimental results show that the algorithm can infer haplotypes with a

very high accuracy, and recover 65%–94% of genotyping errors depending on the pedigree

topology.

We also study the detection of mutations, sequencing errors, and horizontal gene

transfers in a set of closely related microbial genomes which do not align well because of

rearrangements. We use a new SNP definition to handle the rearrangement problem, divide

the problem into several optimization subproblems, and propose a series of algorithms to

tackle each subproblem. Results from simulation experiments show that we can detect

31%–61% of horizontal gene transfer events depending on the mutation and missing rates,

and the precision of our detection is about 48%–90%.
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Chapter 1

Introduction

1.1 Motivation

In October 2002, the international HapMap project was launched [72]. One of the

main objectives of HapMap project is to identify the haplotype structures of humans and

common haplotypes among different populations. A haplotype is a combination of alleles

at multiple genetic marker (e.g., SNP) loci on the same chromosome. Single nucleotide

polymorphisms (SNPs) represent the most frequent form of genetic variations in the human

genome. They play an important role in genome-wide association studies that intend to

help us understand the correlation between genetic variations and human diseases. Assaying

(or genotyping) all SNP markers in the involved genomes would be desirable, but it is

expensive and unnecessary. Since SNPs are often not independent, a subset of SNPs may

be sufficiently informative and allow us to infer all the other SNPs. The tag SNP selection

problem is thus to find a smallest possible set of tag SNPs that would enable us to infer all
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the other SNPs with a certain level of confidence [29]. Clearly, the smaller the tag SNP set,

the more assaying cost it could help save. In many existing methods, the inference from tag

SNPs to all other SNPs is based on the haplotype information [6, 21, 29, 48]. Therefore, the

haplotype information of SNP markers is of tremendous value to tag SNP selection, linkage

analysis and other genetic analyses (such as gene mapping).

However, in diploid organisms like human, chromosomes (other than the sex chro-

mosomes) come in pairs. Each genetic marker on a pair of chromosomes occurs at the same

location of both chromosomes. The marker may have different alleles on the two chromo-

somes. The set of its two alleles is called the genotype of the marker and the assignment of

the two alleles to the paternal and maternal chromosomes is called the phase of the marker.

Inferring haplotypes from genotypes over a set of marker loci is called haplotype inference,

which is also referred to as phasing. Because of cost considerations, genotype data instead

of haplotype data are routinely collected in practice, especially in large-scale sequencing

projects. Since haplotype information gives a more accurate description of the inheritance

process than the genotype information and benefits other genetic analyses, efficient and

accurate computational methods for haplotype inference have been extensively studied in

the literature. See Ref. [42] for a review of these methods as well as the basic concepts

involved in haplotype inference.

A SNP disagreement between an organism and its parent could be caused by

a mutation or horizontal gene transfer. Horizontal gene transfer (HGT) is the process

that an organism inherits genetic materials from another organism other than its parents.

Bacterial and viral genomes are often affected by HGT and they may contain regions that

2



do not appear in close relatives. Therefore, HGT may play a role in virulence mechanisms,

and detection of HGT is valuable for medical microbiology [63], microbial genetics, and

bioforensics [58].

In this dissertation, we study three problems: tag SNP selection, haplotype infer-

ence on pedigrees, and detection of horizontal gene transfers in bacteria genomes based on

their SNP patterns.

1.2 Related Work

1.2.1 Tag SNP selection

Two frameworks for tag SNP selection have been studied in the literature: block-

based and genome-wide. The block-based tag SNP selection framework focuses on haplotype

patterns in a population. The approach assumes that the chromosomes can be partitioned

into blocks separated by recombination hotspots, so that there are few recombinations

within a block. Then it attempts to identify a smallest possible set of tag SNPs for each

block so that all the possible halpotype patterns formed by the SNPs in the block can be

fully represented by the haplotype patterns formed by the tag SNPs [57]. The genome-wide

framework does not partition a chromosome into blocks. Instead, it considers the correlation

between SNP markers across the entire genome [6]. Typically, a SNP marker has two states

in a population. The state with a higher frequency is called the major allele and the other

is called the minor allele. In the other words, the SNP markers are usually bi-allelic. It is

a common practice to consider only SNPs whose minor allele frequency (MAF) is at least

3



5%. Genome-wide tag SNP methods generally follow two approaches. Halldórsson et al. [18]

define “informativeness” of SNPs and attempt to find the most informative set of SNPs. The

other approach, such as the one adopted by Carlson et al. [6], usually evaluates the linkage

disequilibrium (LD) between the states of two SNP markers using the correlation coefficient

r2, which indicates the dependency between the two markers, and aims at finding a smallest

set of tag SNPs such that all the other SNPs are strongly linked to the selected tag SNPs

in terms of the LD coefficient r2 (more precisely, each of them is linked to some tag SNPs

with an r2 coefficient above a certain threshold). The tag SNPs selected by this approach

are shown to be effective in disease association mapping studies, since the coefficient r2

is directly related to the statistical power of association mapping. Genome-wide tag SNP

selection based on the r2 LD statistics has gained popularity among researchers in the

SNP community [6, 9, 26, 48, 61, 83], because it has a comparable performance at a lower

computational cost than many other methods [83, 70]. In this thesis, we will be focused on

genome-wide tag SNP selection using the r2 LD statistics.

Most of the existing tag SNP selection methods in this framework consider the

r2 coefficient between a pair of SNP markers [6, 47, 48, 61]. Hence, each of the SNPs is

guaranteed to be tagged by a single tag SNP selected. Hao et al. [20, 21] extended the

r2 statistics to describe the statistical correlation between a group of (e.g., two or three)

markers and another marker. We will simply refer to this as the multi-marker correlation

model. In this model, a SNP is tagged by a group of tag SNPs if it is correlated to the

group with an r2 coefficient above a certain threshold. Hao et al. [20, 21] presented a greedy

algorithm for selecting tag SNPs to cover a certain (large) fraction of a given set of SNPs

4



and showed that the multi-marker correlation model is more effective than the traditional

pairwise correlation model in terms of reducing the number of required tag SNPs.

1.2.2 Haplotype Inference on Pedigrees

Haplotype inference methods can be divided into three groups according to the

type of given genotype data: methods for population data collected from unrelated indi-

viduals [17, 51, 68], methods for pedigree data collected from individuals (typically from an

extended family) that are related by the parent-child relationship [2, 37, 40, 41, 60, 65, 80,

76, 82], and methods for pooled samples [74, 81]. Here, we are interested in only pedigree

data.

Some real pedigree data may actually contain mutations. In particular, a de novo

mutation is a mutation that is present for the first time in a family member as a result of a

mutation in a germ cell (egg or sperm) of one of the parents or in the fertilized egg itself. It

has been observed that the detection and analysis of mutations in a pedigree could provide

a good alternative for some genetic variation research [4, 14, 53].

Most genotype data contain genotyping errors. Genotyping errors have a severe

impact on subsequent analyses, such as linkage analysis [1, 11, 38]. Even slight amounts

of genotyping error may significantly decrease haplotype frequency and haplotype recon-

struction accuracy [34]. Moskvina et al. showed that even with low genotyping error rates

(< 0.01), systematic differences in the error rate between samples may result in type I error

(i.e., false positive) rates substantially above 0.05 in case-control association studies [50].

Genotyping errors and de novo mutations may cause violation of the Mendelian

5



law of inheritance, and hence pedigree data with errors and mutations cannot be properly

handled by the above existing haplotype inference methods. When these methods are

faced with data containing errors and mutations, they typically delete or report the loci

that appear to be inconsistent. For example, Simwalk2 simply reports inconsistencies and

terminates [64]. Very few haplotype inference methods in the literature deal with pedigree

data that contain mutations and errors (one such method is a genetic algorithm in Ref. [71]).

Moreover, detecting genotyping errors is challenging, since these errors do not necessarily

violate the Mendelian law of inheritance within nuclear families. In Figure 1.1, all genotype

00
00
00

11
11
11

11
11
11

01
01
01

11
01
11

1 2

3 4

5

Locus 1
Locus 2
Locus 3

Locus 1
Locus 2
Locus 3

Locus 1
Locus 2
Locus 3

(11)

(01)

Figure 1.1: An example to show that it is insufficient to consider Mendelian consistency
within only nuclear families. The genotypes are consistent within each nuclear family al-
though a genotyping error has occurred. The genotypes in parentheses indicate two possible
ways of correcting the error. In a conventional pedigree, a square indicates a male, and a
circle indicates a female.

data follow the Mendelian law of inheritance, but it requires two recombinants to explain

locus 2 of individual 5. A better explanation is that there is a genotyping error on locus 2 of

individual 4 or 5, and alternative genotypes are shown in the parentheses. There have been

some work on detecting genotyping errors in the literature [11, 12, 52, 84]. Douglas et al.
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can detect 13%–77% of errors [12], and Zou et al. can detect ≤ 81% of errors without

assuming equal allele frequencies [84]. However, none of these work considers haplotype

inference simultaneously.

1.2.3 Detection of Horizontal Gene Transfers in Bacterial Genomes Based

on Their SNP Patterns

Phylogenetic trees are commonly used to represent the evolutionary history of

a set of extant species in biology. If all organisms only inherit their genetic materials

vertically, i.e., from their parents, then the tree representation would be sufficient. However,

there is evidence that organisms may get genetic materials from organisms other than their

parents [32, 58, 59], and this process is called horizontal gene transfer (HGT). A homologous

HGT is caused by a homologous recombination, in which the incoming DNA molecules

are highly similar to those in the recipient genome. Homologous HGT may cause the

incongruence between gene trees drawn by different genes, and may lead to inaccuracy of

construction of phylogenetic trees [62]. Detection of homologous HGT will help construct

a more accurate phylogenetic network [39].

To detect homologous HGT, one approach is to compare the gene trees and the

species tree, construct the reconciled tree and detect the HGT (e.g. [23, 56]). These methods

do not use the whole-genome information, and do not utilize the gene positional information.

Methods based on alignments (e.g. [35, 78]) use the positional information and have a higher

accuracy. The main drawback of the alignment approach is the poor scalability when dealing

with the whole genomes of dozens of bacterial strains. Most researchers would choose only
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to align a few target genomes/genes instead of a whole-genome alignment. A small subset of

genes may present a high risk in phylogenetic inference if the genes are involved in HGT [62].

If the species tree is drawn by selecting large numbers of characters that are distributed

across the genomes, the influence of recombined single genomic regions in tree topology will

be diminished, resulting in a tree that reflects the evolutionary history of the majority of

the genomes [59] and helps detect the homoplastic1 SNPs potentially involved in HGT or

mutations and sequencing errors.

1.3 Organization

This dissertation is organized as follows. In Chapter 2, we study the tag SNP

selection problem. In Chapter 3 and 4, we study the haplotype inference from genotypes on

a pedigree. We allow mutations and missing alleles in Chapter 3. In Chapter 4, the problem

is more general since we further allow genotyping errors. Both variations of haplotype

inference are NP-hard and the proof of NP-hardness is presented in Chapter 4. We study

the detection of horizontal gene transfers in Chapter 5. The conclusion is presented in

Chapter 6.

1For clarification, homology means the similarity due to the common ancestor, and homoplasy means the
similarity due to convergent evolution, but independent origins.
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Chapter 2

A New Model of Multi-Marker

Correlation for Genome-Wide Tag

SNP Selection

2.1 Introduction

In this chapter, we generalize the multi-marker correlation model in [20, 21] to

further improve its effectiveness. Comparing with the model in [20, 21], our model is more

natural and supports more succinct tag SNP sets. We will also present a simple greedy

algorithm to select a smallest possible set of tag SNPs according to this multi-marker

model, and compare its performance with those of the previous methods on real HapMap

data.

Genome-wide tag SNP selection methods can also be classified as haplotype-based
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or haplotype-independent, depending on how the r2 statistics is obtained. For genotype

data, the r2 statistics is usually estimated using a maximum likelihood approach [24, 31],

which could be time consuming on a large set of SNPs. However, when phased haplotypes

are available, the r2 coefficients can be calculated very easily and efficiently. The haplotype-

based methods require phased haplotype data while the haplotype-independent methods do

not. In this work, we will consider both types of data.

The rest of the chapter is organized as follows. In Section 2.2, we introduce a

new multi-marker correlation model and discuss how to calculate the r2 LD statistics under

the model for both haplotype and genotype data. Section 2.3 presents the simple greedy

algorithm for selecting tag SNPs. In Section 2.4, we discuss the implementation of the

algorithm and test its performance on some real HapMap datasets. We also compare the

performance of our algorithm with the algorithms on genome-wide tag SNP selection given

in [20, 21, 47]. Section 2.5 concludes this chapter with a few remarks. For the ease of

reading, we defer a detailed mathematical proof required in the calculation of the multi-

marker correlation coefficient r2 to Section 2.6. This chapter was published in Genome

Informatics Vol. 21, pp. 27–41, 2008 [75].

2.2 The New Multi-Marker Correlation Model

In this section, we propose a new multi-marker correlation model that generalizes

the model introduced in [20, 21]. We also discuss how to calculate the r2 statistics under

the new model for both haplotype and genotype data.
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2.2.1 Multi-Marker Correlation on Haplotype Data

The statistical correlation between a group of k markers and another marker will be

referred to as k-marker correlation. For simplicity, we define below the 2-marker correlation

model. The generalization of the model to 3 or more markers is straightforward. Consider

three bi-allelic SNPs A, B and C. Each of them has possible alleles A/a, B/b and C/c,

respectively. Here, the uppercase letters represent both the SNPs as well their major alleles

and the lowercase ones represent the minor alleles. Given the states (i.e., alleles) of SNPs

A and B, it might be possible for us to infer the state of SNP C, if SNP C is correlated

with both SNPs A and B. Clearly, if Pr(C | AB) > 0.5, we would opt to predict the major

allele C instead of the minor allele c when the haplotype AB is observed.

For a fixed population of haplotype data and any haplotype h, let nh denote the

number of times that the haplotype h is observed in the population. Consider three SNPs

A, B and C again. For each haplotype h ∈ {AB,Ab, aB, ab}, if nhC > nhc, then we

would opt to predict allele C when observing haplotype h (assuming that the SNP C is

unassayed). We put all the haplotypes h ∈ {AB,Ab, aB, ab} such that nhC > nhc into a

major bucket and the others into a minor bucket. For example, if nABC > nABc, nabC > nabc

and nAbC < nAbC , naBC < naBc, then the major bucket will contain haplotypes {AB, ab}

while the minor bucket contains haplotypes {Ab, aB}. This would suggest a prediction of

the allele C when any of the haplotypes {AB, ab} in the major bucket is observed.

To define the r2 correlation coefficient, we introduce a new bi-allelic (compound)

marker M that combines the SNPs A and B. The major and minor alleles of M are M/m.

We say that the marker M is in state (allele) M if any of the haplotypes in the major bucket
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is observed, or otherwise it is in state m. Hence, the numbers of observations of alleles M

and m are defined as nM = nAB +nab and nm = nAb+naB. We can define the r2 statistics

between the two markers {A,B} and the marker C as the usual r2 statistics between the

new marker M and the marker C.

Occasionally, we may have a tie between haplotype counts in the population, such

as nhC = nhc. In this case, we would have to decide whether to put the haplotype h in the

major bucket or the minor bucket. The following claim shows that it is usually advantageous

to put the haplotype in the minor bucket.

Claim 1 Consider three SNP markers with alleles A/a, B/b, and C/c, and the correlation

coefficient r2 between the markers {A, B} and the marker C. If h is an observed haplotype

on the markers A and B, and the numbers of observations satisfy nhC = nhc, then putting

h in the minor bucket leads to a higher r2 value most of the time.

Proof. See Section 2.6.

Since there are 4 possible haplotypes on markers A and B, there are 24 = 16 ways

to fill the major bucket. After eliminating symmetric ways and the empty set, there are

24/2 − 1 = 7 different ways to separate the 4 possible haplotypes into two buckets. Note

that, a split of the four haplotypes like {AB,Ab}/{aB, ab} really represents the single-

marker correlation between markers A and C. Therefore, the seven different separations

correspond to two single-marker and five 2-marker correlations.

In [20, 21], Hao et al. proposed a very similar 2-marker correlation model to define

the correlation between markers {A,B} and marker C. However, they require that one of the

buckets must contain exactly one haplotype (unless the split actually represents a single-
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marker correlation). For example, a split like {AB}/{Ab, aB, ab} would be allowed but the

split {AB, ab}/{Ab, aB} is not. Therefore, the 2-marker correlation model in [20, 21] allows

a total of 2 + 4 = 6 different splits, two of which correspond to single-marker correlations.

Clearly, our new model is more flexible and gives us the opportunity to cover more SNPs

with the same set of tag SNPs. Therefore, it may help reduce the number of tag SNPs

required. This flexibility is even more obvious when we consider the correlation between a

group of three markers and another marker. To infer a fourth SNP D from three SNPs A,

B and C, our model allows 22
3
/2− 1 = 127 possible splits of the 8 haplotypes on the SNPs

A, B, and C into the major and minor buckets (modulo symmetry). However, because the

model of Hao et al. in [20, 21] requires that one of the buckets must contain exactly one

haplotype, it only allows 3 + 3 · 4 + 8 = 23 different splits, including 3 splits corresponding

to single-marker correlations and another 12 corresponding to two-marker correlations.

2.2.2 Calculating r
2 Values on Genotype Data

Obtaining r2 values from haplotype data is trivial. However, if the SNP data is

in the form of unphased genotypes, we cannot obtain r2 values directly since the above

definition is based on haplotype data. There are two ways to deal with genotype data. One

is to use some haplotype inference program such as PHASE [49, 69] to convert the genotype

data into a haplotype data. The other way is to estimate k-marker haplotype frequencies

directly from the population without phasing. The former method is trivial. So, here we

discuss the latter method.

Hill [24] proposed in 1974 a maximum likelihood method to estimate the degree of
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LD between two loci (i.e., markers) given the frequencies of diploid genotypes in a random-

mating population. Then he generalized the method to estimate haplotype frequencies at

several loci in 1975 [25]. This method has been used to estimate LD r2 statistics for more

than 30 years. For example, it was used in [31] to estimate the LD among multi-allelic

markers.

