
UC Davis
UC Davis Previously Published Works

Title
Stream Types

Permalink
https://escholarship.org/uc/item/5vc9b786

Journal
Proceedings of the ACM on Programming Languages, 8(PLDI)

ISSN
2475-1421

Authors
Cutler, Joseph W
Watson, Christopher
Nkurumeh, Emeka
et al.

Publication Date
2024-06-20

DOI
10.1145/3656434

Copyright Information
This work is made available under the terms of a Creative Commons 
Attribution-NonCommercial License, available at 
https://creativecommons.org/licenses/by-nc/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5vc9b786
https://escholarship.org/uc/item/5vc9b786#author
https://creativecommons.org/licenses/by-nc/4.0/
https://escholarship.org
http://www.cdlib.org/


Stream Types

JOSEPH W. CUTLER, University of Pennsylvania, USA

CHRISTOPHER WATSON, University of Pennsylvania, USA

EMEKA NKURUMEH, California Institute of Technology, USA
PHILLIP HILLIARD, University of Pennsylvania, USA

HARRISON GOLDSTEIN, University of Pennsylvania, USA

CALEB STANFORD, University of California, Davis, USA

BENJAMIN C. PIERCE, University of Pennsylvania, USA

We propose a rich foundational theory of typed data streams and stream transformers, motivated by two

high-level goals. First, the type of a stream should be able to express complex sequential patterns of events
over time. And second, it should describe the internal parallel structure of the stream, to support determin-

istic stream processing on parallel and distributed systems. To these ends, we introduce stream types, with
operators capturing sequential composition, parallel composition, and iteration, plus a core calculus 𝜆ST of

transformers over typed streams that naturally supports a number of common streaming idioms, including

punctuation, windowing, and parallel partitioning, as first-class constructions. 𝜆ST exploits a Curry-Howard-

like correspondence with an ordered variant of the Logic of Bunched Implication to program with streams

compositionally and uses Brzozowski-style derivatives to enable an incremental, prefix-based operational

semantics. To illustrate the programming style supported by the rich types of 𝜆ST, we present a number of

examples written in Delta, a prototype high-level language design based on 𝜆ST.

CCS Concepts: • Software and its engineering → Specialized application languages; • Theory of
computation → Type structures.

Additional Key Words and Phrases: Type Systems, Stream Processing, Ordered Logic, Bunched Implication

ACM Reference Format:
Joseph W. Cutler, Christopher Watson, Emeka Nkurumeh, Phillip Hilliard, Harrison Goldstein, Caleb Stanford,

and Benjamin C. Pierce. 2024. Stream Types. Proc. ACM Program. Lang. 8, PLDI, Article 204 (June 2024),

25 pages. https://doi.org/10.1145/3656434

1 INTRODUCTION
What is the type of a stream? A straightforward answer, dating back to the early days of functional

programming [17], is that a stream is an unbounded sequence of items drawn from a single fixed

type, produced by one part of a system (or the external world) and consumed by another. This

simple perspective has been immensely successful and can be found in the programming models

exposed by today’s most popular distributed stream processing eDSLs (e.g., Flink [18, 30], Beam [35],

Storm [34], and Heron [31]).

Authors’ addresses: JosephW. Cutler, jwc@seas.upenn.edu, University of Pennsylvania, USA; ChristopherWatson, University

of Pennsylvania, USA; EmekaNkurumeh, California Institute of Technology, USA; Phillip Hilliard, University of Pennsylvania,

USA; Harrison Goldstein, University of Pennsylvania, USA; Caleb Stanford, University of California, Davis, USA; Benjamin

C. Pierce, University of Pennsylvania, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/6-ART204

https://doi.org/10.1145/3656434

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 204. Publication date: June 2024.

HTTPS://ORCID.ORG/0000-0001-9399-9308
HTTPS://ORCID.ORG/0000-0003-3716-516X
HTTPS://ORCID.ORG/0009-0003-4124-8598
HTTPS://ORCID.ORG/0009-0009-0599-9224
HTTPS://ORCID.ORG/0000-0001-9631-1169
HTTPS://ORCID.ORG/0000-0002-8428-7736
HTTPS://ORCID.ORG/0000-0001-7839-1636
https://doi.org/10.1145/3656434
https://orcid.org/0000-0001-9399-9308
https://orcid.org/0000-0003-3716-516X
https://orcid.org/0009-0003-4124-8598
https://orcid.org/0009-0009-0599-9224
https://orcid.org/0000-0001-9631-1169
https://orcid.org/0000-0002-8428-7736
https://orcid.org/0000-0001-7839-1636
https://orcid.org/0000-0001-7839-1636
https://doi.org/10.1145/3656434


204:2 Cutler, Watson, Nkurumeh, Hilliard, Goldstein, Stanford, Pierce

However, this homogeneous treatment of streams leaves something to be desired. For one thing,

temporal patterns like bracketedness (every “begin” event has a following “end”) or the expectation

that exactly 𝑘 events will arrive on a given stream are invisible in its type. Programmers get no

help from the type system to ensure such properties when producing a stream, nor can they rely

on them when consuming one.

Another issue with the homogeneous stream abstraction is that streaming data sometimes arrives

at a processing node from multiple sources in parallel. Processing these as a single homogenous

stream often involves using arrival times to impose an “incidental” order on parallel data. This can

make it difficult to ensure that processing is deterministic, because downstream results may then

depend on factors like network latency [59, 67].

Our principal contribution is a novel logical foundation for typed stream processing that can

precisely describe streams with both complex sequential patterns and parallel structure. On this

foundation, we build a calculus called 𝜆ST
that is (a) expressive and type-safe for streams with

such complex temporal patterns and (b) deterministic, even when inputs can arrive from multiple

sources in parallel. We also present Delta, an experimental language design based on 𝜆ST
with a

simple sequential interpreter (a full-blown distributed implementation is left for future work).

Programs in 𝜆ST
are intuitively batch processors that operate over entire streams “in one gulp.”

But, since streams are in general unbounded, stream transformers can’t actually wait for the entire

input stream to arrive before producing any output. The operational semantics of the 𝜆ST
calculus

is therefore designed to be incremental, producing partial outputs from partial inputs on the fly. A

𝜆ST
program is interpreted as a function mapping any prefix of its input(s) to a prefix of its output

plus a “derivative” term that is ready to transform the rest of the input to the rest of the output.

Our stream types include two kinds of products, one representing a pair of streams in temporal

sequence, the other a pair of streams in parallel. This structure is inspired both by Concurrent

Kleene Algebras [43, 52], which describe partially ordered series/parallel data, and by work by

Alur et al. [3] and Mamouras et al. [59] in which streams are modeled as partially ordered sets. We

find a suitable proof theory for this two-product formalism in a variant of O’Hearn and Pym’s

Logic of Bunched Implications (BI) [63]. BI is well known as a foundation for separation logic [66],

where its “separating conjunction” allows for local reasoning about separate regions of the heap

in imperative programs. In 𝜆ST
, we replace spatial with temporal separation: one of our products

describes pairs of streams separated sequentially in time; the other describes pairs of temporally

independent streams whose elements may arrive in interleaved fashion.

Concretely, our contributions are:

(1) We propose stream types, a static discipline for distributed stream processing that generalizes

the traditional homogeneous view of streams to a richer nested-parallel-and-sequential

structure, and 𝜆ST
, a calculus of stream processing transformers inspired by a Curry-Howard-

like correspondence with an ordered variant of BI. Terms in 𝜆ST
are high-level programs in a

functional style that conceptually transform whole streams at once.

(2) We equip 𝜆ST
with an operational semantics interpreting terms as incremental transformers

that accept and produce finite prefixes of streams. Our main result is a powerful homomor-
phism theorem (Theorem 3.2) guaranteeing that the result of a transformer does not depend

on how the input stream is divided into prefixes. This theorem implies that the semantics is

deterministic: all interleavings of parallel sub-streams yield the same final result.

(3) We present Delta, an experimental high-level functional language prototype based on the

𝜆ST
calculus that serves as a tool for exploring the potential of richly typed stream program-

ming. We demonstrate by example how Delta enables type-safe programming over streams

with complex patterns of parallel and sequential data and how it prevents nondeterminism.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 204. Publication date: June 2024.



Stream Types 204:3

Common programming patterns from stream processing practice that are elegantly sup-

ported by this richer model include MapReduce-like pipelines, temporal integrity constraints,

windowing, punctuation, parallelism control, and routing.

Section 2 below explores some concrete cases where 𝜆ST
’s structured types can prevent common

stream processing bugs and enable cleaner programming patterns. Section 3 presents Kernel

𝜆ST
, a minimal subset with just the features needed to state and understand the main technical

results. Section 4 extends this presentation to Full 𝜆ST
. Section 5 develops several further examples.

Sections 6 and 7 discuss related and future work. An overview of our prototype implementation of

Delta, technical details omitted from the main paper, and code for the examples can all be found in

the extended version [22].

2 MOTIVATING EXAMPLES
Types for temporal invariants. Consider a stream of brightness data coming from a motion sensor,

where each event in the stream is a number between 0 and 100. Suppose we want a stream

transformer that acts as a thresholded filter, sending out a “Start” event when the brightness level

goes above 50, forwarding along brightness values until the level dips below the threshold, and

sending a final “Stop” event. For example:

11, 30, 52, 56, 53, 30, 10, 60, 10, . . . =⇒ Start, 52, 56, 53, Stop, Start, 60, Stop, . . .

The output of the transformer should satisfy the following temporal invariant: each start event must

be followed by one or more data events and then one end event. Conventional stream processing sys-

tems would give this transformation a type like Stream Int → Stream (Start + Int + Stop),
which expresses only the possible kinds of events in the output, not the temporal invariant that the

Start must come before the numbers and the Stop after.

These simple types are even more problematic when consuming streams. Suppose another

transformer wants to consume the output stream of type Stream (Start + Int + Stop) and

compute the average brightness between each start/end pair. We know a priori that the stream is

well bracketed, but the type does not say so. Thus, the second transformer must re-parse the stream
to compute the averages, requiring additional logic for various special cases (Stop before Start,
empty Start/Stop pairs) that cannot actually occur in the stream it will see.

In 𝜆ST
, we can express the required invariant with the type

(
Start · Int · Int★ · End

)★
, specifying

that the stream consists of a start message, at least one Int, and an end message, repeatedly. A

well-typed transformer with this output type is guaranteed to enforce this invariant, and, conversely,

a downstream transformer can assume that its input will adhere to it.

Enforcing deterministic parallelism. A second limitation of homogeneous streams is that they

impose a total ordering on their component events. In other words, for each pair of events in

the stream, a transformer can tell which came first. This is problematic in a world where stream

transformers work over data that is logically only partially ordered—e.g., because it comes from

separate sources.
1

For example, consider a system with two sensors, each producing one reading per second and

sending these readings via different network connections to a single transformer that averages

them pairwise, producing a composite reading each second. A natural way to do this is to merge

the two streams into a single one, group adjacent pairs of elements (i.e., impose a size-two tumbling

window), and average the pairs. But this is subtly wrong: a network delay could cause a pair of

1
The same objection applies for stream processing systems that impose total per key ordering of a parallelized stream—

cf. KeyedStream in Flink [30]—since data associated with a given key may also come from multiple sources in parallel.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 204. Publication date: June 2024.



204:4 Cutler, Watson, Nkurumeh, Hilliard, Goldstein, Stanford, Pierce

consecutive elements in the merged stream to come from the same sensor, after which the averages

will all be bogus.

The problem with this transformer is that it is not deterministic: its result can depend on external

factors like network latency. Bugs of this type can easily occur in practice [59, 67] and can be very

difficult to track down, since they may only manifest under rare conditions [50].

Once again, this is a failure of type structure. In 𝜆ST
, we can prevent it by giving the merged stream

the type (Sensor1∥Sensor2)★, capturing the fact that it is a stream of parallel pairs of readings
from the two sensors. We can write a strongly typed merge operator that produces this type, given

parallel streams of type Sensor1★ and Sensor2★. This merge operator is deterministic—indeed, all
well-typed 𝜆ST

programs are, as we show in Section 3.3). Operationally, it waits for events to arrive

on both of its input streams before sending them along as a pair.

3 KERNEL 𝜆ST

In this section, we define the most important constructors of stream types and the corresponding

features of the term language; these form the “kernel” of the 𝜆ST
calculus. The rest of the types and

terms of Full 𝜆ST
will layered on bit by bit in Section 4.

The concatenation constructor · describes streams that vary over time: if 𝑠 and 𝑡 are stream types,

then 𝑠 · 𝑡 describes a stream on which all the elements of 𝑠 arrive first, followed by the elements

of 𝑡 . A producer of a stream of type 𝑠 · 𝑡 must first produce a stream of type 𝑠 and then a stream

of type 𝑡 , while a consumer can assume that the incoming data will first consist of data of type

𝑠 and then of type 𝑡 . The transition point between the 𝑠 and 𝑡 parts is handled automatically by

𝜆ST
’s semantics: the underlying data of a stream of type 𝑠 · 𝑡 includes a punctuation marker [75]

indicating the cross-over. One consequence of this is that, unlike Kleene Star for regular languages,

streams of type 𝑠★ are distinguishable from streams of type 𝑠★ · 𝑠★ because a transformer accepting

the latter can see when its input crosses from the first 𝑠★ to the second.

On the other hand, the parallel stream type 𝑠 ∥𝑡 describes a stream with two parallel substreams

of types 𝑠 and 𝑡 . Semantically, the 𝑠 and 𝑡 components are produced and consumed independently: a

transformer that produces 𝑠 ∥𝑡 may send out an entire 𝑠 first and then a 𝑡 , or an entire 𝑡 and then the

𝑠 , or any interleaving of the two. Conversely, a transformer that accepts 𝑠 ∥𝑡 must handle all these

possibilities uniformly, by processing the 𝑠 and 𝑡 parts independently. To enable this, each element

in the parallel stream is tagged to indicate which substream it belongs to. This means that streams

of type 𝑠 ∥𝑡 are isomorphic, but not identical, to streams of type 𝑡 ∥𝑠 , and similarly Int★∥Int★ is not

the same as Int★.
Parallel types can be combined with concatenation types in interesting ways. For example, a

stream of type (𝑠 ∥𝑡) · 𝑟 consists of a stream of interleaved items from 𝑠 and 𝑡 , followed (once all the

𝑠 data and 𝑡 data has arrived) by a stream of type 𝑟 . By contrast, a stream of type (𝑠 · 𝑡)∥(𝑠′ · 𝑡 ′)
has two interleaved components, one a stream described by 𝑠 followed by a stream described by 𝑡

and the other an 𝑠′ followed by a 𝑡 ′. The fact that the parallel type is on the outside means that the

change-over points from 𝑠 to 𝑡 and 𝑠′ to 𝑡 ′ are completely independent.

