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ABSTRACT OF THE DISSERTATION

Inverse Problems on Electrical Networks and in Photoacoustic Tomography

by

Christina Grace Knox

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, June 2019

Dr. Amir Moradifam, Chairperson

This dissertation investigates two inverse problems, one on electrical networks and another

from photo acoustic tomography. First we consider the inverse problem of recovering the

conductivities of an electrical network from the knowledge of the magnitude of the current

along the edges coupled with either the voltage on the boundary of the network or the

current flowing in or out of the network. This problem corresponds to finding the minimizers

of a l1 minimization problem. Additionally, we show that while the conductivities are not

determined uniquely the flow of the current is uniquely determined. We will also present

a convergent numerical algorithm for solving these problems along with basic numerical

simulations. Lastly, we will discuss some applications of this inverse problem. Next we

consider the inverse problem of determining both the source of a wave and its speed inside

a medium from measurements of the solution of the wave equation on the boundary. This

problem arises in photoacoustic and thermoacoustic tomography. We will present a brief

overview of previous uniqueness results and then present our two original uniqueness results.

If the reciprocal of the wave speed squared is harmonic in a simply connected region and

vi



identically one elsewhere then a wave speed satisfying a natural admissibility assumption

can be uniquely determined from the solution of the wave equation on the boundary of

domain without knowledge of the source. If the wave speed is known and only assumed to

be bounded, then, under the same admissibility assumption, the source of the wave can be

uniquely determined from boundary measurements.

vii



Contents

List of Tables ix

1 Introduction 1
1.1 An inverse problem on electrical networks . . . . . . . . . . . . . . . . . . . 2
1.2 An inverse problem in photoacoustic tomography . . . . . . . . . . . . . . . 6

2 Electrical networks with prescribed current 9
2.1 Dirichlet boundary condition . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 The dual problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Voltage potentials have minimum energy . . . . . . . . . . . . . . . . 18
2.1.3 Multiple measurements . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Neumann boundary condition . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.1 Voltage potentials have minimum energy . . . . . . . . . . . . . . . . 28
2.2.2 Multiple measurements . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Algorithms for finding minimizers . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.1 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4.1 Random walks on graphs . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4.2 Applications in cryptography . . . . . . . . . . . . . . . . . . . . . . 42

3 Determining both the source of a wave and its speed in a medium from
boundary measurements 44
3.1 Prior uniqueness results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2 New results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.1 Uniqueness of the wave speed . . . . . . . . . . . . . . . . . . . . . . 51
3.2.2 Uniqueness of the source . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Conclusion 72

Bibliography 75

viii



List of Tables

2.1 Numerical errors for algorithm 1 on 100 node graph with 1121 edges . . . . 38
2.2 Numerical errors for algorithm 2 on 100 node graph with 1121 edges . . . . 38
2.3 Average number of iterations for algorithm 1 versus algorithm 2 . . . . . . 38

ix



Chapter 1

Introduction

What constitutes an inverse problem? Perhaps the best way of understanding

what an inverse problem is is to contrast it with that of a forward problem. In a forward

problem given an equation with a set of parameters a solution is sought. In contrast, in

an inverse problem parts or all of the solution to the equation is known and one seeks to

recover the parameters. The part of the solution assumed to be known is commonly referred

to as the data for the inverse problem. In practice this would be the measurements that

are observed. The first problem usually considered when looking at an inverse problem is

that of uniqueness. The question of uniqueness asks, if two sets of data are equal, must the

parameters to be recovered also be equal? This dissertation will be focused on the question

of uniqueness for two different inverse problems. On a practical level one is also interested

in numerical algorithms to recover the parameters and also stability, that is how do errors

in the measured data effect the recovery of the parameters. We have developed a numerical

algorithm for one of the inverse problems studied in this dissertation.
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1.1 An inverse problem on electrical networks

The first inverse problem we consider is on electrical networks. In this problem

both exterior and interior data is known with the aim of recovering the conductivities of the

graph. This is from a joint work with Amir Moradifam in [42]. The set up of this inverse

problem is as follows. Let G = (V,E) be a simple, undirected, weighted graph with n

vertices. We can identify G with an electrical network by placing a resistor with resistance

Rij between every two vertices i and j, for 0 ≤ i, j ≤ n with i 6= j. We assign the weight

σij = 1
Rij

on each edge Eij , and let σij = 0 if i and j are not connected. Suppose a voltage

is applied to a subset of the vertices, denoted by ∂V and called the boundary of V , then

a current J = (Jij)n×n will be induced on the edges of the graph, where Jij is the current

flowing from vertex i to vertex j. In particular, Jij = −Jji and if the current flows from i

to j, then Jij > 0. We will also assume that Jij = 0 if the vertices i and j are not connected

by an edge, and that Jii = 0. Note that V = ∂V ∪ int(V ) = {1, 2, ..., n}. We will view the

voltage potential on V as a vector v = (v1, v2, ..., vn) ∈ Rn where vi is the voltage potential

at vertex i. We will also denote the imposed voltage potential on the boundary nodes by a

function f : ∂V → R. By Kirchhoff’s and Ohm’s Law

n∑
j=1

σij(vi − vj) = 0 for all i ∈ int(V ), (1.1)

where int(V ) = V \ ∂V are the interior nodes, and v = f on ∂V is the imposed voltage

on the boundary nodes (Dirichlet boundary condition). Assume ((σij)n×n, f) is given on

E × ∂V . Then (1.1) can be written as a system of m = |int(V )| linear equations with m

unknowns, i.e.

ADv = b, (1.2)
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where v is a m dimensional column vector containing the unknown voltage values at the

interior nodes, AD is a m × m non-singular matrix (see Proposition 1 in chapter 2) de-

pending on the conductivities, and b is a m dimensional column vector depending on the

conductivities and the known voltage at the boundary. In particular the forward problem

(1.1) always has a unique solution which is indeed the voltage potential associated to the

conductivity problem on the network.

On the other hand if a current 0 6= g ∈ R|∂V | is injected to the network on a subset

of vertices ∂V ⊂ V (Neumann boundary condition), then we necessarily have

|∂V |∑
i=1

gi = 0, (1.3)

and by Kirchhoff’s and Ohm’s Law the voltage potential v satisfies

∑n
j=1 σij(vi − vj) = 0 for all i ∈ int(V )

∑n
j=1 σij(vi − vj) = gi for all i ∈ ∂V.

(1.4)

The above equations can be written as

ANv = b, (1.5)

where AN is an n × n matrix depending on the conductivity σ = (σij)n×n, and b is an

n-dimensional column vector depending on the injected current on the boundary ∂V . The

matrix AN also has unique solutions up to adding a constant (see Propositions 17 and 18

in chapter 2) and the solution of (1.5) is the voltage potential on the vertices of the graph.

The matrix AN is in fact the well known graph laplacian of a weighted undirected graph.

As described above, the forward problems always have unique solutions up to a

constant and can be easily solved by solving a linear system of equations. We are interested
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in the inverse problem of determining the conductivity matrix of an electrical network

from the knowledge of the induced current along the edges of the network and Dirichlet or

Neumann boundary conditions. This problem can also be understood as a design problem

where one aims to design an electrical network that induces a prescribed current along its

edges when a voltage f ∈ R|∂V | is applied to the boundary nodes ∂V , or when a current

g ∈ R|∂V | is injected on ∂V . These inverse problems are in the spirit of Current Density

Imaging (CDI) and Current Density Impedance Imaging (CDII) in dimensions n ≥ 2 which

have been actively studied in recent years because of their potential applications in medical

imaging, see [29, 37, 31, 35, 39, 40, 46, 49, 50, 52, 51, 54, 55, 56, 53, 57]. In dimension n = 3

the induced current inside the conductive body Ω can be measured by Magnetic Resonance

Imaging (MRI), see [29, 37].

To the authors’ best knowledge the natural inverse problem considered in this

paper has not been studied elsewhere. In [13] and [10], the authors investigate the problem of

recovering the conductivity of the edges from the measurement of voltages at the boundary

vertices, and measurements of the voltage, current, and conductivity on the boundary

respectively. In [13] the authors proved injectivity of this inverse problem for critical,

circular and planar graphs and provided an explicit reconstruction method. Under the

assumption of monotonicity of conductivities, partial uniqueness results are established in

[10]. While the general theory of inverse problems on graphs is a rich field of study with

applications in various disciplines, the above results are most closely related to this work.

There is a close connection between electrical networks and random walks on

graphs (see [14]). Random walks arise in many mathematical and physical models in biology,
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economics, computer and social networks, epidemiology, and statistical mechanics. The

inverse problem we investigate here translates to intriguing questions in various contexts

where a random walk model on graphs is utilized. The results could also be useful in the

design of effective random walk models for achieving prescribed goals with random steps in

a network. For instance, one can think of designing a random walk model with a prescribed

high net number of times the walker passes along certain edges of the graph. In Section 2.5

we exploit this connection and apply our results on electrical networks to study the inverse

problem of determining transition probabilities of random walk models from the net number

of times the walker passes along the edges of the graph. We will also discuss a potential

application of our results in public-key encryption, a seemingly unrelated problem.

The first chapter of this dissertation is organized as follows. In Section 2.1 we

study the problem of determining the conductivity matrix of an electrical network from

the knowledge of the magnitude of the induced current with Dirichlet boundary condition,

and in Section 2.2 we study this problem with Neumann boundary data. In Section 2.4

we present a numerical algorithm for finding minimizers of the l1 minimization problem

we obtain in Sections 2.1 and 2.2. In Section 2.5 the connection between random walks

and electrical networks is discussed and we apply our results on electrical networks to

the inverse problem of determining transition probabilities from the net number of time a

random walker passes along the edges of the graph.
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1.2 An inverse problem in photoacoustic tomography

The second inverse problem we consider deals with the wave equation. This is

from a joint work with Amir Moradifam in [41]. Consider the wave equation
utt − c2∆u = 0 in Rn ×R+

u(x, 0) = f(x), ut(x, 0) = 0 for x ∈ Rn,
(1.6)

where Ω ⊂ Rn is a bounded domain. The function c(x) is the speed of the wave and the

function f(x) represents the source of the wave. We assume that c(x) − 1 and f(x) have

compact support. We are interested in the inverse problem of recovering f and/or c from

the measurements of the solution of the wave equation on ∂Ω given by the measurement

operator

Λf,c(x, t) = u(x, t), (x, t) ∈ ∂Ω× R+. (1.7)

We will study this problem in dimension n=3. This problem naturally arises in thermoacous-

tic (TAT) and photoacoustic (PAT) tomography, both of which have significant potential

in clinical applications and biology [28, 43, 44, 44, 69, 70]. We shall refer to Λf,c(x, t) as

the PAT data. Photoacoustic tomography aims to combine the high contrast of electromag-

netic waves with the high resolution of ultrasound. In photoacoustic tomography a laser

probes the medium to be imaged and the absorption of energy generates small levels of

heating. This thermoelastic expansion produces an acoustic wave which is measured using

ultrasonic transducers outside the medium. This data is then used to recover optical prop-

erties of the medium. It is known, for example, that cancerous tissues absorbs more energy

than healthy tissues ([69],[70]). There are many mathematical problems that arise in pho-

toacoustic tomography such as uniqueness, stability, partial boundary data, and numerical
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reconstructions. In this dissertation we will consider only the problem of uniqueness, that

is, if Λf1,c1(x, t) = Λf2,c2(x, t) for two sound speed and source pairs (f1, c1) and (f2, c2),

does it follows that f1 = f2 and/or c1 = c2? This inverse problem is called the first step of

photoacoustic tomography or the qualitative step of photoacoustic tomography. The case

when the sound speed c is previously known and we only look to reconstruct the source f

has been extensively studied. The case when the sound speed c(x) is unknown is still a wide

open problem. In section 3.1 we provide a brief overview of previous uniqueness results in

the literature, in both the case when the sound speed is known and unknown. In section 3.2

we state and prove our new uniqueness results. The first uniqueness result is for the sound

speed c when it has a particular form or when a monotonicity condition is satisfied. The

second uniqueness result is for the recovery of the source when the sound speed is known.

For completeness we will briefly present a model of the second step of photoacoustic

tomography which takes place after the recovery of the source f . The model for this second

step is the one considered in [5]. We consider the following model

f(x) = Γ(x)σ(x)w(x)
−∇ ·D(x)∇w + σ(x)u = 0, x ∈ Ω

w(x) = g(x) x ∈ ∂Ω

where Γ is the Grüneisen coeffcient, σ is the absorption coefficient, w is the intensity of

radiation, D is the diffusion coefficient, and g is the initial illumination, that is the incoming

source of radiation. The goal of the second step of photoacoustic tomography is to recover

σ, Γ, and/or D from knowledge of f and g. It is also assumed that σ, Γ, and D are known

on the boundary of Ω. See [5], [6], and [4] for some results in this problem. One result
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of interest in [5] is that it is not possible to recover σ, Γ, and D no matter the number of

illuminations chosen. However if one of the three is known then two well chosen illuminations

can uniquely determine the other two. In [4] the authors considered the problem of rotating

measurements which necessitated the integration of the two steps.
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Chapter 2

Electrical networks with prescribed

current

2.1 Dirichlet boundary condition

In this section we study the inverse problem of determining the conductivity matrix

σ = (σij)n×n from the knowledge of its induced current J = (Jij)n×n on E and the imposed

voltage potential f on ∂V (Dirichlet boundary conditions). LetG = (V,E) be an undirected,

simple, connected graph with n vertices, and suppose a voltage is applied to some subset

of the vertices inducing the current J = (Jij)n×n on E. Throughout the paper |J | denotes

the matrix |J | := (|Jij |)n×n, we will refer to |J | as a measurement matrix.