Hill’s method works as follows. For simplicity, let us only consider estimating the

frequency of 3-marker haplotypes. Consider a sample of population data from N random-

mating individuals. Let ng be the number of times that genotype g is observed in the

sample. Denote as fh the frequency of haplotype h. Let f̂h be the maximum likelihood

estimation of fh. For three SNPs A, B and C, the frequency of haplotype ABC satisfies

the following equation (due to Hardy-Weinberg equilibrium):

f̂ABC =
1

2N

(

2nAABBCC + nAABBCc + nAABbCC + nAaBBCC

+nAABbCc
f̂ABC f̂Abc

f̂ABC f̂Abc + f̂ABcf̂AbC

+nAaBBCc
f̂ABC f̂aBc

f̂ABC f̂aBc + f̂ABcf̂aBC

(2.1)

+nAaBbCC
f̂ABC f̂abC

f̂ABC f̂abC + f̂AbC f̂aBC

+nAaBbCc
f̂ABC f̂abc

f̂ABC f̂abc + f̂ABcf̂abC + f̂AbC f̂aBc + f̂Abcf̂aBC

)

.

We can set up equations for the frequencies of the other seven haplotypes on SNPs A, B, and

C similarly. Solving these equations can be done by a standard expectation-maximization

(EM) algorithm [24, 31]. The EM algorithm is iterative. It begins with a random guess of

the frequencies. The frequencies obtained at the left hand side in Equation (2.1) will be

repeatedly inserted into the right hand side to improve the estimation. When the improve-
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ment is sufficiently small (e.g., smaller than a predetermined threshold, typically 10−15), the

algorithm terminates and starts a new round with another random guess. After a sufficient

number of rounds, it outputs all feasible solutions. We merge the solutions with distances

smaller than a threshold (e.g., ǫ = 10−4), and obtain the r2 value using these estimated

3-marker haplotype frequencies.

There are two things that we have to be careful with when applying Hill’s method.

The first is that the method assumes the population was produced from random mating

and Hardy-Weinberg equilibrium holds. Therefore, datasets consisting of related individuals

(such as the CEU dataset in HapMap) would not be suitable. The CEU data consists of

family trios, not random-mating individuals. The second is that errors caused by the EM

algorithm may lead to wrong assignment of haplotypes into the major and minor buckets.

For example, Claim 1 says that when nhC = nhc, it is advantageous to assign the haplotype

h to the minor bucket instead of the major bucket. However, if fhC = fhc but f̂hC happens

to be slightly higher than f̂hc due to some error in the EM computation, we will assign h

to the major bucket without caution. This could lead to a reduced r2 value. To avoid this,

we assign h to the minor bucket as long as f̂hC < f̂hc + ǫ for some small ǫ > 0.

2.3 The Greedy Algorithm for Selecting Tag SNPs

In this section, we first define some notations that will be useful in the algorithm,

and then describe the algorithm. For simplicity, we present the algorithm for the 2-marker

correlation model first, and then generalize it to work for the multi-marker model. At the

end of the section, we analyze the time complexity of the algorithm.
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2.3.1 Some Notations

In the rest of this chapter, we call a group of three SNPs, which includes two

potential tagging SNPs si, sj and one SNP sk to be tagged, a triplet and denote it as

(si, sj ⊲ sk). Similarly, a quartet is a group of four SNPs including three potential tagging

SNPs and SNP to be tagged. The triplets are used in the 2-marker correlation model and the

quartets in the 3-marker correlation model. Each such triplet or quartet has a correlation

coefficient r2 value. We will only be interested in triplets and quartets whose correlation

coefficient values r2 are above a certain threshold. It is convenient to think of the triplets

or quartets as edges in a hypergraph. Let us regard SNPs as vertices in the hypergraph.

The tagging SNPs in a triplet or a quartet have an outgoing edge to the SNP to be tagged.

This edge can be also thought of as an incoming edge of the tagged SNP from the tagging

SNPs. Figure 2.1 shows an example hypergraph with five triplets.

During a tag SNP selection process, a SNP has three possible states: uncovered,

covered and picked. A SNP is picked if it has been selected as a tag SNP. A SNP s is covered

if either s is picked or there is a triplet (si, sj⊲s) where si, sj are picked. In this case we say

that SNPs si, sj cover s. A SNP is uncovered if it is not picked nor covered. Sometimes,

we may use the term partially covered. A SNP s is partially covered if it is uncovered and

there is a triplet (si, sj ⊲ s) such that either si or sj is picked but not both.

2.3.2 The Algorithm for the 2-Marker Correlation Model

An outline of our algorithm is shown in Figure 2.2. To avoid considering SNPs that

cannot possibly be linked, we set a window size of W bps (in terms of the physical distance
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s1

s2 s4

s5

s7
s9

s6

s3
s8

Figure 2.1: An example with five triplets: (s1, s3⊲s2), (s1, s3⊲s4), (s3, s6⊲s5), (s6, s8⊲s7)
and (s6, s8 ⊲ s9).

on a chromosome). For every triplet of SNPs within the window size, we compute its r2

value as previously described. Then we run an iterative greedy-based algorithm to select a

set of tag SNPs as follows. We first initialize all SNPs as uncovered. In each iteration, we

pick an appropriate SNP, put it in the tag SNP set, and then check if any uncovered SNPs

are now covered due to the newly selected SNP. We repeat this process until all SNPs are

covered.

So the main issue is how to pick an appropriate SNP in each iteration. Our first

preference is an uncovered SNP that has no incoming edges. A SNP without incoming edges

All triplets (quartets)
above a given threshold

Phase 1:
Evaluate LD

Phase 2:
Select tag SNP

01000101000

00010001001

00000000010

10001000100

Sample Data Selected tag SNP set

Figure 2.2: An outline of the greedy algorithm.
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cannot be tagged by any other SNPs and has to be picked as a tag SNP sooner or later.

Therefore, we always check if there is such a SNP. If all SNPs have incoming edges, we pick

a SNP (covered or uncovered) that can cover the largest number of uncovered SNPs. If

there is a tie, the SNP that partially covers the most uncovered SNPs is preferred. Note

that, a covered SNP may also be picked in the above if it covers many other SNPs.

After picking each SNP, we need update and remove some triplets that are no

longer useful. A triplet t = (si, sj ⊲ sk) should be removed if any one of the following

conditions holds:

1. sk is covered, and therefore t is useless.

2. si and sj are both picked. In this case, si and sj together tag sk. After changing the

state of sk to covered, t is no longer useful.

3. There is another triplet t′ = (si, s
′
j ⊲ sk) where s′j is picked. In this case, the triplet t

is superseded by the triplet t′ and thus redundant.

Note that, although the condition 3 seems optional and unnecessary, it is actually

important since keeping useless triplets in the algorithm may actually affect the final result

when useless triplets are involved in the partial coverage of SNPs (and ties have to be broken

in the algorithm).

Algorithm 2.3.1 illustrates the pseudocode of the algorithm. In the algorithm,

lines 2–5 pick the next SNP. The subsequent lines update the states of the SNPs and

remove useless/redundant triplets.
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Algorithm 2.3.1 MMTagger(for 2-Marker Model)

Require: set of triplets

1: while there are SNPs uncovered do

2: if there is a SNP s with no incoming edges then

3: s∗ ← s

4: else

5: s∗ ← a SNP that covers the most uncovered SNPs

6: Put s∗ in the tag SNP set /* s∗ is picked */

7: for each triplets t of form (s·, s· ⊲ s∗) do

8: remove t and its corresponding edges

9: for each triplets t of form (s∗, si ⊲ sj) or (si, s
∗ ⊲ sj) do

10: if si is picked then

11: put sj into covered SNP set

12: remove all triplets of form (s·, s· ⊲ sj) or (s·, s· ⊲ sj)

13: else

14: remove all triplets of form (si, s· ⊲ sj) or (s·, si ⊲ sj)
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2.3.3 Extension to the 3-Marker Correlation Model

The extension is straightforward. The outline in Figure 2.2 still works except that

we need now calculate r2 values for quartets. The above greedy algorithm can also be kept

the same, although we should modify the removal of useless/redundant quartets slightly.

The third condition should be changed to: if there is another quartet q′ = (si, s
′
j , s

′
k ⊲ sl)

where s′j , s
′
k are picked, then we remove the quartet q.

It is also straightforward to extend the algorithm to the k-marker correlation

model, although calculating r2 values for groups of k SNPs from haplotype data could be

very demanding when k is larger than 4, not to mention doing the calculation for genotype

data.

2.3.4 Time Complexity

Suppose that there are m SNPs s1, s2, . . . , sm on a chromosome sorted by their

positions. For simplicity, we assume that there are at most w SNPs within each window

of W bps. We need compute the r2 values of all possible triplets involving three SNPs

from the same windows. If the first SNP with the smallest index is among s1, s2, . . . , sm−w,

there will be
(

w−1
2

)

combinations for the second and the third SNPs. If the first SNP is

among sm−w+1, . . . , sm, then there are totally
(

w
3

)

combinations for all three SNPs. The

time complexity of computing the r2 values is therefore (m − w)
(

w−1
2

)

+
(

w
3

)

= O(mw2).

Similarly, the time complexity to compute r2 values of all possible quartets is O(mw3).

Assume that there are T triplets with sufficiently high r2 values. During the

selection of tag SNPs, we maintain a data structure where each SNP has two linked-lists
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to the triplets containing the SNP. One list contains all the triplets corresponding to the

outgoing edges and the other contains all the triplets corresponding to the incoming edges.

For each SNP, we also keep track of the number of triplets containing the SNP, and various

other statistics on these triplets. Therefore, in each iteration of the selection algorithm, we

need only scan all the SNPs and use these numbers to pick an appropriate one. To keep

the data structure up-to-date, we need update a triplet t = (si, sj ,⊲sk) when

1. si or sj is picked;

2. sk is covered and t needs to be removed; or

3. t is superseded by another triplet and needs to be removed.

If it takes O(1) time to retrieve each triplet that we need update, then the time complexity

will be reasonably low. In cases 1 and 2, we can access each of the involved triplets in O(1)

time given the data structure. To achieve O(1) access time in case 3, we sort all the triplets

in each linked list corresponding to outgoing edges in preprocessing. As a result, if si is

picked as a tag SNP, then (si, sj ⊲ sk) will supersede all triplets of the form (sh, sj ⊲ sk)

for some h. These triplets (sh, sj ⊲ sk) must be neighbors of (si, sj ⊲ sk) on sj ’s outgoing

linked list. Therefore, we can access to each of these triplets in O(1) time. Since a triplet

may be updated at most 3 times, the time to select tag SNPs is O(T ). The preprocessing

may take O(T log T ) time.

In practice, the algorithm spends most of its time on evaluating r2 values. There-

fore, we say that the time complexity of the algorithm is O(mw2) (or O(mw3)) for the

2-marker correlation (or 3-marker correlation) models, respectively.
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2.4 Experimental Result

We have implemented the above algorithm as a C program, simply called MM-

Tagger. In this section, we compare MMTagger with the program LRTag in [47] and the

program MultiTag in [21] on real datasets from the HapMap project. The following is a

brief summary of the features of the three programs to be compared.

• LRTag [47] uses the traditional single-marker correlation model and works for a single

population as well as multiple populations. The algorithm is based on a powerful

combinatorial optimization technique called Lagrangian relaxation. According to the

extensive tests in [47], LRTag outperforms other state-of-the-art single-marker pro-

grams such as FESTA [61] and LD-Select [6] in terms of the number of selected tag

SNPs. It requires the pairwise r2 statistics as the input.

• MultiTag [21] uses a multi-marker correlation model which is more restricted than

our model. It is a greedy algorithm. The input to MultiTag must be a population

haplotype data.

• MMTagger is a greedy algorithm using a more general multi-marker correlation model.

Its input is a population data, either in the form of haplotypes or genotypes.

In order to compare these three programs, we need phased haplotype data. We

downloaded the CEU ENCODE region data from the HapMap project1 and use the first

5 of the 10 sample datasets. For LRTag, we need a preprocessing step to calculate the

pairwise r2 values. For both MMTagger and MultiTag, we use a window size W of 100K

1http://www.hapmap.org/downloads/phasing/2005-03 phaseI/ENCODE/
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bps so that SNPs farther than W bps apart are not considered as correlated. To make it

fair, we also apply this restriction when calculating r2 values for LRTag.

Table 2.1 shows the numbers of the tag SNPs selected by LRTag, MultiTag and

MMTagger using different parameters. The reduction of tag SNPs by using the multi-

marker correlation models is obvious. However, the running time of the programs based

on the multi-marker correlation models (MultiTag and MMTagger) is much longer. LRTag

requires only pairwise r2 values, but MultiTag and MMTagger need r2 values for each group

of three or four SNPs. In general, MMTagger selected fewer tag SNPs than MultiTag. In

fact, the improvement is quite significant when the threshold for r2 is 0.9 or larger.

When comparing the performance of MultiTag and MMTagger, we should also take

into account the running time and memory usage. We thus downloaded the entire chromo-

somal data of the Japanese and Chinese populations from HapMap2 and used chromosomes

19, 21 and 22 as our test data.

Hao [21] mentioned two different methods to implement his greedy algorithm and

handle a large number of input SNPs: (1) Preprocess and compute all r2 values, and (2)

Calculate r2 values on the fly while selecting tag SNPs. The former method would lead to

heavy memory load and/or file I/O load. The latter method may lead to redundant r2 value

computation. MultiTag employs the latter method. In our implementation of MMTagger,

we choose the former method to speed up the computation.

Table 2.2 illustrates a head-to-head comparison between MultiTag and MMTagger.

Note that, for the memory usage, we were able to insert some code into MMTagger to obtain

2http://www.hapmap.org/downloads/phasing/2006-07 phaseII/phased/
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Region ENm010 ENm013 ENm014 ENr112 ENr113

# SNP 459 731 874 868 1035

r2 ≥ 0.8

LRTag 119 88 134 148 133

2-marker MultiTag 75 57 80 87 75

2-marker MMTagger 72 52 78 85 73

3-marker MultiTag 68 53 75 78 64

3-marker MMTagger 62 48 75 68 59

r2 ≥ 0.9

LRTag 148 121 172 204 190

2-marker MultiTag 100 76 111 118 122

2-marker MMTagger 92 73 100 109 115

3-marker MultiTag 91 66 102 101 100

3-marker MMTagger 79 58 85 81 81

r2 ≥ 0.95

LRTag 192 148 196 268 247

2-marker MultiTag 127 96 131 157 156

2-marker MMTagger 117 92 122 141 149

3-marker MultiTag 120 83 119 138 145

3-marker MMTagger 97 66 102 107 112

Table 2.1: Numbers of tag SNPs selected in CEU ENCODE region
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Chromosome # SNP mode r2 program
# SNPs Time Memory

Selected (hours) (M bytes)

2-marker 0.9
MultiTag 9600 26hrs 30–35

JPT+CHB
28931

MMTagger 9145 2mins 125

chr19
3-marker 0.95

MultiTag N/A >700hrs 30–35

MMTagger 10032 <1hr 657

2-marker 0.9
MultiTag 7115 42hrs 30–35

JPT+CHB
28914

MMTagger 6766 2mins 187

chr21
3-marker 0.95

MultiTag N/A >700hrs 30–35

MMTagger 7404 <1hr 1210

2-marker 0.9
MultiTag 7557 93hrs 30–35

JPT+CHB
26595

MMTagger 7221 2mins 183

chr22
3-marker 0.95

MultiTag N/A >700hrs 30–35

MMTagger 7788 3hrs 1216

Table 2.2: MMTagger vs. MultiTag
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the precise maximum memory used by the program. However, we were not able to get the

precise memory usage numbers for MultiTag and could only provide a rough estimate. The

following gives a detailed comparison between the two programs.

• MMTagger is able to achieve a smaller tag SNP set than MultiTag mostly because

our multi-marker correlation model is more general and flexible.

• MMTagger’s heuristic to always pick uncovered SNPs with no incoming edges first may

also be a factor in its improved performance. This heuristic can be easily incorporated

into MultiTag.

• MMTagger may pick a SNP that has been covered if it covers many other SNPs.

However, MultiTag always picks an uncovered SNP. Modifying MultiTag to allow

covered SNPs to be picked would cost its more time since it calculates r2 values on

the fly. However, this does not impact the running time of MMTagger much because

it pre-calculates all r2 values.

• MMTagger is much faster than MultiTag. Its running time mostly depends on the

window size W , since it spends most time on calculating the r2 values. The running

time of MultiTag depends on both the window size W and the number of tag SNPs

selected. Hence, it requires more time for higher r2 thresholds since more tag SNPs

would be required. Hao [21] reported that the program took about 300 hours to

process the human chromosome 2 data on a typical workstation (Intel Xeon 2.80 GHz

CPU and 512 MB memory).

• MMTagger requires much more memory. Its memory usage grows when the r2 thresh-
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old decreases, as more triplets/quartets would be qualified. To run the program on

a large chromosome such as human chromosome 2, it require about 4 GB of memory

for the 3-marker correlation model when the r2 threshold is 0.9. However, MultiTag’s

memory usage is pretty reasonable even for large chromosomes and low r2 thresholds.

• MMTagger and MultiTag use the window sizeW in slightly different ways. MMTagger

requires that all SNPs in a triplet/quartet should be in the same window, while

MultiTag requires that a covered SNP and each of its tagging SNPs should not be

farther than W . Therefore, the distance of the two tagging SNPs of a triplet may

actually be as far as 2W in MultiTag.

As observed before, the 2-marker correlation model improves on the single-marker

correlation model significantly. A similar significant improvement from the 2-marker model

to the 3-marker model is also shown in Table 2.2. Although it is likely that the 4-marker

model will show further improvements, we are not able to extend the results to the 4-

marker model because MMTagger would require too much time and memory on any realistic

datasets. For the same reason, MultiTag was only implemented for the 2-marker and 3-

marker models in [20, 21]

2.5 Conclusion

We have introduced a new multi-marker correlation model that generalizes a previ-

ous result in the literature. A greedy algorithm is designed to select tag SNPs based on the

model. Our experimental results on real datasets from the HapMap project demonstrate
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that the algorithm produces the most succinct tag SNP sets compared with the previous

algorithms.

2.6 The Proof of Claim 1

Let us consider the frequency table as shown in Table 2.3, where A is a SNP to

be covered/tagged and M is a compound marker representing several (e.g., two or three)

SNPs. Let nAM denote the number of times that the haplotype AM is observed in the

population, nA = nAM + nAm, and n the total number of haplotypes.