The base type 1 describes a stream containing just one data item, itself a unit value. The other

base type is 𝜀, the type of the empty stream containing no data; it is the unit for both the · and
∥ constructors—i.e., 𝑠 · 𝜀, 𝜀 · 𝑠 , 𝜀∥𝑠 and 𝑠 ∥𝜀 are all isomorphic to 𝑠 , in the sense that there are 𝜆ST

transformers that convert between them.

In summary, the Kernel 𝜆ST
stream types are given by the grammar on the top left in Figure 1.

(So far, these types can only describe streams of fixed, finite size. In Section 4.2 we will enrich the

kernel type system with unbounded streams via the Kleene star type 𝑠★.)

What about terms? Recall that our goal is to develop a language of core terms 𝑒 , typed by stream

types, where well-typed terms 𝑥 : 𝑠 ⊢ 𝑒 : 𝑡 are interpreted as stream transformers accepting a

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 204. Publication date: June 2024.



Stream Types 204:5

stream described by 𝑠 and producing one described by 𝑡 . The term 𝑒 runs by accepting some inputs

as described by 𝑠 , producing some outputs as described by 𝑡 , and then stepping to a new term 𝑒′,
with an updated type 𝑡 ′, that is ready to accept the rest of the input and produce the rest of the

output. This process happens reactively: output is only produced when an input arrives. The formal

semantics of 𝜆ST
is described in Section 3.2.

To represent stream transformers with multiple parallel and sequential inputs, we draw upon

insights from proof theory. Both the types 𝑠 · 𝑡 and 𝑠 ∥𝑡 are product types, in the sense that a stream

of either of these types contains both the data of a stream of type 𝑠 and a stream of type 𝑡—although

the temporal structure differs between the two. A standard observation from proof theory is that, in

situations where a logic or type theory includes two products with different structural properties,

the corresponding typing judgment requires a context with two different context formers.2

The first context former, written with a comma (Γ ,Δ), describes inputs to a transformer arriving

in parallel, one component structured according to Γ and the other according to Δ. The second
context former, written with a semicolon (Γ ;Δ) describes inputs that will first arrive from the

environment according to Γ, then according to Δ.
These interpretations are enforced by restricting the ways that these contexts can be manipulated

using structural rules. Comma contexts can be manipulated in all the ways standard contexts can:

their bindings can be reordered (from Γ ,Δ to Δ , Γ) duplicated, and dropped. Semicolon contexts,

on the other hand, are ordered and affine: a context Γ ;Δ cannot be freely rewritten to a context

Δ ; Γ, and a context Γ cannot be duplicated into Γ ; Γ. These restrictions enforce the interpretation
of Γ ;Δ as data arriving according to Γ and then Δ: to exchange them would be to allow a consumer

to assume that the data is sent in the opposite order, and to duplicate would be to assume that the

data input will be replayed.

Thus, part of our type system is substructural: the semicolon context former is ordered (no

exchange) and affine (no contraction), while the comma context former is fully structural. Both

context formers are associative, with the empty context serving as a unit for each. (The full list of

structural rules can be found in the extended version [22].) Formally, stream contexts are drawn

from the grammar at the top right of Figure 1.

3.1 Kernel Typing Rules
The typing rules for Kernel 𝜆ST

are collected in Figure 1. The typing judgment, written Γ ⊢ 𝑒 : 𝑠 ,

says that 𝑒 is a stream transformer from a collection of streams structured like Γ to a single stream

structured like 𝑠 .

The most straightforward typing rule is the right rule for parallel (T-Par-R). It says that, from a

context Γ, we can produce a stream of type 𝑠 ∥𝑡 by producing 𝑠 and 𝑡 independently from Γ, using
transformers 𝑒1 and 𝑒2. We write the combined transformer as a “parallel pair” (𝑒1, 𝑒2). Semantically,

it operates by copying the inputs arriving on Γ, passing the copies to 𝑒1 and 𝑒2, and merging the

tagged outputs into a parallel stream. Similarly, the T-Cat-R rule is used to produce a stream of type

𝑠 · 𝑡 . It uses a similar pairing syntax—if term 𝑒1 has type 𝑠 and 𝑒2 has type 𝑡 , then the “sequential

pair” (𝑒1; 𝑒2) has type 𝑠 · 𝑡—but the context in the conclusion differs. Since 𝑒1 needs to run before

𝑒2, the part of the input stream that 𝑒1 depends on must arrive before the part that 𝑒2 depends on.

Semantically, this term will operate by accepting data from the Γ part of the context and running

𝑒1; once 𝑒1 has produced its output it will switch to running 𝑒2, consuming data from Δ.

2
Such bunched contexts were first introduced in the Logic of Bunched Implication [63], the basis of modern separation

logic [66]. Our bunched contexts differ from those of BI by the choice of structural rules: our substructural type former is

affine ordered, while the BI one is linear.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 204. Publication date: June 2024.



204:6 Cutler, Watson, Nkurumeh, Hilliard, Goldstein, Stanford, Pierce

𝑠, 𝑡, 𝑟 := 1 | 𝜀 | 𝑠 · 𝑡 | 𝑠 ∥𝑡 Γ ::= · | Γ, Γ | Γ; Γ | 𝑥 : 𝑠

Γ ⊢ 𝑒1 : 𝑠 Γ ⊢ 𝑒2 : 𝑡
Γ ⊢ (𝑒1, 𝑒2) : 𝑠 ∥𝑡

T-Par-R

Γ(𝑥 : 𝑠 ,𝑦 : 𝑡) ⊢ 𝑒 : 𝑟
Γ(𝑧 : 𝑠 ∥𝑡) ⊢ let (𝑥,𝑦) = 𝑧 in 𝑒 : 𝑟

T-Par-L

Γ ⊢ 𝑒1 : 𝑠 Δ ⊢ 𝑒2 : 𝑡
Γ ;Δ ⊢ (𝑒1; 𝑒2) : 𝑠 · 𝑡

T-Cat-R

Γ(𝑥 : 𝑠 ;𝑦 : 𝑡) ⊢ 𝑒 : 𝑟
Γ(𝑧 : 𝑠 · 𝑡) ⊢ let𝑡 (𝑥 ;𝑦) = 𝑧 in 𝑒 : 𝑟

T-Cat-L

Γ ⊢ sink : 𝜀
T-Eps-R

Γ ⊢ () : 1

T-One-R

Γ(𝑥 : 𝑠) ⊢ 𝑥 : 𝑠
T-Var

Γ ≤ Γ′ Γ′ ⊢ 𝑒 : 𝑠
Γ ⊢ 𝑒 : 𝑠

T-SubCtx

Fig. 1. Kernel 𝜆STsyntax and typing rules

These right rules describe how to produce a stream of parallel or concatenation type. The

corresponding left rules describe how to use a variable of one of these types appearing somewhere

in the context. Syntactically, the terms take the form of let-bindings that deconstruct variables of

type 𝑠 · 𝑡 (or 𝑠 ∥𝑡 ) as pairs of variables of type 𝑠 and 𝑡 , connected by ; (or ,). We use the standard BI

notation Γ(−) for a context with a hole and write Γ(Δ) when this hole has been filled with the

context Δ. In particular, Γ(𝑥 : 𝑠) is a context with a distinguished variable 𝑥 .

The T-Par-L rule says that if 𝑧 is a variable of type 𝑠 ∥𝑡 somewhere in the context, we can replace

its binding with with a pair of bindings for variables 𝑥 and 𝑦 of types 𝑠 and 𝑡 and use these in

a continuation term 𝑒 of final type 𝑟 . When typing 𝑒 , the variables 𝑥 and 𝑦 appear in the same

position as the original variable 𝑧, separated by a comma—i.e., 𝑥 and 𝑦 are assumed to arrive in

parallel. Similarly, the rule T-Cat-L says that if a variable 𝑧 of type 𝑠 · 𝑡 appears somewhere in the

context, it can be let-bound to a pair of variables 𝑥 and 𝑦 of types 𝑠 and 𝑡 that are again used in the

continuation 𝑒 . This time, though, 𝑥 and 𝑦 are separated by a semicolon—i.e., the substream bound

to 𝑥 will arrive and be processed first, followed by the substream bound to 𝑦.

T-Eps-R and T-One-R are the right rules for the two base types, witnessed by the terms sink
and (). Semantically, sink does nothing: it accepts inputs on Γ and produces no output. On the

other hand, () emits a unit value as soon as it receives its first input and never emits anything else.

The variable rule (T-Var) says that if 𝑥 : 𝑠 is a variable somewhere in the context, then we

can simply send it along the output stream. Semantically, it works by dropping everything in the

context except for the 𝑠-typed data for 𝑥 , which it forwards along.

The rule T-SubCtx bundles together all of the structural rules as a subtyping relation on contexts.

For example, the weakening rule for semicolon contexts is written Γ ;Δ ≤ Γ and the comma

exchange rule is Γ ,Δ ≤ Δ , Γ.

Examples and Non-Examples. To show the typing rules in action, here are two small examples of

transformers written in Kernel 𝜆ST
, as well as three examples of programs that are rejected by the

type system. The first example is a simple “parallel-swap” transformer, which accepts a stream 𝑧 of

type 𝑠 ∥𝑡 and outputs a stream of type 𝑡 ∥𝑠 , swapping the parallel substreams:

𝑧 : 𝑠 ∥𝑡 ⊢ let (𝑥,𝑦) = 𝑧 in (𝑦, 𝑥) : 𝑡 ∥𝑠
It works by splitting the variable 𝑧 : 𝑠 ∥𝑡 into variables 𝑥 : 𝑠 and 𝑦 : 𝑡 and yielding a parallel pair

with the order reversed.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 204. Publication date: June 2024.



Stream Types 204:7

epsEmp : prefix (𝜀) oneEmp : prefix (1) oneFull : prefix (1)

𝑝 : prefix (𝑠)
𝑝′ : prefix (𝑡)

parPair(𝑝, 𝑝′) : prefix (𝑠 ∥𝑡)
𝑝 : prefix (𝑠)

catFst(𝑝) : prefix (𝑠 · 𝑡)

𝑝′ : prefix (𝑡)
𝑝 : prefix (𝑠) 𝑝 maximal

catBoth(𝑝, 𝑝′) : prefix (𝑠 · 𝑡)

Fig. 2. Prefixes for Types

 

𝑥 : 𝑠 ⊢ 𝑦 : 𝑡
T-Var

 

𝑦 : 𝑡 ⊢ 𝑥 : 𝑠
T-Var

𝑥 : 𝑠 ;𝑦 : 𝑡 ⊢ (𝑦;𝑥) : 𝑡 · 𝑠
T-Cat-R

𝑧 : 𝑠 · 𝑡 ⊢ let𝑠 (𝑥 ;𝑦) = 𝑧 in (𝑦;𝑥) : 𝑡 · 𝑠
T-Cat-L

Themost important non-example is the lack of

a corresponding “cat-swap” term, which would

accept a stream 𝑧 of type 𝑠 · 𝑡 , and produce a

stream of type 𝑡 · 𝑠 . This program is undesirable

because it is not implementable without a space

leak. Implementing it requires the entire stream of type 𝑠 to be saved in memory to emit it after the

stream of type 𝑡 .3 The natural term for this program would be let𝑠 (𝑥 ;𝑦) = 𝑧 in (𝑦;𝑥), but this
does not typecheck. Applying the syntax-directed rules gets us to a point where we must show

that 𝑦 has type 𝑡 in a context with only 𝑥 and that 𝑥 has type 𝑠 in a context with only 𝑦. This is

because the T-Cat-R splits the context, but the variables are listed in the opposite order from what

we’d need. The lack of a structural rule to let us permute the 𝑥 and 𝑦 in the context means that

there is nothing we can do here, and a typechecker will reject this program.

The second example is a “broadcast” transformer, which takes a variable 𝑥 : 𝑠 and outputs a stream

of type 𝑠 ∥𝑠 , duplicating the variable and sending it out to two parallel outputs: 𝑥 : 𝑠 ⊢ (𝑥, 𝑥) : 𝑠 ∥𝑠 .
The second non-example is the “replay” transformer, which would (if it existed) take a variable

𝑥 : 𝑠 and produce a stream 𝑠 · 𝑠 that repeats the input stream twice. This is the concat-equivalent

of the broadcast transformer, and it is undesirable for the same reason as the cat-swap program:

it would require saving the entire incoming stream of type 𝑠 in order to replay it. This time, the

failure of the natural term (𝑥 ;𝑥) to typecheck comes down to the lack of a contraction rule for

semicolon contexts: we are not permitted to turn a context 𝑥 : 𝑠 into a context 𝑥 : 𝑠 ;𝑥 : 𝑠 .

The last non-example is a “tie-breaking” transformer, which would take a stream 𝑧 : Int∥Int of

two ints in parallel and produce a stream of type Int by forwarding along the Int that arrives first.

This program, like others that require inspecting the interleaving of substreams in a stream of type

𝑠 ∥𝑡 , is not expressible. In Section 3.3, we’ll prove that a well-typed program cannot implement this

behavior.

3.2 Prefixes and Semantics
We next define the semantics of Kernel 𝜆ST

. The natural notion of “values” in this semantics is finite

prefixes of streams, and the meaning of a well-typed term Γ ⊢ 𝑒 : 𝑠 is a function that accepts an

environment mapping variables in Γ to prefixes of streams and produces a prefix of a stream of

type 𝑠 . Because the streams that 𝜆ST
programs operate over are more structured than traditional

homogeneous streams—including cross-over punctuation in streams of type 𝑠 ·𝑡 and disambiguating

tags in streams of type 𝑠 ∥𝑡—the prefixes are also more structured. That is, a prefix in 𝜆ST
is not a

simple sequence of data items, but a structured value whose possible shapes are determined by its

type [58].

3
A programwith this behavior is actually implementable in 𝜆ST, but only with a special additional construct—see Section 4.5—

ensuring that leaky programs like this one cannot be written accidentally.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 204. Publication date: June 2024.