We first show that the forward problem has a unique solution, i.e. AD is non-

singular. One can find a proof in [13] and we present a brief proof for the sake of complete-

ness.

9



Proposition 1 The matrix AD is non-singular.

Proof. For every i ∈ int(V ) it follows from (1.1) that vi is the weighted average of the

voltage potential in its neighboring nodes, i.e.

vi =

∑n
j=1 σijvj∑n
j=1 σij

. (2.1)

Consequently v satisfies the strong maximum principle in the sense that if v attains its

maximum or minimum on an interior node, then v must be constant on V . In particular, v

attains its minimum and maximum on the boundary ∂V .

Now suppose ADv = ADṽ = b. Then w = v − ṽ satisfies

n∑
j=1

σij(wi − wj) = 0 for all i ∈ int(V ).

Since w = 0 on ∂V , it follows from the above maximum principle that w = 0 on V . Thus

the matrix AD is non-singular. �

An immediate consequence of Proposition 1 is that the forward problem (1.1)

always has a unique solution.

Definition 2 We say that a vertex i is an interior vertex and write i ∈ int(V ) if

Ji :=

n∑
j=1

Jij = 0.

Otherwise we say that i is boundary vertex and write i ∈ ∂V . For every i ∈ ∂V , Ji is

the current flowing in (Ji < 0) or out (Jj > 0) of the graph at vertex i. In particular,

V = int(V ) ∪ ∂V and int(V ) ∩ ∂V = ∅.

Definition 3 Given f : ∂V → R and a measurement matrix a = (aij)n×n with aij ∈ [0,∞)

for all 1 ≤ i, j ≤ n and aij = 0 when i = j and Ei,j 6∈ E, we say that a symmetric matrix
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σ = (σij)n×n with σij ∈ [0,∞] is a conductivity matrix associated to the data (f, a), if there

exists a function v : {1, 2, ..., n} → R with v|∂V = f , and a matrix J = (Jij)n×n such that

Jij = σij(vi − vj) and |Jij | = aij for all i, j with vi 6= vj ,

and
n∑
j=1

Jij = 0

for all i ∈ int(V ). When aij 6= 0 and vi = vj, then we formally define σij =∞ and say that

the edge between nodes i and j is a perfect conductor. We shall also refer to the function v

as a voltage potential and denote the set of all voltage potentials corresponding to the data

(f, a) by V(f,a).

For any measurement matrix a = (aij)n×n, define the function I : Rn → R by

I(u) =
1

2

∑
i,j

aij |ui − uj |, (2.2)

and for f ∈ R|∂V | consider the minimization problem

min{I(u) : u ∈ Rn and u|∂V = f}. (2.3)

We shall prove that u ∈ V(f,a) if and only if it is a minimizer of the least gradient problem.

Let us first study the dual of the minimization problem above.

2.1.1 The dual problem

Here we discuss the dual of the least gradient problem (2.3) and study the con-

nection between these two problems.

Let H(V ) be the set of all real valued functions on the vertices. We shall view a

function u ∈ H(V ) as a vector in Rn. Also let H(E) to be the space of all functions on E,
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i.e. the space of all n× n matrices b = (bij), where bij denotes the value of the function on

the edge from vertex i to j, with the additional convention that bij = 0 if the edge from i

to j is not in E, and bii = 0.

Definition 4 Let u, v ∈ H(V ) and a, b ∈ H(E). Then we define the inner products

〈u, v〉H(V ) =

n∑
i=1

uivi, 〈b, d〉H(E) =
∑
i,j

bijdij (2.4)

on H(V )×H(V ) and H(E)×H(E), respectively. The spaces H(V ) and H(E) equipped with

the above inner products are Hilbert spaces.

Next we define two linear operators D : H(V )→ H(E) and div : H(E)→ H(V ) which play

crucial roles in our arguments.

Definition 5 For u ∈ H(V ) we define Du ∈ H(E) as

(Du)ij = ui − uj (2.5)

if the edge connecting i to j is in E, and 0 otherwise. Also for b ∈ H(E) we define

divb ∈ H(V ) as follows

(divb)i =
∑
j

bji − bij . (2.6)

Observe that if b ∈ H(E) is anti-symmetric, that is bij = −bij for all 1 ≤ i, j ≤ n, then

the divergence is simply −2
∑

j bij . We shall refer to D and div operators as gradient and

divergence, respectively, since they play the role in our setting of the standard gradient

and divergence operators on Rn, n ≥ 2. Note that the definition of the gradient and

divergence given here does not depend on the weights (conductivities) of the graph as it

would normally when defining these operators on a weighted graph. Since in the inverse
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problems we consider in this paper, the conductivities are unknown, these definitions are

desirable. Let us first show that −div is the adjoint of D.

Proposition 6 Let u ∈ H(V ) and b ∈ H(E). Then

〈u,−divb〉H(V ) = 〈Du, b〉H(E).

Proof. Let u ∈ H(V ) and b ∈ H(E). Then

〈u,−divb〉H(V ) =
∑
i

ui(−(divb)i)

=
∑
i

ui
∑
j

(bij − bji)

=
∑
i

∑
j

uibij −
∑
j

∑
i

ujbij

=
∑
i,j

(ui − uj)bij

=
∑
i,j

(Du)ijbij

= 〈Du, b〉H(E).

�

Let f ∈ R|∂V | and define

Hf = {u ∈ H(V ) : u|∂V = f}.

For a ∈ H(E) we take a ≥ 0 to mean that every entry is non-negative. Then for 0 ≤ a ∈

H(E) and f ∈ R|∂V |, the least gradient problem (2.3) can be written as

min
u∈Hf

1

2

∑
i,j

aij |ui − uj | = min
u∈Hf

1

2
〈a, |Du|〉H(E), (2.7)

where we have used the notation |Du|ij = |(Du)ij |. We point out at this point that Hf is

not a Hilbert space. We will redefine the problem so that we can work with a Hilbert space.

13



Choose uf ∈ Hf . Define H0(V ) ⊂ H(V ) to be the space of functions on V which are equal

to zero on ∂V . Then we can equivalently write the primal problem (2.7) as

min
u∈H0(V )

1

2

∑
i,j

aij |ui − uj + (uf )i − (uf )j | = min
u∈H0(V )

1

2
〈a, |Du+Duf |〉H(E). (2.8)

Define F : H(E)→ R and G : H0(V )→ R as follows

F (d) =
1

2
〈a, |d+Duf |〉H(E) and G(u) ≡ 0. (2.9)

Then (2.8) can be written as

(P ) αP := min
u∈H0(V )

F (Du) +G(u).

Before discussing the dual of this problem we will provide some background. The following

contains information from [60]. We first introduce the convex conjugate function.

Definition 7 Let V be a vector space and V ∗ its dual. For F : V → R̄ define a function

F ∗ : V ∗ → R̄ by

F ∗(u∗) = sup
u∈V
{< u, u∗ > −F (u)}.

We call F ∗ the convex conjugate of F .

We then define Rockafellar-Fenchel duality.

Definition 8 Given the paired space V and V ∗, Y and Y ∗ assume that Λ is a continuous

linear operator from V into Y with adjoint Λ∗ from Y ∗ into V ∗. Further assume that V is

a reflexive Banach space. Consider the primal problem

inf
u∈V
{F (u) +G(Λu)}.

14



Then the corresponding dual problem is

sup
p∈Y ∗
{−F ∗(Λ∗p∗)−G(−p∗)}.

The primal problem 2.8 then admits a dual problem which can be expressed as

max
b∈H(E)

−G∗(−divb)− F ∗(−b). (2.10)

We will look at computing the convex conjugate of our F and G. We first have that

G∗(u) = sup
v∈H0(V )

∑
i

uivi

=


0 if u ≡ 0 on int(V )

∞ otherwise.

Next we compute the convex conjugate of F .

Lemma 9 Let a = (aij) ∈ H(E) with aij ≥ 0 and uf ∈ Hf (V ). Then

F ∗(b) =


−〈b,Duf 〉H(E) if |b| ≤ 1

2a

∞ otherwise.

(2.11)

Proof. Suppose |b| ≤ 1
2a, that is |bij | ≤ 1

2aij for all i, j. Then

F ∗(b) = sup
d∈H(E)

(〈d, b〉H(E) −
1

2
〈a, |d+Duf |〉H(E))

= −〈b,Duf 〉H(E) + sup
d∈Ha(E)

(〈d, b〉H(E) −
1

2
〈a, |d|〉H(E))

= −〈b,Duf 〉H(E) + sup
d∈Ha(E)

(
∑
i,j

dijbij −
1

2
aij |dij |)

≤ −〈b,Duf 〉H(E) + sup
d∈Ha(E)

∑
i,j

|dij |(|bij | −
1

2
aij)

≤ −〈b,Duf 〉H(E).
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Taking d = 0 we also get F ∗(b) ≥ −〈b,Duf 〉H(E).

Now suppose that there exists 1 ≤ i0, j0 ≤ n such that |bi0j0 | > 1
2ai0j0 . Let

di0j0 = λbi0j0 , and dij = 0 otherwise, where λ ∈ R. Then we have

F ∗(b) = −〈b,Duf 〉H(E) + sup
d∈Ha(E)

(
∑
i,j

dijbij −
1

2
aij |dij |)

≥ −〈b,Duf 〉H(E) + sup
λ>0

λ(b2i0j0 −
1

2
ai0j0 |bi0j0 |)

= −〈b,Duf 〉H(E) + sup
λ>0

λ|bi0j0 |(|bi0j0 | −
1

2
ai0j0)

= ∞.

�

Thus the dual problem (2.10) can be written as

(D) αD := sup{−〈b,Duf 〉H(E) : b ∈ H(E), |b| ≤ 1

2
a,

and div(b) ≡ 0 on int(V )}.

Given that ui = 0 for at least one i ∈ V one can show that any minimizing

sequence of the the primal problem is uniformly bounded. Hence a convergent subsequence

exists and a minimizer of the primal problem (P) always exists. We now consider whether

a solution to the dual problem (D) always exists. We will apply the following theorem from

[60] (Theorem III.4.1).

Theorem 10 Given the paired spaces V and V ∗, Y and Y ∗ assume that Λ is a continuous

linear operator from V into Y with adjoint Λ∗ from Y ∗ into V ∗. Suppose the primal problem,

(P) takes the form

inf
u∈V

J(u,Λu)
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where J is a convex function from V × Y into R̄. The corresponding dual problem (D) is

sup
p∗∈Y ∗

−J∗(Λ∗p∗,−p∗).

Assume that inf(P ) is finite and that there exists u0 ∈ V such that J(u0,Λu0) <∞ and the

function p 7→ J(u0, p) is continuous at Λu0. Then

inf(P ) = sup(D)

and the dual problem (D) has at least one solution p̄∗.

Since I(u) = 1
2〈a, |Du+Duf |〉H(E) is convex and J : H(E)→ R with J(p) = 1

2〈a, |p|〉H(E) is

continuous at p = 0, the conditions in the statement of the Theorem 10 are satisfied. Thus

a solution to the dual problem (D) always exists. The weighted l1 minimization problem

(2.3) does not have an unique minimizer and thus the conductivity inducing the current J

on E is not unique. However we can characterize the non-uniqueness.

Theorem 11 The infimum of the primal problem (P) is equal to the supremum of the dual

problem (D). Moreover, the dual problem has an optimal solution b, and J = −2b satisfies

|Jij | = aij for every i, j with vi 6= vj (2.12)

and

Jij(vi − vj) ≥ 0 for all 1 ≤ i, j ≤ n, (2.13)

for every minimizer v of (2.3). Conversely, if u ∈ Hf and the above equation holds then

then u is a minimizer of (2.3).

Proof. A solution b to the dual problem always exists and the infimum of the primal problem

(P) is equal to the supremum of the dual problem by Theorem III.4.1 in [17] as discussed

17



above. Let v be a minimizer of (2.3). Then

αP = I(v) =
1

2

∑
i,j

aij |vi − vj | ≥
∑
i,j

|bij ||vi − vj | ≥
∑
i,j

−bij(vi − vj) (2.14)

=〈−b,Dv〉H(E) = 〈divb, v〉H(V )

=
∑
i∈∂V

(divb)ivi =
∑
i∈∂V

(divb)ifi = αD = αP .

Hence the inequalities in 2.14 are indeed equalities and thus

|bij | =
1

2
aij for every i, j with vi 6= vj

and

bij(vi − vj) ≤ 0 for all 1 ≤ i, j ≤ n.

Therefore if we let J = −2b we we see that (2.12) and (2.13) hold. We can also see that the

converse also holds from the above computations. �

Corollary 12 If u and v are two arbitrary minimizers of (2.3), then

(ui − uj)(vi − vj) ≥ 0 for all 1 ≤ i, j ≤ n.

2.1.2 Voltage potentials have minimum energy

We are now ready to prove the following theorem.

Theorem 13 Let f be a function on ∂V and a be a measurement matrix. Then v ∈ V(f,a)

if and only if it is a minimizer of the least gradient problem (2.3).

18



Proof. Suppose v ∈ V(f,a) and let J be the corresponding current on E. Then

I(v) =
1

2

∑
i,j

aij |vi − vj | =
1

2

∑
i,j

|Jij ||vi − vj | ≥
1

2

∑
i,j

Jij(vi − vj) (2.15)

=

n∑
i=1

vi

n∑
j=1

Jij =
∑

i∈int(V )

viJi +
∑
i∈∂V

viJi

=
∑
i∈∂V

viJi =
∑
i∈∂V

fiJi.

