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IDENTIFYING THE EFFECT OF CHANGING THE POLICY THRESHOLD IN
REGRESSION DISCONTINUITY MODELS

Yingying Dong and Arthur Lewbel*

Abstract—Regression discontinuity models are commonly used to nonpara-
metrically identify and estimate a local average treatment effect (LATE). We
show that the derivative of the treatment effect with respect to the running
variable at the cutoff, referred to as the treatment effect derivative (TED),
is nonparametrically identified, easily estimated, and has implications for
testing external validity and extrapolating the estimated LATE away from
the cutoff. Given a local policy invariance assumption, we further show
this TED equals the change in the treatment effect that would result from
a marginal change in the threshold, which we call the marginal threshold
treatment effect (MTTE). We apply these results to Goodman (2008), who
estimates the effect of a scholarship program on college choice. MTTE in
this case identifies how this treatment effect would change if the test score
threshold to qualify for a scholarship were changed, even though no such
change in threshold is actually observed.

I. Introduction

CONSIDER a standard regression discontinuity (RD)
model, where T is a binary treatment indicator, X is

a so-called running or forcing variable, c is the threshold for
X at which the probability of treatment changes discretely,
and Y is some observed outcome that may be affected both by
treatment and smoothly by X. The goal in these models is to
estimate the effect of treatment T on the outcome Y , and the
main result in this literature is that under weak conditions, a
local average treatment effect (LATE) can be nonparametri-
cally identified and estimated at the point where X = c (see,
Hahn, Todd, & Van der Klaauw, 2001).

RD models identify a treatment effect locally at one point.
Despite its strong internal validity, researchers often question
the external validity of an estimated LATE. Therefore, it is
useful to know what the treatment effect would be at points
other than the cutoff c. For example, if the effect were very
different at only slightly different values of X, then the exter-
nal validity of the estimate should be a concern. But if the
identified LATE is locally constant or nearly so, then it is
more likely to have external validity. A related but separate
issue is how the RD LATE would change if the RD threshold
were marginally changed, since many policy questions center
precisely on eligibility threshold changes.

In this paper, we show that one can nonparametrically
identify a derivative of the RD LATE under weak conditions.
The derivative can be used to explore the external validity of
RD LATE in the neighborhood of the RD threshold, extrap-
olate the RD LATE away from the cutoff, and investigate
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how the RD LATE would change if the RD threshold were
marginally changed.

To allow the treatment effect to vary with X, letπ (x)denote
the average treatment effect (for compliers) when the running
variable X equals the value x, and let π′ (x) = ∂π (x) /∂x
when this derivative exists. Note that the function π (x) is
defined holding the threshold fixed at c. RD estimation iden-
tifies π (c), the LATE at X = c. We define TED (treatment
effect derivative) as π′ (c). Intuitively, one can think of the
derivative π′ (c) as the coefficient of the interaction term
between the treatment T and X−c in a (local) linear regression
of Y on a constant, T , X − c, and (X − c) T .

We show that TED for both sharp designs and fuzzy
designs can be nonparametrically identified and is easily
estimated. The smoothness conditions needed for identify-
ing TED are slightly stronger than those needed to identify
π(c). However, inference for standard methods used to actu-
ally estimate π (c), such as kernel or local polynomial-based
estimators, or standard parametric functional forms, requires
precisely the same additional smoothness assumptions that
are needed to identify and estimate TED. As a result, all
empirical applications of RD methods that we know of
already make the assumptions needed to identify TED.

One use of TED is to test for locally constant treatment
effects, since π′ (c) = 0 is a necessary condition for not
having the treatment effect change with the running vari-
able. More generally, if π′ (c) is large in magnitude, then a
small change in the running variable is associated with a large
change in treatment effect, which would then call into ques-
tion the external validity or generality of the estimated LATE.
The sign of TED is also informative, since it tells whether the
treatment effect is likely to be larger or smaller for individu-
als (units) with a value of X that is slightly larger or smaller
than c.

In many RD applications, the function E (Y | X = x) is
parameterized; for example, this function is assumed to be a
polynomial in chapter 6 of Angrist and Pischke (2008). When
this expectation is parameterized, the function π (x) can be
obtained for all values of x. For example, suppose we have a
sharp design model where this expectation is assumed to be
quadratic, so Y = a + Xb + X2d + Tã + XTb̃ + X2Td̃ + e
and E (e | X = x) = 0 for all x in some interval. Then for
this model, π (x) = ã + xb̃ + x2d̃, so π′ (x) = b̃ + 2xd̃. So in
this case, TED is given by b̃ + 2xd̃ and is thereby identified
for all x in an interval. But is this identification due to the
assumed functional form, or can TED be nonparametrically
identified?

In parametric models π (x) is identified both at x = c
and for values x �= c, permitting identification of π′ (c) only
because the functional form allows us to evaluate counterfac-
tual objects like E (Y | T = 1, X = x < c), even though in the
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data with a sharp design, we could never see any observations
having both T = 1 and x < c. One might think that noth-
ing regarding changes in treatment effects can be identified
nonparametrically, because we observe treatment change
only at x = c itself.

However, what we show is that, analogous to the way π (c)
in sharp designs is nonparametrically identified by differenc-
ing the left and right limits of E (Y | X = x) as x → c, one
can similarly nonparametrically identify TED, π′ (x) at the
point x = c, by differencing the left and right derivatives of
E (Y | X = x) with respect to x as x → c. We also show that
TED can be identified and easily estimated in fuzzy designs
as well.