204:8 Cutler, Watson, Nkurumeh, Hilliard, Goldstein, Stanford, Pierce

𝜂 : env (·)
𝜂 (𝑥) ↦→ 𝑝 𝑝 : prefix (𝑠)

𝜂 : env (𝑥 : 𝑠)
𝜂 : env (Γ) 𝜂 : env (Δ)

𝜂 : env (Γ ,Δ)

𝜂 : env (Γ) 𝜂 : env (Δ) (𝜂 maximalOn Γ) ∨ (𝜂 emptyOnΔ)
𝜂 : env (Γ ;Δ)

Fig. 3. Environments for Contexts

There are two prefixes of a stream of type 1: the empty prefix, written oneEmp, and the prefix

containing the single element (), written oneFull. Similarly, the unique stream of type 𝜀 has a

single prefix, the empty prefix, which we write epsEmp.
What about 𝑠 ∥𝑡? A parallel stream of type 𝑠 ∥𝑡 is conceptually a pair of independent streams of

type 𝑠 and 𝑡 , so a prefix of a parallel stream should be a pair parPair(𝑝1, 𝑝2), where 𝑝1 is a prefix
of a stream of type 𝑠 , and 𝑝2 is a prefix of a stream of type 𝑡 . Crucially, this definition encodes

no information about any interleaving of 𝑝1 and 𝑝2: the prefix parPair(𝑝1, 𝑝2) equally represents

a situation where all of 𝑝1 arrived first and then all of 𝑝2, one where 𝑝2 arrived before 𝑝1, and

many others where the elements of 𝑝1 and 𝑝2 arrived in some interleaved order. In a nutshell, this

definition is what guarantees deterministic processing. By representing all possible interleavings

using the same prefix value, we ensure that a transformer that operates on these values cannot

possibly depend on ordering information that isn’t present in the type.

Finally, let’s consider the prefixes of streams of type 𝑠 · 𝑡 . One case is a prefix that only includes

data from 𝑠 because it cuts off before reaching the point where the 𝑠 · 𝑡 stream stops carrying

elements of 𝑠 and starts on 𝑡 . We write such a prefix as catFst(𝑝), with 𝑝 a prefix of type 𝑠 . The

other case is where the prefix does include the crossover point—i.e., it consists of a “completed”

prefix of 𝑠 plus a prefix of 𝑡 . We write this as catBoth(𝑝, 𝑝′), with 𝑝 a prefix of 𝑠 and 𝑝′ a prefix of
𝑡 . The requirement that 𝑝 be completed is formalized by the judgment 𝑝 maximal, which ensures

that the prefix 𝑝 describes an entire completed stream (see the extended version [22] for details).

We formalize all these possibilities as a judgment 𝑝 : prefix (𝑠), shown in Figure 2.

Every type 𝑠 has a distinguished empty prefix, written emp𝑠 and defined by straightforward

recursion on 𝑠 (see the extended version [22]). We then lift the idea of prefixes from types to

contexts, defining an environment 𝜂 for a context Γ to be a mapping from the variables 𝑥 : 𝑠 in

Γ to prefixes of the corresponding types 𝑠; we write this with a judgment 𝜂 : env (Γ) (Figure 3).
Besides ensuring that 𝜂 has well-typed bindings for all variables, the judgment ensures that the

prefixes respect the order structure of the context. In particular, an environment 𝜂 for a semicolon

context Γ ;Δ must assign prefixes in order : the prefixes for Γ, the earlier part of the context, must

all be complete before any of the prefixes for Δ can begin. In other words, either 𝜂 assigns maximal

prefixes to every variable in Γ—which we write 𝜂 maximalOn Γ—or 𝜂 assigns empty prefixes to

every variable in Δ—which we write 𝜂 emptyOnΔ.
One might worry that these structured stream prefixes might be incompatible with a future

distributed implementation atop an existing stream processing substrate. Fortunately, they are not:

by viewing a 𝜆ST
stream as a series of single-event prefixes, each consisting of a data item plus some

extra tag bits, we can recover the traditional homogeneous view. Moreover, this wire representation

incurs only a constant overhead: the maximum size of the tag bits on a stream element of type 𝑠 is

bounded by the syntactic depth of 𝑠 (see the extended version [22] for details).

Semantics. We next describe how well-typed 𝜆ST
terms behave with an operational semantics. Given

a well-typed term Γ ⊢ 𝑒 : 𝑠 and an input environment 𝜂 : env (Γ), this semantics describes how

to run 𝑒 with 𝜂 to produce an output prefix 𝑝 . It also describes how to produce a “resultant” term

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 204. Publication date: June 2024.



Stream Types 204:9

𝑒′ that is ready to continue the computation once further data arrives on the input stream data.

Formally, the semantics is given by a judgment 𝜂 ⇒ 𝑒 ↓ 𝑒′ ⇒ 𝑝 , pronounced “running the core

term 𝑒 on the input environment 𝜂 yields the output prefix 𝑝 and steps to 𝑒′.” The rules for this
judgment are gathered in Figure 4 and described below; the full set of rules for all of 𝜆ST

can be

found in [22].

The following theorem establishes the soundness of the Kernel 𝜆ST
semantics, formalizing the

intuitive description given above: If we run a well-typed core term 𝑒 on an environment 𝜂 of

the context type, it will return a prefix 𝑝 with the result type 𝑠 and step to a term 𝑒′ that is well
typed in context “the rest of Γ” after 𝜂 and has type “the rest of 𝑠” after 𝑝 . The “rest” of a type (or

context) after a prefix (or environment) is, intuitively, its derivative with respect to the prefix (or

environment), in the sense of standard Brzozowski derivatives of regular expressions [16]—we

make this formal in Section 3.2. Most critically, the types of the variables in 𝑒 and 𝑒′ are different: if
𝑥 has type 𝑠 in 𝑒 , then 𝑥 has type 𝛿𝜂 (𝑥 )𝑠 in 𝑒′, having already consumed 𝜂 (𝑥).

Theorem 3.1 (Soundness of the Kernel 𝜆ST
Semantics). Suppose: Γ ⊢ 𝑒 : 𝑠 and 𝜂 : env (Γ).

Then there are 𝑝 and 𝑒′ such that 𝜂 ⇒ 𝑒 ↓ 𝑒′ ⇒ 𝑝 , with 𝑝 : prefix (𝑠) and 𝛿𝜂 (Γ) ⊢ 𝑒′ : 𝛿𝑝 (𝑠)

See the appendix of the extended paper [22] for the proof of soundness for Full 𝜆ST
.

In light of the soundness theorem, the operational semantics can be thought of as defining a

reactive state machine. Well-typed terms Γ ⊢ 𝑒 : 𝑠 are the states, while the semantic judgment

defines the transition function: when new inputs 𝜂 arrive, the machine produces an output prefix

𝑝 and steps to a new state 𝛿𝜂 (Γ) ⊢ 𝑒′ : 𝛿𝑝 (𝑠). This form of semantics—a state machine with

terms themselves as states, typed by derivatives—was pioneered by the Esterel programming

language [14].

Semantics of the Right Rules. The right rules for parallel and concatenation are the simplest to

understand. For S-Par-R, we accept an environment 𝜂 and use it to run the component terms 𝑒1
and 𝑒2, independently producing outputs 𝑝1 and 𝑝2 and stepping to new terms 𝑒′

1
and 𝑒′

2
. The pair

term (𝑒1, 𝑒2) then steps to

(
𝑒′
1
, 𝑒′

2

)
and produces the output parPair(𝑝1, 𝑝2).

There are two rules, S-Cat-R-1 and S-Cat-R-2, for running the concatenation pair (𝑒1; 𝑒2) : 𝑠 · 𝑡 .
In either case, we begin by running 𝑒1 with the environment 𝜂, producing a prefix 𝑝 and term 𝑒′

1
. If

𝑝 is not maximal, we stop there: more of the input is needed for the first component to produce the

rest of 𝑠 , so it is not yet time to start running 𝑒2 to produce 𝑡 . This case is handled by S-Cat-R-1,

where the resulting term is

(
𝑒′
1
; 𝑒2

)
and the output prefix is catFst(𝑝). On the other hand, if 𝑝 is

maximal, then we also run 𝑒2, which steps to 𝑒′
2
and produces a prefix 𝑝′ using rule S-Cat-R-2;

the entire term then outputs catBoth(𝑝, 𝑝′) and steps to 𝑒′
2
. Note that the pair is eliminated in the

process: we step from (𝑒1; 𝑒2) to just 𝑒′
2
. This is because we are done producing the 𝑠 part of the

𝑠 · 𝑡 , and so a subsequent step of evaluation only has to run 𝑒′
2
to produce the rest of the 𝑡 .

Semantics of Variables. The variable semantics S-Var is a simple lookup. We find the prefix bound

to the variable 𝑥 in the environment, return it, and then step to 𝑥 itself.

Semantics of Left Rules. The left rules for concatenation and parallel are similar, both accepting an

environment 𝜂 with a binding for 𝑧 : 𝑠 ⊗ 𝑡 where ⊗ is one of the two products, binding variables 𝑥

and 𝑦 of types 𝑠 and 𝑡 to the two components of the product, and using the updated environment

to run the continuation term. In the case of the left rule for parallel (S-Par-L), looking up 𝑧 of

type 𝑠 ∥𝑡 will always yield a prefix parPair(𝑝1, 𝑝2). The rule binds 𝑝1 to 𝑥 and 𝑝2 to 𝑦 and runs the

continuation term, stepping to 𝑒′ and producing the output prefix 𝑝 . Then the whole term steps to

let (𝑥,𝑦) = 𝑧 in 𝑒′ and produces 𝑝 .

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 204. Publication date: June 2024.



204:10 Cutler, Watson, Nkurumeh, Hilliard, Goldstein, Stanford, Pierce

𝜂 (𝑥) ↦→ 𝑝

𝜂 ⇒ 𝑥 ↓ 𝑥 ⇒ 𝑝
S-Var

𝜂 ⇒ 𝑒1 ↓ 𝑒′
1
⇒ 𝑝1 𝜂 ⇒ 𝑒2 ↓ 𝑒′

2
⇒ 𝑝2

𝜂 ⇒ (𝑒1, 𝑒2) ↓
(
𝑒′
1
, 𝑒′

2

)
⇒ parPair(𝑝1, 𝑝2)

S-Par-R

𝜂 (𝑧) ↦→ parPair(𝑝1, 𝑝2) 𝜂 [𝑥 ↦→ 𝑝1, 𝑦 ↦→ 𝑝2] ⇒ 𝑒 ↓ 𝑒′ ⇒ 𝑝′

𝜂 ⇒ let (𝑥,𝑦) = 𝑧 in 𝑒 ↓ let (𝑥,𝑦) = 𝑧 in 𝑒′ ⇒ 𝑝′
S-Par-L

𝜂 ⇒ 𝑒1 ↓ 𝑒′
1
⇒ 𝑝 ¬ (𝑝 maximal)

𝜂 ⇒ (𝑒1; 𝑒2) ↓
(
𝑒′
1
; 𝑒2

)
⇒ catFst(𝑝)

S-Cat-R-1

𝜂 ⇒ 𝑒1 ↓ 𝑒′
1
⇒ 𝑝 𝑝 maximal 𝜂 ⇒ 𝑒2 ↓ 𝑒′

2
⇒ 𝑝′

𝜂 ⇒ (𝑒1; 𝑒2) ↓ 𝑒′
2
⇒ catBoth(𝑝, 𝑝′)

S-Cat-R-2

𝜂 (𝑧) ↦→ catFst(𝑝) 𝜂 [𝑥 ↦→ 𝑝,𝑦 ↦→ emp𝑡 ] ⇒ 𝑒 ↓ 𝑒′ ⇒ 𝑝′

𝜂 ⇒ let𝑡 (𝑥 ;𝑦) = 𝑧 in 𝑒 ↓ let𝑡 (𝑥 ;𝑦) = 𝑧 in 𝑒′ ⇒ 𝑝′
S-Cat-L-1

𝜂 (𝑧) ↦→ catBoth(𝑝, 𝑝′) 𝜂 [𝑥 ↦→ 𝑝,𝑦 ↦→ 𝑝′] ⇒ 𝑒 ↓ 𝑒′ ⇒ 𝑝′′

𝜂 ⇒ let𝑡 (𝑥 ;𝑦) = 𝑧 in 𝑒 ↓ let𝑥 = sink𝑝 in 𝑒
′ [𝑧/𝑦] ⇒ 𝑝′′

S-Cat-L-2

𝜂 ⇒ sink ↓ sink ⇒ epsEmp
S-Eps-R

𝜂 ⇒ () ↓ sink ⇒ oneFull
S-One-R

Fig. 4. Incremental semantics of Kernel 𝜆ST

The left rule for concatenation has two cases, depending on what kind of prefix comes back from

the lookup for 𝑧. If the lookup yields is catFst(𝑝), then the rule S-Cat-L-1 applies. Since no data

for 𝑦 has arrived, we bind 𝑦 to emp𝑡 , the empty prefix of type 𝑡 , and run the continuation.
4
If the

result comes back as catBoth(𝑝, 𝑝′), then the rule S-Cat-L-2 applies, so we run the continuation

with 𝑥 and 𝑦 bound to 𝑝 and 𝑝′.
Both rules output the prefix obtained from running the continuation, but they step to different

resulting terms. If 𝜂 (𝑧) = catFst(𝑝), then the resulting term must be another use of Cat-L: the

variable 𝑧 still expects to get some more of the first component of the concatenation, and then the

second component. If 𝜂 (𝑧) = catBoth(𝑝, 𝑝′) on the other hand, the 𝑧 stream has crossed over to

the second part. In this case, we close over the (now not-needed) 𝑥 variable in 𝑒′ and connect 𝑧 to

the 𝑦 input of 𝑒′ by substituting 𝑦 for 𝑧.

Derivatives. When 𝑝 : prefix (𝑠), we write 𝛿𝑝 (𝑠) for the derivative [16] of 𝑠 by 𝑝—the type of

streams that result after a prefix of type 𝑝 has been “chopped off” the beginning of a stream of

type 𝑠 . Because this operation is partial—𝛿𝑝 (𝑠) is only defined when 𝑝 : prefix (𝑠)—we formally

define this as a a 3-place relation, written as 𝛿𝑝 (𝑠) ∼ 𝑠′ and pronounced as “the derivative of 𝑠 with
respect to 𝑝 is 𝑠′” (see Figure 5).