Therefore the minimum of the least gradient problem (2.3) is equal to
∑

i∈∂V fiJi. Moreover

the minimum is achieved for every v ∈ V(f,|J |).

Now suppose v is a minimizer of the problem (2.3) and let b be a solution of the

dual problem (D) and let J = −2b. Then by Theorem 11

|Jij | = aij for all i, j with vi 6= vj

and since divJ = 0 on int(V )

n∑
j=1

Jij = 0 for all i ∈ int(V ).

For vi 6= vj define σij =
Jij
vi−vj ≥ 0. Then

Jij = σij(vi − vj) for all i, j with vi 6= vj .

Thus v ∈ V(f,a) and the proof is complete. �

Remark 14 Note that every minimizer v of (2.3) uniquely determines a conductivity ma-

trix σ. Corollary 12 indicates that the directions of the flow of the current along the edges is

unique, despite multiplicity of the minimizer of (2.3). Indeed if two conductivity matrices

σ1 and σ2 with 0 ≤ σ1
ij , σ

2
ij < ∞ induce the currents J1 and J2 on a network when the
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voltage f is imposed on ∂V , and |J1| = |J2|, then J1 = J2. This is a counter-intuitive

result.

2.1.3 Multiple measurements

Suppose we have two data sets (f1, a1) and (f2,

a2), and would like to find a conductivity matrix σ inducing the currents with magnitudes

a1 and a2, when the voltage potentials f1 and f2 are imposed on the boundary vertices

∂V 1 and ∂V 2, respectively.

Let I1 and I2 be defined by Equation (2.2) for a1 and a2 respectively and for

u = (u1, u2) ∈ Rn × Rn define

Φ(u1, u2) =
∑
C2

∣∣∣∣∣u1
i − u1

j

|J1
ij |

−
u2
i − u2

j

|J2
ij |

∣∣∣∣∣
2

, (2.16)

where

C2 = {(i, j) : 1 ≤ i, j ≤ n and J1
ij , J

2
ij 6= 0}.

Define

F(u1, u2) = I1(u1) + I2(u2) + Φ(u1, u2) (2.17)

and

A := {(u1, u2) ∈ Rn × Rn : u1 = f1 on ∂V 1 and u2 = f2 on ∂V 2}.

Now consider

inf
(u1,u2)∈A

F(u1, u2). (2.18)

It is easy to see that (2.18) always has a minimizer.

Theorem 15 Let (u1, u2) be a minimizer of (2.18).
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1. If there exists a conductivity matrix σ which induces the current J i with |J i| = ai

when the voltage potential f i is imposed on the boundary, denoted ∂iV , i = 1, 2, then

Φ(u1, u2) = 0. Moreover,

σij =
a1
ij

|u1
i − u1

j |
for all i, j with u1

i 6= u1
j ,

and

σij =
a2
ij

|u2
i − u2

j |
for all i, j with u2

i 6= u2
j .

2. If there doesn’t exist a conductivity matrix σ inducing the current J i with |J i| = ai

when the voltage potential f i is imposed on the boundary noted ∂V i, i = 1, 2, then

Φ(u1, u2) > 0.

Proof. (1) Suppose there exists a conductivity matrix σ producing the data (f1, a1) and

(f2, a2). It follows directly from Theorem 13 that the set of minimizers of (2.18) is equal

to V(f1,a1) × V(f2,a2). So the first statement follows.

(2) Suppose Φ(u1, u2) = 0. Then u1 and u2 minimize I1 and I2 over the appropriate spaces

and so by Theorem 13, u1 ∈ V(f1,a1) and u2 ∈ V(f2,a2) and thus they each have corresponding

conductivity matrices σ1 and σ2 that generate currents J1 and J2 respectively. However

Φ(u1, u2) = 0 implies that these conductivities are in fact equal. �

Now suppose a finite data set of measurements is given:

(f1, a1), (f2, a2), ..., (fk, ak), k ≥ 2.

Define

I l =
1

2

∑
ij

alij |ui − uj |, 1 ≤ l ≤ k,
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and

Φk(u1, u2, ..., uk) =
k∑
l=2

∑
Bl

∣∣∣∣∣u1
i − u1

j

|J1
ij |

−
uli − ulj
|J lij |

∣∣∣∣∣
2

,

where

Cl = {(i, j) : 1 ≤ i, j ≤ n and J1
ij , J

l
ij 6= 0}.

Consider the weighted l1 minimization problem

inf
(u1,u2,...,uk)∈Ak

k∑
l=1

I l(vl) + Φk(u1, u2, ..., uk), (2.19)

where

Ak := {(u1, u2, ..., uk) : ul ∈ Rn and ul = f l on ∂V l, i = 1, 2, ..., k}.

One can similarly prove the following theorem.

Theorem 16 Let (u1, u2, ..., uk) be a minimizer of (2.19).

1. If there exists a conductivity matrix σ which induces the current J l with |J l| = al

when the voltage potential f l is imposed on the boundary noted ∂V l, l = 1, 2, ..., k,

then Φ(u1, u2, ..., uk) = 0. Moreover,

σij =
alij

|uli − ulj |
for all i, j with uli 6= ulj , l = 1, 2, ..., k.

2. If there doesn’t exist a conductivity matrix σ inducing the current J l with |J l| = al

when the voltage potential f l is imposed on the boundary noted ∂V l, l = 1, 2, 3, ..., k,

then Φ(u1, u2, ..., uk) > 0.
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2.2 Neumann boundary condition

Let G = (V,E) be an undirected simple connected graph with n vertices, and

suppose the current 0 6= g ∈ R|∂V | is injected to a subset ∂V of V , regarded as boundary of

V , inducing the current J = (Jij) on E. Then g should satisfy the compatibility assumption

|∂V |∑
i=1

gi = 0. (2.20)

We will again denote |J | := (|Jij |)n×n and refer to |J | as a measurement matrix. The

following proposition characterizes solutions of the forward problem (1.4).

Proposition 17 Let AN be the matrix defined in (1.5). Then

Ker(AN ) = {(c, c, ..., c) ∈ Rn : c ∈ R}.

Proof. Suppose ANw = 0 for some w ∈ Rn. Then it follows from (1.4) that

1

2

∑
i,j

σij(wi − wj)2 =
1

2

n∑
i=1

wi

n∑
j=1

σij(wi − wj)−
1

2

n∑
j=1

wj

n∑
i=1

σij(wi − wj)

=

n∑
i=1

wi

n∑
j=1

σij(wi − wj)

= 0.

Hence wi = wj for all i and j connected by an edge. Since G is connected the proof is

complete. �

Proposition 18 The equation ANv = b has a solution if and only if
∑n

i=1 bi = 0.

Proof. By the Fredholm Alternative from linear algebra, ANv = b has a solution if and only

if b ∈ Ker(ANT )⊥. By the previous proposition and the fact that AN is symmetric we have

Ker(AN
T )⊥ = Ker(AN )⊥ = {b ∈ RN :

n∑
i=1

bi = 0}.
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Therefore if
∑n

i=1 bi = 0, up to adding a constant the equation (1.4) has a unique

solution. The following is the analog to Definition 3.

Definition 19 Given 0 6= g : ∂V → R satisfying
∑|∂V |

i=1 gi = 0 and a measurement matrix

a = (aij)n×n with aij ∈ [0,∞) for all 1 ≤ i, j ≤ n and aij = 0 when i = j and Eij 6∈ E,

we say that a symmetric matrix σ = (σij)n×n with σij ∈ [0,∞] is a conductivity matrix

associated to the data (g, a), if there exists a function v : {1, 2, ..., n} → R with and a matrix

J = (Jij)n×n such that

Jij = σij(vi − vj) and |Jij | = aij for all i, j with vi 6= vj ,

n∑
j=1

Jij = gi for all i ∈ ∂V

and
n∑
j=1

Jij = 0 for all i ∈ int(V ).

When aij 6= 0 and vi = vj, then we formally define σij =∞ and say that the edge between

nodes i and j is a perfect conductor. We shall also refer to the function v as a voltage

potential and denote the set of all voltage potentials corresponding to the data (g, a) by

V(g,a).

For a measurement matrix a = (aij)n×n, define the function I : Rn → R by

I(u) =
1

2

∑
i,j

aij |ui − uj |. (2.21)

Also for g ∈ R|∂V | satisfying (2.20) define

Mg := {u ∈ Rn :
∑
i∈∂V

uigi = 1}.
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We shall prove that the voltage potential is a minimizer of the l1 minimization problem

min
u∈Mg

1

2

∑
i,j

aij |ui − uj |. (2.22)

Let us first study the dual of this problem.

The dual problem

In this section we discuss the dual of the least gradient problem (2.22) and study its

connection to the primal problem. Let 0 6= g ∈ R|∂V | satisfying (2.20). Choose ug ∈ H(V )

such that ∑
i∈∂V

(ug)igi = 1.

Define

M0 := {u ∈ H(V ) :
∑
i∈∂V

uigi = 0}.

Then we can equivalently write the primal problem (2.22) as

min
u∈M0

1

2

∑
i,j

aij |ui − uj + (ug)i − (ug)j | = min
u∈M0

1

2
〈a, |Du+Dug|〉H(E). (2.23)

Define F : H(E)→ R and G :M0 → R as follows

F (d) =
1

2
〈a, |Du+Dug|〉H(E) and G(u) ≡ 0. (2.24)

Then (2.23) can be written as

(PN ) αPN
:= min

u∈M0

F (Du) +G(u).

As before this problem admits a dual problem which can be expressed as

max
b∈H(E)

−G∗(−divb)− F ∗(−b). (2.25)
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From Lemma 9 we have

F ∗(b) =


−〈b,Dug〉H(E) if |b| ≤ 1

2a

∞ otherwise.

Next we compute G∗.

Lemma 20 Let G :M0 → R be defined as G ≡ 0. Then for G∗ : (M0)∗ → R we have

G∗(D∗b) =


0 if b ∈ B

∞ otherwise,

(2.26)

where

B := {b ∈ H(E) : divb ≡ 0 on int(V ) and (divb)i = λgi for all i ∈ ∂V,

for some λ ∈ R}.

Proof. First note that

G∗(D∗b) = sup
u∈M0

〈D∗b, u〉H(V ) = sup
u∈M0

〈b,Du〉H(E) = sup
u∈M0

−〈divb, u〉H(V )

=


0 if divb ∈M0

⊥

∞ otherwise.

Let h ∈ H(V ) with hi = 0 if i ∈ int(V ) and hi = gi if i ∈ ∂V , and

N = {λh : λ ∈ R} ⊂ H(V ).

Observe that M0 = {u ∈ H(V ) : 〈h, u〉H(V ) = 0}. Hence M0 = N⊥. Since N⊥
⊥

= N (see

[27]),

M⊥0 = N,
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and the result follows. �

Therefore the dual problem (2.25) can be written as

(DN ) αDN
:= sup

b∈D
{−〈b,Dug〉H(E)},

where D = {b ∈ B : |b| ≤ 1
2a}.

Similar to before one can show that (2.22) has a minimizer. Similar to the Dirichlet

boundary condition case, it follows from Theorem III.4.1 in [17] that the dual problem (DN )

also has a solution and characterizes the non-uniqueness of solutions of the primal problem

(2.22).

Theorem 21 The infimum of the primal problem (PN ) is equal to the supremum of the

dual problem (DN ). Moreover, the dual problem has an optimal solution b, and J = −2b

satisfies

|Jij | = aij for every i, j with ui 6= uj (2.27)

and

Jij(ui − uj) ≥ 0 for all 1 ≤ i, j ≤ n, (2.28)

for every minimizer u of (2.22). Conversely, if (2.27) and (2.28) hold for some Mg, then

then u is a minimizer of (2.22).

Proof. Let b be a solution to the dual problem with corresponding λ ∈ R. Suppose u is a

27



minimizer of 2.22. Then

αPN
= I(u) =

1

2

∑
i,j

aij |ui − uj | ≥
∑
i,j

|bij ||ui − uj | ≥
∑
i,j

−bij(ui − uj) (2.29)

= 〈−b,Du〉H(E) = 〈divb, u〉H(V )

= λ
∑
i∈∂V

giui = λ = αDN
= αPN

.

Thus the inequalities in (2.29) are indeed equalities and taking J = −2b we we see that

(2.27) and (2.28) hold. We can also see from the above compuations that the converse also

holds. �

Corollary 22 If u and v are two arbitrary minimizers of (2.22), then

(ui − uj)(vi − vj) ≥ 0 for all 1 ≤ i, j ≤ n.

2.2.1 Voltage potentials have minimum energy

We can now prove the analog to Theorem 13.

Theorem 23 Let g 6= 0 be a function on ∂V satisfying 2.20 and a be a measurement matrix.

If v ∈ V(g,a), then v is a minimizer of the least gradient problem (2.22). Conversely, given

any a = (ai,j) with ai,j ≥ 0 and g ∈ R|∂V | satisfying (2.20), if v is a minimizer of the least

gradient problem (2.22), then v ∈ V(λg,a) for some λ > 0.

Proof. Suppose v ∈ V(g,a) and let J be the corresponding current on E. Following similar

computations as in the proof of Theorem 13 we have

I(v) =
1

2

∑
i,j

aij |vi − vj | =
1

2

∑
i,j

|Jij ||vi − vj | ≥
1

2

∑
i,j

Jij(vi − vj) (2.30)

=
∑
i∈∂V

vigi = 1.
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Therefore the minimum of the least gradient problem (2.22) is equal to 1. Moreover the

minimum is achieved for every v ∈ V(g,|J |).