A a

M nAM naM nM

m nAm nam nm

nA na n

Table 2.3: Number of observations of each haplotype

For any haplotype h on M, if nAh > nah, we would put h in the major bucket,

otherwise we put it in the minor bucket. However, when nAh = nah, it seems that we could

put h in either the major bucket or the minor bucket. We show in the following that putting

h in the minor bucket leads to a bigger r2 value between M and A. By definition of the r2
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statistics,

r2 =
(pAM − pApM )2

pApapMpm

=
(nAM · n− nAnM )2

nAnanMnm

=
(nAMnam − nAmnaM )2

(nAM + nAm)(naM + nam)(nAM + naM )(nAm + nam)

We take the partial derivative of r2 with respect to nAM and obtain

∂r2

∂nAM
=

(nAMnam − nAmnaM )

nAnanMnm
·

(

2nam −
(nAMnam − nAmnaM )(2nAM + nAm + naM )

(nAM + nAm)(nAM + naM )

)

By simplifying the equation, we get

∂r2

∂nAM
= c

(

2nam −
X(nA + nM )

nAnM

)

∂r2

∂nAm
= c

(

−2naM −
X(nA + nm)

nAnm

)

∂r2

∂naM
= c

(

−2nAm −
X(na + nM )

nanM

)

∂r2

∂nam
= c

(

2nAM −
X(na + nm)

nanm

)

where c = (nAMnam−nAmnaM )
nAnanMnm

, X = (nAMnam − nAmnaM ).

Suppose that nAh = nah. If we put haplotype h in the major bucket, then the r2

value would change by approximately nAh ·
∂r2

∂nAM
+ nah ·

∂r2

∂naM
. If we put h in the minor
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bucket, then the r2 value would change by approximately nAh ·
∂r2

∂nAm
+ nah ·

∂r2

∂nam
. Let

∆M =
∂r2

∂nAM
+

∂r2

∂naM

= c

(

2nam − 2nAm −X

(

1

nA
+

1

na
+

2

nM

))

∆m =
∂r2

∂nAm
+

∂r2

∂nam

= c

(

2nAM − 2naM −X

(

1

nA
+

1

na
+

2

nm

))

We have

∆m −∆M = 2c(nAM − naM + nAm − nam) + cX

(

2

nM
−

2

nm

)

= 2c(nA − na) + 2cX

(

1

nM
−

1

nm

)

We need check if ∆m −∆M ≥ 0 holds. By multiplying both side with nMnm

2c we get

1

2c
nMnm(∆m −∆M )

= (nA − na)nMnm + (nAMnam − nAmnaM )(nm − nM )

= (nAM + nAm − naM − nam)(nAM + naM )(nAm + nam)

+(nAMnam − nAmnaM )(nAm + nam − nAM − naM )

= nAM (nAM + naM )nAm + nAmnAM (nAm + nam)

−naM (nAM + naM )nam − namnaM (nAm + nam)

= nAMnAm · n− naMnam

= n(nAMnAm − naMnam)

where n = nAM+nAm+naM+nam. Therefore, ∆m ≥ ∆M if and only if nAMnAm ≥ naMnam.
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When the latter inequality holds, putting the haplotype h in the minor bucket will result

in a higher r2 value.

Since nAM + nAm = nA > na = naM + nam, nAMnAm tends to be greater than

naMnam in practice. Moveover, even when nAMnAm < naMnam, putting the haplotype h

in the minor bucket would increase nAm and nam at the same time, and hence result in a

greater increase in nAMnAm than in naMnam since nAM is usually larger than naM . This

could help improve the r2 value in the long run. Therefore, putting h in the minor bucket

may still be better in this case. For example, suppose nAM = 100, nAm = 0, naM = 5,

and nam = 20 before haplotype h is considered. If nAh = nah = 1, then putting h in the

major (or minor) bucket results in r2 = 0.7261 (or r2 = 0.7235, respectively). However, if

nAh = nah = 3, then putting h in the major (or minor) bucket leads to r2 = 0.6628 (or

r2 = 0.6631, respectively).

Note that, the tag SNP selection program MultiTag in [20, 21] considers all the

possible splits of the haplotypes in question and picks the one that results in the highest r2

value. So, ties between haplotype counts are not an issue. However, we cannot afford doing

this in our tag SNP selection program MMTagger (to be introduced in Section 2.4) because

our multi-marker correlation model allows for many more possible splits. Trying all such

splits would be very inefficient. Since the above analysis shows that putting haplotype h in

the minor bucket is generally better when we have a tie nAh = nah, MMTagger always puts

h in the minor bucket when such a tie arises. �
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Chapter 3

Inferring Haplotypes from

Genotypes on a Pedigree with

Mutations and Missing Alleles

3.1 Introduction

In this chapter, we study haplotype inference on pedigree data on tightly linked

markers that have no recombinants but may contain a small number of de novo mutations

(or simply, mutations). Since mutation is a rare event, we formulate the problem as a

combinatorial optimization problem, called the minimum mutation haplotype configuration

(MMHC) problem, where we look for a haplotype solution consistent with the given geno-

type data that incur no recombinants and require the minimum number of mutations. Our

hypothesis is a solution with the minimum number of mutations is likely the true solution.
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Moreover, we are only interested in solutions where each locus has at most one mutation

in the pedigree. This restriction is reasonable given Kimura’s infinite-site model et al. [33]

which suggests that the probability of multiple mutations at the same locus is low enough

to be negligible. This extends the well studied zero-recombinant haplotype configuration

(ZRHC) problem where we try to find a consistent haplotype solution incurring no recom-

binants or mutations. Although ZRHC is polynomial-time solvable [40], we can prove that

MMHC is NP-hard by a reduction from NAE-3SAT (the proof is in Chapter 4, Section 4.5).

We construct an integer linear program (ILP) for MMHC using the system of linear equa-

tions over the field GF (2) that has been developed in [40, 45, 80] for solving ZRHC in

almost linear time. Since the number of constraints in the ILP is quite large (exponentially

large in general) when the input pedigree is large, we present an incremental approach for

solving the ILP.

An outline of our incremental approach is as follows. Given a pedigree data, we set

up a system of linear equations over GF (2) introduced in [45, 80] for ZRHC, but conditional

on mutations. We convert the linear system to an ILP instance for MMHC where the

constraints generally describe the relation between the equations and mutations. A small set

of the constraints in the ILP are identified as the core constraints, and a standard ILP solver

GLPK (the GNU Linear Programming Kit from http://www.gnu.org/softward/glpk) is

invoked on the partial ILP instance with only the core constraints. The ILP solution

describes an assignment of mutations in the pedigree which can be used to remove the

conditions in the linear system. By using Gaussian elimination, we can check if the linear

system is consistent. If it is consistent, a haplotype configuration (with the minimum
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number of mutations) is returned. Otherwise, we find the inconsistent equations and add

some new constraints to the core to force their consistency. This process is repeated until

an ILP solution that satisfies its corresponding linear system has been found. Note that,

the incremental approach to solving the ILP is crucial here because the ILP instance cannot

be efficiently and explicitly constructed as its number of constraints grows exponentially in

the pedigree size in general. Also note that, with the advance in sequencing technology,

larger and larger pedigrees are being genotyped and analyzed in practice. For example, in

[3, 5], haplotype inference was performed on pedigrees of sizes 368 and 1149, respectively.

We have implemented the algorithm and tested it on pedigree data that were

simulated with random mutations and missing alleles. (Real pedigree data often have up

to 20% missing alleles.) The experimental results demonstrate that our method can infer

haplotypes with a very high accuracy. It can also detect most of the mutations and impute

most of the missing alleles correctly. Moreover, it is found that the algorithm usually

terminates after a small number of iterations without ever having to invoking ILP solver

on the complete ILP instance consisting of all the constraints. As a comparison, we have

also considered the straightforward approach for solving the ILP with all the constraints

considered at once on binary tree pedigrees (i.e., each pair of parents has only one child).

The ILP instance can be efficiently constructed for binary tree pedigrees. It is found that

our algorithm is much faster than the straightforward approach.

The rest of this chapter is organized as follows. In Section 3.2, we incorporate

mutations into the system of linear equations introduced in [45, 80] for ZRHC to obtain a

system of conditional linear equations for MMHC. Section 3.3 describes the ILP formulation
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for MMHC, and the incremental approach for solving the ILP. In Section 3.4, we discuss

the implementation of the algorithm and test its performance on some simulated pedigree

data with random mutations and missing alleles. Section 3.5 concludes this chapter with

a few remarks. This chapter appeared in the procedings of 20th Annual Symposium on

Combinatorial Pattern Matching 2009, pp. 353–367 [76].

3.2 A System of Conditional Linear Equations for MMHC

We review the system of linear equations over GF(2) introduced in [45, 80] for

solving ZRHC and extend the system to take into account mutations.

3.2.1 The Linear System

Let n denote the number of the individuals in the input pedigree andm the number

of marker loci of each individual. For simplicity, we assume in this chapter that all alleles

are bi-allelic (denoted as 0 or 1) and the input pedigree is free of mating loops (and thus a

tree pedigrees). Tree pedigrees are very common among human pedigrees. Our techniques

can be extended to general pedigrees. The genotype of individual j is denoted as a ternary

vector gj whose kth entry gj [k] represents the genotype at locus k of individual j as follows:











































gj [k] = 0 if both alleles are 0’s

gj [k] = 1 if both alleles are 1’s

gj [k] = 2 if the locus is heterozygous

(3.1)
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The value of gj [k] is unknown if the alleles are missing. For each locus k of individual j, we

define a binary variable pj [k] over GF(2) to indicate the paternal allele at the locus:































































pj [k] = 0 if gj [k] = 0

pj [k] = 1 if gj [k] = 1

pj [k] = 0 if gj [k] = 2 and allele 0 is paternal

pj [k] = 1 if gj [k] = 2 and allele 1 is paternal

(3.2)

In other words, the binary vector pj represents the paternal haplotype of individual j. To

represent the maternal haplotype, we need another binary vector wj to indicate if each

locus of individual j is heterozygous. That is, wj [k] = 0 if gj [k] = 0 or 1, and wj [k] = 1

if gj [k] = 2. Clearly, the sum pj + wj (over GF(2)) represents the maternal haplotype of

individual j.

Suppose that individual i is a parent of individual j. To unify the representation

of the haplotype that j inherited from i, define a binary vector di,j as follows: di,j = 0 if i

is j’s father and di,j = wj if i is j’s mother. Therefore, pj + di,j represents the haplotype

that j got from i. Define hi,j = 0 if pj+di,j is i’s paternal haplotype and hi,j = 1 otherwise.

Then pi + hi,j · wi represents the haplotype that i passed to j. The binary variables hi,j

thus fully describe the inheritance pattern in an ZRHC instance. Finally, define µi,j [k] = 1

if the there is a mutation at locus k when i passes the haplotype pi + hi,j · wi to j, and

µi,j [k] = 0 otherwise. For technical reasons, we view µi,j [k] as an integer from Z instead

of GF(2). For convenience, we make these three vectors symmetric by defining dj,i = di,j ,

hj,i = hi,j , and µj,i = µi,j . Using these notations, we can derive a conditional equation over
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GF(2):























pi[k] + hi,j · wi[k] = pj [k] + di,j [k] if µi,j [k] = 0

pi[k] + hi,j · wi[k] = pj [k] + di,j [k] + 1 if µi,j [k] = 1

(3.3)

Since we assume that each locus has at most one mutation in the pedigree,

0 ≤
∑

i,j

µi,j [k] ≤ 1 ∀k (3.4)

Note that the summation is over Z instead of GF(2). Hence,the MMHC problem can

be formally defined as follows. Given an input pedigree and genotype data gj for each

individual j, find a solution to each pj , hi,j and µi,j that satisfies all the (conditional)

constraints in Equations (3.3) and (3.4) and minimizes the sum
∑

i,j,k µi,j [k].

3.2.2 Pre-Determined Variables

The above linear system has O(mn) variables and equations. As in [45, 80], we

can convert the system to an equivalent linear system involving only the h-variables which

is much smaller (there are only O(n) h-variables). This requires us to pre-determine the

values of some p-variables. The situation is complicated a little bit by the presence of the

µ-variables.

Let us consider a p-variable pj [k] where the marker of individual j at locus k is

not missing, and several scenarios.

1. gj [k] 6= 2. By Equation (3.2), pj [k] = gj [k]. In this case, pj [k] is pre-determined. We

will refer to pj [k] as the intended p-value of the locus, denoted as v(j, k) = pj [k].
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Figure 3.1: Determining a p-variable. Consider the p-value of the child in the trio. (a) It
equals 0 as long as there is no mutation from the father and it is semi-determined. (b) It
equals 0 and there cannot be any mutation. It is pre-determined. (c) It is undetermined
but there must be a mutation. It is doubly-determined.

2. gj [k] = 2 and exactly one parent, denoted as i, is homozygous at locus k. See Fig-

ure 3.1(a). We have wi[k] = 0 by definition. According to Equation (3.3), pj [k] is

known if and only if µi,j [k] is known. We say that pj [k] is semi-determined in this case.

We also define µi,j [k] as the anchor of pj [k] and denote a(j, k) = {µi,j [k]}. Since the

value of pj [k] on the condition µi,j [k] = 0 is preferred, we denote v(j, k) = gi[k]+di,j [k].

3. gj [k] = 2, both parents i1 and i2 of j are homozygous at locus k, and gi1 [k] 6= gi2 [k].

See Figure 3.1(b). Since each locus has at most one mutation, µi1,j [k] and µi2,j [k]

cannot both be 1. Hence, µi1,j [k] = µi2,j [k] = 0. In this case, pj [k] is pre-determined,

and we denote v(j, k) = pi1 [k] + di1,j [k].

4. gj [k] = 2, both parents i1 and i2 are homozygous at locus k, and gi1 [k] = gi2 [k].

See Figure 3.1(c). In this case, one of µi1,j [k] and µi2,j [k] equals 1 and the other

0. Thus, pj [k] has two anchors: a1(j, k) = {µi1,j [k]} and a2(j, k) = {µi2,j [k]}. Each

anchor gives rise to a preferred value for pj [k], v1(j, k) = pi1 [k]+di1,j [k] and v2(j, k) =

pi2 [k] + di2,j [k], respectively. In this case we call pj [k] doubly-determined.

5. All other cases. The variable pj [k] is undetermined and the variable v(j, k) is unde-
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fined.

If a pj [k] is pre-determined or undetermined, we define a(j, k) = ∅. Similarly, we might be

able to pre-determine µ-variable µi,j [k] in some cases.

1. gi[k] = gj [k] 6= 2. Since the top equation in Equation (3.3) holds, we let µi,j [k] = 0

and it is pre-determined.

2. gi[k] 6= gj [k] and both loci are homozygous. Since the bottom equation in Equa-

tion (3.3) holds, we set µi,j [k] = 1. This µ-variable is pre-determined. Moreover, all

the other µ-variables at locus k must equal 0 and are pre-determined too.

3. Some p-variable at locus k is doubly determined. All the µ-variables at locus k other

than this p-variable’s anchors must equal 0 and are thus pre-determined.

4. All other cases. The variable µi,j [k] stays undetermined.

3.2.3 A More Compact Linear System

Following [45, 80], we can set up a linear system in terms of the h-variables. The

idea is to consider paths in the pedigree connecting individuals with pre/semi/doubly-

determined p-variables and derive (conditional) equality constraints on the h-variables on

such paths based on Equation (3.3).

Consider a locus k and a path j0, j1, . . . , jr in the input (tree) pedigree, where

individuals ji and ji+1 have the parent-child relationship. Suppose that pj0 [k] and pjr [k]

are pre-determined, semi-determined or doubly-determined, and gj1 [k] = · · · = gjr−1 [k] = 2.

We call the path j0, j1, . . . , jr an all-heterozygous path at locus k. If pj0 [k] and pjr [k] are
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pre-determined or semi-determined, we define a path constraint connecting j0 and jr:

v(j0, k) + v(jr, k) +
r−1
∑

i=0

(

hji,ji+1 + dji,ji+1 [k]
)

= 0

if all elements in a(j0, k) ∪ a(jr, k) ∪
r−1
⋃

i=0

{µji,ji+1 [k]} equal 0 (3.5)

If we denote M = a(j0, k) ∪ a(jr, k) ∪
⋃r−1

i=0 {µji,ji+1 [k]}, H =
⋃r−1

i=0 {hji,ji+1}, and c =

v(j0, k)+ v(jr, k)+
∑r−1

i=0 dji,ji+1 [k], then the path constraint can also be represented by the

triple (H,M, c) which denotes:

∑

hi,j∈H

hi,j = c iff µi,j [k] = 0 ∀µi,j [k] ∈M (3.6)

If j0 or jr is doubly-determined, we can construct two path constraints in the same way:

one using v1(·) and a1(·) and the other using v2(·) and a2(·).

Consider a local cycle consisting of father i1, mother i2, and two adjacent children

j1, j2. If both parents are heterozygous at locus k, we can obtain four conditional equations

from Equation (3.3) by replacing i with i1, i2, and j with j1, j2. (See Figure 3.2.) The

01

(a) (b)

01

01

01

01 01

11 01

Figure 3.2: Two possible cycle constraints from a local cycle. (a) The sum of the four
h-variables is 0. (b) The sum of the four h-variables is 1.

40



summation of these conditional equations forms a cycle constraint :

hi1,j1 + hi1,j2 + hi2,j1 + hi2,j2

= di1,j1 [k] + di1,j2 [k] + di2,j1 [k] + di2,j2 [k]

= wj1 [k] + wj2 [k]

iff µi1,j1 [k] = µi1,j2 [k] = µi2,j1 [k] = µi2,j2 [k] = 0 (3.7)

This constraint will also be denoted as (H,M, c) where H = {hi1,j1 , hi1,j2 , hi2,j1 , hi2,j2},

M = {µi1,j1 [k], µi1,j2 [k], µi2,j1 [k], µi2,j2 [k]}, and c = wj1 [k] + wj2 [k].

If both parents are homozygous at locus k, then the p-variables of both children

must be pre-determined or doubly-determined. However, the two children are not connected

by any all-heterozygous path and thus no path constraint is derived. On the other hand, if

exactly one parent is heterozygous at locus k, then both children are semi-determined and

there is a path constraint between the two children through the heterozygous parent.

For each locus and every pair of pre/semi/doubly-determined p-variables connected

by an all-heterozygous path, we construct a path constraint (or two if one of the p-variables

is doubly-determined, or four if both p-variables are doubly-determined) as above. Since

the pedigree is a tree, the number of such path constraints is at most O(mn). Similarly,

for each locus and local cycle, if both parents are heterozygous at the locus, we construct a

cycle constraint as above. The number of such cycle constraints is also bounded by O(mn).

Let E denote the set of these constraints.

The results in [45] show that the linear system formed by the above constraints

(without the conditions) in terms of the h-variables is equivalent to the linear system defined
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by Equation (3.3) (without the conditions) in terms of the h- and p-variables. In other words,

a feasible solution to the h-variable can be extended to a feasible solution to both the h-

and p-variables. It is easy to see that the same equivalence holds with the conditions.

Note that, loci with missing alleles could be included in the linear system in Equa-

tion (3.3) (as p-variables). However, they are excluded from the above path/cycle con-

straints on h-variables. Some of the missing alleles will be imputed using Equation (3.3)

after the h-variables are determined.

3.3 The ILP for MMHC and Incremental Approach

We construct an ILP for MMHC based on the above linear system in h-variables.