The derivative of the type 1 with respect to the empty prefix oneEmp is 1 (the rest of the stream

is the entire stream), and its derivative with respect to the full prefix oneFull is 𝜀 (there is no more

4
This need to compute emp𝑡 from 𝑡 at runtime to bind to 𝑦 ↦→ emp𝑡 is the reason that the term for T-Cat-L, let𝑡 (𝑥 ; 𝑦) =

𝑧 in𝑒 , includes a 𝑡 in the syntax. In Section 4, the case analysis expressions for star types and sum types will have similar

annotations for the same reason.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 204. Publication date: June 2024.



Stream Types 204:11

𝛿epsEmp (𝜀) ∼ 𝜀 𝛿oneEmp (1) ∼ 1 𝛿oneFull (1) ∼ 𝜀

𝛿𝑝 (𝑠) ∼ 𝑠′

𝛿catFst(𝑝 ) (𝑠 · 𝑡) ∼ 𝑠′ · 𝑡

𝛿𝑝′ (𝑡) ∼ 𝑡 ′

𝛿catBoth(𝑝,′𝑝 ) (𝑠 · 𝑡) ∼ 𝑡 ′
𝛿𝑝 (𝑠) ∼ 𝑠′ 𝛿𝑝′ (𝑡) ∼ 𝑡 ′

𝛿parPair(𝑝,𝑝′ ) (𝑠 ∥𝑡) ∼ 𝑠′∥𝑡 ′

Fig. 5. Derivatives

stream left after the unit element has arrived). For parallel, the derivative is taken component-wise.

The interesting cases are those for the concatenation type. If the prefix has the form catFst(𝑝),
the derivative 𝛿catFst(𝑝 ) (𝑠 · 𝑡) is

(
𝛿𝑝 (𝑠)

)
· 𝑡 , i.e., some of the 𝑠 has gone by but not all, and once it

does we still expect 𝑡 to come after it. On the other hand, if the prefix has the form catBoth(𝑝, 𝑝′),
the derivative 𝛿catBoth(𝑝,𝑝′ ) (𝑠 · 𝑡) is just 𝛿𝑝′ (𝑡), i.e., the 𝑠 component is complete, and the rest of

the stream is just the part of 𝑡 after 𝑝′.
This definition is lifted to contexts and environments pointwise: if 𝑥 : 𝑠 is a variable in Γ, the

derivative of 𝛿𝜂 (Γ) has 𝑥 : 𝛿𝜂 (𝑥 ) (𝑠) in the same location.

3.3 The Homomorphism Property and Determinism
The semantics is designed to run a stream transformer on “input chunks” of any size, from individual

input events one at a time all the way up to the entire stream at once. The cost of this flexibility is

that it raises the question of coherence—i.e., whether we are guaranteed to arrive at the same final
output depending on how we carve up a transformer’s input into a series of prefixes. Fortunately,

this is indeed guaranteed. Coherence is a corollary of our main technical result: a homomorphism
theorem that says running a term 𝑒 on an environment 𝜂 and then running the resulting term 𝑒′ on
an environment 𝜂′ of appropriate type produces the same end result as running 𝑒 on the combined

environment (cf. [58]).

Theorem 3.2 (Homomorphism Theorem). Suppose (1) Γ ⊢ 𝑒 : 𝑠 , (2) 𝜂 : env (Γ), (3) 𝜂′ :

env
(
𝛿𝜂 (Γ)

)
, (4) 𝑝 : prefix (𝑠), (5) 𝑝′ : prefix

(
𝛿𝑝 (𝑠)

)
, (6) 𝜂 ⇒ 𝑒 ↓ 𝑒′ ⇒ 𝑝 , and (7) 𝜂′ ⇒ 𝑒′ ↓

𝑒′′ ⇒ 𝑝′. Then, if 𝜂 · 𝜂′ ⇒ 𝑒 ↓ 𝑒′′′ ⇒ 𝑝′′, we have 𝑝′′ = 𝑝 · 𝑝′, and 𝑒′′′ = 𝑒′

The operation 𝑝 · 𝑝′ here is prefix concatenation, which takes a prefix 𝑝 of type 𝑠 and a prefix 𝑝′

of type 𝛿𝑝 (𝑠) and produces the prefix of type 𝑠 that is first 𝑝 and then 𝑝′. Formally, this is defined

as a 4-place partial inductive relation 𝑝 · 𝑝′ ∼ 𝑝′′, which is defined when 𝑝 and 𝑝′ have types 𝑠 and
𝛿𝑝 (𝑠), respectively. The operation 𝜂 · 𝜂′ ∼ 𝜂′′ does the same for environments. .

The homomorphism theorem not only justifies running the semantics on prefixes of any size; it

also implies deterministic processing of parallel streams. Intuitively, determinism states that the

results of a stream transformer do not depend on the particular order in which parallel data arrives.

We formalize this through the following scenario. Suppose Γ , Γ′ ⊢ 𝑒 : 𝑠 is a term with two parallel

contexts serving as its input, and suppose that 𝜂 is an environment for Γ , Γ′. Write 𝜂1 = 𝜂 |Γ and
𝜂2 = 𝜂 |Γ′ , for the restrictions of 𝜂 to the variables in Γ and Γ′, respectively. There are two different

ways of running 𝑒 on this data. One is to first run 𝑒 on 𝜂1 ∪ empΓ′ (which has 𝜂1 bindings for Γ and

then the empty prefix for everything in Γ′) and then run the resulting term on 𝜂2 ∪ empΓ (with an

empty prefixes for Γ). The other does the opposite, first running 𝑒 on 𝜂2 ∪ empΓ and then running

the resulting term on 𝜂1 ∪ empΓ′ . Determinism says that these strategies produce equal results.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 204. Publication date: June 2024.



204:12 Cutler, Watson, Nkurumeh, Hilliard, Goldstein, Stanford, Pierce

Theorem 3.3 (Determinism). Suppose (1) Γ , Γ′ ⊢ 𝑒 : 𝑠 , (2) 𝜂 : prefix (Γ , Γ′), (3) 𝜂 |Γ ∪ empΓ′ ⇒
𝑒 ↓ 𝑒1 ⇒ 𝑝1 and 𝜂 |Γ′ ∪ empΓ ⇒ 𝑒1 ↓ 𝑒2 ⇒ 𝑝2, (4) 𝜂 |Γ′ ∪ empΓ ⇒ 𝑒 ↓ 𝑒′

1
⇒ 𝑝′

1
and 𝜂 |Γ ∪ empΓ′ ⇒

𝑒′
1
↓ 𝑒′

2
⇒ 𝑝′

2
. Then 𝑒2 = 𝑒′

2
and 𝑝1 · 𝑝2 = 𝑝′

1
· 𝑝′

2
.

See the appendix of the extended version [22] for the proof. To intuitively see how this theorem

follows from homomorphism, note that prefixes are canonical representatives of equivalence classes

of sequences of stream elements, up to the possible reorderings defined by their type [70]. The

homomorphism theorem then guarantees that these normal forms are processed compositionally,

and so are independent of the actual temporal ordering of parallel data—it suffices to compute on

the combined normal forms from the two steps.

4 FULL 𝜆ST

We now sketch the remaining types and terms of 𝜆ST
that are not part of Kernel 𝜆ST

.

4.1 Sums
Sum types in 𝜆ST

, written 𝑠 + 𝑡 , are tagged unions: a stream of type 𝑠 + 𝑡 is either a stream of type 𝑠

or a stream of type 𝑡 , and a consumer can tell which. Streams of type 𝑠 are not the same as streams

of type 𝑠 + 𝑠 , and streams of type 𝑠 + 𝑡 are isomorphic to, but not identical to, streams of type 𝑡 + 𝑠 .
Operationally, a producer of a sum stream sends a tag bit before sending the rest of the stream, to

tell downstream consumers which side to expect. Conversely, a consumer of 𝑠 + 𝑡 first reads the bit
to learn which it is getting next.

A prefix of 𝑠 + 𝑡 can be a prefix of one of 𝑠 or one of 𝑡 , written sumInl(𝑝) or sumInr(𝑝), or it
can be sumEmp, the empty prefix of type 𝑠 + 𝑡 , which does not even include the initial tag bit. The

derivatives with respect to these prefixes are defined as follows: (a) the empty prefix takes nothing

off the type (𝛿sumEmp (𝑠 + 𝑡) = 𝑠 + 𝑡 ) and (b) the two injections reduce to taking the derivative of the

corresponding branch of the sum (𝛿sumInl(𝑝 ) (𝑠 + 𝑡) = 𝛿𝑝 (𝑠) and 𝛿sumInr(𝑝 ) (𝑠 + 𝑡) = 𝛿𝑝 (𝑡)).
Γ ⊢ 𝑒 : 𝑠

Γ ⊢ inl (𝑒) : 𝑠 + 𝑡
T-Sum-R-1

Γ(𝑥 : 𝑠) ⊢ 𝑒1 : 𝑟 Γ(𝑦 : 𝑡) ⊢ 𝑒2 : 𝑟
Γ(𝑧 : 𝑠 + 𝑡) ⊢ case𝑟 (𝑧, 𝑥 .𝑒1, 𝑦.𝑒2) : 𝑟

T-Sum-L-Surf

The typing rules

for sums are the

normal injections

on the right (T-Sum-R-1 and a symmetric rule T-Sum-R-2) and a case analysis rule on the left (T-

Sum-L-Surf). The right rules operate by prepending their respective tags and then running the

embedded terms. The left rule does case analysis: if the incoming stream 𝑧 comes from the left of

the sum, it is processed with 𝑒1; if from the right, 𝑒2. To run a sum case term, the semantics must

dispatch on the tag that says if the stream 𝑧 being destructed is a left or a right. But the prefix 𝑧

might not include a tag, if only data from the surrounding context has arrived. In this case, 𝑧 will

map to sumEmp, and we have no way of determining which branch to run. The solution is to run

neither! Instead, we hold on to the environment, saving all incoming data to the program until the

tag arrives. Once we get a prefix that includes the tag, we continue by running the corresponding

branch with the accumulated inputs. Note that this buffering is necessarily a blocking operation.
5

𝜂 : env (Γ(𝑧 : 𝑠 + 𝑡))
Γ(𝑥 : 𝑠) ⊢ 𝑒1 : 𝑟 Γ(𝑦 : 𝑡) ⊢ 𝑒2 : 𝑟

𝛿𝜂 (Γ(𝑧 : 𝑠 + 𝑡)) ⊢ case𝑟 (𝜂; 𝑧, 𝑥 .𝑒1, 𝑦.𝑒2) : 𝑟
T-Sum-L

All this requires a slightly generalized typ-

ing rule (T-Sum-L) that includes a buffer envi-
ronment 𝜂 : env (Γ(𝑧 : 𝑠 + 𝑡)) of the context
type in the term. This buffer holds all of the

input data we’ve seen so far. As prefixes arrive,

5
Depending on the rest of the context, it could also require unbounded memory! Fortunately, we believe we can detect this,

and flag it as a warning to the user: running a case on 𝑧 : 𝑠 + 𝑡 in a context Γ (𝑧 : 𝑠 + 𝑡 ) could require buffering all variables

to the left of 𝑧 or in parallel with 𝑧 in the context. Unbounded memory is required if and only if any of those variables have

star type. We hope to demonstrate this formally in future work.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 204. Publication date: June 2024.



Stream Types 204:13

we append to this buffer until we get the tag. Accordingly, the context in this rule is 𝛿𝜂 (Γ(𝑧 : 𝑠 + 𝑡)):
the term is typed in the context consisting of everything after the part of the stream that has so far

been buffered.

Fortunately, the only typing rule that a 𝜆ST
programmer needs to concern themselves with is

T-Sum-L-Surf. While writing the program, and before it runs, the buffer is empty (𝜂 = empΓ (𝑧:𝑠+𝑡 ) ).
In this case, the 𝛿𝜂 (Γ(𝑧 : 𝑠 + 𝑡)) = Γ(𝑧 : 𝑠 + 𝑡), and so the generalized rule T-Sum-L simplifies to the

“surface” rule, T-Sum-L-Surf. Full details can be found in the extended version [22].

4.2 Star
Full 𝜆ST

also includes a type constructor for unbounded streams, written 𝑠★ because it is inspired

by the Kleene star from the theory of regular languages. (We do not need to distinguish between

unbounded finite streams and “truly infinite” ones, because our operational semantics is based

on prefixes: we’re always only operating on “the first part” of the input stream, and it doesn’t

matter whether the part we haven’t seen yet is finite or infinite.) The type 𝑠★ describes a stream

that consists of zero or more sub-streams of type 𝑠 , in sequence.

In ordinary regular languages, 𝑟★ is equal to 𝜀 + 𝑟 · 𝑟★. In the language of stream types, this

equation says that a stream of type 𝑠★ is either empty (𝜀) or a stream of type 𝑠 followed by another

stream of type 𝑠★—i.e., 𝑠★ can be understood as the least fixpoint of the stream type operator

𝑥 ↦→ 𝜀 + 𝑠 · 𝑥 . The definitions of prefixes and typing rules for star all follow from this perspective.

In particular, prefix(𝑠★) = prefix(𝜀 + 𝑠 · 𝑠★). The empty prefix of type 𝑠★, written starEmp, is
effectively the empty prefix of the sum that makes up 𝑠★. The second form of prefix—the “done”

prefix of type 𝑠★—is written starDone. It corresponds to the left injection of the sum, and receiving

it means that the stream has ended. Note that, despite containing no 𝑠 data, this prefix is not empty:
it conveys the information that the stream is complete. The final two cases correspond to the right

injection of the sum, i.e., a prefix of type 𝑠 · 𝑠★. This is either starFirst(𝑝), with 𝑝 a prefix of 𝑠 , or

starRest(𝑝, 𝑝′), with 𝑝 a maximal prefix of type 𝑠 and 𝑝′ another prefix of 𝑠★.
For derivatives, the empty prefix leaves the type as-is (𝛿starEmp

(
𝑠★
)
= 𝑠★). Because no data will

arrive after the done prefix, the derivative of 𝑠★ with respect to starDone is 𝜀. In the case for

starFirst(𝑝), after some of an 𝑠 has been received, the remainder of 𝑠★ looks like the remainder of

the first 𝑠 followed by some more 𝑠★, so the derivative is defined as 𝛿starFirst(𝑝 )
(
𝑠★
)
=
(
𝛿𝑝 (𝑠)

)
· 𝑠★.