Now suppose v is a minimizer of the problem (2.22) and let b be a solution of the

dual problem (DN ) with the corresponding λ ∈ R. Let J = −2b. Then by Theorem 21 we

see that v ∈ V(λg,a). �

Remark 24 Note that Corollary 22 indicates that the direction of the flow of the current

along the edges is unique, despite multiplicity of the minimizers of (2.3) (see also Remark

14).

2.2.2 Multiple measurements

Suppose we have two data sets (g1, a1) and (g2,

a2), and would like to find a conductivity matrix σ inducing the currents with magni-

tudes |J1| and |J2|, when the currents g1 and g2 are injected on the boundary vertices ∂1V

and ∂2V , respectively. We can consider the minimization problem

inf
(v1,v2)∈K

F (v1, v2). (2.31)

where F is defined by (2.17) and

K := {(v1, v2) ∈ Rn × Rn :

n∑
j=1

v1
i g

1
i = 1 on and

n∑
j=1

v2
i g

2
i = 1}.

The analog to Theorem 15 can be formulated and proved in this setting and we can also

similarly extend to a finite number of measurements.
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2.3 Algorithms for finding minimizers

In this section we present numerical algorithms for finding minimizers of the l1

minimization problems discussed in Sections 3 and 4, yielding voltage potentials for Dirichlet

or Neumann boundary conditions. The primal problem (PD) and (PN ) can be written as

min
{u∈H,d∈H(E)}

F (d) subject to Du = d, (2.32)

where H = H0(V ) for the Dirichlet case and H =M0 for the Neumann boundary problem.

This leads to the unconstrained problem

min
{u∈H,d∈H(E)}

F (d) +
α

2
‖Du− d‖2. (2.33)

To solve the above minimization problem, we use and develop an algorithm in the spirit of

the alternating Split Bregman method which was first introduced by Goldstein and Osher

[26]. The Split Bregman algorithm suggests initiating the vectors b0 and d0, and producing

the sequences uk, bk, and dk as follows

(uk+1, dk+1) = argminu∈H,d∈H(E){F (d) +
α

2
‖ bk +Du− d ‖22}, (2.34)

bk+1 = bk +Duk+1 − dk+1,

where α > 0. Since the joint minimization problem (2.34) in both u and d is in general

expensive to solve exactly, Goldstein and Osher [26] proposed the following Alternating

Split Bregman algorithm for solving problems of type (2.32)

uk+1 = argminu∈H ‖ bk +Du− dk ‖22, (2.35)

dk+1 = argmind∈H(E){F (d) +
α

2
‖ bk +Duk+1 − d ‖22}, (2.36)

bk+1 = bk +Duk+1 − dk+1. (2.37)
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See [18, 8, 26, 24, 62, 63] for more details. It is pointed out by Esser [18] and Setzer

[63] that the above idea to minimize alternatingly was first presented for the augmented

Lagrangian algorithm by Gabay and Mercier [24] and Glowinski and Marroco [25]. The

resulting algorithm is called the alternating direction method of multipliers (ADMM) [23]

and is equivalent to the alternating split Bregman algorithm. The convergence of ADMM

in finite dimensional Hilbert spaces was established by Eckstein and Bertsekas [16]. This

in particular implies convergence of the alternating split Bregman algorithm in finite di-

mensional Hilbert spaces. Cai, Osher, and Shen [8] and Setzer [62, 63] also independently

presented convergence results for the alternating split Bregman in finite dimensional Hilbert

spaces. In [50] and [52] the authors proved the convergence of the alternating split Breg-

man algorithm in infinite dimensional Hilbert spaces by showing that the alternating split

bregman algorithim corresponds to the Douglas-Rachford splitting algorithm for the dual

problem. Indeed the dual problems (2.10) and (2.25) can be written in the form

0 ∈ A(−b) +B(−b), (2.38)

where A := ∂G∗o(−div) and B = ∂F ∗ are maximal monotone operators on H. For a set

valued operator P : H → 2H , let JP denote its resolvent, i.e. JP = (Id + P )−1. Douglas-

Rachford splitting algorithm states that for any initial elements x0 and p0 and any α > 0,

the sequences pk and xk generated by the following algorithm

xk+1 = JαA(2pk − xk) + xk − pk

pk+1 = JαB(xk+1), (2.39)
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converges to some x and p respectively. Furthermore p = JαB(x) and p satisfies

0 ∈ A(p) +B(p).

Let us introduce the sequences bk and dk with

xk = α(bk + dk) and pk = αbk.

Notice that both sequences bk and dk converge. The resolvents JαA(2pk−xk) and JαB(xk+1)

can be computed as follows

JαA(2pk − xk) = α(bk +Duk+1 − dk) (2.40)

and

JαB(xk+1) = α(bk +Duk+1 − dk+1), (2.41)

where uk+1 and dk+1 are minimizers of

I1(u) =
∑
i,j

|bkij + (Du)ij − dkij |2 (2.42)

and

I2(d) =
1

2

∑
i,j

aij |dij + (Duf )ij |+
α

2

∑
i,j

|bkij + (Duk+1)ij − dij |2 (2.43)

over u ∈ H0(V ) for the Dirichlet problem and over u ∈M0 for the Neumann problem, and

over d ∈ H(E). We will first consider the case of finding minimizers of I1. Let u, v ∈ Rn.

For any t ∈ R define

i(t) = I1(u+ tv).

Then

i′(t) = 2
∑
i,j

(bij + (Du+ tv)ij − dij)(Dv)ij
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and so

i′(0) = 2
∑
i,j

(bij + (Du)ij − dij)(Dv)ij

= 2
∑
i,j

bij(Dv)ij + (Du)ij(Dv)ij − dij(Dv)ij

= 2
∑
i

−(divb)ivi − (div(Du))ivi + (divd)ivi

=
∑
i

(2(divd)i − 2(divb)i + 4
∑
j

(Du)i)vi

where we have used Proposition 6 and the fact that (div(Du))i = −2
∑

j(Du)i to simplify.

In the case of the Dirichlet boundary problem since I1 is convex if i′(0) = 0 for a fixed

u ∈ H0(V ) and all v ∈ H0(V ) then u is a minimizer of I1 over H0(V ). Thus if u satisfies

the Euler-Lagrange equation
n∑
j=1

(Du)ij = 1
2 [(divbk)i − (divdk)i], ∀i ∈ int(V )

ui = 0 for all i ∈ ∂V.
(2.44)

then u is a minimizer of I1 over H0(V ). It follows from Proposition 1 that the above system

is uniquely solvable.

In the case of Neumann boundary condition, I1 also has a unique minimizer in

M0 up to adding a constant, but identifying the solutions is more subtle. First note that

if u satisfies the Euler-Lagrange equation
n∑
j=1

(Du)ij = 1
2 [(divbk)i − (divdk)i], ∀i ∈ int(V )

n∑
j=1

(Du)ij = βgi + [1
2(divbk)i − (divdk)i], for all i ∈ ∂V

(2.45)

for β ∈ R and u ∈ M0 then u is minimizer of I1 over M0. Since
∑

i∈∂V gi = 0 and∑n
i=1(divc)i = 0 for any c ∈ H(E), by Propositions 17 and 18 the system (2.45) has a

unique solution in H(V ) for every β ∈ R, up to adding a constant. To identify β and find
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a solution of (2.45) in M0, let z be a solution of
n∑
j=1

(Dz)ij = 0, ∀i ∈ int(V )

n∑
j=1

(Dz)ij = gi for all i ∈ ∂V.
(2.46)

Then

0 <
1

2

∑
i,j

(Dz)ij =
1

2

n∑
i=1

wi

n∑
j=1

(Dz)ij −
1

2

n∑
j=1

zj

n∑
i=1

(Dz)ij

=

n∑
i=1

zi

n∑
j=1

(Dz)i,j

=
∑
i∈∂V

zigi.

Hence ∑
i∈∂V

zigi > 0.

Now let u be a solution of

n∑
j=1

(Du)ij =
1

2
[(divbk)i − (divdk)i], ∀i ∈ V. (2.47)

Define

β := −
∑

i∈∂V uigi∑
i∈∂V zigi

.

Then v = u+βz belongs toM0 and satisfies the equation (2.45), and hence v is the unique

minimizer of I1 over M0, up to adding a constant.

The minimizer of I2 for the Dirichlet problem can be directly computed as

dk+1
ij =


max{|wij | − aij

2α , 0}
wij

|wij | − (Duf )ij if wij 6= 0

−(Duf )ij if wij = 0,

(2.48)
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where wij = (Duk+1)ij + (Duf )ij + bkij . For the Neumann problem uf is replaced by vg.

Therefore Douglas-Rachford splitting leads to the following convergent algorithms

for the Dirichlet and Neumann problems.

Algorithm 1 (Finding a minimizer of the Dirichlet Problem)

Let α > 0, uf ∈ H(V ) with u = f on ∂V and initialize b0, d0 ∈ H(E). For k ≥ 0:

1. Solve 
∑
j

(Duk+1)ij = 1
2 [(divbk)i − (divdk)i], ∀i ∈ int(V )

uk+1
i = 0 for all i ∈ ∂V.

(2.49)

2. Compute dk+1

dk+1
ij =


max{|wij | − aij

2α , 0}
wij

|wij | − (Duf )ij if wij 6= 0

−(Duf )ij if wij = 0,

(2.50)

where wij = (Duk+1)ij + (Duf )ij + bkij .

3. Set

bk+1
ij = bkij + (Duk+1)ij − dk+1

ij .

The following proposition follows directly from the convergence of Douglas-Rachford

splitting algorithm and Theorem 1.2 in [50]. See also [8, 62, 63].

Proposition 25 Let uk bk, and dk be the sequences produced by the Algorithm 1. Then

uk → u and bk → 1
2αJ , where u and J are solutions of the (2.8) and it’s dual problem (D),

respectively. In addition dk → Du. In particular u is a voltage potential corresponding to

the data (f, a) and J is the induced current with |J | = a.
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Algorithm 2 (Finding a minimizer of the Neumann Problem)

Let α > 0, vg ∈ H(V ) with
∑
i∈∂V

vigi = 1 and initialize b0, d0 ∈ H(E). Also let z ∈ Rn be a

solution of (2.46) with z1 = 0. For k ≥ 0:

1. (a) Solve { ∑
j

(Duk+1)ij = 1
2 [(divbk)i − (divdk)i], ∀i ∈ V (2.51)

with uk+1
1 = 0.

(b) Compute

βk+1 = −
∑

i∈∂V u
k+1
i gi∑

i∈∂V zigi

and set vk+1 = uk+1 + βk+1z.

2. Compute dk+1

dk+1
ij =


max{|wij | − aij

2α , 0}
wij

|wij | − (Dvg)ij if wij 6= 0

−(Dvg)ij if wij = 0,

(2.52)

where wij = (Dvk+1)ij + (Dvg)ij + bkij .

3. Set

bk+1
ij = bkij + (Dvk+1)ij − dk+1

ij .

Convergence of Douglas-Rachford splitting algorithm implies the following conver-

gence result, see Theorem 1.2 in [50] and [8, 62, 63].

Proposition 26 Let vk bk, and dk be the sequences produced by the Algorithm 2. Then

vk → v and bk → 1
2αJ , where v and J are solutions of the (2.23) and it’s dual problem (DN ),
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respectively. In addition dk → Dv. In particular v is a voltage potential corresponding to

the data (λg, a) for some λ ∈ R and J is the induced current with |J | = a. Moreover λ is

the optimal values of the primal and dual problems (PN ) and (DN ), i.e. λ = αPN
= αDN

.

2.3.1 Numerical simulations

We performed a set of numerical simulations in MATLAB to demonstrate conver-

gence of Algorithm 1 and 2. A simple graph with 100 vertices was generated and edges were

randomly assigned between nodes with a approximate density of 0.125. Random numbers

uniformly distributed between 0 and 1 were then assigned to each edge as their conduc-

tivity. We then selected 5 boundary nodes and randomly assigned values between 0 and

1 as boundary data. For the Dirichlet boundary data, the forward problem was solved to

determine the current J , generating the data a = |J |. To generate the boundary data for

the Neumann problem we found the current entering/leaving the system at each boundary

vertex. The simulations for both the Dirichlet and Neumann boundary data were done on

the same graph structure with the same current data |J |. The nonsingular linear systems

in algorithm 1 were solved using the MATLAB mldivide function and the singular linear

systems in algorithm were solved using the pinv function. The vector uf was chosen to

be zero on int(V ) and f on the ∂V . The vector vg in Algorithm 2 was chosen using the

MATLAB mldivide function. Tables 1 and 2 show the numerical errors for algorithms 1

and 2 on the same graph for different levels of tolerance. Simulations were run on a late

2013 MacBook Pro with a 2.4 GHZ Intel Core i5 processor. We used the L2 matrix norm

for error computations.
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Table 2.1: Numerical errors for algorithm 1 on 100 node graph with 1121 edges

Tolerance Relative L2 Error Number of Iterations Elapsed Time(s)

10−3 1.2171×10−3 16 0.069309
10−4 1.3160×10−4 22 0.102846
10−5 1.4494×10−5 92 0.358250
10−6 1.3615×10−6 133 0.405979

Table 2.2: Numerical errors for algorithm 2 on 100 node graph with 1121 edges

Tolerance Relative L2 Error Number of Iterations Elapsed Time(s)

10−2 1.3069×10−3 7 0.055400
10−3 1.3908×10−4 9 0.071342
10−4 1.0235×10−5 12 0.086956
10−5 1.1987×10−6 24 0.147310

While running our simulations we observed that the speed of convergence of Al-

gorithm 1 varied quite wildly depending on the choice of boundary data. We also observed

that the speed of convergence of Algorithm 2 was always the same or faster than that of

Algorithm 1. To test this observation, we ran algorithms 1 and 2 on the same graph used

in Tables 1 and 2 for 1000 different choices of Dirichlet boundary. The average number

of iterations for each algorithm is shown in Table 3. We also remark that changing the

structure of the graph also effects the speed of convergence. It is not clear to the authors

that why Algorithm 2 converges faster than Algorithm 1, and an in depth analysis of the

Table 2.3: Average number of iterations for algorithm 1 versus algorithm 2

Tolerance Algorithm 1 Algorithm 2

10−3 21.175 15.918
10−4 46.097 18.905
10−5 111.847 23.486
10−6 227.624 32.846
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speed of convergences of algorithms 1 and 2 remain open.