Recall that the objective of the ILP is

Minimize
∑

i,j,k

µi,j [k]. (3.8)

We give all the constraints of the ILP in Sections 3.3.1 and 3.3.2. Section 3.3.3 presents

more details of the incremental approach to solving the ILP. In Section 3.3.4, we describe

how to obtain a solution for MMHC after solving the ILP (and the linear system) and deal

with missing alleles.

3.3.1 The Core Constraints

All the constraints in Equation (3.4) are core constraints of the ILP. For each

path/cycle constraint (H,M, c) in E , we introduce an equation variable:

EH =
∑

hi,j∈H

hi,j (3.9)
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We then add an equation constraint for each (H,M, c):























EH −
∑

µi,j [k]∈M
µi,j [k] = 0 if c = 0

EH +
∑

µi,j [k]∈M
µi,j [k] = 1 if c = 1

(3.10)

In other words, either the linear equation in (H,M, c) holds, or there is exactly one mutation

inM.

Therefore, the core constraints of the ILP includes all the constraints in Equa-

tions (3.4), and (3.10). The number of these core constraints is clearly bounded by O(mn).

3.3.2 Consistency Constraints

Now we need some constraints to make sure that the assignment of the equation

variables are consistent with each other. Consider, for example, three sets of h-variables

H1,H2,H3 that appear in the linear system such that H1△H2△H3 = ∅. (Here, △ is

the symmetric difference operator.) If EH1 = 0 and EH2 = 0, which are equivalent to

∑

hi,j∈H1
hi,j = 0 and

∑

hi,j∈H2
hi,j = 0, then we must have

∑

hi,j∈H3
hi,j =

∑

hi,j∈H1
hi,j +

∑

hi,j∈H2
hi,j = 0, or equivalently EH3 = 0. The sum of EH1 , EH2 , EH3 must be even. To

guarantee such a relation among the three equation variables, we need include the following

consistency constraints:

C(H1,H2,H3) :















































EH1 + EH2 + (1− EH3) ≥ 1

EH1 + (1− EH2) + EH3 ≥ 1

(1− EH1) + EH2 + EH3 ≥ 1

(1− EH1) + (1− EH2) + (1− EH3) ≥ 1

(3.11)
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These constraints ensure that (EH1 , EH2 , EH3) 6= (0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1), respec-

tively. Therefore, illogical combinations of EH1 , EH2 , EH3 are prohibited, and only legiti-

mate combinations are allowed in a feasible solution.

In general, suppose that H1,H2, . . . ,Hr is any collection of sets of h-variables that

appear in the linear system such that H1△H2△· · ·△Hr = ∅. To construct the consistency

constraints for their corresponding equation variables, we introduce new variables Si =

△j
i=1Hi and their corresponding variables ESi

. We then construct a series of consistency

constraints:

C(H1,H2, . . . ,Hr) = C(H1,H2, S2) ∪ C(Sr−2,Hr−1,Hr) ∪
r−2
⋃

i=3

C(Si−1,Hi, Si) (3.12)

The core constraints and consistency constraints form the complete ILP instance.

Note that the number of consistency constraints is generally exponential in n. The following

lemma states that these constraints are sufficient for MMHI.

Lemma 2 Consider a feasible solution to the (complete) ILP defined above. We can convert

the conditional linear system in Section 3.2.3 to an unconditional linear system using the

values of the equation variables in the solution. The linear system must be consistent.

Proof. If the linear system is inconsistent, there exists a subset of equations
{
∑

h∈Hi
h = ci

}r

i=1

such that the summation of the righthand sides
∑r

i=1 ci = 1 while the summation of the

lefthand sides
∑r

i=1

∑

h∈Hr
h = 0. This implies that △r

i=1Hi = ∅, and a contradiction

to that fact the consistency constraints C(H1,H2, . . . ,Hr) are all satisfied. Therefore the

linear system must be consistent.
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3.3.3 The Incremental Approach

Since the complete ILP instance cannot be efficiently constructed in general, we

start from an incomplete ILP instance with only the core constraints (no consistency con-

straints). A standard ILP solver GLPK is invoked to find a solution to the equation variables

EH. The equation variable values specifies a set of (unconditional) linear equations from

the conditional linear equations in E . We can solve the this system of linear equations by

applying Gaussian elimination. However, the linear system may be inconsistent, i.e., there

may be a set of equation variable EH1 , EH2 , . . . , EHr such that △r
i=1Hi = ∅ but

∑r
i=1EHi

is odd determined by GLPK. When such an inconsistency occurs, there must be a subset

of equations
{
∑

h∈Hi
h = ci

}r

i=1
such that

∑r
i=1 ci = 1 but

∑r
i=1

∑

h∈Hr
h = 0. Hence

△r
i=1Hi = ∅, and we add the consistency constraints shown in Equation (3.12) to the ILP

instance. We then invoke GLPK again. This process is iterated until a solution is found to

yield a consistent system of linear equations.

Although in theory this process may take many iterations, more than 95% of the

time in our experiment a consistent solution was found in the very first iteration using only

the core constraints. Moreover, the process never took more than three iterations in our

experiment. This observation can be explained as follows. For each equation constraint in

Equation (3.10), the ILP solver GLPK tends to assign c to the variable EH given (M,H, c)

to minimize the number of mutations, if this assignment does not result in conflicting

equations. Since the number of mutations is small, most equations should indeed hold. In

addition, we usually have a lot of pre-determined µ-variables, which could force GLPK to

assign the other variables correctly.
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3.3.4 Phasing, Missing Allele Imputation, and Mutation Detection

Once a consistent (unconditional) linear system is found, solving the system by

Gaussian elimination assigns the values of all h-variables. GLPK also assigns the val-

ues of all µ-variables in the last iteration. Therefore, we can resolve the p-variables by

using the propagation algorithm in [45, 80]. The basic idea is to propagate known (i.e.,

pre/semi/doubly-determined) p-variable values to undetermined p-variables along the edges

in the pedigree by repeatedly applying Equation (3.3). The p-variables that are left unre-

solved by the propagation algorithm will be deemed as free in the solution. Note that, the

resolved p-variables could allow us to impute missing alleles at some loci (by possibly using

some ancestral p-variable and relevant h-variables if necessary), although perhaps not at all

loci.

If there are no missing alleles, then the above would produce a consistent solution

to the MMHC instance. However, the presence of missing alleles may cause conflict between

the assigned values of the µ-variables and those of the p-variables and h-variables. This is

because some µ-variables do not appear in any conditional equation. These µ-variables

0100 0111

?? ??

01 01

11

Figure 3.3: Missing alleles may prevent us from obtaining path/cycle constraints. In the
figure, if there were no missing data, there should have been two path constraints through
the dotted line. The µ-variable on the dotted line is free because the two path constraints
are not included in the ILP instance.
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only appear in the objective function and the constraints in Equation (3.4). Let us call this

type of µ-variables free. (See Figure 3.3 for an example free µ-variable.) Clearly, the free

µ-variables were set to 0 by GLPK to minimize the objective function. This assignment

could be in conflict with the p-variable and h-variable values, because their associated

path/cycle constraints were not included in the ILP instance. We will try to fix the problem

by re-evaluating the free µ-variables using the determined p-variables and h-variables and

Equation (3.3). For any free µ-variable in conflict, we change its value to 1 (which incurs a

new mutation).

However, some of these changes might be incorrect (or redundant), and such in-

correct changes may potentially lead to other conflicts with the p-variable and h-variable

values. When a change leads to more conflicts, we know for sure that the change is wrong

(because there can be at most one mutation at the same locus), as stated in the following

lemma.

Lemma 3 If assigning µi1,j1 [k] = 1 leads to another conflict that forces µi2,j2 [k] = 1, then

both µi1,j1 [k] and µi2,j2 [k] should equal 0.

Proof. It is obvious that µi1,j1 [k] should be 0 since otherwise a second mutation at the

same locus would be implied. By symmetry, µi2,j2 [k] = 1 would lead to µi1,j1 [k] = 1 as well.

Therefore, both µi1,j1 [k] and µi2,j2 [k] should be 0.

Whenever we find two mutations at the same locus, we force their corresponding

µ-variables to 0 in the ILP instance (by adding two new constraints), and run GLPK and

the propagation algorithm again. Note that, these two µ-variables are no longer viewed as

free since they now appear in some constraints in the ILP instance. This process is repeated
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until all µ-variable values are consistent with the p-variable and h-variable values.

3.4 Experimental Results

We have implemented our algorithm in C, denoted as MMPhase. A detailed

pseudocode of MMPhase is given in Algorithm 3.3.1. In the pseudocode, a founder is

an individual whose parents are not in the pedigree. In this section, we test MMPhase on

pedigree data with randomly simulated genotypes, mutations and missing alleles to perform

an empirical evaluation of its performance and efficiency. We also compare the speed of

MMPhase with that of the straightforward method for solving the MMHC ILP (i.e., running

GLPK on all the constraints in a single iteration).

We first compare the speeds of MMPhase and the straightforward method. Since

the number of consistency constraints is exponential in the pedigree size n and locus number

m in general (even for trees), we implement the straightforward method only for binary

trees. When the pedigree is a binary tree, we do not have cycle constraints. For each

path constraint along the path between j1 and j2, let H1 be the set of the h-variables on

the path from the root of the binary tree to j1, H2 the set of the h-variables on the path

from the root to j2, and H3 the set of h-variables on the path from j1 to j2. We put the

consistency constraint C(H1,H2,H3) into the ILP instance. This will provide a sufficient

set of consistency constraints which will guarantee a feasible solution to MMHC. Note that,

the number of such consistency constraints is O(mn). Interesting, the incremental approach

implemented in MMPhase may theoretically use more consistency constraints in the worst

case because of creating redundant variables, although it usually uses a smaller number
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Algorithm 3.3.1 MMHC Phase

Input: pedigree G = (V,E) and genotypes {gj}
1: for each founder i and its first child j do

2: hi,j ← 0
3: /* Generate the path/cycle constraints */
4: for each locus k do

5: Identify the pre/semi/doubly-determined loci and their anchors
6: Identify the pre-determined µ-variables
7: for each pair of pre/semi/doubly-determined loci do
8: if there is an all-heterozygous path between them then

9: Add the corresponding path constraint (H,M, c) to E
10: for each local cycle do

11: if it implies a cycle constraint then
12: Add the corresponding cycle constraint (H,M, c) to E

13: /* Constructing the core ILP instance I */
14: I.objective← minimize

∑

i,j,k

µi,j [k]

15: for each locus k do

16: Add a constraint
∑

i,j

µi,j [k] ≤ 1

17: for each (H,M, c) ∈ E do

18: if c = 0 then

19: Add the equation constraint EH −
∑

µi,j [k]∈M
µi,j [k] = 0

20: else /* c = 1 */
21: Add the equation constraint EH +

∑

µi,j [k]∈M
µi,j [k] = 1

22: /* The incremental method */
23: while true do

24: Call GLPK to solve the ILP instance
25: S ← ∅
26: for each EH do

27: S ← S ∪
{
∑

h∈H h = EH

}

28: Solve linear system S by Gaussian elimination
29: if no feasible solution exists then
30: Let

{
∑

h∈Hi
h = EHi

}r

i=1
be a set of inconsistent equations

31: Add a consistency constraint C(H1,H2, . . . ,Hr)
32: else

33: Infer the p-variables by propagation
34: Impute missing alleles as much as possible
35: if the free µ-variables pose no conflict then
36: break

37: else

38: Reassign the conflicting µ-variables
39: Output all pj and µ-variable values
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of consistency constraints in practice. We consider full binary trees of sizes from 63 to

1023, and run both algorithms on 100 randomly generated genotype data with 50 loci,

10% missing alleles, and 3% mutations (i.e., 3% of the loci are mutated in inheritance).

(Actually, haplotypes are generated in the simulations and then converted to genotypes as

an input of the algorithms.) Table 3.1 shows the average running times of both algorithms

on each full binary tree. We observe that MMPhase is much faster than the straightforward

method, and the speedup ratio increases as the pedigree size gets bigger. For example, the

ratio is about 14 on full binary trees of size 1023. We also observe that the solutions from

both algorithms are sometimes slightly different but they always require the same number

of mutations which is smaller than the actual number of mutations simulated (the detailed

results are not shown).

Next we test the performance of MMPhase in terms of the percentage of correctly

phased markers, the percentage of correctly imputed missing alleles, and the percentage of

correctly detected mutations. (A simulated mutation is correctly detected if there is an in-

ferred mutation that coincides with its location exactly.) We use three real human pedigrees

from the literature as shown in Figure 3.4. 100 replicates of genotype data is simulated on

each of these pedigrees with each of several configurations of the number of marker loci,

the missing allele rate and the mutation rate. Our default setting of simulation uses the

pedigree of size 52, 50 marker loci, 10% missing alleles, and 3% mutations. To observe

how each of these parameters affects the performance MMPhase, we vary one parameter

at a time in the test. Table 3.2 illustrates the test results. We observe that, as shown in

Table 3.2(a), that higher missing rates lead to faster performance since fewer path/cycle
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Pedigree size Straightforward Incremental

63 .443s .144s

127 2.98s .750s

255 20.3s 4.39s

511 180s 29.0s

1023 29.2m 2.13m

Table 3.1: The average running times on 100 randomly generated replicates for each pedigree
size. The pedigrees are full binary trees.
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Figure 3.4: Three pedigrees are used to test the performance of MMPhase. The first has
29 individuals and is shown in (a). The second has 52 individuals and is shown in (b). The
third has 128 individuals and is too large to fit in the page.
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Missing rate Correctly imputed Correctly detected Correctly phased Running time
missing alleles mutations markers

0% — 78.31% 99.98% 2.02s
5% 74.70% 70.20% 98.49% 1.49s
10% 68.97% 62.58% 92.72% 1.24s
20% 69.03% 59.69% 92.75% .900s

(a)

Mutation rate Correctly imputed Correctly detected Correctly phased Running time
missing alleles mutations markers

1% 73.15% 73.33% 96.75% 1.23s
3% 68.97% 62.58% 92.72% 1.24s
10% 73.11% 69.57% 96.73% 1.47s

(b)

Pedigree size Correctly imputed Correctly detected Correctly phased Running time
missing alleles mutations markers

29 75.34% 52.26% 94.51% .298s
52 68.97% 62.58% 92.72% 1.24s
128 73.49% 52.11% 93.99% 27.0s

(c)

Locus number Correctly imputed Correctly detected Correctly phased Running time
missing alleles mutations markers

20 73.13% 67.00% 96.78% .250s
50 68.97% 62.58% 92.72% 1.24s
200 73.09% 65.42% 96.82% 10.8s

(d)

Table 3.2: The performance of MMPhase under various configurations of the parameters.
The default setting includes the pedigree of size 52, 50 marker loci, 10% missing alleles,
and 3% mutations. 100 replicated are generated for each configuration of the parameters.
Starting from the default setting, we vary the missing rate in (a), the mutation rate in (b),
the pedigree in (c), and the number of loci in (d).
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constraints are added to the ILP instance. Not surprisingly, higher missing rates also result

in fewer correctly detected mutations and fewer correctly phased markers. Table 3.2(b)

shows that the performance is not very sensitive to the mutation rate. Table 3.2(c) and

Table 3.2(d) show that the pedigree and number of marker loci mainly affect the running

time.

In conclusion, MMPhase is very efficient and can infer haplotypes very accurately.

It can also recover most of the mutation and missing alleles correctly. Note that, our

criterion for correctly detecting a mutation is very stringent since in some cases the mutation

could be shifted in the pedigree without affecting the feasibility of the solution (especially

when missing alleles are present).

3.5 Concluding Remarks

It would be interesting to extend the method to deal with both mutations and

genotyping errors. Genotyping errors are very common in practice and can easily be con-

fused with mutations. In the next chapter, we will discuss how to handle both mutations

and genotyping errors.
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Chapter 4

Inferring Haplotypes from

Genotypes on a Pedigree with

Mutations, Genotyping Errors and

Missing Alleles

4.1 Introduction

In this chapter, we study haplotype inference on pedigree data consisting of tightly

linked markers that have no recombinants but may contain some genotyping errors, missing

alleles and a very small number of de novo mutations (or simply, mutations). Since error

and mutation events are rare, we formulate the problem as a combinatorial optimization

problem, called the haplotype configuration with mutations and errors (HCME) problem,
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where we look for a haplotype solution consistent with the given genotype data that incurs

no recombinants and requires the minimum number of mutations and errors. (Actually, we

minimize a weighted summation of the numbers of mutations and errors.) Our hypothesis is

that the configuration with the minimum number of mutations and errors is likely the true

solution. This extends the well studied zero-recombinant haplotype configuration (ZRHC)

problem where we try to find a consistent haplotype solution incurring no recombinants,

errors or mutations. Although ZRHC is polynomial-time solvable [40], we prove that HCME

is NP-hard by a reduction from NAE-3SAT. We construct an integer linear program (ILP)

for HCME using the system of linear equations over Galois field GF(2) that has been

developed in Refs. [40, 80] and [46] for solving ZRHC in almost linear time. We use the

incremental approach introduced in a previous work [76] to reduce the number of constraints

in the ILP instance.

We have implemented the algorithm and tested it on both simulated data and real

data. The experimental results demonstrate that our algorithm can infer haplotypes with

a very high accuracy. It can also recover most of the errors and impute most of the missing

alleles correctly. The error recovery rate is higher than the error detection rates in Refs. [12]

and [84]. However, most mutations would be explained by genotyping errors because we

give errors a smaller weight (since they are more frequent than mutations) in the objective

function of the above ILP.

The rest of the chapter is organized as follows. In Section 4.2, we introduce the

linear system, and formally define HCME as an optimization problem. In Section 4.3, we

explain each part of our algorithm in a subsection. We explain how to construct constraints
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for the given genotype data in Section 4.3.1. We briefly describe how to tackle the problem

by using ILP as a black box, which is similar to our previous work, in Section 4.3.2. We

explain how to recover the optimal haplotype configuration in Section 4.3.3. Some detailed

implementation issues are discussed in Section 4.3.4. In Section 4.4, we show our experi-

mental results on both simulated data and real data, and discuss how each parameter may

affect the accuracy and efficiency of our algorithms. In Section 4.5, we give a proof of

the NP-hardness of HCME. Section 4.6 concludes this chapter with a few remarks. This

chapter appeared in proceedins of Computational System Bioinformatics 2010, pp. 192–203.

This chapter was also published in Journal of Bioinformatics and Computational Biology

(JBCB), Vol. 9, No. 2 (2011) pp. 339–365 [77].