Finally, 𝛿starRest(𝑝,𝑝′ )
(
𝑠★
)
= 𝛿𝑝′

(
𝑠★
)
.

Γ ⊢ nil : 𝑠★
T-Star-R-1

Γ ⊢ 𝑒1 : 𝑠 Δ ⊢ 𝑒2 : 𝑠★

Γ;Δ ⊢ 𝑒1 :: 𝑒2 : 𝑠★
T-Star-R-2

The typing rules for star are

again motivated by the analogy

with lists. There are right rules for

nil and cons and a case analysis principle for the left rule. The “nil” rule T-Star-R-1 corresponds

to the left injection into the sum 𝑠★ = 𝜀 + 𝑠 · 𝑠★: from any context, we can produce 𝑠★ by simply

ending the stream. The “cons” rule T-Star-R-2 is the right injection: from a context Γ;Δ, we can
produce an 𝑠★ by producing one 𝑠 from Γ and the remaining 𝑠★ from Δ. Operationally, this should
run the same way as the T-Cat-R rule: by first running 𝑒1, and if an entire 𝑠 is produced, continuing

by running 𝑒2 to produce some prefix of the tail. The T-Star-L rule is a case analysis principle

for streams of star type: either such a stream is empty, or else it comprises one 𝑠 followed by an

𝑠★. The fact that the head 𝑠 will come first and the tail 𝑠★ later tells us that the variables 𝑥 : 𝑠 and

𝑥𝑠 : 𝑠★ should be separated by a semicolon in the context. Like T-Sum-L, this rule includes a buffer,

collecting input environments until the prefix bound to 𝑧 is enough to make the decision for which

branch of the case to run.

The semantics of the right rules are straightforward: the rules for T-Star-R-1 are like those for

T-Eps-R, while the rules for T-Star-R-2 are like those for T-Cat-R. The semantics of T-Star-L is

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 204. Publication date: June 2024.



204:14 Cutler, Watson, Nkurumeh, Hilliard, Goldstein, Stanford, Pierce

just like T-Sum-L, buffering input prefixes until either (a) we get 𝑧 ↦→ starDone, at which point we

run 𝑒1, or (b) we get 𝑧 ↦→ starFirst(𝑝) or 𝑧 ↦→ starRest(𝑝, 𝑝′), in which case we run 𝑒2. For full

details, see the extended version [22].

4.3 Let-Binding

Γ(·) ⊢ 𝑒1 : 𝑟 Γ(𝑥 : 𝑠;𝑥𝑠 : 𝑠★) ⊢ 𝑒2 : 𝑟
𝜂 : env

(
Γ(𝑧 : 𝑠★)

)
𝛿𝜂

(
Γ(𝑧 : 𝑠★)

)
⊢ case𝑠,𝑟 (𝑝; 𝑧, 𝑒1, 𝑥 .𝑥𝑠.𝑒2) : 𝑟

T-Star-L

Full 𝜆ST
also allows for more general let-

binding. Given a transformer 𝑒 whose out-

put is used in the input of another term 𝑒′,
we can compose them to form a single term

let𝑥 = 𝑒 in 𝑒′ that operates as the sequential composition of 𝑒 followed by 𝑒′. The rules for this
construct are in Figure 6. Note that this sequencing is not the same kind of sequencing as in a

concat-pair (𝑒; 𝑒′). The latter produces data that follows the sequential pattern 𝑠 · 𝑡 , while the

former is sequential composition of code. When a let binding is run, both terms are evaluated,

and the output of the first is passed to the input of the second. An important point to note is that

this semantics is non-blocking: even if 𝑒 produces the empty prefix, we still run 𝑒′, potentially
producing output.

Δ ⊢ 𝑒 : 𝑠 Γ(𝑥 : 𝑠) ⊢ 𝑒′ : 𝑡 𝑒 inert

Γ(Δ) ⊢ let𝑥 = 𝑒 in 𝑒′ : 𝑡
T-Let

𝜂 ⇒ 𝑒1 ↓ 𝑒′
1
⇒ 𝑝 𝜂 [𝑥 ↦→ 𝑝] ⇒ 𝑒2 ↓ 𝑒′

2
⇒ 𝑝′

𝜂 ⇒ let𝑥 = 𝑒1 in 𝑒2 ↓ let𝑥 = 𝑒′
1
in 𝑒′

2
⇒ 𝑝′

S-Let

Fig. 6. Rules for Let-Bindings

The semantic rule S-Let for let-

binding (in Figure 6) is a straightfor-

ward encoding of this behavior. Given

the input environment 𝜂, we run the

term 𝑒 , bind the resulting prefix 𝑝 to 𝑥 ,

and run the continuation 𝑒′, returning
its output. The resultant term is another

let-binding between the resultant terms

of 𝑒 and 𝑒′.
The typing rule T-Let says that if 𝑒 has type 𝑠 in context Δ and 𝑒′ has type 𝑡 in a context Γ(𝑥 : 𝑠)

with a variable of type 𝑠 , we can form the let-binding term let𝑥 = 𝑒 in 𝑒′, which has type 𝑡 in

context Γ(Δ). The soundness of the semantics rule S-Let depends on a subtle requirement: 𝑒

must not produce nonempty output until 𝑒′ is ready to accept it. This is enforced by the third

premise of the T-Let rule, which states that 𝑒 must be inert: it only produces nonempty output

when given nonempty input. This restriction rules out let-bindings such as let𝑥 = () in 𝑒′, since
the semantics of () always produces nonempty output (namely oneFull), even when given an

environment mapping every variable to an empty prefix
6
. In actuality, inertness is not a purely

syntactic condition on terms, but depends also on typing information. To this end, inertness is

tracked like an effect through the type system: see the appendix [22] for details.

4.4 Recursion
To write interesting transformers over 𝑠★ streams, we provide a way to define transformers recur-

sively. Adding a traditional general recursion operator fix(𝑥 .𝑒) does not work in our context, as

arrow types are required to define functions this way. We instead add explicit term-level recursion

and recursive call operators. The program fix
(
𝑒args

)
. (𝑒) defines a recursive transformer with body

𝑒 and initial arguments 𝑒args. Recursive calls are made inside the body 𝑒 with a term rec
(
𝑒args

)
,

which calls the function being defined with arguments 𝑒args. This back-reference works in the

same way that uses of the variable 𝑥 in the body of a traditional fix point fix(𝑥 .𝑒) refer to the

term fix(𝑥 .𝑒) itself. This function-free approach is approach is inspired by the concept of cyclic
proofs [15, 24, 29] from proof theory, where derivations may refer back to themselves. Alternatively,

6
Because such let-bindings are essentially trivial, we expect that they can be eliminated — see Section 7 for more discussion.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 204. Publication date: June 2024.



Stream Types 204:15

one can think of this construction as defining our terms and proof trees as infinite coinductive trees;
then the term-level fix operator defines terms as cofixpoints.
In brief, to typecheck a fixpoint term, we simply type its body 𝑒 , assuming that all instances of

the rec in 𝑒 have the same type as the fixpoint itself. Then, to run a fixpoint term fix
(
𝑒args

)
. (𝑒),

the rule unfolds the recursion one step by substituting the body 𝑒 for instances of rec in itself,

then runs the resulting term, binding all of the arguments to their variables. Full details of the

typing rules and semantics of fixpoints can be found in the extended version [22].

Naturally, this semantics can lead to non-termination, as fix(rec) unfolds to itself.
7
To bound

the depth of evaluation, we step index both semantic judgments by adding a fuel parameter that

decreases when we unfold a fix. The semantic judgment then looks like 𝜂 ⇒ 𝑒 ↓𝑛 𝑒′ ⇒ 𝑝: when

we run 𝑒 on 𝜂, it steps to 𝑒′ producing 𝑝 and unfolding at most 𝑛 uses of fix along the way.

4.5 Stateful Transformers
In the 𝜆ST

typing judgment Γ ⊢ 𝑒 : 𝑠 , the variables in Γ range over future values that have yet

to arrive at the transformer 𝑒 . The ordered nature of semicolon contexts means that variables

further to the right in Γ correspond to data that will arrive further in the future. This imposes a

strong restriction on programming: if earlier values in the stream are used at all, they must be used

before later values; once a value in the stream has “gone by,” there is no way to refer to it again.

By using variables from the Γ context, a term 𝑒 can refer to values that will arrive in the future;

but it has no way of referring to values that have arrived in the past. This limitation is by design:

from a programming perspective, referring to variables from the past requires memory, which is a

resource to be carefully managed in streaming contexts. Of course, while some important streaming

functions (e.g., map and filter) can get by without state, but many others (e.g., “running sums”)

require it. In this section, we add support for stateful stream transformers.

To maintain state from the past, we extend the typing judgment of 𝜆ST
to include a second context,

Ω, called the historical context, which gives types to variables bound to values stored in memory.

We write Ω | Γ ⊢ 𝑒 : 𝑠 to mean “𝑒 has type 𝑠 in context Γ and historical context Ω”.
What types do variables in the historical context have?Once a complete stream of type

(
Int★∥Int★

)
·

Int★ has been received and is stored in memory, we may as well regard the data as a value of

the standard type (list(Int) × list(Int)) × list(Int) from the simply typed lambda-calculus

(STLC). In other words, parts of streams that will arrive in the future have stream types, parts

of streams that have arrived in the past can be given standard STLC types. The “flattening” op-

eration ⟨𝑠⟩ transforms stream types into STLC types. The interesting cases of its definition are

⟨𝑠 · 𝑡⟩ = ⟨𝑠 ∥𝑡⟩ = ⟨𝑠⟩ × ⟨𝑡⟩ and ⟨𝑠★⟩ = list (⟨𝑠⟩).
The historical context is a fully structural: Ω ::= · | Ω, 𝑥 : 𝐴, where the types 𝐴 are drawn

from some set of conventional lambda-calculus types including at least products, sums, a unit, and

a list type. Operationally, the historical context behaves like a standard context in a functional

programming language: at the top level, terms to be run must be typed in an empty historical

context; at runtime, historical variables get their values by substitution.

Ω ⊢ 𝑀 : ⟨𝑠⟩
Ω | Γ ⊢ ⟨𝑀 : 𝑠⟩ : 𝑠

T-HistPgm

Rather than giving a specific set of ad-hoc rules for manipulating

values from the historical context, we parameterize the 𝜆ST
calculus

over an arbitrary language with terms𝑀 , typing judgment Ω ⊢ 𝑀 :

𝐴, and big-step semantics𝑀 ↓ 𝑣 . We call any such fixed choice of language the history language.
Programs from the history language can be embedded in 𝜆ST

programs using the T-HistPgm rule,

7
Cyclic proof systems usually ensure soundness by imposing a guardedness condition [15] which requires certain rules be

applied before a back-edge can be inserted in the derivation tree. Because we are not primarily concerned with 𝜆ST as a

logic at the moment, we leave a guardedness condition to future work.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 204. Publication date: June 2024.



204:16 Cutler, Watson, Nkurumeh, Hilliard, Goldstein, Stanford, Pierce

which says that a historical program𝑀 of type Ω ⊢ 𝑀 : ⟨𝑠⟩ with access the historical context can

be used in place of a 𝜆ST
term of type 𝑠 . Operationally, as soon as any prefix of the input arrives, we

run the historical program to completion and yield the result as its stream output (after converting

it into a value of type 𝑠).

How does information get added to the historical context? Intuitively, a variable in Γ (a stream

that will arrive in the future) can be moved to Ω, where streams that have arrived in the past are

saved, by waiting for the future to become the past! Formally, we define an operation called “wait,”

which allows the programmer to specify part of the incoming context and block this subcomputation

until that part of the input stream has arrived in full. Once it has, we can bind it to the variables in

the historical context and continue by running 𝑒 .

Ω, 𝑥 : ⟨𝑠⟩ | Γ(·) ⊢ 𝑒 : 𝑠
Ω | Γ(𝑥 : 𝑠) ⊢ wait𝑠 (𝑥) (𝑒) : 𝑠

T-Wait-Surf

The T-Wait-Surf rule encodes the typing content

of this behavior. It allows us to specify a variable 𝑥

of the input, flatten its type, and then move it to the

historical context, so that the continuation 𝑒 can refer to it in historical terms. Semantically, this

works by buffering in environments until a maximal prefix for 𝑥 has arrived. Once we have a full

prefix for 𝑥 , we substitute it into 𝑒 and continue running the resulting term.
8
This buffering is

implemented the same way as in the left rules for plus and star, by generalizing the typing rule

T-Wait-Surf to a rule T-Wait which includes an explicit prefix buffer. As with plus and star, the

generalized rule simplifies to the surface rule when the buffer is empty. The generalized rule and

the semantics of both the wait and historical program constructs can be found in the extended

version [22]. The remaining typing rules in 𝜆ST
change only by adding an Ω to the typing judgment

everywhere.

Updated Soundness Theorems. Adding recursion and the historical context requires us to update

to the soundness theorem from that of Kernel 𝜆ST
to Full 𝜆ST

. If a well-typed term has (a) closed

historical context, and (b) no unbound recursive calls, takes a step on a well-typed input using some
amount of gas, then the output and resulting term are also well typed.

Theorem 4.1 (Soundness of the 𝜆ST
Semantics). If · | Γ ⊢ 𝑒 : 𝑠 , and 𝜂 : env (Γ), and

𝜂 ⇒ 𝑒 ↓𝑛 𝑒′ ⇒ 𝑝 , then 𝑝 : prefix (𝑠) and · | 𝛿𝜂 (Γ) ⊢ 𝑒′ : 𝛿𝑝 (𝑠)

A similarly updated statement of the homomorphism theorem can be found in the full version [22].

5 DELTA
We next show how 𝜆ST

addresses the problems that we identified in Section 2 of (a) type-safe

programming with temporal patterns and (b) deterministic processing of parallel data. We also

show how some other characteristic streaming idioms can be expressed elegantly in 𝜆ST
.

The examples in this section are written in Delta,
9
an experimental language design based on

𝜆ST
. Delta proposes a high-level functional syntax that, after typechecking, is desugars to 𝜆ST

terms.

It further supports some features that are not included in the 𝜆ST
calculus, but that we expect will

be required in full-blown language designs based on 𝜆ST
.