2.4 Applications

In this section we discuss potential applications of our results on electrical networks

on random walks on graphs and Cryptography.

2.4.1 Random walks on graphs

We will now investigate how the inverse problem here can be related to random

walks. Random walk models have been used to model infection on graphs such as spread of

epidemics and rumours with mobile agents, see [9, 15], voting patterns [71, 12], and stock

market prices [20]. Random walk models have also been proven to be a simple yet powerful

method for extracting information from computer and social networks such as identification

of reputable entities in a network. For instance Google’s PageRank algorithm uses random

walks to rank websites in their search engine results, see [59, 30], and the survey papers [48]

and [61] for applications of random walks on graph in computer networks. Also see [64] for

a wide variety of applications of random walks on graphs in statistical mechanics.

Let G = (V,E′) be a connected, directed, and simple graph with n nodes and

consider a random walk on G. Suppose a random walker begins at node a and walks

until they reach node b and if they return to a before reaching b they keep walking. Let

P = (Pij) ∈ H(E) be the matrix of transition probabilities, i.e. 0 ≤ Pij ≤ 1 is the

probability of the random walker walking from node i to node j. In particular
∑

j Pij = 1

for all 1 ≤ i ≤ n. Let Wij be the expected number of times the walker walks from node i
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to node j before exiting the graph at node b. Note that Wij = −Wji. Can one determine

transition probabilities P = (Pij) from the knowledge of the boundary vertices {a, b} and

W = (Wi,j)? In this section, among other results, we show that the answer is yes, and

describe an algorithm for determining such P .

There is a close connection between electrical networks and random walks on

graphs [14]. Let G = (V,E) be an electrical network with conductivity matrix σ = (σij),

σi,j ∈ [0,∞), and let ∂V = {a, b}. Suppose a current g with g(a) = 1 and g(b) = −1 is

injected to the network inducing a current J along the edges. Define

σi :=

n∑
j=1

σij and Pij =
σij
σi

(2.53)

and assign the transition probability matrix P to the graph G = (V,E′). Then the net

number of times the walker taking an step from node i to node j is indeed Jij , i.e.

J = W.

Therefore if the boundary nodes ∂V = {a, b} and the magnitude of expected net number

of times the walker should walk along the edges of the graph is prescribed, by the method

presented in Section 5, one can first find a conductivity matrix σ inducing the current

J = W on network and compute transition probability matrix P by (2.53).

The connection between random walks on graphs and electrical networks with

Neumann boundary condition can be generalized to the case when ∂V = Γa ∪ Γb with

Γa ∩ Γb = ∅ and Γa,Γb 6= ∅. Let g ∈ R|∂V | with g|Γa ≥ 0 and g|Γb
≤ 0 and

∑
i∈Γ1

gi = 1 and
∑
i∈Γ2

gi = −1.
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Suppose we would like to determine a transition matrix P such that if a random walker

enters the network from a vertex k in Γa with probability gk, then

• they exit the network at a node l ∈ Γb with probability |gl|

• the expected net number of times they pass from vertex i to node j before exiting the

network is Wij , 1 ≤ i, j ≤ n.

As explained above, to determine the transition matrix P it suffices to find a conductivity

matrix σ inducing the current J = W with Neumann data g on ∂V . Then P can be

computed from (2.53).

Suppose ∂V = {a, b} and consider the inverse problems of determining the tran-

sition probabilities from the relative net number of times the walker walks between the

edges of the graphs, i.e. αW = (αWi,j) where α is a unknown constant. Then one can

determine a transition probability P by finding a conductivity matrix σ by minimizing the

l1 minimization problem (2.2) with a = αW , f(a) = 1 and f(b) = 0. A transition matrix

can also be obtained by minimizing (2.22) with the Neumann boundary condition g(a) = 1

and g(b) = −1.

Remark 27 Note that in this section we assume that the conductivity matrix σ = (σij)

satisfies σi,j ∈ [0,∞). Indeed we do not allow perfect conductors as otherwise the proba-

bility matrix P in (2.53) will not be well-defined. As described in the introduction, if for a

minimizer v of (2.3) or (2.22) we have vi = vj and |Ji,j | 6= 0 for some 1 ≤ i, j ≤ n, then

the edge (i, j) is a perfect conductor, i.e. σi,j = ∞. If v is minimizer of (2.3) or (2.22)

leading to perfect conductance on an edge, then one may look for an increasing function
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F : R → R such that u = (u1, u2, ..., un) := (F (v1), F (v2), ..., F (vn)) satisfies ui 6= uj for

i 6= j. Note that such u will also be a minimizer of (2.3) or (2.22) and would provide a con-

ductivity matrix σ with σij ∈ [0,∞), and hence the transition probabilities can be computed

from (2.53). If such increasing function F does not exists, then there exists no transition

probability matrix P for which the expected number of times the walker passes along the

edges is W .

2.4.2 Applications in cryptography

In this section we discuss a potential application of our results on electrical net-

works in public-key encryption. As stated in Remark 24, Theorem 13 implies that a mass

preserving flow J = (Jij) along the edges of a graph G = (V,E) can be recovered from

the knowledge of |J | = (|Jij |) and its net flux on the boundary nodes ∂V . More precisely,

suppose Ji,j is the current from node i to node j (Jij = −Jji for (i, j) ∈ E), and suppose

n∑
j=1

Jij = 0 for every interior node i 6∈ ∂V

and
n∑
j=1

Jij = fi for every boundary node i ∈ ∂V.

Then J can be reconstructed from the knowledge of (|J |, f, ∂V ). This counter-intuitive

result has a potential application in cryptography. To see the connection, let us translate a

special case of this result to the language of matrices.

Let In be a subset of {1, 2, ..., 2n + 1} with n elements and AIn be the space of

(2n+ 1)× (2n+ 1) anti-symmetric matrices A = (aij) satisfying the following properties:

Note that f ∈ Rn. Suppose a pair of communicators have agreed on a set of indices

42



In ⊂ {1, 2, ..., 2n + 1} with n elements, both are aware of In, and would like to securely

communicate a matrix A ∈ AIn . Then the first party can just send the key (|A|, f) where

f ∈ Rn is the sum of the entries of the rows of A that belong to In. The second party can

decrypt the message and find A from the knowledge of (|A|, f, In), using the algorithm we

developed in Section 4. Since aij only takes integer values in {−1, 0,+1}, a few iterations

of the algorithm should be enough to determine A. On the other hand, finding A from the

knowledge of (|A|, f) would be extremely difficult for an adversary who is not aware of In.

Indeed since all rows of |A| have an even number entries equal to 1, the adversary could not

determine the boundary nodes In from |A|. To decrypt the message, the adversary faces

the problem of guessing In among
(

2n+1
n

)
subsets of {1, ...., 2n + 1} with n elements and

matching it with f . The number of different possibilities are

n!

(
2n+ 1

n

)
' 22n+1

√
πn

n!,

which grows very fast and makes the decryption for adversaries extremely difficult for large

n.

43



Chapter 3

Determining both the source of a

wave and its speed in a medium

from boundary measurements

3.1 Prior uniqueness results

Unique determination of the source function f and the wave speed c has been

studied by many authors and several interesting results have been obtained. However,

most of the results in the literature have been concerned with determination of f from the

knowledge of Λf,c under the assumption that the sound speed is known. When the sound

speed is known, smooth, and non-trapping (see Definition 29), then the source f can be

uniquely recovered ([3, 2, 22, 32, 33, 45, 65, 68]). We will highlight some of these results

in more detail in the rest of this section. The case when the sound speed is known and
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constant was first studied. In [3], Agranovksy and Quinto proved the following uniqueness

theorem.

Theorem 28 If the known speed c is constant then the PAT data Λf,c(x, t) determines

f ∈ L2
c(Rn) uniquely.

When the sound speed is constant the solution is given by Kirchhoff Poisson formulas. This

relates the PAT problem to a problem involving the mean spherical operator, and thus

becomes a problem in integral geometry. This result was refined by Finch, Patch, and

Rakesh in [22], in which they proved uniqueness given PAT data of a finite time, specifically

for for 0 ≤ t ≤ D
2 where D is the diameter of Ω. Next the case when the sound speed is

variable was considered. Before stating these uniqueness results we need a definition.

Definition 29 For (x, ξ) ∈ R2n
x,ξ and the Hamiltonian H = 1

2c
2(x)|ξ|2, consider the Hamil-

tonian system



x′t = ∂H
∂ξ = c2ξ

ξ′t = −∂H
∂x = −c(x)∇(c(x))|ξ|2,

x|t=0 = x0, ξ|t=0 = ξ0.

(3.1)

The solution (x(t), ξ(t)) is called a bicharacteristic and x(t) is called a ray. We say that the

sound speed c is non-trapping if all rays with ξ0 6= 0 tend to infinity as t→∞.

It was proved by Agranovsky and Kuchment in [1] that a smooth non-trapping sound speed

can be recovered uniquely by the PAT data.

Theorem 30 Assume that the sound speed is strictly positive and both c − 1 and f have
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compact support. If the known speed c(x) is smooth and non-trapping then the PAT data

Λf,c(x, t) determines f(x) uniquely.

Similar to the constant speed case uniqueness also holds under finite time. Stefanov and

Uhlmann proved the following theorem in [68].

Theorem 31 Assume that the sound speed is strictly positive and both c − 1 and f have

compact support in Ω. If the known speed c(x) is smooth and non-trapping then the data

Λf,c(x, t) measured till any time T > T (Ω) is sufficient for unique recovery of f where T (Ω)

is the supremum of the time it takes for a ray to reach ∂Ω over all rays originating in Ω.

We also remark at this point that the inverse problem is satisfactorily stable when the sound

speed is known and non-trapping, see [45] for an brief overview of stability results.

In practice the sound speed inside the medium is often unknown [36]. It has been

observed that even replacing a sound speed with small variation by its average value can

significantly distort the reconstruction of f [33]. One suggested solution is to additionally

perform an ultrasonic transmission tomography (UTT) to recover the sound speed [36].

Thus from both a theoretical and practical point of view it would be advantageous to know

whether both the sound speed and the source term can be uniquely recovered from Λf,c.

This is currently an open problem. We will now outline the work that has been done is this

area. The first result for the recovery of a unknown sound speed was proved by Hristova,

Kuchment, and Nguyen in [33] where they proved that a constant sound speed can be

uniquely recovered using support conditions. They were able to prove this result for all odd

dimensions n > 1. In particular they proved the following explicit formula for c. (Theorem

5 in [33]).
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Theorem 32 Let Ω = {x ∈ Rn : |x| < 1} where n > 1 is odd. Let f be supported inside Ω.

Define

t0 = inf{t > 0 : there exists y ∈ ∂Ω such that Λ(y, t) 6= 0}

and

T0 = sup{t > 0 : there exists y ∈ ∂Ω such that Λ(y, t) 6= 0}.

Then the sound speed c satisfies the equality

c =
2

t0 + T0

and thus is uniquely determined by the PAT data Λ.

The existence of t0 and T0 is due to the finiteness of the speed of propagation.

In [21], Finch and Hickman proved uniqueness of the sound speed under a mono-

tonicity condition and that if the sound speed is radial then both f and c can be recovered

uniquely. To understand their results we first state one of their definitions.

Definition 33 An acoustic profile on a domain Ω is a smooth function c(x) ∈ C∞(Rn)

with 0 < σ < c(x) <∞ for all x ∈ Ω for some σ > 0 and supp(1− c(x)) ⊂ Ω.

We can now state Finch and Hickman’s main results.

Theorem 34 Let Ω be a domain in Rn. Suppose photoacoustic data Λ(x, t) is generated by

an acoustic profile in some D. Assume also that for every pair c(x), b(x) ∈ D, c(x)−b(x) ≥ 0

or c(x)− b(x) ≤ 0 on Ω. Then the acoustic profile generating the data Λ(x, t) is determined

uniquely in D.
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Theorem 35 Let Ω = B1(0) and n ≥ 3 be odd. Suppose that the photoacoustic data Λ(x, t)

on ∂Ω × (0,∞) is generated by a radially symmetric, non-trapping acoustic profile. Then

the acoustic profile generating data Λ(x, t) is uniquely determined among the set of radially

symmetric, non-trapping acoustic profiles.

These results are proved by connecting the PAT problem to the transmission eigenvalue

problem.

In [47], Liu and Uhlmann showed that under additional assumptions on the wave

speed and the source term both can be uniquely recovered simultaneously. It is the tech-

niques used in this paper that inspired our work. In their paper and our results soon to be

stated we restrict the dimension n = 3. Before stating their result we need to include some

background.

Let u(x, t) be the solution of the wave equation (1.8) and for (x, k) ∈ R3 × R+

define the temporal Fourier transform of the function u(x, t) by

û(x, k) :=
1

2π

∫ ∞
0

u(x, t)eiktdt. (3.2)

We then define an admissible pair for a source and wave speed.

Definition 36 Let 0 < c0 < c ∈ L∞(Ω),f ∈ L∞(Ω), supp(c − 1) ⊂ Ω, and supp(f) ⊂ Ω.