A pedigree can be drawn in three different forms: conventional form, formal form

and graph form (Figure 4.1). A pedigree is a tree if its formal form is a tree. In this

chapter, we will follow Ref. [76] to consider only tree pedigrees, which are very common

among human pedigrees. From now on, when we talk about paths and cycles in a pedigree,

we will consider it as a graph form. Note that a tree pedigree may have local cycles within

nuclear families (in its graph form).

4.2 Preliminaries

In this section, we first review the linear system developed in Refs. [80] and [46]

for dealing with pedigree data without mutations and errors. We then explain how to

modify the linear system for handling mutations and errors, and give the formal definition

of HCME.
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(a) Conventional form (b) Formal form (c) Graph form

Figure 4.1: Three equivalent pedigrees in different forms. The formal form contains mating
nodes (smaller circles). In the graph form, each pair of parent-child is connected with an
edge.

4.2.1 The Linear System

Let n denote the number of individuals in the input pedigree and m the number

of marker loci of each individual. In this chapter, we assume all alleles are bi-allelic (0 or

1). The genotypes of individual j is denoted as a ternary vector gj and its kth entry gj [k]

represents the genotype at locus k of individual j:

gj [k] =











































0 if both alleles are 0’s

1 if both alleles are 1’s

2 if the locus is heterozygous

For individual j, we define pj ∈ GF (2)m as the paternal haplotype of individual j. Each

entry pj [k] of pj is defined on GF(2). Clearly, if gj [k] = 0 or 1, then we can derive

pj [k] = gj [k] directly. To represent the maternal haplotype of individual j, we define

wj ∈ GF (2)m to indicate if each locus of individual j is heterozygous. That is, wj [k] = 0

if gj [k] = 0 or 1, and wj [k] = 1 if gj [k] = 2. Clearly, the summation pj + wj over GF(2)
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represents the maternal haplotype of individual j.

Suppose that individual i is a parent of individual j. To unify the representation

of the haplotype that j inherited from i, we define a binary vector di,j as follows: di,j = 0 if

i is j’s father and di,j = wj if i is j’s mother. Therefore, pj +di,j represents the haplotype

that j got from i. We define hi,j ∈ GF (2) such that hi,j = 0 if pj + di,j is i’s paternal

haplotype and hi,j = 1 otherwise. Then pi+hi,j ·wi represents the haplotype that i passed

to j. The binary variables hi,j thus fully describe the inheritance pattern in an ZRHC

instance. Using these notations, we can derive an equation over GF(2):

pi[k] + hi,j · wi[k] = pj [k] + di,j [k] ∀ parent-child pair (i, j), ∀ locus k (4.1)

4.2.2 Impact of Mutations and Errors

We define a mutation variable µi,j [k] ∈ Z, µi,j [k] = 1 if there is a mutation

at locus k when i passes his haplotype to offspring j, and µi,j [k] = 0 otherwise. For

convenience, we make these three vectors symmetric by defining dj,i = di,j , hj,i = hi,j , and

µj,i = µi,j . Using these notations, we modify Equation (4.1) and obtain

pi[k] + hi,j · wi[k] = pj [k] + di,j [k] + I(µi,j [k] = 1) (4.2)

where I(·) is the indicator function also defined on GF(2).

An error variable ej [k] ∈ Z of individual j at locus k is defined as ej [k] = 1 if the

observed genotype goj [k] is different from the actual genotype gj [k], and ej [k] = 0 if there

is no error, i.e., when goj [k] = gj [k]. These errors hinder us from getting correct pi[k], pj [k],

wi[k], and di,j [k] in Equation (4.2).
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We define wo
j [k], poj [k], and doi,j [k] as wj [k], pj [k], and di,j [k] derived from the

observed genotype goj [k]. If goj [k] = 0 or 1, then wo
j [k] = 0 and poj [k] = goj [k]. If goj [k] = 2,

then wo
j [k] = 1 and poj [k] = pj [k], which cannot be determined immediately. We define

doi,j [k] = 0 if i is j’s father and doi,j [k] = wo
j [k] otherwise.

As we initialize variables that we can derive from the genotype data, we need to

consider possible errors. We start with what we can observe, po
j and wo

j , and derive a

conditional equation over GF(2):

poi [k] + hi,j · w
o
i [k] = poj [k] + doi,j [k] + I(µi,j [k] = 1) if ei[k] = ej [k] = 0 (4.3)

The HCME problem can be formally defined as follows. Given an input pedigree

and genotype data go
j for each individual j, find a solution to each gj , pj , wj , hi,j , µi,j and

ej that satisfies Equation (4.2) and (4.3), and minimizes the mutation-error score

c1
∑

i,j,k
µi,j [k] + c2

∑

j,k
ej [k]

where c1, c2 > 0 are weights for mutations and errors. These adjustable weights allow us to

change preference between mutations and errors as the rates of mutations and errors may

change in different applications. Our default is that c1 = 1.5 and c2 = 1. We assign a bigger

weight to each mutation because mutation events typically have a much lower frequency

(∼10−9) than errors (0.1%–5%) do [22]. On the other hand, the larger weight for mutations

makes it difficult to detect mutations, i.e., they could easily be replaced by errors especially

when the pedigree is shallow.
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4.3 Method

We first construct an equivalent conditional linear system with fewer variables,

which can be converted to an ILP instance. The objective function of the ILP instance is

still to minimize the mutation-error score. A standard ILP solver GLPK (the GNU Lin-

ear Programming Kit from http://www.gnu.org/softward/glpk) is invoked to solve the

ILP. The ILP solution describes an unconditional linear system, which may or may not be

consistent. The consistency of the unconditional linear system can be checked by Gaussian

elimination. If it is consistent, we obtain a temporary assignment of the h-variables. If it

is not consistent, we add more constraints and then invoke the ILP solver again. The ILP

solver together with the Gaussian elimination subroutine will be referred to as the black

box, which was introduced in our previous work [76]. The temporary h-variable assignment

from the black box is often optimal and, in this case, we can compute an optimal haplotype

configuration with the assignment. However, because of the loss of information (see Sec-

tion 4.3.1) due to genotyping errors, the temporary h-variable assignment may sometimes

be suboptimal, although it is usually very close to an optimal h-variable assignment. We

start from the temporary h-variable assignment and search if there is any better h-variable

assignment. We use the best h-variable assignment that we have found to compute the final

haplotype configuration.

Occasionally, the black box may have difficulty assigning variables and exceed a

predetermined time limit. If the black box exceeds the time limit, we apply some heuristic

rules to reduce the size of the ILP instance and then call the black box again.

Figure 4.2 shows the flowchart of our method. The construction of path constraints
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and cycle constraints will be explained in Section 4.3.1. The black box will be explained

in Section 4.3.2. The search for better h-variables and recovery of haplotype configurations

will be explained in Section 4.3.3. The time limit as well as some implementation issues

that are not covered in the flowchart will be explained in Section 4.3.4.
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linear system
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and redo. (3.4.2)

If the black box exceeds

Figure 4.2: The outline of our algorithm. Numbers in parentheses indicate the sections
with the corresponding details.

4.3.1 Construction of Constraints

There are O(mn) variables and equations in the linear system described in Sec-

tion 4.2. As in Refs. [76] and [46], we can convert the system to an equivalent linear system

involving only the h-variables, mutation variables, and error variables.

Equations with Fewer Variables

The idea is to consider paths in the pedigree (of the graph form) connecting in-

dividuals with homozygous markers and derive equality constraints on the h-variables on

such paths based on Equation (4.3). Consider a locus k and a path j0, j1, . . . , jr in the input
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pedigree, where individuals ji and ji+1 form a parent-child or child-parent pair. Suppose

that goj0 [k] and gojr [k] are homozygous, and goj1 [k] = · · · = gojr−1
[k] = 2. We call the path

j0, j1, . . . , jr an all-heterozygous path at locus k. Since goj0 [k] and gojr [k] are homozygous,

we have poj0 [k] = goj0 [k] and pojr [k] = gojr [k]. We add up all conditional equations as given

in Equation (4.3) for all parent-child pairs on path j0, j1, . . . , jr to obtain a path constraint

connecting j0 and jr:

r−2
∑

i=1

hji,ji+1 + hj0,j1 · I(j1 is j0’s parent) + hjr−1,r · I(jr−1 is jr’s parent)

= goj0 [k] + gojr [k] +
r−1
∑

i=0

doji,ji+1
[k] + I

(

r−1
∑

i=0

µji,ji+1 [k] is odd

)

(4.4)

if eji [k] = 0, i = 0, . . . , r.

We denoteM =
⋃r−1

i=0 {µji,ji+1 [k]}, E =
⋃r

i=0{eji [k]}, and c = goj0 [k]+gojr [k]+
∑r−1

i=0 d
o
ji,ji+1

[k],

and let H be the collection of h-variables that have coefficient 1 in Equation (4.4), i.e.,

hj0,j1 ∈ H if and only if j1 is j0’s parent, etc. The path constraint can be represented by

the quadruple (H,M, E , c) which denotes that

∑

hi,j∈H
hi,j = c+ I

(

∑

µ∈M
µ is odd

)

if
∑

e∈E
e = 0 (4.5)

Note that the observed genotypes along the path may actually contain more than one

error, but our path constraint could be satisfied with at most one error. Thus, we may

underestimate the number of errors by using such a path constraint. For convenience, we

will refer to this inherent limitation of path constraints as the loss of information, which is

mainly caused by the fact that we do not know the actual genotypes.

Consider a local cycle consisting of father i1, mother i2, and two adjacent children

j1, j2. If both parents are heterozygous at locus k, we can obtain four conditional equations
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from Equation (4.3) by replacing i with i1, i2, and j with j1, j2 (see Figure 4.3). The

summation of these conditional equations forms a cycle constraint :

hi1,j1 + hi1,j2 + hi2,j1 + hi2,j2 = wo
j1
[k] + wo

j2
[k] + I

(

∑

µ∈M
µ is odd

)

if
∑

e∈E
e = 0

where M = {µi1,j1 [k], µi1,j2 [k], µi2,j1 [k], µi2,j2 [k]}, E = {ei1 [k], ei2 [k], ej1 [k], ej2 [k]}. This

constraint will also be denoted as (H,M, E , c) if we let H = {hi1,j1 , hi1,j2 , hi2,j1 , hi2,j2} and

c = wj1 [k] + wj2 [k].

01 11

????

01

00

01 01

01 01

01 01

00 11

0101

11 01

01

00

i1 i2

j1 j2

hi1,j1
+ hi1,j2

= wj1
[k] + wj2

[k].

hi1,j1
+ hi1,j2

+

hi2,j1
+ hi2,j2

= 0.

hi1,j1
+ hi1,j2

= 1,

hi2,j1
+ hi2,j2

= 1.

hi1,j1
+ hi1,j2

= 0,

hi2,j1
+ hi2,j2

= 0.

hi1,j1
+ hi1,j2

+

hi2,j1
+ hi2,j2

= 1.

Figure 4.3: If both parents are heterozygous, and at least one child is heterozygous, then
we will a cycle constraint. If both parents are homozygous, then there is no constraint.
Otherwise, we will obtain either one or two path constraints, depending on the situation.

Let us look at the path constraints generated in the above nuclear family more

closely. If both parents in the local cycle are homozygous at locus k, then the corresponding

path constraint from one parent to the other will consist of no h-variables, and thus no

path constraint will be derived. If one parent is heterozygous, the other is homozygous and

both children are heterozygous at locus k, then we can derive a path constraint from the

homozygous parent through one child, the other parent, the other child, and back to the

homozygous parent. If there is exactly one homozygous parent and one homozygous child,
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the path constraint should be derived through the heterozygous child and the other parent.

Otherwise, no path constraint will be derived for this local cycle.

For each locus and every pair of homozygous markers, we construct a path con-

straint as above. Since the pedigree is a tree, the number of such path constraints is at most

O(mn). Similarly, for each locus and local cycle, if both parents are heterozygous at the

locus, we construct a cycle constraint as above. The number of such cycle constraints is also

bounded by O(mn). Let S denote the set of these constraints. The results in Ref. [46] show

that the linear system formed by the above constraints (without the conditions) in terms

of the h-variables is equivalent to the linear system defined by Equation (4.3) (without the

conditions) in terms of the h- and p-variables. In HCME with mutations and errors, a

feasible assignment to the h-, µ-, and e-variables, can be extended to a feasible solution to

all the h-, p-, µ- and e-variables.

Note that, loci with missing alleles could possibly be included in the linear system

in Equation (4.3) (as p-variables). However, they are excluded from the above path/cycle

constraints on h-variables. Some of the missing alleles will be imputed after the h-variables

are determined.

The ILP Instance

We construct an ILP instance for HCME based on the above linear system in

h-variables. Recall that the objective function of the ILP is the mutation-error score

c1
∑

i,j,k
µi,j [k] + c2

∑

j,k
ej [k]
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In our ILP instance, the path/cycle constraint (H,M, E , c) as given in Equation (4.5) is

actually modified as

∑

hi,j∈H
hi,j = c, if

∑

µ∈M
µ =

∑

e∈E
e = 0 (4.6)

with three technical reasons. First, there are rarely two or more mutations on a locus [33].

Second, Equation (4.5) is not accurate because of the loss of information, and thus the ILP

solver produces suboptimal intermediate results anyway. Third, Equation (4.6) generates a

smaller ILP instance and is more efficient.

For each path/cycle constraint (H,M, E , c) in S, we introduce a binary equation

variable as in Ref. [76]

EH =
∑

hi,j∈H
hi,j (4.7)

and require that the corresponding quadruple (EH,
∑

µ∈M µ,
∑

e∈E e, c) must not be (0, 0, 0, 1)

or (1, 0, 0, 0).















EH +
∑

µ∈M µ +
∑

e∈E e + (1− c) ≥ 1

(1− EH) +
∑

µ∈M µ +
∑

e∈E e + c ≥ 1

(4.8)

In other words, if there are no mutations and errors, the equation in Equation (4.6) must

hold. The final ILP instance includes all the constraints in Equation (4.8). The number of

constraints is clearly bounded by O(mn).

4.3.2 The Black Box

The black box consists of two elements: the ILP solver and the Gaussian elimina-

tion subroutine. After we set up the ILP instance as above, we invoke the ILP solver. The
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ILP solver will return an assignment of the mutation variables, error variables and equation

variables. The assignment of the mutation and error variables is not accurate because of the

loss of information and will be ignored. The assignment of the equation variables implies an

unconditional linear system of the h-variables. The linear system can be solved by Gaussian

elimination and we then obtain a solution of the h-variables. The linear system is usually

consistent. If the linear system is not consistent, our Gaussian elimination subroutine will

detect inconsistent equation variables. Since the linear system is on GF(2), inconsistencies

occur only if there are 3 or more equations such that the summation of the their polynomial

(i.e., the left-hand side) parts is 0 while the summation of their constant (i.e., the right-

hand side) parts is 1. Such inconsistency can be prevented by introducing some consistency

constraints as done in our previous work [76].

Consistency constraints make sure that the assignments of the involved equation

variables in the constraints will be consistent with each other. For example, suppose that

there are 3 equation variables EH1 , EH2 , EH3 and the summation of their polynomials is 0,

i.e.,
∑

h∈H1
h+
∑

h∈H2
h+
∑

h∈H3
h = 0 on GF(2). The assignment of (EH1 , EH2 , EH3) must

not be (0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1), because otherwise the summation of the constant

part would be 1, which results in inconsistency. For instance, the consistency constraints

for the three equation variables EH1 , EH2 , EH3 in the above example would include 4 in-
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equalities:

C(H1,H2,H3) :















































EH1 + EH2 + (1− EH3) ≥ 1

EH1 + (1− EH2) + EH3 ≥ 1

(1− EH1) + EH2 + EH3 ≥ 1

(1− EH1) + (1− EH2) + (1− EH3) ≥ 1

The details and general form of consistency constraints can be found in Ref. [76].

When the Gaussian elimination subroutine detects inconsistent equation variables,

we add the corresponding consistency constraints to the ILP instance and invoke the ILP

solver again. Inconsistency may happen repeatedly, and we keep adding consistency con-

straints until the assignment of all equation variables is consistent. Note that by not in-

cluding consistency constraints at the beginning, we enhance the efficiency of our program

without losing any accuracy.

4.3.3 Recovery of Haplotype Configurations

Search for a Better h-variable Assignment

The temporary h-variable assignment retrieved from Gaussian elimination is usu-

ally an optimal assignment. If it is not, it usually differs from an optimal assignment at very

few h-variables. We evaluate an h-variable assignment by computing the minimum possible

mutation-error score which is consistent with the h-variable assignment. The computation

of mutation-error score is explained in Section 4.3.3.

Let t be the number of h-variables and H(0) = [hi1,j1 , hi2,j2 , . . . , hit,jt ] be the tem-

porary assignment of h-variables obtained from Gaussian elimination. Let ur be a unit
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vector on GF (2)t with a 1 on the rth entry. Assume the H(k) is the h-variable assignment

after k rounds of searching. In the (k+1)st round, we consider t possible h-variable assign-

ment H
(k+1)
r = H(k) + ur, r = 1, . . . , t. We compute the minimum mutation-error score for

each assignment, and H(k+1) will be the assignment with the minimum score among H(k)

and H
(k+1)
r , r = 1, . . . , t. This search continues until H(k) = H(k+1) for some k, and H(k)

will be the final h-variable assignment.

Computing Mutation-Error Scores and Haplotype Configurations

In this section, we assume that the h-variable assignment is fixed. Once the h-

variables are assigned, we need to assign errors and mutations that minimize the mutation-

error score as given in Equation (4.7). We use the dynamic programming method to find

the minimum mutation-error score as follows. Here, each locus is considered separately.

We pick an arbitrary node (individual) as the root of the input (tree) pedigree.

For each node, we consider all four possible genotypes and compute the best mutation-error

score of the subtree under the node for each genotype. The score could be computed with

the score of children with respect to the rooted tree of all possible genotypes. We compute

the score iteratively from the leaves to the root. This dynamic programming procedure

determines an optimal assignment of all mutations and errors by a simple backtracking

subroutine, where ties are broken arbitrarily.

After assigning errors, we mark genotypes where errors are assigned as missing

alleles. For each pair of alleles of a non-missing marker, if there is no error and the genotype

is homozygous, we mark the alleles as confirmed. We start from confirmed alleles, update
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parent’s/children’s alleles with the given h-variables and the mutation assignment, and

confirm these newly updated alleles. We keep updating and confirming alleles until there are

no more alleles that we can update. Alleles that are not confirmed remain unknown. After

updating all the alleles, we obtain the whole haplotype configuration with the locations of

mutations and correction of errors. We output the configuration if the h-variable assignment

is the final assignment.