5.1 Delta Syntax and Features
While the proof terms of 𝜆ST

allow elimination forms (such as let (x,y) = z in e) to be applied

only to variables (an artifact of the sequent calculus-style formalism), Delta’s syntax is a standard

8
The semantics of the T-Wait rule is reminiscent of the “blocking reads” of Kahn Process Networks, where every read from

a parallel stream blocks all other reads to ensure determinism. Here, we choose a variable and block the rest of the program

until it is complete and in memory.

9
http://www.github.com/alpha-convert/delta

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 204. Publication date: June 2024.

http://www.github.com/alpha-convert/delta


Stream Types 204:17

(“natural deduction style”) one where elimination forms can be applied to arbitrary expressions.

Delta also includes more types than 𝜆ST
, adding base types Int and Bool.

Functions and Macros. Top-level functions in Delta are simply open terms: a function definition

fun f(x : Int*) : Int* = e elaborates and typechecks to a core term 𝑒 which satisfies the

typing judgment 𝑥 : Int★ ⊢ e : Int★. Higher order functions in Delta are implemented as macros.
A function written as fun g<f : Int -> Int>(x : Int*) : Int* = e is a macro which takes

another function f : Int* -> Int* as a parameter. Calls to g in other functions then look like

g<f’>, where f’ is either (a) another function defined at top level, or (b) a call to yet another macro.

If the macro g is recursive, its recursive calls do not receive a macro argument—all recursive usages

of a macro get passed the initial macro parameter f. This discipline ensures that the macro usage

does not depend on runtime data, and so higher-order functions can be fully resolved to 𝜆ST
terms

statically.

Neither of these features—standard top-level functions and higher-order macros—require the

use of first-class function types, which 𝜆ST
does not currently support. Defining true higher-order

functions would allow for streams of functions, such as (𝑠 → 𝑡)★. We hope to investigate these in

future work; see Section 7.

Functions in Delta can also be (prenex-) polymorphic [61]. Polymorphic functions definitions

are annotated with an list of their type arguments, like fun f[s,t](x : s*) : t* = e. When

such a function is called, the type arguments must be passed explicitly like f[Int,Bool].

Historical Arguments and Generalized Wait. Functions in Delta also take arguments for their histori-

cal contexts: a function fun f{acc : Int}(xs : Bool*) : Int* = e takes an in-memory Int
argument and elaborates to a core term that satisfies the typing judgment acc : Int | xs : Bool★ ⊢
𝑒 : Int★. When f is called, the acc argument must be passed a historical program. For example, if

u : Int is in the current historical context (and ys : Bool* in the regular one), f{u + 1}(ys) is

an acceptable call to f.
The wait construct is also slightly more general in Delta. Instead of just waiting on variables,

programmers may wait on the result of some expression, and then save its result into memory.

This is written wait e as x do e’ end.

Delta Implementation. The implementation first lowers the surface syntax to an “elaborated syntax”

via a transformation which eliminates shadowing, resolves function calls, and transforms the syntax

into the sequent calculus representation by introducing intermediate variables for subexpressions.

Elaborated terms are then typechecked. Typechecking expands macros and produces monomor-
phizers of 𝜆ST

terms: functions from closed types (to plug in for type variables) to monomorphic 𝜆ST

terms. Terms of base type can then be evaluated with a definitional interpreter that implements the

𝜆ST
semantics.

5.2 Examples
Besides its type system, Delta’s design differs from that of most stream processing languages

in another important respect. In languages like Flink [30], Beam[35], and Spark [33], streaming

programs must be written using a handful of provided combinators like map, filter, and fold (or

possibly as SQL-style queries, in languages derived from CQL [6]). By contrast, Delta programs

are written in the style of functional list processors. Instead of working to cram complex program

behaviors into maps, filters, and folds, programmers can express their intent more directly in

the form of general recursive functional programs. Of course, this does not preclude the use of the

aforementioned combinators, which are directly implementable in Delta. For space, we omit the

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 204. Publication date: June 2024.



204:18 Cutler, Watson, Nkurumeh, Hilliard, Goldstein, Stanford, Pierce

details of many examples: Delta code for all examples can be found in the full version [22] or the

Delta source repository (http://www.github.com/alpha-convert/delta).

fun map [s,t] <f : s -> t> (xs : s*) : t* =

case xs of

nil => nil

| y :: ys => f(y) :: map(ys)

Map. Given a transformer from s to t, we can lift it

to a transformer from s★ to t★ with a map operation.

The code for this function is essentially identical to

the familiar functional program, but its type is more

general than the standard map function on homogeneous streams, which has type (a → b) →
(Stream a → Stream b): the types 𝑠 and 𝑡 here can be arbitrary stream types, not just singletons.

fun mapMaybe[s,t]<f : s -> t + Eps> (xs : s*) : t*=

case xs of

nil => nil

| y :: ys => case f y of

| inl(t) => t :: mapMaybe(ys)

| inr(_) => mapMaybe(ys)

fun liftP[s]<f : {s}(Eps) -> Bool>(x : s) : s + Eps =

wait x, f{x}(sink) as b do

if {b} then inl({x}) else inr(sink)

end

fun filter<f : {s}(Eps) -> Bool>(xs : s*) : s* =

mapMaybe[s,s]<liftPred<f>>(xs)

Filter. Similarly, given a “predicate” func-

tion 𝑓 from 𝑠 to 𝑡 + 𝜀 (the streaming version

of 𝑡 option), we can transform an incoming

stream of 𝑠★ to include just the transformed

elements which pass the filter.

We can then recover a traditional

predicate-based filter by lifting a predicate

f that takes an in-memory s to Bool to a

streaming function s -> s + Eps with

liftP. This program simply waits for its

argument to arrive, then applies the pred-

icate to the in-memory s.

fun fold [s,t] <f : {t}(s) -> t>{acc : t}(xs : s*) : t =

case xs of

nil => {acc}

| y :: ys => wait f{acc}(y) as acc' do

fold{acc'}(ys)

end

Fold. Delta can express both running
folds, which output a stream of all their

intermediate states, and functional folds,
which output only the final state.

The (functional) fold transducer

maintains an in-memory accumulator

of type 𝑡 ; this gets updated by a streaming step function f : {t}(s) -> t that takes the state 𝑡
and the new element 𝑠 and produces a 𝑡 . The whole fold takes a stream xs of type 𝑠★ and an initial

accumulator value 𝑦 : 𝑡 , and it eventually produces the final state 𝑡 . Folds that return only the final

state cannot be given this rich type in traditional stream processing languages (for the same reason

as the head and tail functions). As for map, the code for fold is very similar to the traditional

functional program: the only distinction is the inclusion of waits to marshal data into memory.

fun head [s] (xs : s*) : Eps + s =

case xs of

nil => inl(sink)

| y :: _ => inr(y)

Singletons, Head, Tail. In the homogeneous model, stream

types are always conceptually unbounded. But in many

practical situations, a stream will only be expected to

contain a single element—a constraint that cannot be ex-

pressed with homogeneous streams. Using stream types, we can write stream transformers that

are statically known to only produce a single output. For example, the “head” function is trivially

expressible in the same manner as head on lists, as shown on the right.

Brightness Levels. The temporal invariant from the brightness-levels example in Section 2 can be

encoded as the type

(
Int · Int★

)★
: a stream of nonempty streams of Ints, representing “runs” of

light levels greater than some threshold. The thresholding operation thresh takes a stream of Ints
and produces runs of elements above the threshold. Whenever the incoming stream goes above

the threshold t, we collect all of the subsequent elements into a run, emit it, and recurse down

the rest of the stream. This uses an operation spanGt : {Int} (Int*) -> Int . Int* that

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 204. Publication date: June 2024.

http://www.github.com/alpha-convert/delta


Stream Types 204:19

returns the initial “span” of elements above t, followed by the rest of the stream. It’s important to

note that thresh does not wait for a complete run to produce output: as soon as the first element

above t arrives, it is forwarded along, as are all subsequent elements until the stream drops below

t. By contrast with homogeneously typed streaming languages, Delta’s type safety guarantees

that thresh does in fact output a stream that adheres to the protocol, and ensures downstream

transformers do not have to replicate this parsing logic.

fun thresh{t : Int}(xs : Int*) : (Int . Int*)* =

case xs of

nil => nil

| y :: ys => wait y do

if {y > t} then

let (run;rest) = spanGt{t}(ys) in

({y};run) :: thresh{t}(rest)

else

thresh{t}(ys)

end

fun averageSingle (run : Int . Int*) : Int =

let (x;xs) = run in

let (sm,len) = (sum(xs), length(xs)) in

wait x,sm,len do

{(x + sm) / (1 + len)}

end

fun averageAbove{t : Int}(xs : Int*) : Int* =

map<averageSingle>(thresh{t}(xs))

To continue the example from Sec-

tion 2, we can use this parsed stream of

runs to compute per-run averages, by

maping an averageSingle operation—

taking Int · Int★ to Int—over the

stream of runs. This operation is de-

fined by computing the sum and length

of a run in parallel, waiting for the re-

sults, then computing the average. If it

consumed a homogeneous stream type

like (Start + Int + End)★, this average-
each-run operation would need to be

written in a low-level, more stateful

manner, remembering the current run

of Ints until an End event arrives, aver-
aging, and handling the divide-by-zero

error which could in principle occur if

no Ints arrived between a Start and an
End. The complete program, first calling

thresh, and then mapping averageSingle over the stream of runs, is averageAbove.

Partitioning and Merging. Partitioning is a crucial streaming idiom where a single stream of data

is split into two or more parallel streams to be routed to different downstream processing nodes,

thus exposing parallelism and increasing potential throughput. Examples of partitioning strategies

implementable in Delta are round-robin partitioning—which partitions an incoming stream of type

𝑠★ into a parallel pair of streams 𝑠★∥𝑠★ by sending the first 𝑠 to the left, the second to the right, and

so on—and decision-based partitioning—which routes a stream of type 𝑠★ into an output stream of

type 𝑡★∥𝑟★ based on the result of a function from 𝑠 to 𝑡 + 𝑟 .
Dual to partitioning is merging, which transforms a parallel pair of streams 𝑠★∥𝑡★ to a stream of

parallel pairs (𝑠 ∥𝑡)★ by pairing off the first 𝑠 with the first 𝑡 , the second 𝑠 with the second 𝑡 , and so

on. This operation is necessarily deterministic by Theorem 3.3, and so it prevents the bug when

averaging data from a pair of sensors in Section 2.

Windowing and Punctuation. Windowing is another core concept in stream processing systems,

where aggregation operations like moving averages or sums are defined over “windows”—groupings

of consecutive events, gathered together into a set. In Delta, these transformers are just maps over
a stream whose elements are windows. Given a per-window aggregation transformer f from an

individual window 𝑠★ to a result type 𝑡 , plus a “windowing strategy” winwhich takes a stream 𝑟★ and

turns it into a stream of windows 𝑠★★, we can write the windowed operation as map<f>(win(xs)).
Delta can express a variety of windowing strategies, including sliding and tumbling size-based

window operators, as well as punctuation-based windowing, where windows are delimited by

punctuation marks inserted into the stream.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 204. Publication date: June 2024.



204:20 Cutler, Watson, Nkurumeh, Hilliard, Goldstein, Stanford, Pierce

6 RELATEDWORK
Streams as a programming abstraction have their sources in early work in the programming

languages [17, 49, 71, 73] and database [1, 2, 5–7, 21, 57] communities. Though streams have mostly

been viewed as homogeneous sequences, more interesting treatments have also been proposed.

For example, streams in the database literature are sometimes viewed as time-varying relations,

while the PL community has produced formalisms like process calculi and functional reactive

programming. To our knowledge, ours is first type system for stream programming capturing both

(1) heterogeneous patterns of events over time and (2) combinations of parallel and sequential data.

Sequential, homogeneous streams and dataflow programs. Traditionally, streams have been viewed

in the PL community as coinductive sequences [17]: a stream of A has a single (co)constructor,

cocons : Stream𝐴 → (𝐴 × Stream 𝐴) and acts as a lazily evaluated infinite list. In particular, this

is the setting of traditional dataflow programming [71]. One major challenge in reasoning about

dataflow over sequential streams is the nondeterminism arising from operators whose output may

depend on the order in which events arrive on multiple input streams. Kahn’s seminal “process

networks” [49] (including their restriction to synchronous networks [12, 56, 73]) avoid this problem

by allowing only blocking reads of messages on FIFO queues. In contrast, the semantics of 𝜆ST

leverages its type structure to guarantee deterministic parallel processing without blocking in many

cases. For example, in the context of a T-Let rule, if the type system can detect statically that a

transformer is using two parallel streams safely, it can read from them simultaneously.

Partitioned streams. Building on streams as homogeneous sequences, modern stream processing

systems such as Flink [18, 30], Spark Streaming [33, 78], Samza [32, 62], Arc [55], and Storm [34]

support dynamic partitioning: a stream type can define one stream with many parallel substreams,

where the number of substreams and assignment of data to substreams is determined at runtime.

The type Stream t in these systems is implicitly a parallel composition of homogeneous streams:

t★∥ · · · ∥t★. Unlike in 𝜆ST
, these parallel substreams cannot have more general types.

Some which papers which attempt to build very general compile targets for stream processing

support parallelism in only restricted ways. For example, Brooklet [69] and the DON Calculus [25]

support data parallelism only as an optimization pass in limited cases. This is because stream

partitioning does not in general preserve the semantics of the source program and can introduce

undesirable nondeterminism [42, 59, 67]. While 𝜆ST
does not support dynamic partitioning, we

hope to address it in future work; see Section 7.

Streams as time-varying relations. In the database literature, streams are often viewed as relations

(sets of tuples) that vary over time. Stream management systems in the early 2000s pioneered this

paradigm, including Aurora [2] and Borealis [1], TelegraphCQ [21] and CACQ [57], and STREAM [5].

A time-varying relation can be viewed as either a function from timestamps to finite relations or an

infinite set of timestamped values; this correspondence was elegantly exploited by early streaming

query languages such as CQL [6, 7] and remains popular today [11, 46]. Time-varying relations can

be expressed in 𝜆ST
using Kleene star and concatenation: a relation of tuples of type T timestamped

by Time can be expressed as

(
T★ · Time

)★
. We can also express the common pattern where parallel

streams are synchronized by a single timestamp (again, modulo dynamic partitioning) with types

like

( (
T★∥T★

)
· Time

)★
. Each Time event is a punctuation mark containing the timestamp of the

prior set of tuples [48, 76]. Traditional systems include separate APIs for operations that modify

punctuation (e.g., a delay function that increments timestamps); whereas in our system they are

ordinary stream operators and punctuation markers are ordinary events.