We say that the pair (f, c) is admissible if there exists ε > 0 such that û(x, k) ∈ H1
loc(R3)

for all k ∈ (0, ε).

Indeed if u(x, t) decays fast enough in time such that û(x, k) ∈ H1
loc(R3), then

(f, c) is admissible. Note that the admissibility assumption above is a weak form of the

non-trapping assumption on the sound speed. As pointed out in [47] by Liu and Uhlmann,
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if the sound speed c is smooth and non-trapping then (f, c) is admissible, but not vice versa.

See [21, 68] and the references cited therein for more details.

We can now state Liu and Uhlmann’s result.

Theorem 37 Let (f, c) be admissible and suppose that c is constant, f−2 is harmonic in

a simply connected region ω ⊂⊂ Ω and identically zero on ωc. Furthermore, assume that

f(x) ≥ 0 for a.e. x ∈ Ω and
∫

Ω f(x)dx > 0. Then both f and c are uniquely determined by

Λf,c(x, t).

We quickly remark that this result is a consequence of the results as stated in their paper.

We will conclude this section with two more remarks. The case when c is unknown but

f is known was considered by Stefanov and Uhlmann in [68]. They were able to prove

uniqueness of the sound speed from the knowledge of the source f under the assumption that

the domain Ω is foliated by strictly convex hypersurfaces with respect to the Riemannian

metric g = c−2dx. It was proved by Stefanov and Uhlmann in [67] that the linearized

problem of recovery of both f and c is unstable. This suggests that the recovery of both f

and c may be unstable as well. This instability result is as follows.

Theorem 38 Let K = supp(f) ⊂ Ω. There is no stability estimate of the type

||δf ||Hs1 (Ω) + ||δc2||Hs1 (K) ≤ C||δΛ{δf, δc2}||Hs2 (Ω),

s1 ≥ 0, s2 ≥ 0, regardless of s1, s2.
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3.2 New results

We prove that if c−2 is harmonic in ω ⊂ R3 and identically 1 on ωc, where ω is

a simply connected region, then a non-trapping wave speed c can be uniquely determined

from the solution of the wave equation on boundary of Ω ⊃⊃ ω without the knowledge

of the source. We also show that if the wave speed c is known and only assumed to be

bounded then, under the admissibility assumption in definition 36, the source of the wave

can be uniquely determined from boundary measurements. Indeed we prove Theorem 39

and Theorem 40 below.

Theorem 39 Let (f1, c1) and (f2, c2) be two admissible pairs such that

Λf1,c1(x, t) = Λf2,c2(x, t) ∀(x, t) ∈ ∂Ω× R+.

Then

C∗ :=

∫
Ω
c−2

1 (x)f1(x)dx =

∫
Ω
c−2

2 (x)f2(x)dx.

If C∗ 6= 0, then

∫
Ω

(c−2
2 − c

−2
1 )ϕdy = 0, for all harmonic functions ϕ. (3.3)

In particular, if (c−2
2 −c

−2
1 ) is harmonic in a simply connected region ω ⊂⊂ Ω and identically

zero on ωc, then c1 ≡ c2 in Ω.

We are also able to prove Corollary 45 regarding unique recovery of the sound speed under

monotonicity conditions.
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Theorem 40 Let (f1, c) and (f2, c) be admissible pairs. If

Λf1,c(x, t) = Λf2,c(x, t) ∀(x, t) ∈ ∂Ω× R+,

then f1 = f2.

Theorem 40 should be compared to the uniqueness results in [2] and [65] where the

authors assume that the sound speed is smooth. Models with discontinuous sound speed

arise in thermoacoustic and photoacoustic tomography in order to understand the effect of

sudden change of the sound speed in the skull in imaging of the human brain [66]. The

results in [66] assume that the sound speed is smooth but allow for jumps across smooth

surfaces. The rest of this thesis is devoted to proving the theorems in this section.

3.2.1 Uniqueness of the wave speed

In this section we present the proof of Theorem 39. Let us first develop a few basic

facts about solutions of the wave equation (1.8) and gather some known results which will

be used in our proofs.

The temporal Fourier transform û, defined in (3.2), satisfies the elliptic partial

differential equation

∆û(x, k) +
k2

c2(x)
û(x, k) =

ik

2π

f(x)

c2(x)
, (x, k) ∈ R3 × (0, ε), (3.4)

which is well-posed under the classical Sommerfeld radiation condition

lim
|x|→∞

|x|
(
∂û(x, k)

∂|x|
− ikû(x, k)

)
= 0. (3.5)

A good reference for more information on this Helmholtz type equation is [11]. Note also
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that under the temporal Fourier transform the measurement operator becomes

Λ̂f,c(x, k) = û(x, k), (x, k) ∈ R3 × (0, ε). (3.6)

Remark 41 Suppose that for some admissible pairs (f1, c1) and (f2, c2) we have that

Λf1,c1(x, t) = Λf1,c1(x, t) for all (x, t) ∈ ∂Ω × (0,∞). Since c1 = c2 ≡ 1 and f1 = f2 ≡ 0

outside Ω, u1 and u2 both satisfy the same equation outside Ω. It then follows that u1(x, t) =

u2(x, t) for all (x, t) ∈ ∂Ωc × (0,∞) since they both solve the same exterior boundary value

problem. Thus

û1(x, k) = û2(x, k), (x, k) ∈ Ωc × (0, ε)

and it follows that

∂û1(x, k)

∂ν
=
∂û2(x, k)

∂ν
, (x, k) ∈ ∂Ω× (0, ε).

In the rest of this chapter we will frequently use integration by parts (sometimes also referred

to as Green’s formula). We can assume without loss of generality that the boundary of Ω

is sufficiently regular for all such computations. If the boundary of Ω were to lack the

necessary regularity the previous remark tells us that we can simply assume the PAT data

is equal on the boundary of some sphere containing Ω and use this sphere in place of Ω

moving forward. We shall need the following lemma proved by Liu and Uhlamm in [47]

(they also use results from [11])

Lemma 42 ([47]) Let û(x, k) ∈ H1
loc(R3) be the solution to (3.4)-(3.5). Then û(x, k) is

uniquely given by the following integral equation

û(x, k) = k2

∫
R3

(
c−2(y)− 1

)
û(y, k)Φ(x− y)dy − ik

2π

∫
R3

f(y)

c2(y)
Φ(x− y)dy, x ∈ R3. (3.7)
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Moreover, as k → 0, we have

û(x, k) = − ik
2π

∫
Ω

f(y)

c2(y)
Φ0(x− y)dy +

k2

8π2

∫
Ω

f(y)

c2(y)
dy +O(k3). (3.8)

Here

Φ(x) :=
eik|x|

4π|x|
for |x| 6= 0

is the fundamental solution of −∆− k2 and Φ0 is the fundamental solution of −∆.

Define the space

A := {v ∈ L2(Ω) :

∫
Ω
gϕdx = 0 for all harmonic functions ϕ}.

We shall frequently use the following two lemmas.

Lemma 43 Let g ∈ L2(Ω) and suppose w ∈ H1(Ω) satisfies
−∆w = g in Ω

w = 0 on ∂Ω.

(3.9)

Then ∂w
∂ν = 0 on ∂Ω if and only if g ∈ A.

Proof. Let ϕ be harmonic in Ω and w ∈ H2(Ω) be the solution of (3.9). We have that

−
∫

Ω
∆w(y)ϕ(y)dy =

∫
Ω
g(y)ϕ(y)dy.

Then integration by parts two times gives that

−
∫

Ω
w(y)∆ϕ(y)dy −

∫
∂Ω
ϕ(y)

∂w

∂ν
dS +

∫
∂Ω
w(y)

∂ϕ

∂ν
dS =

∫
Ω
g(y)ϕ(y)dy.

Since ϕ is harmonic and w = 0 on ∂Ω we have that

−
∫
∂Ω
ϕ(y)

∂w

∂ν
dS =

∫
Ω
g(y)ϕ(y)dy.

Hence ∂w
∂ν = 0 on ∂Ω if and only if g ∈ A. �
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Lemma 44 For g ∈ L∞(R3) with compact support in Ω define

w(x) :=

∫
R3

g(y)Φ0(x− y)dy =

∫
Ω
g(y)Φ0(x− y)dy. (3.10)

Then

−∆w = g in R3

in the weak sense. Moreover if w = 0 on Ωc, then for any harmonic function ϕ on R3 we

have ∫
R3

g(y)ϕ(y)dy =

∫
Ω
g(y)ϕ(y)dy = 0.

Proof. The function w is often referred to as the Newton potential of g. For details on the

Newton potential we refer the reader to chapters 2 and 13 of [38]. One thing of note is that

if g ∈ L∞(Ω) then w ∈ C1,α(Ω) for any α ∈ (0, 1). Since w = 0 and ∂w
∂ν = 0, the second

part of this lemma follows from Lemma 43. �

For g ∈ L2(Ω) we will denote the solution of (3.9) by ∆−1(g). Note that if

g ∈ L∞(R3) has compact support in Ω and w defined by (3.10) vanishes on Ωc, then

w = ∆−1(g).

Proof of Theorem 39. By Lemma 42 we have

û(x, t) = − ik
2π

∫
Ω

f(y)

c2(y)
dyΦ0(x− y)dy +

k2

8π2

∫
Ω

f(y)

c2(y)
dy +O(k3). (3.11)

For i = 1, 2 define

wi(x) := lim
k→0

ûi(x, k)

k
= − i

2π

∫
Ω

fi(y)

c2
i (y)

Φ0(x− y) =
i

2π
∆−1(

fi(y)

c2
i (y)

).
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Then w := w2 − w1 satisfies

∆w =
i

2π

(
f2(y)

c2
2(y)

− f1(y)

c2
1(y)

)
,

and w = ∂w
∂ν = 0 on ∂Ω via the argument in remark 41. Therefore it follows from Lemma

43 that ∫
Ω

(
f2(y)

c2
2(y)

− f1(y)

c2
1(y)

)
ϕ(y)dy = 0, (3.12)

for every harmonic function ϕ. On the other hand we have

∆(û2(x, k)− û1(x, k)) +
k2

c2
2(x)

û2(x, k)− k2

c2
1(x)

û1(x, k) = − ik
2π

(
f2(x)

c2
2(x)

− f1(x)

c2
1(x)

)
, (3.13)

for (x, k) ∈ R3× (0, ε). Multiplying both sides of the above equation by a harmonic function

ϕ, using (3.12) and the fact that û2 − û1 ≡ 0 on Ωc, and integrating by parts we get

1

k

∫
Ω

(
û2(y, k)

c2
2(y)

− û1(y, k)

c2
1(y)

)
ϕdy = 0, ∀k ∈ (0, ε). (3.14)

Since û2(x, k) = û1(x, k) for all (x, k) ∈ ∂Ω× (0, ε), it follows from (3.11) that

∫
Ω
c−2

1 f1dy =

∫
Ω
c−2

2 f2dy. (3.15)

Combining this with (3.14) and Lemma 42 we have

i

2π

∫
Ω

(
(
∫

Ω c
−2
2 (z)f2(z)Φ0(y − z)dz

c2
2(y)

−
∫

Ω c
−2
1 (z)f1(z)Φ0(y − z)dz

c2
2(y)

)
ϕ(y)dy

− k

8π2

∫
Ω
c−2

1 (y)f1(y)dy

∫
Ω

(c−2
2 (y)− c−2

1 (y))ϕ(y)dy +O(k2) = 0, (3.16)

for all k ∈ (0, ε). Thus

∫
Ω

(∫
Ω c
−2
2 (z)f2(z)Φ0(y − z)dz

c2
2(y)

−
∫

Ω c
−2
1 (z)f1(z)Φ0(y − z)dz

c2
2(y)

)
ϕ(y)dy (3.17)
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and ∫
Ω

(c−2
2 − c

−2
1 )ϕdy = 0 (3.18)

for any harmonic function ϕ, provided C∗ 6= 0. If (c−2
2 − c−2

1 ) is harmonic in a simply

connected region ω ⊂⊂ Ω and identically zero on ωc, then taking ϕ = (c−2
2 − c

−2
1 ) in (3.2.1)

implies c1 ≡ c2. �

Corollary 45 If c1 ≥ c2 or c1 ≤ c2 in Ω, then c1 ≡ c2.

Proof. Let ϕ ≡ 1 in Ω. Then by Theorem 39 we have∫
Ω
c−2

2 (x)dx =

∫
Ω
c−2

1 (x)dx,

and the result follows immediately. �

We can compare this to Finch and Hickman’s result in Theorem 34. The result does not

require the sound speed to be smooth, we instead require the admissibility condition.

At this point we would like to provide some of the inspiration behind the proof of

Theorem 39. As previously mentioned, [47] was the inspiration for our work. In this paper

they used the series expansion of eik|x−y| to expand Φ(x− y) as

Φ(x− y) = Φ0(x− y) +
1

4π

∞∑
n=1

inkn|x− y|n−1.