4.3.4 A Few Implementation Issues

Free Variables

Occasionally, the solution of the unconditional linear system obtained from ILP

solver is not unique. If there are two or more solutions, then we have multiple h-variable

assignments as starting points of the search. We simply do the search described in Sec-

tion 4.3.3 for all starting points and select the best one. We record h-variable assignments

that have been searched, and avoid redundant search.

Time Limit

Sometimes, the ILP solver may have difficulty in determining errors, mutations,

and equation variables. It is usually because there are some “troublesome” loci with errors.

If the ILP solver fails to assign errors to these loci and attempts to assign errors to other

loci that do not actually have errors, it may take a very long time for the ILP solver to

find a feasible assignment, or the ILP solver may keep returning inconsistent assignments

of equation variables. To avoid these situations, we set a time limit. The default time limit
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is chosen as 3 minutes based on empirical observations. When the black box fails to return

an assignment of h-variables within the time limit, we terminate the black box. We modify

the ILP instance as follows and then run the black box again. We repeat this process if the

black box keeps exceeding the time limit.

The first time the black box exceeds the time limit, we check if we can fix the

values of some equation variables to reduce the ILP solver’s work. For example, suppose

that there are 9 or more constraints extracted from different loci with the same H and c,

i.e., EH = c is suggested 9 times with different conditions, and there are none or only 1

constraint supporting EH = 1− c. The odds strongly favor EH = c and thus we can simply

assign c to EH. Let us call such a constraint that suggests EH = 1 − c conflicting. If

there are two or more conflicting constraints (over different paths or cycles) extracted from

the same locus, then the locus is considered troublesome. We mask all troublesome loci by

dropping all constraints extracted from them.

If the black box exceeds the time limit the second time, we randomly select a locus

and mask it. If the black box keeps exceeding the time limit, we will increase the number of

masked loci by 1 each time. Occasionally, the black box may keep running and failing for a

long time. We thus have a global time limit. If our program exceeds the global time limit,

we terminate the computation and concede. The default global time limit is currently set

as 30 minutes.

70



4.4 Experimental Results

We have implemented our algorithms in C, denoted as MePhase. In this section, we

test MePhase on both simulated data and real data to perform an empirical evaluation of its

accuracy and efficiency. For simulated data, we generate both tree pedigrees and genotype

data randomly. We design experiments to test how the pedigree topology and data quality

(i.e., the missing and genotyping error rates) may affect the performance of MePhase. We

do not consider a very large number of loci since the zero-recombinant assumption holds

only for tightly linked markers. For real data, we use the SNP microarray data published

by Wirtenberger et al. [79]. They genotyped 16 members of a three-generation family using

the GeneChip Human Mapping 10K Array (Affymetrix). Since Wirtenberger et al. did not

delete Mendelian inheritance errors in their published data, the data along with their report

of recombinant regions are ideal for us to test MePhase. According to Ref. [79], there are

6.24% missing alleles and 0.29% Mendelian inheritance errors detected in all family trios in

the data. However, Hao et al. have reported that the genotyping error rate of GeneChip

Mapping 10K Array is about 0.1% [22], which is much smaller than the error rate given in

Ref. [79]. We think that the number of Hao et al. is more accurate because they focused on

the estimation the of error rate while Wirtenberger et al. did not. Our results also support

the error rate given by Hao et al.

4.4.1 Simulated Data

Thomas et al. have proposed algorithms to generate tree pedigrees uniformly

randomly with specific numbers of individuals and mating notes [73]. Their algorithms
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have been implemented in Java, which will be used to generate pedigrees in this chapter.

Zou et al. showed that the size of a nuclear family may affect the accuracy of error de-

tection [84]. Thus, we consider the average nuclear family size as a parameter along with

pedigree size and analyze how nuclear family and pedigree sizes may affect the accuracy and

efficiency of our algorithms. Let f be the average nuclear family size and n again denote

the number of individuals. Because tree pedigrees are considered, f is determined by n and

the number of mating nodes:

f =
n+# of mating nodes− 1

# of mating nodes

Therefore, we can alter the number of mating nodes to obtain pedigrees of different average

nuclear family sizes. We will generate pedigrees with n = 29, 52, 67, 82 and f = 3, 4, 5, 6.

For each of the 16 combinations of n and f , we generate 5 random pedigrees. This results

in 80 different pedigrees in total. Note that for n = 29, we could only achieve f = 5.67

instead of 6 because the number of mating nodes should be an integer.

To generate genotype data, we use haplotype data downloaded from HapMap

(http://hapmap.ncbi.nlm.nih.gov/downloads/phasing/2009-02_phaseIII/HapMap3_r2/).

For each run of the experiment, we randomly select an interval of SNPs. Then for each

founder in the pedigree, we randomly pick two haplotypes to form the genotype of the

founder. Each individual randomly passes one of its two haplotypes to each of its off-

springs, where mutations are incorporated randomly according to the mutation rate. This

results in a genotype for each individual. Finally, missing alleles and genotyping errors are

(uniformly) randomly added to the genotypes according to their rates. We will also perform

simulations using the false homozygosity error model, in which heterozygous loci are falsely
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typed as homozygous loci [66].

We run MePhase on each simulated data and compare the haplotype configurations

given by MePhase with the true haplotype configurations of the simulated data. We will

consider the ability of MePhase in imputing missing alleles and detecting mutations and

genotyping errors. When the location of a detected error is slightly different from that of

the true error in the pedigree, we say that the error is shifted. Table 4.1 shows the impact

of n and f on both efficiency and accuracy of MePhase in phasing as well as error detection

and correction. MePhase infers haplotypes with a very high accuracy in all settings. Note

that MePhase can correct up to 94% of errors, while the method in Zou et al. [84] can only

detect 81% of errors in a similar setting. In general, a bigger f leads to denser constraints,

less freedom of haplotype assignments, and a higher accuracy. On the other hand, a smaller

f leads to more founders. When an error event happens to the genotype of a founder,

there is a good chance that the erroneous genotype does not violate the Mendelian law of

inheritance. This is likely to keep the error undetectable. Therefore, a smaller f will lead to

more founders and more undetected errors. Table 4.1 also clearly illustrates that a bigger

n leads to a longer running time. Moreover, a bigger f also leads to a longer running time,

since a bigger f leads to more path and cycle constraints.

Most mutations (85%–95%) are explained by errors because we give errors a smaller

weight. A mutation on a founder will often be explained by an error, or remain undetectable

if the Mendelian law of inheritance is not violated. A mutated allele will for sure be explained

by an error if it does not get passed to any offspring. Most mutations can be explained by

errors with some small shifts within the pedigree, especially when the mutations are near
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Correctly

Average nuclear Pedigree Recovered Shifted Undetected phased Suboptimal Average Failure

family size size (n) errors errors errors markers solution time (sec) rate

f = 3

29 67.1% 9.9% 23.0% 99.2% 0.0% 0.03 0.0%

52 67.6% 9.2% 23.2% 99.5% 0.3% 1.37 0.0%

67 66.2% 8.9% 25.0% 99.7% 0.9% 1.88 0.0%

82 65.9% 8.6% 25.4% 99.7% 0.6% 4.99 0.0%

f = 4

29 83.9% 5.8% 10.3% 99.3% 0.2% 4.71 0.0%

52 82.7% 5.6% 11.7% 99.6% 0.2% 18.3 2.0%

67 83.4% 5.0% 11.6% 99.7% 0.8% 30.3 0.7%

82 83.4% 5.4% 11.3% 99.8% 0.8% 49.1 0.0%

f = 5

29 91.7% 3.7% 4.5% 99.3% 0.0% 4.92 0.7%

52 90.7% 2.9% 6.4% 99.5% 0.5% 46.5 1.3%

67 91.1% 3.0% 5.9% 99.7% 0.7% 402 0.7%

82 90.8% 3.4% 5.8% 99.9% 0.9% 498 2.7%

f = 6

29 93.1% 2.8% 4.1% 99.3% 0.1% 22.1 1.3%

52 94.5% 2.1% 3.4% 99.6% 0.4% 661 0.0%

67 94.4% 1.8% 3.8% 99.7% 0.6% 619 0.0%

82 94.4% 2.0% 3.6% 99.8% 1.0% 740 2.7%

Table 4.1: The impact of pedigree size n and average nuclear family size f on the efficiency
and accuracy of MePhase in phasing and error detection and correction. Here, the number
of loci m = 50, the missing rate = 0, the error rate = 0.5%, and the mutation rate = 1 per
pedigree on average. For testing the accuracy of MePhase and the optimality of its solution,
we ran 200 replicates for each pedigree and set the global time as 10 minutes. For testing
the time efficiency and failure rate, we ran 30 replicates for each pedigree and set the global
time limit as 30 minutes (but 180 minutes for (n, f) = (52, 6), (62, 5), (62, 6), (82, 5), (82, 6)).
Clearly, MePhase rarely fails to find a solution under this setting.
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founders or children with no offsprings. Our combinatorial optimization model is incapable

of catching such mutations precisely.

As shown in Table 4.1, MePhase may produce a suboptimal solution, especially

when most genotypes are homozygous, since it may return an h-variable assignment that

is locally optimal during the search for a better h-variable assignment. The suboptimal

h-variable assignment usually differs from the true assignment at many h-variables, but

requires only one more error than the true haplotype solution.

In our experiment, we observed that if the black box in MePhase fails to return an

assignment within the time limit once, it will tend to fail many times. The standard ILP

solver GLPK uses a branch-and-bound algorithm to find integral solutions. When GLPK

falls into a bad branch, it may take very long time for GLPK to get out of the branch.

This creates a big variance in running time. For bigger n and f , we had to give MePhase

a longer global time limit.

The quality (i.e., the missing and genotyping error rates) of data may also have

an impact on both accuracy and efficiency of MePhase. We run MePhase on 5 pedigrees

of n = 29 and f = 4 with various missing and error rates as shown in Table 4.2. A large

variance in running time is observed which might explain why there is no clear impact of

data quality on running time. The missing rate has some impact on the running time, while

the error rate does not affect the running time much. However, the impact of data quality

on accuracy is small but noticeable. When the missing rate goes higher, the accuracies in

phasing, error correction and missing allele imputation slightly decrease. The genotyping

error rate has a smaller impact on the accuracy of MePhase, but the trend is clear.

75



Correctly Correctly Correctly

Error Missing recovered imputed phased Suboptimal Average Failure

rate rate errors missing alleles markers solution time rate

0.0%

0% − − 99.7% 0.0% 2.30 0.0%

5% − 79.3% 98.6% 0.0% 58.2 3.3%

10% − 77.4% 97.2% 0.0% 82.3 6.0%

20% − 72.2% 93.5% 0.0% 97.3 11.3%

0.5%

0% 85.0% − 99.6% 0.0% 13.0 0.0%

5% 83.3% 78.5% 98.4% 0.7% 24.2 5.3%

10% 83.3% 76.6% 97.1% 0.7% 65.0 6.7%

20% 79.4% 72.1% 93.4% 0.7% 70.9 8.0%

1.0%

0% 85.3% − 99.3% 0.0% 2.37 0.7%

5% 83.2% 78.8% 98.2% 0.0% 44.5 1.3%

10% 79.5% 76.6% 96.7% 0.0% 64.1 6.7%

20% 75.1% 72.0% 93.2% 0.7% 39.9 7.3%

2.0%

0% 83.2% − 98.9% 0.7% 27.8 2.0%

5% 80.6% 77.9% 97.6% 0.7% 44.7 1.3%

10% 79.3% 75.2% 96.1% 0.7% 38.7 3.3%

20% 75.6% 70.7% 92.5% 0.7% 46.5 6.0%

3.0%

0% 82.4% − 98.4% 0.7% 30.8 4.0%

5% 80.2% 76.8% 96.9% 0.7% 58.1 4.7%

10% 78.6% 74.4% 95.6% 0.7% 61.2 4.7%

20% 74.9% 69.9% 91.7% 1.3% 66.1 3.3%

Table 4.2: The impact of data quality on accuracy and efficiency. Here, n = 29, f = 4,
m = 50, the mutation rate = 1 per pedigree on average, the global time limit is set as 30
minutes, and we ran 30 replicates for each setting.
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We have also repeated the above experiment with genotyping errors simulated

using the false homozygosity model [66]. For simplicity, we allow heterozygous markers

to be miscalled as homozygous markers, but assume that homozygous markers are always

called correctly. The result is similar to those in Table 4.2 except that the percentage

of correctly recovered errors decreases by about 8–13% on the average. Note that in our

general error model, a homozygous marker (e.g., 00) may be miscalled as the complement

homozygous marker (i.e., 11). This type of errors bring inconsistencies to both parents

and hardly remain undetectable. Since these easily-detected errors are not included in false

homozygosity error model, the error recovery rate of the program decreases. The detailed

result is omitted in this chapter.

4.4.2 Real Data

Figure 4.4(a) shows the pedigree used in Ref. [79]. Individuals 17 and 18 (i.e.,

the founders) are missing, and they have only two children (i.e., individuals 1 and 13).

Therefore, these two children are under no constraints. We partition the pedigree into

pedigrees A and B, and run MePhase on both pedigrees separately. Wirtenberger et al.

reported a set of recombinant regions (i.e., intervals where a recombinant might be located)

in the SNP microarray data. We preprocess the SNP data by eliminating all SNP loci

in the recombinant regions. A set of loci between two neighboring recombinant regions is

considered as a block. We then run MePhase on each block separately.

Table 4.3 shows the number of errors that MePhase found in both pedigrees A and

B. The table also shows the number of hidden errors, which are errors that cannot be found
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13 12
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(a) Original pedigree (b) Pedigree A (c) Pedigree B

Figure 4.4: The diagram in (a) shows the pedigree of the SNP microarray data reported
by Wirtenberger et al [79]. Since the two founders are completely missing, we divide the
pedigree into two disjoint pedigrees A and B.

by checking the Mendelian law of inheritance within nuclear families, found by MePhase.

MePhase also identified a mutation on chromosome 6. The overall genotyping error rate in

non-recombinant regions found by MePhase is 0.175%. If we exclude the hidden errors, the

error rate would be reduced to 0.146%, which is close to the error rate reported in Ref. [22].

To estimate the accuracy of our reported numbers, we also run experiments with

simulated data on pedigrees A and B. The result (data not included here) shows that

MePhase is able to detect 85% of the errors on pedigree A and 87% of the errors on

pedigree B. By extrapolation, we estimate that the genotyping errors in the non-recombinant

regions of this SNP microarray data is close to 0.2% taking into account the errors that

MePhase might have failed to detect.
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Pedigree A Pedigree B
Chromosome Number Number Errors Hidden Errors Hidden

number of blocks of loci found errors found errors

1 26 372 2 1 8 3
2 23 484 2 0 9 1
3 19 385 0 0 10 1
4 22 428 7 0 4 0
5 19 406 2 1 7 0
6* 16 508 7 0 4 1
7 21 353 7 1 8 1
8 13 307 1 0 8 1
9 15 307 1 0 3 0
10 22 245 2 1 5 2
11 17 406 7 2 13 1
12 17 312 2 1 6 1
13 18 294 2 0 9 1
14 13 182 0 0 3 0
15 12 197 3 2 4 0
16 6 135 2 1 2 0
17 6 93 1 0 4 3
18 9 231 2 0 5 2
19 4 29 0 0 0 0
20 7 105 0 0 2 0
21 5 141 2 0 0 0
22 2 6 0 0 0 0

Table 4.3: The number of blocks, loci, and detected errors on each chromosome in each
pedigree. The asterisk indicates that a mutation is reported on chromosome 6.
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4.5 NP-hardness of HCME

In this section, we prove that the HCME problem is NP-hard even if the pedigree

is a binary tree. We will reduce NAE-3SAT, which is NP-hard [55], to the binary-tree

HCME problem. NAE-3SAT is a variant of 3SAT in which a clause is satisfied if all three

literals are not equal in truth value. For an NAE-3SAT instance φ, we convert it to an

HCME instance I of polynomial size. We will prove that φ is satisfiable if and only if I has

a feasible solution with a given number of mutations/errors.

We first introduce two gadgets called the phase control and clause verifier. In
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Figure 4.5: Phase control. The individual marked with × is a phase control. The markers
of the phase control ensure that p2[2] = p2[5] 6= p2[7] if there is no mutation/error.

Figure 4.5, the individual marked with × serves a phase control. Consider the p-variables

p2[1], . . . , p2[7] of the child, the phase control on the right ensures that p2[2] = p2[5] 6= p2[7]

if there is no mutation/error. Since the markers of child and father are all heterozygous,

we have either p2 = p1 or p2 = 1−p1. Therefore, we also have p1[2] = p1[5] 6= p1[7] for the

father. Phase controls are designed to set up equations/inequations among marker loci. For
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loci we don’t consider, we simply set them heterozygous in the phase control and it allows

all possible combination of values of p-variables.
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Figure 4.6: Clause verifier. This gadget ensures that p7[1] 6= p7[2], p7[3] 6= p7[4], and
p7[5] 6= p7[6] if there is no mutation/error. Individual 7 (marked by a double circle) is the
“port” of the clause verifier.

Figure 4.6 shows a clause verifier. If there is no mutation/error in the gadget, then

p7[1] 6= p7[2]

p7[3] 6= p7[4]

p7[5] 6= p7[6]

Figure 4.7 shows the HCME instance I constructed according to a given NAE-

3SAT instance as follows. There is a main path from the top-left individual to the bottom
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installed. Phase controls and clause verifiers are set up according to the NAE-3SAT instance.

last child. Every individual on the main path has only heterozygous markers. Suppose that

the NAE-3SAT instance has n variables x1, . . . , xn and m clause C1, . . . , Cm. We construct

a binary-tree HCME instance I with (2n+6m) loci indexed with 1, 2, . . . , 2n+6m. We label

the first 2n loci with x1, x2, . . . , xn, x̄1, x̄2, . . . , x̄n. For the remaining 6m loci, we partition

them into m groups of 6 loci. Each group of 6 loci is associated with a clause in φ. We

define lr(i) = 2n + 6(r − 1) + i, which represents the ith locus of the rth group. The rth

group is associated with the rth clause in φ. For the rth clause Cr = (yi ∨ yj ∨ yk), we label

loci lr(1) to lr(6) with yi, yj , yj , yk, yk, yi.

82



There are (n+m) mating events on the main path. For each of the first n mating

events, we install a phase control. The rth phase control has 00 on the loci labeled with xr,

11 on the loci labeled with x̄r, and 01 on the remaining loci. For each of the last m mating

events, we install a clause verifier. The rth clause verifier is set up on loci lr(1) to lr(6) and

contain only heterozygous markers on all other loci.