Streams as Pomsets andMonoids. A sweet spot between the homogeneous sequential and relational

viewpoints is found in prior work treating streams as pomsets (partially ordered multisets) [3, 50–

52, 59], inspired by work in concurrency theory [26, 60]. In a pomset, data items may be completely

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 204. Publication date: June 2024.



Stream Types 204:21

ordered (a sequence), completely unordered (a bag), or somewhere in between. Some recent works

have proposed pomset-based and structured monoid-based types for streams [3, 58, 59], but their

types do not include concatenation and do not come with type systems—programs must be shown

to be well typed semantically, rather than via syntactic typing rules.

Functional reactive programming (FRP) [27] treats programs as incremental, reactive state ma-

chines written using functional combinators. The fundamental abstraction is a “signal”: a time-

varying value Sig(A) = Time -> A. Work on type systems for FRP has usedmodal and substructural

types [8, 9, 19, 54] to guarantee properties like causality, productivity, and space leak freedom.

While our type system is not designed to address these issues, it does incidentally have bearing on

them. For one, our incremental semantics demonstrates that 𝜆ST
’s type system enforces causality:

since outputs that have been incrementally emitted cannot be retracted or changed, the type system

must ensure that past outputs cannot depend on future inputs. Similarly, potential space leaks

can be detected statically by checking that only bounded-sized types are buffered using wait or
the buffering built into the left rules for sums and star. Our current calculus does not guarantee

productivity (new inputs must eventually produce new outputs), but in Section 7 we discuss how

to remedy this by imposing guardedness conditions on recursive calls.

Jeffrey [47] permits the type of a signal to vary over time, using dependent types inspired by

Linear Temporal Logic [65]. This system includes an until type that behaves like our concatenation
type: a signal of type 𝐴𝑈 𝐵 is a signal of type 𝐴, followed by a signal of type 𝐵. However, unlike

parallel streams in our setting, time updates in steps, discretely; i.e., parallel signals all present new

values together, at the same time. Concurrently with our work, Bahr and Møgelberg [10] proposes

a modal type system to weaken the synchronicity assumption; however, it still treats signals as

homogeneous: the type of data cannot change over time. Lastly, Paykin et al. [64] develop a modal

type system which expresses low-level event handlers. These are also purely synchronous, and the

programs are written as event handlers as opposed to high-level “batch” processors.

Stream Runtime Verification (SRV) aims, broadly, to monitor streams at runtime and provide

boolean or numerical “triggers” that fire when they satisfy some specification. Many RV projects like

LOLA [23], HLola [20], RTLola [28], Striver [41], HStriver [40] also provide high-level, declarative

specification languages for writing such monitors. Because these languages often use regular

expressions or LTL as a formalism, they often bear a resemblance to our stream types. Despite this

similarity, our goals and methods are quite different. Unlike the dynamically-checked specifications

of SRV, the types in Delta are static guarantees: a stream program of type 𝑠 necessarily produces a

stream of type 𝑠 .

Streaming with Laziness. It is folklore in the Haskell community that a “sufficiently lazy” list

program can be run as a streaming program using a clever trick with lazy IO [53, 74]. This “sufficient

laziness” condition is syntactically brittle, and requires an expert Haskell programmer to carefully

ensure that all functions involved are lazy in the just the right way. Indeed, many Haskell program-

mers instead reach for combinator libraries like Pipes [38], FoldL [39], Conduit [68], Streamly [72],

and others to ensure their programs have a streaming semantics. In Delta, the type system takes

care of this for you: all well-typed programs can be given a streaming semantics. Moreover, the 𝜆ST

semantics gives a direct account of how pure functions execute incrementally as state machines,

as opposed to the way that Haskell’s non-strict semantics incidentally yields streaming behavior

when combined with Lazy IO.

Session types and process calculi. Another large body of work with similar vision is session types

for process calculi [44], where types describe complex sequential protocols between communicating

processes as they evolve through time. A main difference from our work is that the session type of

a process describes the protocol for its communications with other processes—i.e., the sequence

of sends and receives on different channels—while the stream type of a 𝜆ST
program describes

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 204. Publication date: June 2024.



204:22 Cutler, Watson, Nkurumeh, Hilliard, Goldstein, Stanford, Pierce

only the data that it communicates. Indeed, a stream transformer might display many patterns of

communication with downstream transformers: it can run in “batch mode”—sending exactly one

output after accepting all available input—or in a sequence smaller steps, sending along partial

outputs as it receives partial inputs. Also, a single channel in a process calculus cannot carry parallel

substreams: all events in a channel are ordered relative to each other. Recently, Frumin et al. [37]

proposed a session-types interpretation of BI that uses the bunched structure very differently from

𝜆ST
. In particular, processes of type 𝐴 ∗ 𝐵 and 𝐴 ∧ 𝐵 both behave semantically like a process of type

𝐴 in parallel with a process of type 𝐵, while, in 𝜆ST
, 𝑠 · 𝑡 and 𝑠 ∥𝑡 describe very different streams.

Concurrent Kleene Algebras and regular expression types. Stream types are partly inspired by

Concurrent Kleene Algebras (CKAs) [43] and related syntaxes for pomset languages [52], but we

are apparently the first to use these formalisms as types in a programming language rather than as

a tool for reasoning about concurrency. In particular, traditional applications of Kleene algebra

such as NetKAT [4] and Concurrent NetKAT [77] use KA to model programs, whereas in 𝜆ST
we use

the KA structure to describe the data that programs exchange, while the programs themselves are

written in a separate language. We have also taken inspiration from languages for programming

with XML data [13, 36, 45, etc.] using types based on regular expressions.

7 CONCLUSIONS AND FUTUREWORK
We have proposed a new static type system for stream programming, motivated by a novel variant

of BI logic and able to capture both complex temporal patterns and deterministic parallel processing.

In the future, we hope to addmore types to 𝜆ST
. Adding a support for bags—unbounded parallelism,

the parallel analog of Kleene star—would enable dynamic partitioning. 𝜆ST
also lacks function types.

The proof theory of BI would imply that there should be two (one for each context former), but we

have yet to investigate what these functions might mean in the streaming setting.

Further theoretical investigations include (1) alternate semantics for stream types, including a

denotational semantics as pomset morphisms, Kahn Process Networks [49], or some category of

state machines, (2) eliminating the inertness restriction on let-bindings, and (3) adding a guardedness
condition on recursive calls to ensure termination and hence productivity.

On the applied side, we plan to build a distributed implementation of Delta by compiling 𝜆ST

terms to programs for an existing stream processing system like Apache Storm [34], thus inheriting

its desirable fault-tolerance and delivery guarantees. We hope to build such a compiler and use it

as a platform for experimenting with type-enabled optimizations and resource usage analysis.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their feedback. We also thank Justin Lubin for feedback on

drafts of this paper, Will Sturgeon for help with formalizing the most intricate details of the theory

of stream types, and PLClub, Alex Kavvos, Andrew Hirsch, Mae Milano, and Michael Arntzenius for

helpful discussions about this work. Cutler was supported by a NSF Graduate Research Fellowship

under grant number 2022334433, Waston by NSF awards 1763514 and 2331783, Hilliard by NSF

Award III-1910108, and Pierce and Goldstein by NSF Award 1421243, Random Testing for Language
Design.

REFERENCES
[1] Daniel J Abadi, Yanif Ahmad, Magdalena Balazinska, Uğur Çetintemel, Mitch Cherniack, Jeong-Hyon Hwang, Wolfgang

Lindner, Anurag Maskey, Alex Rasin, Esther Ryvkina, Nesime Tatbul, Ying Xing, and Stanley Zdonik. 2005. The Design

of the Borealis Stream Processing Engine. In Second Biennial Conference on Innovative Data Systems Research (CIDR).
[2] Daniel J Abadi, Don Carney, Uğur Çetintemel, Mitch Cherniack, Christian Convey, Sangdon Lee, Michael Stonebraker,

Nesime Tatbul, and Stan Zdonik. 2003. Aurora: A New Model and Architecture for Data Stream Management. The
VLDB Journal 12, 2 (2003). https://doi.org/10.1007/s00778-003-0095-z

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 204. Publication date: June 2024.

https://doi.org/10.1007/s00778-003-0095-z


Stream Types 204:23

[3] Rajeev Alur, Phillip Hilliard, Zachary G Ives, Konstantinos Kallas, Konstantinos Mamouras, Filip Niksic, Caleb Stanford,

Val Tannen, and Anton Xue. 2021. Synchronization Schemas. Invited contribution, Principles of Database Systems.
[4] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter Kozen, Cole Schlesinger, and David

Walker. 2014. NetKAT: Semantic foundations for networks. Acm sigplan notices 49, 1 (2014), 113–126.
[5] Arvind Arasu, Brian Babcock, Shivnath Babu, John Cieslewicz, Mayur Datar, Keith Ito, Rajeev Motwani, Utkarsh

Srivastava, and Jennifer Widom. 2004. STREAM: The Stanford Data Stream Management System. Technical Report

2004-20. Stanford InfoLab.

[6] Arvind Arasu, Shivnath Babu, and Jennifer Widom. 2003. CQL: A language for continuous queries over streams and

relations. In International Workshop on Database Programming Languages. Springer.
[7] Arvind Arasu, Shivnath Babu, and Jennifer Widom. 2006. The CQL Continuous Query Language: Semantic Foundations

and Query Execution. The VLDB Journal 15, 2 (2006). https://doi.org/10.1007/s00778-004-0147-z

[8] Patrick Bahr, Christian Uldal Graulund, and Rasmus Ejlers Møgelberg. 2019. Simply RaTT: A Fitch-Style Modal

Calculus for Reactive Programming without Space Leaks. Proc. ACM Program. Lang. 3, ICFP, Article 109 (jul 2019),
27 pages. https://doi.org/10.1145/3341713

[9] Patrick Bahr, Christian Uldal Graulund, and Rasmus Ejlers Møgelberg. 2021. Diamonds Are Not Forever: Liveness in

Reactive Programming with Guarded Recursion. Proc. ACM Program. Lang. 5, POPL, Article 2 (jan 2021), 28 pages.

https://doi.org/10.1145/3434283

[10] Patrick Bahr and Rasmus Ejlers Møgelberg. 2023. Asynchronous Modal FRP. arXiv:2303.03170 [cs.PL]

[11] Edmon Begoli, Tyler Akidau, Fabian Hueske, Julian Hyde, Kathryn Knight, and Kenneth Knowles. 2019. One SQL to

Rule ThemAll-an Efficient and Syntactically Idiomatic Approach to Management of Streams and Tables. In International
Conference on Management of Data (SIGMOD).

[12] Albert Benveniste, Paul Caspi, Stephen A Edwards, Nicolas Halbwachs, Paul Le Guernic, and Robert De Simone. 2003.

The synchronous languages 12 years later. Proc. IEEE 91, 1 (2003).

[13] Véronique Benzaken, Giuseppe Castagna, and Alain Frisch. 2003. CDuce: An XML-Centric General-Purpose Language.

In ACM SIGPLAN International Conference on Functional Programming (ICFP). 51–63.
[14] Gérard Berry and Georges Gonthier. 1992. The Esterel synchronous programming language: design, semantics,

implementation. Science of Computer Programming 19, 2 (1992), 87–152. https://doi.org/10.1016/0167-6423(92)90005-V

[15] James Brotherston. 2005. Cyclic Proofs for First-Order Logic with Inductive Definitions. In Automated Reasoning with
Analytic Tableaux and Related Methods (Lecture Notes in Computer Science), Bernhard Beckert (Ed.). Springer, Berlin,

Heidelberg, 78–92. https://doi.org/10.1007/11554554_8

[16] Janusz A Brzozowski. 1964. Derivatives of regular expressions. J. ACM 11, 4 (1964).

[17] William H Burge. 1975. Stream processing functions. IBM Journal of Research and Development 19, 1 (1975).
[18] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi, and Kostas Tzoumas. 2015. Apache

Flink: Stream and Batch Processing in a Single Engine. Bulletin of the IEEE Computer Society Technical Committee on
Data Engineering 36, 4 (2015).

[19] Andrew Cave, Francisco Ferreira, Prakash Panangaden, and Brigitte Pientka. 2014. Fair Reactive Programming.

In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San Diego,

California, USA) (POPL ’14). Association for Computing Machinery, New York, NY, USA, 361–372. https://doi.org/10.

1145/2535838.2535881

[20] Martín Ceresa, Felipe Gorostiaga, and César Sáchez. 2020. Declarative Stream Runtime Verification (hLola). In Proc. of
the 18th Asian Symposium on Programming Languages and Systems (APLAS’20) (LNCS, Vol. 12470). Springer, 25–43.
https://doi.org/10.1007/978-3-030-64437-6_2

[21] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J Franklin, Joseph M Hellerstein, Wei Hong, Sailesh

Krishnamurthy, Samuel R Madden, Fred Reiss, and Mehul A Shah. 2003. TelegraphCQ: continuous dataflow processing.

In ACM SIGMOD International Conference on Management of Data (SIGMOD. 668–668.
[22] Joseph W. Cutler, Christopher Watson, Phillip Hilliard, Harrison Goldstein, Caleb Stanford, and Benjamin C. Pierce.

2023. Stream Types. arXiv:2307.09553 [cs.PL]

[23] B. D’Angelo, S. Sankaranarayanan, C. Sanchez, W. Robinson, B. Finkbeiner, H.B. Sipma, S. Mehrotra, and Z. Manna.

2005. LOLA: runtime monitoring of synchronous systems. In 12th International Symposium on Temporal Representation
and Reasoning (TIME’05). 166–174. https://doi.org/10.1109/TIME.2005.26

[24] Farzaneh Derakhshan. 2021. Session-Typed Recursive Processes and Circular Proofs. Ph. D. Dissertation. Caregie Mellon

University. https://www.andrew.cmu.edu/user/fderakhs/publications/Dissertation_Farzaneh.pdf

[25] Philip Dexter, Yu David Liu, and Kenneth Chiu. 2022. The essence of online data processing. Proceedings of the ACM
on Programming Languages 6, OOPSLA2 (2022), 899–928.