Using this expansion and Lemma 42 they get that

û(x, k) = −−ik
2π

∫
Ω
c−2(y)f(y)Φ0(x− y)dy +

k2

8π2

∫
Ω
c−2(y)f(y)dy

+ k3

(
i

2π

∫
Ω

(1− c−2(y))∆−1(c−2f)(y)Φ0(x− y)dy +
i

16π2

∫
Ω
c−2(y)f(y)|x− y|dy

)
+O(k4).
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When û1 = û2 on ∂Ω they use the corresponding three equations (when k=1,2,3) to prove

their results. In particular they prove that since

∫
Ω
c−2

1 (y)f1(y)Φ0(x− y)dy =

∫
Ω
c−2

2 (y)f2(y)Φ0(x− y)dy (3.19)

for all x ∈ Ωc (this follows from the k=1 terms) then

∫
Ω
c−2

1 (y)f1(y)ϕ(y)dy =

∫
Ω
c−2

2 (y)f2(y)ϕ(y)dy (3.20)

for all harmonic functions ϕ. Since Φ0(x−y) is itself harmonic this gives that equation 3.19

in fact holds for all x ∈ Ω as well. We can use Lemmas 43 and 44 to verify this despite the

fact that Φ0(x− y) blows up when x = y. In fact the computations in 43 will hold with ϕ

replaced by Φ0(x− y) by isolating the singularity.

We then asked the natural question as to what will happen if we continuing ex-

panding. Furthering this expansion we can obtain the k4 term in the expansion of û to

be

−1

8π2

∫
Ω

(1− c−2(y))Φ0(x− y)dy

∫
Ω
c−2(y)f(y)dy − 1

48π2

∫
Ω
c−2(y)f(y)|x− y|2.

If û1 = û2 on Ωc we already know (from the k=2 terms) that

∫
Ω
c−2

1 (y)f1(y)dy =

∫
Ω
c−2

2 (y)f1(y)dy.

Suppose û1 = û2 on Ωc. We know from equation 3.19 that

C∗ = ∆−1(c−2
1 f1 − c−2

2 f2) =
∂∆−1(c−2

1 f1 − c−2
2 f2)

∂ν
= 0, ∂Ω

an we can obtain by integration by parts that (see 46 for more details)

∫
Ω

(c−2
1 (y)f1(y)− c−2

2 (y)f2(y))|x− y|2 = −6

∫
Ω

(∆−1(c−2
1 f1 − c−2

2 f2)(y))dy = 0
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for any x ∈ Ωc. Then the equation obtained from the fourth order terms gives that

∫
Ω

(1− c−2
1 (y))Φ0(x− y)dy

∫
Ω
c−2

1 (y)f1(y)dy =

∫
Ω

(1− c−2
2 (y))Φ0(x− y)dy

∫
Ω
c−2

2 (y)f2(y)dy

for all x ∈ Ωc. So if C∗ 6= 0 we have for all x ∈ Ωc

∫
Ω

(c−2
1 (y)− c−2

2 (y))Φ0(x− y)dy = 0.

As mentioned previously this is equivalent to saying that

∫
Ω

(c−2
2 − c

−2
1 )ϕdy = 0

for any harmonic function ϕ. Note that we have just provided an alternate proof of Theorem

39, although the underlying proof mechanism is the same. After obtaining the new result

using the fourth order terms we thought that perhaps we could compute higher order

terms and obtain further results regarding the sound speed. However these terms become

complicated very quickly and we were unable to make sense of them. We did however notice

that if we took c1 = c2 that these higher order terms simplified significantly and we were

able to use them to prove Theorem 40. This proof is provided in the next section.

3.2.2 Uniqueness of the source

In this section we prove that if c1 = c2 = c ∈ L∞(R3), then the source function f

can be uniquely recovered from the knowledge of Λf,c(x, t) on ∂Ω × R+. Throughout this

section we shall assume that c1 = c2 = c ∈ L∞(R3).
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By Lemma 42, û2 − û1 satisfies the following integral equation

(û2 − û1)(x, k) = k2

∫
Ω

(c−2(y)− 1)(û2 − û1)(y, k)Φ(x− y)dy

− ik
2π

∫
Ω
c−2(y)(f2 − f1)(y)Φ(x− y)dy. (3.21)

We shall need the following lemma.

Lemma 46 Let g have compact support in Ω and g ∈ L∞(R3). Suppose that w defined by

(3.10) vanishes on Ωc. Then for n ≥ 1

∫
Ω
g(y)|x− y|ndy = −n(n+ 1)

∫
Ω

∆−1(g)(y)|x− y|n−2dy (3.22)

for all x ∈ R3.

Proof. Lemma 44, integration by parts twice, and w = ∂w
∂ν = 0 on ∂Ω give us that

∫
Ω
g(y)|x− y|ndy = −

∫
Ω

∆w(y)|x− y|ndy

= −
∫

Ω
w(y)∆|x− y|ndy +

∫
∂Ω
w(y)

∂|x− y|n

∂ν
− |x− y|n(y)

∂w

∂ν
dS

= −n(n+ 1)

∫
Ω

∆−1(g)(y)|x− y|n−2dy.

We remark that some care must be taken when n = 1 as the derivatives of |x − y| blow

up when x = y. However it can be shown though removing the singularity that the above

equations still hold. �

For every g ∈ L∞(R3) with compact support in Ω define

Lg(x) := ∆−1(c−2g)(x), x ∈ R3.
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Proposition 47 For every n ∈ N there exists functions pm(x), m = 1, 2, ..., n, such that

(û2 − û1)(x, k) =
n∑

m=1

pm(x)kj +O(kn+1), (3.23)

as k → 0. Moreover if u2(x, k)− u1(x, k) = 0 for all x ∈ Ωc, then

pn(x) =


−i
2πL

n+1
2 (f2 − f1)(x) if n is odd

0 if n is even.

(3.24)

Proof. By Lemma 42, (3.23) holds for n = 1, 2. Suppose it holds for all j ≤ n. Then there

exists functions pm(x), m = 1, 2, ..., n, such that

(û2 − û1)(x) =
n∑

m=1

pm(x)kj +O(kn+1) as k → 0.

Plugging this expression for û2 − û1 into equation (3.21) and expanding Φ we find that

(û2 − û1)(x) =
n∑

m=1

pm(x)kj + pn+2(x)kn+2 +O(kn+3) as k → 0,

where

pn+2(x) =

n∑
m=0

im

4πm!

∫
Ω

(c−2 − 1)(y)pn−m(y)|x− y|m−1dy

− in+2

8π2(n+ 1)

∫
Ω
c−2(y)(f2 − f1)(y)|x− y|ndy.

To prove (3.24) we proceed by strong induction. First notice that pm ≡ 0 on Ωc for all

m ∈ N. By Lemma 42, (3.24) holds when n = 0, 1, 2. Suppose (3.24) holds for all j ≤ n+ 1.

First assume that n is odd. Using the integral equation (3.21) and the induction hypothesis

we compute that

pn+2(x) =

n−1∑
m=0

m even

im+1

8π2m!

∫
Ω

(1− c−2)(y)L
n−m+1

2 (f2 − f1)(y)|x− y|m−1dy

− in+2

8π2(n+ 1)

∫
Ω
c−2(y)(f2 − f1)(y)|x− y|ndy.
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For even m with m ≤ n− 1 define

qm(x) :=
im+1

8π2m!

∫
Ω

(1− c−2)(y)L
n−m+1

2 (f2 − f1)(y)|x− y|m−1dy,

and

r(x) := − in+2

8π2(n+ 1)!

∫
Ω
c−2(y)(f2 − f1)(y)|x− y|ndy.

Then

pn+2(x) =
n−1∑
m=0

m even

qm(x) + r(x).

It follows from the induction hypothesis and Lemma 46 that

q2(x) =
−i

8π22!

∫
Ω

(1− c−2)(y)L
n−1
2 (f2 − f1)(y)|x− y|dy

=
−i

8π22!

∫
Ω
L

n−1
2 (f2 − f1)(y)|x− y|dy

+
i

8π22!

∫
Ω
c−2(y)L

n−1
2 (f2 − f1)(y)|x− y|dy

=
−i

8π22!

∫
Ω
L

n−1
2 (f2 − f1)(y)|x− y|dy

− i

8π2

∫
Ω

∆−1(c−2(y)L
n−1
2 (f2 − f1))(y)|x− y|−1dy

=
−i

8π22!

∫
Ω
L

n−1
2 (f2 − f1)(y)|x− y|dy − i

8π2

∫
Ω
L

n+1
2 (f2 − f1)(y)|x− y|−1dy.

Thus we have

(q0 + q2)(x) =
−i
8π2

∫
Ω
c−2(y)L

n+1
2 (f2 − f1)(y)|x− y|−1dy

− i

8π22!

∫
Ω
L

n−1
2 (f2 − f1)(y)|x− y|dy

=
−i
2π

∫
Ω
c−2(y)L

n+1
2 (f2 − f1)(y)Φ0(x− y)dy

− i

8π22!

∫
Ω
L

n−1
2 (f2 − f1)(y)|x− y|dy

= − i

2π
L

n+3
2 (f2 − f1)(x)− i

8π22!

∫
Ω
L

n−1
2 (f2 − f1)(y)|x− y|dy.
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Similarly by Lemma 46 we get

q4(x) =
i

8π24!

∫
Ω

(1− c−2)(y)L
n−3
2 (f2 − f1)(y)|x− y|3dy

=
i

8π24!

∫
Ω
L

n−3
2 (f2 − f1)(y)|x− y|3dy +

i

8π22!

∫
Ω
L

n−1
2 (f2 − f1)(y)|x− y|dy.

Hence

(q0 + q2 + q4)(x) = − i

2π
L

n+3
2 (f2 − f1)(x) +

i

8π24!

∫
Ω
L

n−3
2 (f2 − f1)(y)|x− y|3dy.

We can continue this process in general. Let m be even with m ≤ n− 3 and suppose

(q0 + q2 + ...+ qm)(x) = − i

2π
L

n+3
2 (f2 − f1)(x) +

im+1

8π2m!
L

n−m+1
2 (f2 − f1)(y)|x− y|m−1dy.

Then by Lemma 46

qm+2(x) =
im+3

8π2(m+ 2)!

∫
Ω

(1− c−2)(y)L
n−m−1

2 (f2 − f1)(y)|x− y|m+1dy

=
im+3

8π2(m+ 2)!

∫
Ω
L

n−m−1
2 (f2 − f1)(y)|x− y|m+1dy

+
im+3

8π2m!

∫
Ω
L

n−m+1
2 (f2 − f1)(y)|x− y|m−1dy.

Noting that im+3 = −im+1 we get that

(q0 + q2 + ...+ qm + qm+2)(x) = − i

2π
L

n+3
2 (f2 − f1)(x)

+
im+3

8π2(m+ 2)!

∫
Ω
L

n−m−1
2 (f2 − f1)(y)|x− y|m+1dy.

Repeating the above process until m = n− 1 we obtain

(q0 + q2 + ...+ qn−3 + qn−1)(x) = − i

2π
L

n+3
2 (f2 − f1)(x)

+
in

8π2(n− 1)!

∫
Ω
L(f2 − f1)(y)|x− y|n−2dy.
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In addition by Lemma 46

r(x) =
in+2

8π2(n− 1)!

∫
Ω
L(f2 − f1)(y)|x− y|n−2dy.

Hence

pn+2(x) = − i

2π
L

n+3
2 (f2 − f1)(x).

This finishes the proof for the case that n is odd.

Now suppose n is even. Using the integral equation (3.21) and the induction

hypothesis we compute that

pn+2(x) =

n−1∑
m=1

m odd

im+1

8π2m!

∫
Ω

(1− c−2)(y)L
n−m+1

2 (f2 − f1)(y)|x− y|m−1dy

− in+2

8π2(n+ 1)

∫
Ω
c−2(y)(f2 − f1)(y)|x− y|ndy.

As before for odd m with m ≤ n− 1 define

qm(x) :=
im+1

8π2m!

∫
Ω

(1− c−2)(y)L
n−m+1

2 (f2 − f1)(y)|x− y|m−1dy,

and

r(x) := − in+2

8π2(n+ 1)!

∫
Ω
c−2(y)(f2 − f1)(y)|x− y|ndy.

Then

pn+2(x) =
n−1∑
m=0

m even

qm(x) + r(x).
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It follows from the induction hypothesis and Lemma 46 that

q3(x) =
1

8π23!

∫
Ω

(1− c−2)(y)L
n−2
2 (f2 − f1)(y)|x− y|2dy

=
1

8π23!

∫
Ω
L

n−2
2 (f2 − f1)(y)|x− y|2dy

− 1

8π23!

∫
Ω
c−2(y)L

n−2
2 (f2 − f1)(y)|x− y|2dy

=
1

8π23!

∫
Ω
L

n−2
2 (f2 − f1)(y)|x− y|2dy

+
1

8π2

∫
Ω

∆−1(c−2(y)L
n−2
2 (f2 − f1))(y)dy

=
1

8π23!

∫
Ω
L

n−2
2 (f2 − f1)(y)|x− y|2dy +

1

8π2

∫
Ω
L

n
2 (f2 − f1)(y)dy.

Thus we have

(q1 + q3)(x) =
−1

8π2

∫
Ω

(1− c−2)(y)L
n
2 (f2 − f1)(y)dy

+
1

8π23!

∫
Ω
L

n−2
2 (f2 − f1)(y)|x− y|2dy +

1

8π2

∫
Ω
L

n
2 (f2 − f1)(y)dy

=
1

8π2

∫
Ω
c−2(y)L

n
2 (f2 − f1)(y)dy +

1

8π23!

∫
Ω
L

n−2
2 (f2 − f1)(y)|x− y|2dy

Similarly by Lemma 46 we get

q5(x) = − 1

8π25!

∫
Ω

(1− c−2)(y)L
n−4
2 (f2 − f1)(y)|x− y|4dy

= − 1

8π25!

∫
Ω
L

n−4
2 (f2 − f1)(y)|x− y|4dy − 1

8π23!

∫
Ω
L

n−2
2 (f2 − f1)(y)|x− y|2dy.

Hence

(q1 + q3 + q5)(x) =
1

8π2

∫
Ω
c−2(y)L

n
2 (f2 − f1)(y)dy − 1

8π25!