To prove that the HCME problem is NP-hard, our goal is to show that the NAE-

3SAT instance φ has a feasible solution if and only if the corresponding HCME instance

I has a feasible haplotype configuration with exactly m mutations/errors distributed from

loci l1(1) to lm(6). We can show that the collection of p variables of the last child c (or

any other individual) of the main path on the first n loci (pc[1], . . . , pc[n]) will be a feasible

assignment for the NAE-3SAT instance φ. The complement (1− pc[1], . . . , 1− pc[n]) is also

a feasible assignment.

Lemma 4 Consider an individual u and one of its descendants v, both on the main path.

Suppose that there is no mutation/error on loci i, j and k in the whole pedigree. If there

is phase control that guarantees the condition pu[i] = pu[j] 6= pu[k], then the condition

propagates to the individual v, i.e., pv[i] = pv[j] 6= pv[k].

Proof. Let p∗
u,p

∗
v be obtained from pu,pv of a feasible haplotype configuration

by omitting loci that have mutations/errors. If v is u’s child, since u and v have only

heterozygous markers, we have p∗
v ∈ {p

∗
u, 1 − p∗

u}. By induction, p∗
v ∈ {p

∗
u, 1 − p∗

u} holds

as long as v is u’s descendant. Given pu[i] = pu[j] 6= pu[k], p
∗
v ∈ {p

∗
u, 1 − p∗

u} ensures

pv[i] = pv[j] 6= pv[k].
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Lemma 5 For any feasible haplotype configuration of I, there are at least m mutations/errors.

For each r = 1, . . . ,m, there is at least one mutation or error among loci lr(1), . . . , lr(6).

Proof. Consider p-variables pc [lr(1)] , . . . , pc [lr(6)] of the last child c. Suppose

that there is no mutation/error on loci lr(1), . . . , lr(6). By Lemma 4, the phase controls

ensure

pc [lr(1)] = pc [lr(6)]

pc [lr(2)] = pc [lr(3)]

pc [lr(4)] = pc [lr(5)]

and the clause verifier for these loci ensure

pc [lr(1)] 6= pc [lr(2)]

pc [lr(3)] 6= pc [lr(4)]

pc [lr(5)] 6= pc [lr(6)]

The above system of six linear equations/inequations has no feasible solution on GF(2).

Therefore, there must be a mutation or error among loci lr(1), . . . , lr(6). Since we have at

least one mutation/error among loci lr(1), . . . , lr(6) for each r = 1, . . . ,m, there must be at

least m mutations/errors in any feasible haplotype configuration of I.

Lemma 6 If there is a feasible assignment φ(t1, . . . , tn) for the NAE-3SAT instance, then

there is a feasible haplotype configuration with exactly m mutations/errors, one in each

group of 6 loci lr(1), . . . , lr(6), r = 1, . . . ,m.
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Proof. Let y be a literal. We denote φT (y) as the value of y (true = 1 and false

= 0) in the assignment φ(t1, . . . , tn). For each individual on the main path, we simply assign

the values of its p-variables according to the corresponding labels as follows. For all loci

labeled with xi, we assign φT (xi) to the involved p-variables. For all loci labeled with x̄i, we

assign φT (x̄i) to the involved p-variables. The h-variables are all 0 through the main path.

The h-variables on edges connecting the main path and phase controls, i.e., individuals

marked with ×’s are all set to be 0. For each clause Cr = (yi, yj , yk), r = 1, . . . ,m, we

assign

h
(r)
7,◦ = φT (yk)

h
(r)
6,7 = φT (yj) + h

(r)
7,◦ + 1

h
(r)
4,6 = φT (yi) + h

(r)
7,◦ + h

(r)
4,6

Here, the superscript (r) refers to the rth clause verifier, the subscripts refer to the individual

number in Figure 4.6 and ◦ refers to the individual on the main path that is the child of

individual 7 of the rth clause verifier. We then either assign a mutation as

µ
(r)
1,4[lr(2)] = I (φT (yi) = φT (yj))

µ
(r)
3,6[lr(4)] = I (φT (yj) = φT (yk))

µ
(r)
5,7[lr(6)] = I (φT (yk) = φT (yi))
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or alternatively assign an error as

e
(r)
1 [lr(2)] = I (φT (yi) = φT (yj))

e
(r)
3 [lr(4)] = I (φT (yj) = φT (yk))

e
(r)
5 [lr(6)] = I (φT (yk) = φT (yi))

The rest of the h-variables can be assigned arbitrarily, and the p-variables in clause verifiers

can be assigned accordingly. Since φT (yi), φT (yj), φT (yk) are from a feasible truth assign-

ment and yi, yj , yk all appear in the same clause, exact one of the following three equations

holds: φT (yi) = φT (yj), φT (yj) = φT (yk), φT (yk) = φT (yi). Hence we have exactly one

mutation or error among loci lr(1), . . . , lr(6).

Lemma 7 Given an HCME instance I as above, if there is a feasible haplotype configura-

tion with m mutations/errors, then the NAE-3SAT instance φ is satisfiable. Moreover, if c

is the last child on the main path, then (pc[1], . . . , pc[n]) is a feasible assignment of φ.

Proof. Since there are exactly m mutations/errors, there must be exact one

mutation or error in each group of 6 loci lr(1), . . . , lr(6), r = 1, . . . ,m by Lemma 5, and

there must be no mutations/errors on the first 2n loci. Let c be the last child on the main

path. Consider all loci that contain no mutation/error. If two loci i and j have the same

label, then the p-variable pc[i] and pc[j] must be equal. This is guaranteed by phase controls

and the lack of interference from mutations/errors.

For each group of 6 loci lr(1), . . . lr(6), r = 1, . . . ,m, since there is only one muta-

tion or error involved, there is at least a pair (i, j) out of the three pairs (1, 2), (3, 4), (5, 6)
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such that pc[lr(i)] 6= pc[lr(j)] due to the clause verifiers and lack of interference from mu-

tations/errors. Therefore, the clause associated with the group of 6 loci is satisfied. The

instance φ has a feasible assignment.

Theorem 8 The HCME problem is NP-hard.

Proof. Given any NAE-3SAT instance φ with n variables and m clauses, we can

construct an HCME instance I of quadratic size with 2n+6m loci and 4n+8m+1 individuals

in polynomial time. The NAE-3SAT instance φ has a feasible assignment if and only if the

minimum mutation/error haplotype configuration of I has exactly m mutations/errors.

Therefore, NAE-3SAT is polynomial time reducible to HCME, which makes HCME NP-

hard.

Note that HCME is NP-hard as long as the weights of mutations and errors c1, c2

are greater than 0. This implies that the special cases of HCME where only mutations are

allowed (i.e., c2 =∞) or only errors are allowed (i.e., c1 =∞) are also NP-hard.

4.6 Conclusion

We have introduced a combinatorial optimization model for haplotype inference on

pedigrees in the presence of mutations and genotyping errors that generalizes the previous

models in the literature. We have designed and implemented an heuristic algorithm for

the model based on the previously developed system of linear equations and ILP. Our

experimental results on simulated data demonstrate that our program can infer haplotypes

with a very high accuracy, impute most missing alleles, detect and correct most genotyping
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errors, and identify some mutations (although many mutations could be confused with

errors).
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Chapter 5

Detection of Horizontal Gene

Transfers in Bacterial Genomes

5.1 Introduction

In this chapter, we adhere to a new definition of SNPs based on surrounding

sequences proposed in [16, 43] instead of genomic positions as done traditional. This new

definition accomplishes several needs: (1) it can be applied across different species, (2) it

avoids focusing in a small region which may be affected by an HGT to increase the accuracy,

and (3) it avoids whole-genome alignment, which may not scale.

A SNP locus is defined as a region of length k that is conserved among one or more

genomes in the target set except at the center base, the SNP allele, which varies among

one or more genomes. Thus, the sequence context of (k − 1)/2 bases on both sides of the

SNP allele describe the SNP locus, and must be conserved among at least a subset of the
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target genomes. We allow a SNP locus to occur more than once in a genome on either

strand if and only if all occurrences within that genome have the identical allele, which

allows us to include more of the sequence variations in genomes with duplications and draft

genomes with gaps and assembly errors. If a locus occurs more than once within a genome

and the allele differs, that SNP locus is omitted and considered missing from that genome,

although that locus may still be considered a valid SNP in other genomes without allele

conflicts. SNP-based trees can be created from a SNP matrix of the alleles for each genome

concatenated together like a sequence alignment listing the alleles in each genome. Then

a maximum likelihood tree can be generated using RAxML v7.2.7 [67]. We let k = 25 for

bacterial genomes and k = 13 for virus.

In this chapter, we study the detection of mutations, HGTs and errors given the

SNPs and SNP positions of a set of closely related strains with an evolutionary species

tree. The SNPs of all leaf nodes are mostly known with some missing, but the SNPs of all

internal nodes are unknown. Some known SNPs might be incorrect because of sequencing

errors. Some genomes might be in the form of contigs, i.e., the SNP positions are only in the

correct order and orientation within a contig. We want to reconstruct the SNPs of internal

nodes with regard to 3 possible events. (1) Mutations. A single SNP may change when an

internal node passes its SNPs to its child node. (2) HGTs. A node may get a segment of

SNPs from any other node which is not one of its descendants. (3) Sequencing errors. The

data we have may be wrong.

We cannot distinguish sequencing errors from mutations that occur on the leaf

nodes. For simplicity, all SNP disagreements between a leaf node and its parent node are
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considered as “errors” (although in reality some may be true SNP variations). Therefore,

mutations refer to SNPs mapping to internal nodes, and errors refer to SNPs mapping to

leaf nodes. Each event has a weight. The weights of mutation/HGT/error are wm, wx, and

we, respectively. We want to reconstruct the events and SNPs of all nodes (including leaf

nodes because there might be errors), while minimizing the total weight. The frequencies

of mutation/HGT/error events are low, and the assignment that minimizes the total weight

would give a reasonable explanation [59]. Note that the error weight we is always less

than the mutation weight wm, since SNP variations on leaf nodes are always considered as

errors. Considering a horizontal gene transfer, if the source and the destination consist of

different SNP surrounding sequences, then we cannot distinguish it from a duplication, or

other rearrangement events. Therefore, we only consider HGTs that have the same SNP

surrounding sequences in the same order and orientation in both the source and destination,

i.e., homologous HGTs.1 Moreover, there should be no inversion endpoints within the HGT

region in source and destination strains, otherwise the SNP surrounding sequences would

be different in source and destination. We use a greedy algorithm to partition genomes

into blocks in which inversions do not take place. We then use the dynamic programming

technique to assign mutations/HGTs/errors in each block. We also consider possible HGT

from an out-group, i.e., some species not in the given evolutionary species tree. Figure 5.1

shows an example of the detection of HGTs problem within a block. There are six SNPs

loci, and the SNPs on the leaf nodes (2, 4, 6, 7) are known. We can explain SNPs on

node 6 by three mutations or one HGT, and we believe one HGT is more likely than three

1There are exceptions, and we will explain the exceptions in Section 5.2.1.
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neighboring mutations.

We have implemented our algorithms that partition genomes into blocks and assign

mutations/HGTs/errors. We have tested the program on both simulated data and real data.

The experimental simulation results demonstrate that there are many HGT and mutation

events that leave no evidence to be detected, and the accuracy mainly depends on the

mutation rate, HGT rate, and the size of the evolutionary tree.

The rest of this chapter is organized as follows. In Section 5.2, we explain three

different parts of our algorithm. We explain how we partition the genomes into blocks in

Section 5.2.1, how we apply dynamic programming technique in Section 5.2.2, and how

we determine if an HGT is from an out-group of the given strains in Section 5.2.3. In

Section 5.3, we show our experimental results on both simulated data and real data, and

discuss how each parameter may affect the accuracy. Section 5.4 concludes this chapter

with a few remarks.

5.2 Method

The sequences of source and destination of a homologous HGT should be similar,

i.e., there should be the same set of SNPs in the same order and orientation in the HGT

regions of both donor and recipient genomes. However, the SNP order/orientation may

not be totally the same throughout all genomes, because of genome rearrangement events,

i.e., inversions and transpositions, and we have to focus on regions that all genomes have

the same SNP order and orientation. We define a block as a region in which there is no

evidence of genome inversion. We do not consider transpositions since transpositions can
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Figure 5.1: An example of detection of HGTs. The SNPs on node 6 are better explained
by an HGT from node 2 than inheritance from node 5 with three mutations.

be mimicked by inversions. SNPs in a block should be in the same order across all genomes

with some exceptions explained in Section 5.2.1.

We first partition the genomes into blocks by a greedy block extension algorithm,

then we consider each block separately. Within each block, for each SNP locus, we use

dynamic programming to reconstruct the SNPs of internal nodes in the evolutionary tree

with the minimum number of mutations. Then within each block, we check if we can as-

sign HGTs to further reduce the total weight by dynamic programming. We also consider

possible HGTs from an out-group species not in the given strains. After assigning muta-

tions/HGTs/errors, we trace each SNP where it is originally from and evaluate if there is

any evidence that indicates an HGT from an out-group.
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5.2.1 Computing Blocks with Duplications and Missing SNPs

Considering a possible block B and a genome G, we say that G agrees with B if,

given the genome G, there is no evidence that suggests an inversion within the block B.

A straightforward example is, if all the SNPs in B appear consecutively in G in the same

order and orientation, or all in the reverse order and complement orientation, then G agrees

with B. Different orders usually suggest inversions, but there are some exceptions.

1. Missing. A SNP may appear in B but be absent in G, and it does not suggest an

inversion. For example, B = bcd, G contains a SNP sequence abde and c is absent in

G, then G should agree with B.

2. Duplication. There might be duplicated SNPs inserted to G and they could alter

the SNP order. For example, B = bcd, G contains a SNP sequence abcbde, then the

second b in G should be considered as a duplicated SNP, and G should agree with B.

3. Contigs. The genome may be in contig form, which makes the SNP order in G unclear.

For example, B = abcd, G contains a contig ending with SNP sequence ab and a contig

starting with cd, then G should agree with B.

We formally define the notion of agreement as follows.

Definition 9 Let Σ be the set of forward and reverse complement of all SNPs. A block is

a string B ∈ Σ+ and a genome is a set of strings G = {g1, g2, · · · , gk}, gi ∈ Σ+ (k > 1 if

in contig form). Let B|G be the subsequence of B obtained by deleting SNPs absent in G.

Let DG be the set of SNPs that appear more than once in G. We say the genome G agrees
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with the block B if and only if there exists a string S such that the two following statements

both hold. (1) There exists a concatenation G∗ = gj1gj2 · · · gjk allowing reverse complement

and S is a substring of G∗. (2) B|G is a subsequence of S and S can be obtained from B|G

by inserting only SNPs in DG.

When considering if a genome G agrees with a block B, we try to match the SNP

order and orientation in B and G. If a SNP s appears in B but does not appear in G,

then s should be skipped in B in the matching. If a SNP s appears in G more than once,

then we can choose to skip s in G or not, based on if it makes the SNP order/orientation

in G different from those in B. When we try to match the SNP order/orientation but the

comparison reaches the end of a contig, then the next match in G can start from any other

end of a contig. Let s be the SNP in B we want to match when the comparison reaches

the end of a contig in G. We check all occurrences of s and see if any occurrence of s is

at the end of a contig (or only duplicated SNPs between s and the end of the contig) and

if the occurrence of s is in the correct orientation. If there is a such occurrence, we can

keep matching from the occurrence. If there are multiple such occurrences, then there are

multiple ways to match s and we have to enumerate and check all possibilities. We call this

a jump-over-contig step.

We try to explain all genomes with the minimum number of inversion endpoints,

i.e., as few blocks as possible. We use a greedy block extension algorithm so that every block

is maximal, and minimize the number of blocks. The block extension algorithm works as

follows. A block starts from a single SNP. Each round we try to extend a block B, we

pick a SNP s which is next to B in some genome, and test if all other genomes agree with
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the new block candidate Bs. If all genomes agree with Bs, then we extend B to Bs and

start the next round. If there is any genome that does not agree with Bs, then we pick up

another SNP s′ which is next to B in some genome. If there is no such SNP that extends

B in either forward or reverse direction, then we stop extending and output B as a block.

Algorithms 5.2.1 and 5.2.2 outline the main idea of the algorithm.

Algorithm 5.2.1 GetBlock

1: blocks ← ∅

2: for each genome do

3: for each SNP s do

4: if s has not been included by any block then

5: B ← BlockExtension(s)

6: mark all SNPs in B as included

7: blocks ← blocks ∪ {B}

8: return blocks

Algorithm 5.2.2 BlockExtension(block B)

1: for both forward and reverse direction do /* reverse B when needed */

2: for each genome G do

3: Let s be the next SNP after the block B in genome G

4: if Bs has not been tested then

5: if all genomes agree with Bs then

6: B ← Bs
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The time complexity of the algorithm is determined by how fast we can determine

if a genome agrees with a block. Assume B∗ is returned by Algorithm 5.2.2 and there is no

duplication, then a straightforward implementation will take O(n|B∗|2
∑

ji) time, where

n is the number of genomes, |B∗| is the length of the block, and ji is the product of all

jump-over-contig enumerations on genome i. Note that duplications make it possible that a

genome may agree with a small block in multiple ways in our algorithm, which theoretically

increases the time complexity, and complicates the optimization. We choose not to optimize

the implementation because our experiments show that a straightforward implementation

yields a reasonable running time,2 given the fact that duplications and jump-over-contigs

do not occur very frequently.

In our algorithm, if a SNP s is absent in a genome G, then s will never make G

disagree with a block. If s is next to a inversion endpoint, then s may appear in two different

blocks. For example, genome G1 has a SNP sequence abcde and genome G2 has ab and de

but c is absent in G2. Our algorithm will produce two blocks abc and cde, and we say these

two blocks overlap. Duplications may also create overlapping blocks. For example, G1 has

SNP sequence abcdef and G2 has abdcef and c, d elsewhere. Our algorithm will get two

blocks abcef and abdef . Therefore, after getting blocks, the summation of number of SNPs

in all blocks, denoted as increased number of SNPs, is usually much more than the number

of given SNPs.

2It takes 2 minutes for the Bulkhorderia pseudomallei dataset with 122 thousand SNPs and 26 strains
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5.2.2 Inside of a Block with No Inversions

We now consider a single block, and the corresponding SNPs of the block in all

genomes. The SNP order should be the same but there might be missing SNPs. For each

SNP locus, we reconstruct the SNPs of internal nodes assuming there are only mutations and

errors, and minimize the total weight of mutations (wm) and errors (we) at the same time.

This is a weighted small parsimony problem and can be solved by dynamic programming

in linear time [30].