[26] Volker Diekert and Grzegorz Rozenberg. 1995. The Book of Traces. World Scientific. https://doi.org/10.1142/2563

[27] Conal Elliott and Paul Hudak. 1997. Functional reactive animation. In Second ACM SIGPLAN International Conference
on Functional Programming (ICFP).

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 204. Publication date: June 2024.

https://doi.org/10.1007/s00778-004-0147-z
https://doi.org/10.1145/3341713
https://doi.org/10.1145/3434283
https://arxiv.org/abs/2303.03170
https://doi.org/10.1016/0167-6423(92)90005-V
https://doi.org/10.1007/11554554_8
https://doi.org/10.1145/2535838.2535881
https://doi.org/10.1145/2535838.2535881
https://doi.org/10.1007/978-3-030-64437-6_2
https://arxiv.org/abs/2307.09553
https://doi.org/10.1109/TIME.2005.26
https://www.andrew.cmu.edu/user/fderakhs/publications/Dissertation_Farzaneh.pdf
https://doi.org/10.1142/2563


204:24 Cutler, Watson, Nkurumeh, Hilliard, Goldstein, Stanford, Pierce

[28] Peter Faymonville, Bernd Finkbeiner, Malte Schledjewski, Maximilian Schwenger, Marvin Stenger, Leander Tentrup,

and Hazem Torfah. 2019. StreamLAB: Stream-based Monitoring of Cyber-Physical Systems. In Computer Aided
Verification, Isil Dillig and Serdar Tasiran (Eds.). Springer International Publishing, 421–431.

[29] Jérôme Fortier and Luigi Santocanale. 2013. Cuts for circular proofs: semantics and cut-elimination. In Computer
Science Logic 2013 (CSL 2013) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 23), Simona Ronchi Della

Rocca (Ed.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 248–262. https://doi.org/10.

4230/LIPIcs.CSL.2013.248 ISSN: 1868-8969.

[30] Apache Software Foundation. 2019. Apache Flink. https://flink.apache.org/. (Accessed July 2022.).

[31] Apache Software Foundation. 2019. Apache Heron (originally Twitter Heron). https://heron.incubator.apache.org/.

(Accessed July 2022.).

[32] Apache Software Foundation. 2019. Apache Samza. https://samza.apache.org/. (Accessed July 2022.).

[33] Apache Software Foundation. 2019. Apache Spark Streaming. https://spark.apache.org/streaming/. (Accessed July

2022.).

[34] Apache Software Foundation. 2019. Apache Storm. https://storm.apache.org/. (Accessed July 2022.).

[35] Apache Software Foundation. 2021. Apache Beam. https://beam.apache.org/. (Accessed July 2022.).

[36] Alain Frisch, Giuseppe Castagna, and Veronique Benzaken. 2002. Semantic Subtyping. In Logic in Computer Science
(LICS).

[37] Dan Frumin, Emanuele D’Osualdo, Bas van den Heuvel, and Jorge A. Pérez. 2022. A Bunch of Sessions: A Propositions-

as-Sessions Interpretation of Bunched Implications in Channel-Based Concurrency. Proc. ACM Program. Lang. 6,
OOPSLA2, Article 155 (oct 2022), 29 pages. https://doi.org/10.1145/3563318

[38] Gabriella Gonzalez. 2022. Pipes. https://hackage.haskell.org/package/pipes.

[39] Gabriella Gonzalez. 2024. FoldL. https://hackage.haskell.org/package/foldl.

[40] Felipe Gorostiaga and César Sánchez. 2021. HStriver: A Very Functional Extensible Tool for the Runtime Verification

of Real-Time Event Streams. In Proc. of the 24th Int’l Symp. on Formal Methods (FM’21) (LNCS, Vol. 13047). Springer,
563–580. https://doi.org/10.1007/978-3-030-90870-6_30

[41] Felipe Gorostiaga and César Sánchez. 2021. Stream runtime verification of real-time event streams with the Striver

language. International Journal on Software Tools for Technology Transfer 23 (2021), 157–183. https://doi.org/10.1007/

s10009-021-00605-3

[42] Martin Hirzel, Robert Soulé, Scott Schneider, Buğra Gedik, and Robert Grimm. 2014. A catalog of stream processing

optimizations. ACM Computing Surveys (CSUR) 46, 4 (2014).
[43] CAR (Tony) Hoare, Bernhard Möller, Georg Struth, and Ian Wehrman. 2009. Concurrent Kleene Algebra. In CONCUR

2009-Concurrency Theory: 20th International Conference, CONCUR 2009, Bologna, Italy, September 1-4, 2009. Proceedings
20. Springer, 399–414.

[44] Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multiparty asynchronous session types. In Proceedings of
the 35th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages. 273–284.

[45] Haruo Hosoya, Jérôme Vouillon, and Benjamin C. Pierce. 2005. Regular Expression Types for XML. ACM Transactions
on Programming Languages and Systems (TOPLAS) 27, 1 (Jan. 2005), 46–90. Preliminary version in ICFP 2000.

[46] Namit Jain, Shailendra Mishra, Anand Srinivasan, Johannes Gehrke, Jennifer Widom, Hari Balakrishnan, Uğur Çet-

intemel, Mitch Cherniack, Richard Tibbetts, and Stan Zdonik. 2008. Towards a streaming SQL standard. Proceedings of
the VLDB Endowment 1, 2 (2008).

[47] Alan Jeffrey. 2012. LTL Types FRP: Linear-Time Temporal Logic Propositions as Types, Proofs as Functional Reactive

Programs. In Proceedings of the Sixth Workshop on Programming Languages Meets Program Verification (Philadelphia,

Pennsylvania, USA) (PLPV ’12). Association for Computing Machinery, New York, NY, USA, 49–60. https://doi.org/10.

1145/2103776.2103783

[48] Theodore Johnson, Shanmugavelayutham Muthukrishnan, Vladislav Shkapenyuk, and Oliver Spatscheck. 2005. A

heartbeat mechanism and its application in Gigascope. In 31st International Conference on Very Large Data Bases (VLDB).
VLDB Endowment.

[49] Gilles Kahn. 1974. The semantics of a simple language for parallel programming. Information Processing 74 (1974).

[50] Konstantinos Kallas, Filip Niksic, Caleb Stanford, and Rajeev Alur. 2020. DiffStream: differential output testing for

stream processing programs. Proceedings of the ACM on Programming Languages 4, OOPSLA (2020).

[51] Konstantinos Kallas, Filip Niksic, Caleb Stanford, and Rajeev Alur. 2022. Stream Processing With Dependency-Guided

Synchronization. In Principles and Practice of Parallel Programming (PPoPP).
[52] Tobias Kappé, Paul Brunet, Bas Luttik, Alexandra Silva, and Fabio Zanasi. 2019. On series-parallel pomset languages:

Rationality, context-freeness and automata. Journal of Logical and Algebraic Methods in Programming 103 (2019),

130–153. https://doi.org/10.1016/j.jlamp.2018.12.001

[53] Oleg Kiselyov. 2012. Iteratees. In Functional and Logic Programming, Tom Schrijvers and Peter Thiemann (Eds.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 166–181.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 204. Publication date: June 2024.

https://doi.org/10.4230/LIPIcs.CSL.2013.248
https://doi.org/10.4230/LIPIcs.CSL.2013.248
https://flink.apache.org/
https://heron.incubator.apache.org/
https://samza.apache.org/
https://spark.apache.org/streaming/
https://storm.apache.org/
https://beam.apache.org/
https://doi.org/10.1145/3563318
https://hackage.haskell.org/package/pipes
https://hackage.haskell.org/package/foldl
https://doi.org/10.1007/978-3-030-90870-6_30
https://doi.org/10.1007/s10009-021-00605-3
https://doi.org/10.1007/s10009-021-00605-3
https://doi.org/10.1145/2103776.2103783
https://doi.org/10.1145/2103776.2103783
https://doi.org/10.1016/j.jlamp.2018.12.001


Stream Types 204:25

[54] Neelakantan R. Krishnaswami. 2013. Higher-Order Functional Reactive Programming without Spacetime Leaks. In

Proceedings of the 18th ACM SIGPLAN International Conference on Functional Programming (Boston, Massachusetts,

USA) (ICFP ’13). Association for Computing Machinery, New York, NY, USA, 221–232. https://doi.org/10.1145/2500365.

2500588

[55] Lars Kroll, Klas Segeljakt, Paris Carbone, Christian Schulte, and Seif Haridi. 2019. Arc: an IR for batch and stream

programming. In Proceedings of the 17th ACM SIGPLAN International Symposium on Database Programming Languages
(Phoenix, AZ, USA) (DBPL 2019). Association for Computing Machinery, New York, NY, USA, 53–58. https://doi.org/

10.1145/3315507.3330199

[56] Edward A Lee and David G Messerschmitt. 1987. Synchronous data flow. Proc. IEEE 75, 9 (1987).

[57] Samuel Madden, Mehul Shah, JosephMHellerstein, and Vijayshankar Raman. 2002. Continuously Adaptive Continuous

Queries over Streams. In ACM SIGMOD International Conference on Management of Data (SIGMOD). 12 pages. https:

//doi.org/10.1145/564691.564698

[58] Konstantinos Mamouras. 2020. Semantic Foundations for Deterministic Dataflow and Stream Processing. In Program-
ming Languages and Systems, Peter Müller (Ed.). Springer International Publishing, Cham, 394–427.

[59] Konstantinos Mamouras, Caleb Stanford, Rajeev Alur, Zachary G Ives, and Val Tannen. 2019. Data-trace types for

distributed stream processing systems. In 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI).

[60] Antoni Mazurkiewicz. 1986. Trace theory. In Advanced course on Petri nets. Springer.
[61] Robin Milner. 1978. A theory of type polymorphism in programming. J. Comput. System Sci. 17, 3 (1978), 348–375.

https://doi.org/10.1016/0022-0000(78)90014-4

[62] Shadi A Noghabi, Kartik Paramasivam, Yi Pan, Navina Ramesh, Jon Bringhurst, Indranil Gupta, and Roy H Campbell.

2017. Samza: Stateful Scalable Stream Processing at LinkedIn. Proceedings of the VLDB Endowment 10, 12 (2017).
[63] Peter W O’Hearn and David J Pym. 1999. The logic of bunched implications. Bulletin of Symbolic Logic 5, 2 (1999),

215–244.

[64] Jennifer Paykin, Neelakantan R. Krishnaswami, and Steve Zdancewic. 2016. The Essence of Event-Driven Programming.

(2016).

[65] Amir Pnueli. 1977. The temporal logic of programs. In 18th Annual Symposium on Foundations of Computer Science
(sfcs 1977). ieee, 46–57.

[66] John C Reynolds. 2002. Separation logic: A logic for shared mutable data structures. In Proceedings 17th Annual IEEE
Symposium on Logic in Computer Science. IEEE, 55–74.

[67] Scott Schneider, Martin Hirzel, Buğra Gedik, and Kun-Lung Wu. 2013. Safe data parallelism for general streaming.

IEEE Trans. Comput. 64, 2 (2013).
[68] Michael Snoyman. 2023. Conduit. https://hackage.haskell.org/package/conduit.

[69] Robert Soulé, Martin Hirzel, Robert Grimm, Buğra Gedik, Henrique Andrade, Vibhore Kumar, and Kun-Lung Wu. 2010.

A universal calculus for stream processing languages. In European Symposium on Programming (ESOP). Springer.
[70] Caleb Stanford. 2022. Safe Programming over Distributed Streams. Ph. D. Dissertation. University of Pennsylvania.

[71] Robert Stephens. 1997. A survey of stream processing. Acta Informatica 34, 7 (1997).
[72] Composewell Technologies. 2023. StreamLy. https://hackage.haskell.org/package/streamly-core.

[73] William Thies, Michal Karczmarek, and Saman Amarasinghe. 2002. StreamIt: A language for streaming applications.

In International Conference on Compiler Construction. Springer.
[74] Jose Manuel Calderon Trilla. 2024. personal communication.

[75] Peter A. Tucker, David Maier, Tim Sheard, and Leonidas Fegaras. 2003. Exploiting Punctuation Semantics in Continuous

Data Streams. IEEE Trans. on Knowl. and Data Eng. 15, 3 (mar 2003), 555–568. https://doi.org/10.1109/TKDE.2003.

1198390

[76] Peter A Tucker, David Maier, Tim Sheard, and Leonidas Fegaras. 2003. Exploiting punctuation semantics in continuous

data streams. IEEE Transactions on Knowledge and Data Engineering 15, 3 (2003).

[77] Jana Wagemaker, Nate Foster, Tobias Kappé, Dexter Kozen, Jurriaan Rot, and Alexandra Silva. 2022. Concurrent

NetKAT: Modeling and analyzing stateful, concurrent networks. In European Symposium on Programming. Springer
International Publishing Cham, 575–602.

[78] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and Ion Stoica. 2013. Discretized Streams:

Fault-tolerant Streaming Computation at Scale. In 24th Symposium on Operating Systems Principles (SOSP). ACM.

https://doi.org/10.1145/2517349.2522737

Received 2023-11-16; accepted 2024-03-31

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 204. Publication date: June 2024.

https://doi.org/10.1145/2500365.2500588
https://doi.org/10.1145/2500365.2500588
https://doi.org/10.1145/3315507.3330199
https://doi.org/10.1145/3315507.3330199
https://doi.org/10.1145/564691.564698
https://doi.org/10.1145/564691.564698
https://doi.org/10.1016/0022-0000(78)90014-4
https://hackage.haskell.org/package/conduit
https://hackage.haskell.org/package/streamly-core
https://doi.org/10.1109/TKDE.2003.1198390
https://doi.org/10.1109/TKDE.2003.1198390
https://doi.org/10.1145/2517349.2522737

	Abstract
	1 Introduction
	2 Motivating examples
	3 Kernel ST
	3.1 Kernel Typing Rules
	3.2 Prefixes and Semantics
	3.3 The Homomorphism Property and Determinism

	4 Full ST
	4.1 Sums
	4.2 Star
	4.3 Let-Binding
	4.4 Recursion
	4.5 Stateful Transformers

	5 Delta
	5.1 Delta Syntax and Features
	5.2 Examples

	6 Related Work
	7 Conclusions and Future Work
	Acknowledgments
	References