∫
Ω
L

n−4
2 (f2 − f1)(y)|x− y|4dy.
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We can continue this process in general. Let m be odd with 1 ≤ m ≤ n− 3 and suppose

(q1 + q3 + ...+ qm)(x) =
1

8π2

∫
Ω
c−2(y)L

n
2 (f2 − f1)(y)dy

+
im+1

8π2m!

∫
Ω
L

n−m+1
2 (f2 − f1)(y)|x− y|m−1dy.

Then as in the odd case by Lemma 46

qm+2(x) =
im+3

8π2(m+ 2)!

∫
Ω

(1− c−2)(y)L
n−m−1

2 (f2 − f1)(y)|x− y|m+1dy

=
im+3

8π2(m+ 2)!

∫
Ω
L

n−m−1
2 (f2 − f1)(y)|x− y|m+1dy

+
im+3

8π2m!

∫
Ω
L

n−m+1
2 (f2 − f1)(y)|x− y|m−1dy.

Noting that im+3 = −im+1 we get that

(q1 + q3 + ...+ qm + qm+2)(x) =
1

8π2

∫
Ω
c−2(y)L

n
2 (f2 − f1)(y)dy

+
im+3

8π2(m+ 2)!

∫
Ω
L

n−m+1
2 (f2 − f1)(y)|x− y|m−1dy.

Repeating the above process until m = n− 1 we obtain

(q1 + q3 + ...+ qn−3 + qn−1)(x) =
1

8π2

∫
Ω
c−2(y)L

n
2 (f2 − f1)(y)dy

+
in

8π2(n− 1)!

∫
Ω
L(f2 − f1)(y)|x− y|n−2dy.

In addition by Lemma 46

r(x) =
in+2

8π2(n− 1)!

∫
Ω
L(f2 − f1)(y)|x− y|n−2dy.

Hence

pn+2(x) =
1

8π2

∫
Ω
c−2(y)L

n
2 (f2 − f1)(y)dy.

By the induction hypothesis for j = n+ 1 we have

pn+1(x) = L
n+2
2 (f2 − f1)(x) = 0, ∀x ∈ Ωc.

65



Hence

∆−1(c−2L
n
2 (f2 − f1)) = L

n+2
2 (f2 − f1)(x) = 0 ∀x ∈ Ωc,

and it follows from Lemma 44 that

∫
Ω
c−2(y)L

n
2 (f2 − f1)(y)ϕdy = 0,

for every harmonic function ϕ. Letting φ ≡ 1 we get

pn+2(x) =

∫
Ω
c−2(y)L

n
2 (f2 − f1)(y)dy = 0.

Hence pn+2(x) = 0. �

Theorem 48 Suppose c1 = c2 = c and that u1, u2 be solutions of the wave equation (1.8)

with u1(x, 0) = f1 and u2(x, 0) = f2. If

u2(x, t) = u1(x, t) for all (x, t) ∈ Ωc × R+,

then ∫
Ω
Fnϕc

−2dx = 0, (3.25)

for all n ≥ 0 and all harmonic functions ϕ, where F0 = f2 − f1 and

Fn = ∆−1(c−2Fn−1), n ≥ 1. (3.26)

Proof. The proof follows directly from Proposition 47, Lemma 43, and the observation

that Fn = pn. �

The proof of the next lemma will use Theorem 6.3 in [34]. It is provided below for

reference.
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Theorem 49 Let Ω be an open connected subset of Rn with n > 2 and V ∈ L
n
2
loc(Ω). Let

q = 2n
n+2 . If u ∈ H2,q

loc (Ω) satisfies

|∆u(x)| ≤ |V (x)||u(x)|

for all x ∈ Ω and if u vanishes in a non-empty open subset of Ω then u is identically zero

in Ω.

We can now prove the following lemma.

Lemma 50 Let g ∈ L2(Ω) satisfy

∫
Ω
c−2gϕdx = 0, (3.27)

for all ϕ harmonic in Ω. Suppose c0 < c ∈ L∞(Ω) for some c0 > 0. If

λg = ∆−1(c−2g) in Ω (3.28)

for some λ > 0, then g ≡ 0.

Proof. It follows from Lemma 43 that g|Ω = ∂g
∂ν = 0. Note that

−∆g =
c−2

λ
g in Ω.

Since c ∈ L∞(Ω) and g ∈ L2(Ω), by elliptic regularity g ∈ H2(Ω). Thus g ∈ W 1,2(Ω) and

so by the k < n
p case of the general Sobolev inequality (see Theorem 5.6 in [19]) g ∈ L6(Ω).

Since c ∈ L∞(Ω) again by elliptic regularity we have that g ∈W 2,6(Ω). Then by the k > n
p

case of the general Sobolev inequality we have that g ∈ C1, 1
2 (Ω̄). Hence we can extend g to

a function g̃ ∈ C0, 1
2 (R3) by defining g̃ = 0 on Ωc. Let

w(x) :=
1

λ

∫
R3

c−2(y)g̃(y)Φ0(x− y)dy =
1

λ

∫
Ω
c−2(y)g(y)Φ0(x− y)dy.
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Since c−2g̃ ∈ L∞(R3), it follows from elliptic regularity that w ∈ C1,α(α) and it satisfies

−∆w =
c−2

λ
g̃.

Furthermore since g ∈ A, w = 0 on Ωc. Thus w = g̃ and hence g̃ ∈ C1,α(R3) solves

−∆g̃ =
c−2

λ
g̃, in R3

and g̃ = 0 on Ωc. We will then apply the unique continuation result in [34] (see Theorem

49. Let Ω′ be a bounded domain in R3 containing Ω. Since c ∈ L∞(R3) we have that

c−2

λ ∈ L
3
2 (Ω′). Since g̃ ∈ H2(Ω′) (by elliptic regularity) and Ω′ is bounded we have that

g̃ ∈W 2, 6
5 (Ω′). Since

|∆g̃| ≤ c−2

λ
|g̃|

for all x ∈ Ω′ and g̃ vanishes in Ω′ −Ω we can conclude that g̃ = 0 in Ω′. Thus g = 0 in Ω.

�

Lemma 51 Let H be defined by

H := {v ∈ L2(Ω, c−2dx) : c−2v ∈ A and c−2Ln(v) ∈ A ∀n ∈ N}.

Then H is a Hilbert space equipped with the inner product

〈v, w〉|H =

∫
Ω
vwc−2dx.

Proof. The linearity of L gives that H is a subspace. It remains to verify that H is closed.

Suppose vn converges to v in L2(Ω, c−2dx) and vn ∈ H. We can show c−2v ∈ A simply. Let
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ϕ be harmonic. Then by Holder’s inequality

|
∫

Ω
c−2vφ| = |

∫
Ω
c−2(vn − v)φ|

≤
∫

Ω
|c−1(vn − v)||c−1φ|

≤ (

∫
Ω
c−2|vn − v|2)

1
2 (

∫
Ω
c−2|φ|2)

1
2

= ||vn − v||L2(Ω,c−2dx)||c−2φ||L2(Ω).

Since c−2φ ∈ L2(Ω) and ||vn − v||L2(Ω,c−2dx) → 0 as n→∞ we have that
∫

Ω c
−2vφ = 0.

We claim that wn := Lvn converges to w := Lv in L2(Ω, c−2dx). Since

−∆(wn − w) = c−2(vn − v) in Ω, wn = 0 on ∂Ω,

we have

‖ wn − w ‖H2(Ω)≤ C ‖ c−2(vn − v) ‖L2(Ω)→ 0,

(See the Remark after Theorem 4 in section 6.3 of [19]) and hence wn converges to w in

L2(Ω, c−2dx). Moreover, c−2Ln(w) = c−2Ln+1(v) ∈ A for all n ≥ 0. Thus w ∈ H and the

proof is complete. �

Lemma 52 The linear operator L : H → H is a non-negative, self-adjoint, and compact

operator.

Proof. It follows from integration by parts that

〈Lv, v〉H =

∫
Ω

∆−1(c−2v)c−2v =

∫
Ω
|∇∆−1(c−2v)|2 ≥ 0,

and hence L is non-negative. Similarly,

〈Lv,w〉H =

∫
Ω

∆−1(c−2v)wc−2dx =

∫
Ω
c−2v∆−1(c−2w)dx = 〈v, Lw〉H,
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and hence L is self-adjoint. To show that L is compact we need to to prove that L(BH)

has compact closure in the strong topology, where BH is the unit ball in H (see [7]). Let

vn ∈ BH. We need to show that {wn} := {L(vn)} has a subsequence that converges in

L2(Ω, c−2dx). Since

−∆wn = c−2vn, wn = 0 on ∂Ω,

we have

‖ wn ‖H2(Ω)≤ C ‖ c−2vn ‖L2(Ω)≤ C.

Thus wn is bounded in H2(Ω) and hence wn has a subsequence, denoted by wn again,

that converges weakly in H2(Ω). Therefore wn converges strongly in L2(Ω, c−2dx) to some

w ∈ L2(Ω, c−2dx) and thus L is compact. �

Proposition 53 Let Fn be defined by (3.26) and suppose

∫
Ω
Fnϕc

−2dx = 0, (3.29)

for all n ≥ 0 and all harmonic functions ϕ. Then F0 ≡ 0 in Ω.

Proof. It follows from Lemma 51 and Lemma 52 that L has an orthonormal basis of

eigenfunctions en ∈ H with corresponding eigenvalues λn ≥ 0, where λn ≥ λn+1 and

λn → 0 as n→∞. Suppose F0 6≡ 0. Then there exists constants αj ∈ R such that

F0 =

∞∑
j=1

αjej . (3.30)

Let ϕ be harmonic in Ω. Then (3.29) implies

∫
Ω

 ∞∑
j=1

λnj αjej(x)

ϕc−2dx = 0, ∀n ≥ 0. (3.31)
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Now let

λ∗ = max{λj : αj 6= 0}.

Dividing equality (3.31) by λn∗ yields

∫
Ω

 m∑
j=1

αjej

ϕc−2dx+

∫
Ω

 ∞∑
j=m+1

(
λj
λ∗

)n
αjej

ϕc−2dx = 0, ∀n ≥ 0,

where L(ej) = λ∗ej , j = 1, 2, ...m. We observe that∣∣∣∣∣∣
∣∣∣∣∣∣
∞∑

j=m+1

(
λj
λ∗

)n
αjej

∣∣∣∣∣∣
∣∣∣∣∣∣
2

L2(Ω,c−2dx)

=
∞∑

j=m+1

∣∣∣∣∣∣(λjλ∗)n αjej∣∣∣∣∣∣2L2(Ω,c−2dx)

≤
(
λm+1

λ∗

)n ∞∑
j=m+1

αj → 0,

as n→∞. Thus

∫
Ω
gc−2

1 ϕdx = 0, for every harmonic functions ϕ,

where g satisfies L(g) = ∆−1(c−2
1 g) = λ∗g. By Lemma 50 we have g =

m∑
j=1

αjej ≡ 0 in Ω,

which is a contradiction. Thus F0 ≡ 0 and the proof is complete. �

Note that Proposition 53 also implies H = {0}, where H is the Hilbert space defined

in the statement of Lemma 51.

Proof of Theorem 40. The proof follows directly from Theorem 48 and Proposition

53. �
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Chapter 4

Conclusion

We shall conclude with a summary of the main results of this paper. We con-

sidered the inverse problem of recovering the conductivities of an electrical network from

the data of the magnitude of the current on the interior of the graph and from Dirichlet

or Neumann boundary conditions. We discovered through relating this problem to a mini-

mization problem that the recovery is not unique. This contrasts with the continuous case

in Rn for n ≥ 2. However we were able to characterize the non-uniqueness. Additionally

through the use of the dual problem we were able to show that the direction of the current

on the electrical network can be uniquely recovered from this data. We then developed

a numerical algorithm that generates sequences that converge to the solution of the dual

problem and one solution to the primal problem. Lastly, we were able to connect our inverse

problem on electrical networks to random walks. In fact, our motivation for considering the

Neumann boundary conditions came from thinking about the problem in terms of random

walks. There are still some open questions with regards to this inverse problem, especially
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with regards to the algorithms. Analysis of the speed of convergence of the algorithms

would be something of interest. Particularly why algorithm 2 seems to converge faster than

algorithm 1 could be investigated. Another interesting problem would be to see if there is

a way to adapt the algorithms to somehow take into account multiple measurements.

The inverse problem of recovering the sound speed from PAT is an open problem

in which not much research has been done. We were able to prove that if the sound speed

c satisfies the properties that c−2 is harmonic in a simply connected region in Ω, is equal

to 1 elsewhere, and (c, f) is admissible that it can be recovered uniquely. Although this

may seem like a small result it still represents a step towards solving a wide open problem.

Another advantage of the technique we used is that we do not require the sound speed to be

smooth, only that is satisfy an admissibility condition. We also obtained the bonus result

that if two sound speeds satisfy a monotonicity condition they can be recovered uniquely.

This result was previously known but we have improved upon if for the sound speed is no

longer required to be smooth. Next we focused on the more studied case when only the

source is being recovered. We were able to duplicate previous results with our technique but

with a weakening of the regularity required on the sound speed. Specifically we were able to

prove uniqueness for the source as long as the sound speed is L∞(R3) and the admissibility

condition is met. This result is significant because in practice the sound speed may be

discontinuous. Recovery of the sound speed is an open problem and other strategies will be

needed to continue to make progress.
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One problem of interest would be to see if the techniques used in the proof of our theorems

could be adapted for dimensions other than 3. Another problem of interest would be to

address the issue of stability in the cases when the sound speed is able to be uniquely

recovered.
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