After inferring the SNPs of the internal nodes, we then compute if we can assign

HGT. Let 1, 2, · · · , b be the SNP indices of the block we consider. For each internal node

t as a possible HGT destination, we define S[i][j] as the minimum total weight considering

SNPs 1, 2, · · · , j assuming node t inherits SNP j from node i. Let p be the parent node of t,

n the number of nodes, and snp[k][j] SNP j of node k. We derive the recurrence relations

for S[·][·]: (i 6= p)

S[p][1] = 0 (5.1)

S[i][1] = wx (5.2)

S[p][j] = wm · I(snp[p][j] 6= snp[t][j]) + min
k

S[k][j − 1] (5.3)

S[i][j] = wm · I(snp[i][j] 6= snp[t][j]) + min























S[i][j − 1]

min
k

S[k][j − 1] + wx

(5.4)

I(·) is the indicator function in the above equations. Equation (5.3) represents

the case that SNP j is not from an HGT, and Equation (5.4) represents the case that SNP
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j is extending an existing HGT (top option in bracket) or starting a new HGT (bottom

option in bracket). In Equation (5.3) and (5.4), k is enumerated from all possible source

nodes, i.e., all other nodes that are not descentants of node t. We charge the weight

of an HGT at the beginning of the HGT (Equation (5.4)), but do not charge at the end

(Equation (5.3)). Note that Equation (5.4) also allows us to have mutations on a segment of

HGT. For the leaf nodes, the recurrence relations are identical except each wm is replaced by

we. With the recurrence relations established, a standard dynamic programming technique

with backtracking would be sufficient to assign mutations/HGTs optimally [7, 30]. There

are nb entries in S[·][·], and it takes O(n) time to compute each entry. The time complexity

is O(n2b) for a single node, and O(n3b) for all nodes. Let m be the increased number of

SNPs, and the total time complexity is O(n3m).

5.2.3 Detection of Possible HGTs from the Out-Groups

If there are several consecutive mismatches of SNPs of a node and its parent node,

it is likely that the segment is affected by some HGT. However, there might be no similar

SNP segment in the given data, and we suspect it might be an HGT from an out-group.

Suppose we try to assign an HGT from the out-group, since there are no known SNPs, we

are free to create whatever SNPs we need to match the SNPs of the node we consider. If the

weight of such HGT is a constant, it may lead to matching all the SNPs with an HGT from

the out-groups. We borrow the idea of affine gap penalty in sequence alignment [30]. For

the out-group HGT, we introduce the opening weight woo and the extending weight woe.

Let S[0][j] be defined the same as S[i][j] but SNP j is inherited from the out-groups. The
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recurrence relation derived in Section 5.2.2 remain mostly the same except the enumeration

of k in Equation (5.3) and (5.4) should include the the out-groups. We derive the recurrence

relations for the out-groups as follows.

S[0][0] = woo

S[0][j] = min























S[0][j − 1] + woe

min
k

S[k][j − 1] + woo

These recurrence relations can be solved by standard dynamic programming with backtrack-

ing technique, and help assign sparse mismatches as mutations/errors and dense mismatches

as out-group HGTs.

Sometimes the algorithm may assign two HGT events of the same segment to

two nodes, and they inherit the HGT segment from each other. We consider this sce-

nario as an evidence of an out-group HGT and we try to detect it. After assigning muta-

tions/HGTs/errors by dynamic programming and backtracking, for each SNP of a node, we

trace where the SNP is inherited from. A SNP within an HGT segment is inherited from

the HGT source, and a SNP not in an HGT segment is inherited from the parent node. If

there is no HGT from the out-groups, we should be able to trace all SNPs all the way to

the root. If the tracing falls into a cycle, then we output the SNPs and involved nodes as an

evidence of an out-group HGT. This algorithm also detects inheritance patterns that form

a cycle by more than two nodes.
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5.3 Experimental Results

We have implemented our algorithm in C/C++, denoted as HgtFinder. We have

also implemented a simulator to generate simulated data and estimate the accuracy of

HgtFinder. We also run HgtFinder on real data obtained from SNP analysis according

to [16] of all available whole genomes (draft and finished) for 3 bacteria and 2 viruses.

5.3.1 Simulation

We use a model of random branching of lineages to simulate an evolutionary

tree [36]. To simulate a tree of n strains, we start with a root and a branching event

and its occurring time 0. When an event occurs, it splits a lineage into two, and brings

two new branching events. For each new branching event, we draw a time interval from

exponential distribution with a given branching rate, then add the time interval to the

current time to make the occurring time of the new event. The time interval will also be

the branch length of the corresponding edge. This process stops at the time the branching

event which would generate the (n + 1)st strain is about to occur. The branch length of

each edge which incidents to a leaf will be assigned as the time difference between the stop

time and the branching time that generates the branch. Note that the summation of the

branch length on the path from the root to all leaves will be the same.

After the evolutionary tree is generated, we then need to generate genome rear-

rangement events. In circular bacterial genomes, inversions tend to be symmetric to the

origin of replication, i.e., the endpoints of the inversion are equally distant from the origin of

replication [8, 13]. Dias et al. have published a program called SIB to simulate these sym-
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metric inversions in bacterial chromosomes [10]. We use SIB to generate inversion events.

SIB generates both symmetric and nonsymmetric inversions and the number of inversions

on a branch is proportional to the branch length.

After the evolutionary tree and inversion events are generated, we then generate

when and on which branches mutations and HGT should occur. For each edge, we generate a

series of mutation events, and the time interval between a mutation and the next mutation is

drawn from the exponential distribution with a given mutation rate. The series of mutations

terminates when the time of the next mutation event is later than the time of the branching

event that ends the edge. For each pair of edges, consider the time interval both edges

appear. In the time interval, we generate a series of HGT events by the same way above

we generate mutations, with a given HGT rate. After all events have been generated, we

uniformly randomly generate the SNPs of the root. We then generate all SNPs of all nodes

in the evolutionary tree with the given mutation/HGT events. The SNP position where

each mutation takes place is assigned uniformly randomly. The position of each HGT is

generated uniformly randomly on condition that it occurs within a homologous region, i.e.,

the SNP order/orientation should be the same in source and destination. Finally, on the

leaf nodes, we generate sequencing errors and missing loci uniformly randomly with given

error rate and missing rate, respectively.

There are many HGT/mutation events that cannot be detected easily, and some

of them can never be detected. A mutation followed by another mutation or an HGT event

on the same branch will get nullified and there is no way to detect it. The SNP sequence on

source and destination of an HGT event may be identical or differ by only one SNP, then
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it has no effect or can be explained by a mutation, respectively. An HGT event may be

followed by another HGT event on the same branch and get nullified. After simulated data

is generated, we reduce events that we try to detect by discarding nullified events that can

be determined with conditions listed above. By reducing nullified events, we can compute

accuracy based on events that leave some evidence. However, we only detect nullifying

effects that are all on the same branch. We do not detect nullifying effects that two or more

branches are involved (e.g., a mutation followed by a branching event, then both following

branches are affected by HGTs, nullifying the first mutation). There are still many scenarios

in which HGT events cannot be detected: two or more HGT events may overlap and can

be explained by a few mutations/errors, an inversion may separate an HGT into different

blocks and we cannot detect it because we consider each block separately, etc. We do not

eliminate these events when generating simulated data.

The weights of the events are set as (we, wm, wx, woo, woe) = (2, 3, 5, 7, 1). By this

setting, considering a segment that can be explained by either two (or more) mutations

or one HGT from a node in the evolutionary tree, HgtFinder will choose one HGT. If a

segment can be explained by either three (or more) errors or one HGT from a node in the

evolutionary tree, HgtFinder will choose one HGT. For a segment that can be explained by

one mutation or two errors, HgtFinder will not explain it by an HGT. Our first experiment

shows that most HGT events are separated by inversions and cannot be detected. Therefore,

in our second experiment, we do not generate inversions in order to focus on HGT events

within a block. The default value of parameters are: average branch length = 20, 40 strains,

50 SNPs, mutation rate = 1% each SNP per branch length, HGT rate = 3% per branch

103



length, error rate = 1% each SNP, and missing rate = 10%. Since most HGT events get

partially nullified by other HGT events that overlap, an HGT event detected by HgtFinder

is considered correct if it overlaps with an actual HGT event on the same branch. We denote

recall as the number of correctly detected HGT events divided by the total number of actual

HGT events, and precision as the number of correctly detected HGT events divided by the

total number of predicted HGT events by HgtFinder. The average branch length is always

fixed. In each set, we try 4 different values for a parameter, and all other parameters are

fixed. For each parameter setup, we run the simulation 200 times, and compute the recall

and precision.

Table 5.1 shows the result of our simulation. A higher mutation rate brings more

diversity, and it reduces the similarity between source and destination of an HGT event.

More diversity makes HGT events easy to detect, and improves recall. However, a higher

mutation rate also increases the probability that we have consecutive mutations, which

HgtFinder will explain as HGT, thus slightly decreases the precision. A higher HGT rate

brings more overlapped HGT events, and makes HGT events difficult to detect, thus de-

creases the recall. A higher HGT rate also increases the precision, because it makes it easy

for a detected HGT event to overlap with an actual HGT event. A lower missing rate results

in better recall, and has little effect on the precision. The number of SNPs, or the size of a

block, and the error rate, do not have significant impact on the accuracy. The number of

strains can affect the accuracy either way. More strains with a fixed average branch length

bring more diversity and improve the accuracy. However, more strains also bring bigger

phylogenetic trees, longer simulated time, and more overlapped HGT events, which lower
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Mutation rate 0.5% 1% 3% 6%

Recall 31.90% 40.97% 49.07% 49.32%

Precision 79.90% 78.99% 77.33% 76.23%

HGT rate 1% 3% 6% 10%

Recall 61.58% 49.07% 38.48% 31.31%

Precision 55.32% 77.33% 85.72% 90.27%

Missing rate 1% 5% 10% 20%

Recall 51.74% 49.53% 49.07% 46.64%

Precision 77.36% 76.98% 77.33% 76.04%

Error rate 0.1% 0.5% 1% 3%

Recall 48.36% 49.35% 49.07% 48.18%

Precision 77.31% 76.66% 77.33% 76.69%

# SNPs 10 20 50 100

Recall 49.25% 48.94% 49.07% 48.51%

Precision 76.55% 76.99% 77.33% 77.04%

# strains 10 20 40 80

Recall 34.74% 48.29% 49.07% 44.61%

Precision 48.96% 63.15% 77.33% 85.81%

Table 5.1: The accuracy of HgtFinder under different parameters. The default values of
parameters are: average branch length = 20, 40 strains, 50 SNPs, mutation rate = 1% each
SNP per branch length, HGT rate = 3% per branch length, error rate = 1% each SNP, and
missing rate = 10%.
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the recall. Therefore, more strains affect recall both ways, but obviously bring a better

precision.

5.3.2 Real Data

We run HgtFinder on Bacillus anthracis, Burkholderia mallei, Burkholderia pseu-

domallei, vaccinia virus and variola virus. There are 122204 SNPs in Burkholderia pseu-

domallie dataset, and it takes 2 minutes for HgtFinder to run on a single Intel Xeon 5660

CPU with 2.8 GHz. We would expect Burkholderia mallei and Bacillus anthracis to show

little recombination, i.e., few HGT events, and Burkholderia pseudomallei to show large

amounts of recombination based on extensive work by Tal Pearson, the Keim laboratory,

and others [19, 27, 58, 59]. Vaccinia virus is also expected to show high rates of HGT due

to a complex history due to broad host range, high passage in domesticated animals and

chick embryos, spiking cultures with cowpox and variola, scarification practices of vaccina-

tion that reintroduced vaccinia virus to nature many times, and mixing of multiple vaccinia

strains in vaccine preparations [54]. In contrast, variola virus is much more homogeneous

than vaccinia virus, and its evolution is thought to be a result of natural selection via

human-to-human transmission. As a result much lower levels of recombination have been

found [15].

We plot the number of events detected by HgtFinder as a function of the length of

the branches. Figures 5.2 through 5.6 show the results. Note that blocks may overlap heavily

because of duplications, some SNPs may be computed many times, and some mutations

may get counted many times. Therefore we use the increased number of SNPs as a reference
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Figure 5.2: Bacillus anthracis, 34 strains, 8781 SNPs (increased).
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Figure 5.3: Burkholderia mallei, 11 strains, 3659 SNPs (increased).
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Figure 5.4: Burkholderia pseudomallei, 26 strains, 212174 SNPs (increased).
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Figure 5.5: Vaccinia virus, 33 strains, 17562 SNPs (increased).
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Figure 5.6: Variola virus, 49 strains, 2926 SNPs (increased).

of mutation counts. The branch length is calculated by the rearrangement distance, which

we expect to be proportional to the evolutionary time [43]. We also expect the number

of mutations to be proportional to the evolutionary time, thus proportional to the branch

length, which is consistent with the plots. For leaf nodes, mutations are considered as

errors. The number of errors should only be proportional to the number of SNPs. If we

draw a linear trendline y = ax + b where x is the branch length and y the number of

errors and mutations, then the intercept b should represent the number of errors. Given

the intercepts are small in our plots, most “errors” on the leaf nodes should be mutations.

The difference of slopes between mutations and errors in the plots could be because the

accuracy of branch length estimation is difference between internal nodes and leaf nodes.

A few branches are outliers, however, showing more mutations than expected based on the
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branch length, which could be explained by the following. In Burkholderia mallei dataset,

there are many blocks that overlap extremely heavily, and mutations in the overlapping

regions get counted repeatedly. In the other 4 datasets, there are some regions that get

partitioned into many single-SNP blocks by HgtFinder, and some HGT events fall into

these regions. HgtFinder explains these HGT events by many mutations or errors, and it

leads to some plots with extreme amounts of mutations and errors.

For homogeneous species like Bacillus anthracis, Burkholderia mallei and variola

virus, there appears to be no relationship between HGTs and branch length, since so few

HGTs have occurred. Even for the more heterogeneous Burkholderia pseudomallei and

vaccinia virus, HGTs seem to have much weaker relationship to branch length than do

mutations or errors. HGT may have less to do with evolutionary time (branch length) and

more to do with ecological opportunity. Factors like co-infection or co-habitation in the

environment with multiple strains or species could lead to more opportunities for HGT,

as could the prevalence of genetic mechanisms for HGT like transposons or other mobile

elements. There are more HGTs to internal nodes than to leaf nodes. We believe it is

because the weight of an error is smaller than that of a mutation, so HgtFinder tends to

assign errors on leaf nodes but HGTs on internal nodes.

We plot the number of mutation/HGT/error events of Burkholderia pseudomallei

dataset in Figure 5.7 by Dendroscope [28] and outline the number of HGT events from

the out-groups of each strain in Figure 5.8. There are 420 out of 29515 HGT events are

considered from the out-groups and 260 of them are on the leaf nodes. The regions of HGT

events from the out-groups in Burkholderia pseudomallei have good blast hits to transposon,
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phage, and plasmid sequences, prime candidates for HGT. Other good hits are to soil and

water inhabiting microbes like Rhizobium, Pseudomonas, and other Burkholderia species,

consistent with HGT occurring in soil and aquatic environments.

5.4 Conclusion

Using a definition of SNPs that facilitates scalable, whole genome analysis of dozens

of strains, we designed and implemented an algorithm to do whole genome HGT detection.

Our experimental results on simulated data show that there are many HGT events that

cannot be detected, but the HGT events detected by our program are mostly true events.

The experimental results on real sequence data also show that the number of HGTs we

predict for 5 bacteria and viruses is consistent with expectations based on the literature.
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Figure 5.7: Evolutionary tree of Burkholderia pseudomallei. The internal nodes are labeled
by the number of events, m for mutation, e for error, and x for HGT. The leaf nodes are
labeled by the strain name follower by the number of events.

#HGTs

pseudomalleiMSHR346

pseudomallei305

pseudomalleiNCTC_13177

pseudomalleiBUE_Australia5_isolateA

pseudomallei668

pseudomalleiE208

#HGTs

pseudomallei91

pseudomalleiBCC215

pseudomallei576

pseudomallei7894

pseudomalleiDM98

pseudomalleiMSHR346

pseudomallei305

pseudomalleiNCTC_13177

pseudomalleiBUE_Australia5_isolateA

pseudomallei668

pseudomalleiE208

#HGTs

pseudomalleiB7210

pseudomalleiS13

pseudomallei14

pseudomalleiPasteur_52237

pseudomallei112

pseudomallei406e

pseudomallei91

pseudomalleiBCC215

pseudomallei576

pseudomallei7894

pseudomalleiDM98

pseudomalleiMSHR346

pseudomallei305

pseudomalleiNCTC_13177

pseudomalleiBUE_Australia5_isolateA

pseudomallei668

pseudomalleiE208

#HGTs

0 10 20 30 40 50

pseudomalleiB7210

pseudomalleiS13

pseudomallei14

pseudomalleiPasteur_52237

pseudomallei112

pseudomallei406e

pseudomallei91

pseudomalleiBCC215

pseudomallei576

pseudomallei7894

pseudomalleiDM98

pseudomalleiMSHR346

pseudomallei305

pseudomalleiNCTC_13177

pseudomalleiBUE_Australia5_isolateA

pseudomallei668

pseudomalleiE208

#HGTs

0 10 20 30 40 50

pseudomalleiB7210

pseudomalleiS13

pseudomallei14

pseudomalleiPasteur_52237

pseudomallei112

pseudomallei406e

pseudomallei91

pseudomalleiBCC215

pseudomallei576

pseudomallei7894

pseudomalleiDM98

pseudomalleiMSHR346

pseudomallei305

pseudomalleiNCTC_13177

pseudomalleiBUE_Australia5_isolateA

pseudomallei668

pseudomalleiE208

#HGTs

0 10 20 30 40 50

pseudomalleiB7210

pseudomalleiS13

pseudomallei14

pseudomalleiPasteur_52237

pseudomallei112

pseudomallei406e

pseudomallei91

pseudomalleiBCC215

pseudomallei576

pseudomallei7894

pseudomalleiDM98

pseudomalleiMSHR346

pseudomallei305

pseudomalleiNCTC_13177

pseudomalleiBUE_Australia5_isolateA

pseudomallei668

pseudomalleiE208

#HGTs

Figure 5.8: The number of HGTs from out-groups to leaf nodes in Burkholderia pseudomallei
dataset.
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Chapter 6

Future Work

For the tag SNP selection problem, it remains interesting if we can use less space

in our tag SNP selection problem, or if we can compute fewer triplets/quartets. This

actually has been improved by Liu et al. [44]. For the haplotype inference problem, we

still wonder if we can lower the variance of the running time. Randomized algorithms are

possible candidates. The recovery phase might be improved by generating smaller number

of configurations within nuclear families. For the detection of horizontal gene transfer

problem, we wonder if we can handle duplications and overlapped blocks better. We also

wonder if we can avoid HGT regions being partitioned into many single-SNP blocks, which

might hinder the detection of some HGTs.
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