A separate issue from identification of TED is considera-
tion of the threshold c. In many applications, the threshold is
itself a policy variable of interest. Knowing how the direc-
tion and magnitude of the treatment effect would change if
the threshold were changed can be important in practice. Pol-
icy debates often center precisely on these types of questions
(some examples are given below).

In order to consider the impacts of changing the pol-
icy threshold, let C denote a possible threshold value. The
observed threshold value is C = c. Further let τ (C) denote
the LATE that would be identified by a standard RD model
if the threshold equaled C, so τ (C) is the average treatment
effect for compliers at the cutoff X = C. Note that this differs
from measuring treatment effect heterogeneity in the run-
ning variable as TED does; instead we are now considering
how the LATE would change if the RD threshold changed.
Let τ′ (C) = ∂τ (C) /∂C. We define MTTE, the marginal
threshold treatment effect, to be this derivative at the actual
threshold c, so MTTE is τ′ (c). We show that if a certain local
policy invariance condition is satisfied, then MTTE equals
TED, that is, τ′ (c) = π′ (c), so when local policy invariance
holds, MTTE is identified and easily estimated.

To see the link between TED and MTTE, let S(x, c) be
an average treatment effect for individuals having running
variable X = x when the policy threshold for assigning treat-
ment is C = c, so the first argument of S(x, c) allows for
treatment effect heterogeneity in the running variable, and
the second argument allows the treatment effect to depend
on the RD threshold. The difference between the functions τ
and D is that whatever the true threshold c is, τ (c) = S (c, c),
while π (x) = S (x, c). It follows that TED is given by
π′ (c) = ∂S(X,c)

∂X |X=c, while MTTE is τ′ (c) = ∂S(C,C)

∂C |C=c =
∂S(X,C)

∂X |X=c,C=c + ∂S(X,C)

∂C |X=c,C=c. The local policy invari-

ance assumption is that ∂S(X,C)

∂C |X=c,C=c = 0, under which
MTTE equals TED.

Local policy invariance assumes that the function that
describes how the RD LATE varies with the running vari-
able does not itself change when the policy threshold changes
infinitesimally. It is essentially a ceteris paribus assumption of
the type commonly employed in partial equilibrium analyses.
Analogous ceteris paribus assumptions are required to apply
almost any reduced-form program evaluation calculations to
a change in context or environment.

Abbring and Heckman (2007) define policy invariance as
an “assumption that an agent’s outcome only depends on the
treatment assigned to the agent and not separately on the
mechanism used to assign treatments. This excludes (strate-
gic) interactions between agents and equilibrium effects
of the policy.” Example applications of policy invariance
assumptions and marginal policy analyses include Heckman
(2010) and Carneiro, Heckman, and Vytlacil (2010). What
we require to identify MTTE is a limited version of policy
invariance that applies only in response to an infinitesimal
change in the assignment mechanism, a change in c, and
which we therefore refer to as “local policy invariance.”

MTTE can be used to approximate the impact on treatment
effects of a small discrete change in the threshold exactly the
way that, for example, price elasticities are used to approxi-
mate the effects of small discrete changes in prices. The sign
of MTTE tells whether the average effectiveness of treatment
would increase or decrease if the threshold for treatment were
marginally changed.

In discussing RD methods, Hahn, Todd, and Van der
Klaauw (2001) note that “a limitation of the approach is that it
only identifies treatment effects locally at the point at which
the probability of receiving treatment changes discontinu-
ously. . . . It would be of interest, for example, if the policy
change being considered is a small change in the program
rules, such as lowering or raising the threshold for program
entry, in which case we would want to know the effect of
treatment for the subpopulation affected by the change.” In
estimating the effect of Superfund-sponsored cleanups of
hazardous waste sites on housing prices, Greenstone and Gal-
lagher (2008) have noted, “It is important to highlight that the
RD approach only provides estimates of the treatment effect
at the regulatory discontinuity (i.e., HRS = 28.5). To extend
the external validity of the RD estimates to the full 1982
HRS Sample, it is necessary to assume a homogeneous treat-
ment effect in that sample.” MTTE and TED discussed here
address these issues by showing how the average treatment
effect would change at slightly different values of the run-
ning variable other than the RD threshold or given a marginal
change in the threshold.

To illustrate the usefulness of TED and MTTE, consider
some empirical applications. One example is Lee (2008),
who uses a sharp design RD to estimate a party’s incum-
bency advantage in U.S. House of Representatives elections.
The treatment T is having the incumbent be a Democrat,1 X
is the Democratic’s winning margin (the difference between
the Democratic Party’s vote share and its strongest opponent
share in election t), and Y is the probability of a Democrat
winning in election t +1. Figure 1, which is reproduced from
figure 5a in Lee (2008), shows how this probability changes
with the winning margin in election t. Notice in particular
that the slope is steeper just to the right of the discontinuity
than on the left. TED is essentially the difference in these

1 Due to the largely two-party system, the strongest opponent is almost
always a Republican, and the outcome for the Republican Party is therefore
a mirror image of Democratic’s outcome (Lee, 2008).
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Figure 1.—Probability of the Democratic Party Winning Election t + 1
against Its Winning Margin in Election t

slopes, which in this application provides (for close past
elections) a measure of how the incumbent’s electoral advan-
tage depends on its winning margin in the previous election.
Figure 1 suggests that the incumbency advantage increases
with the winning margin, meaning that the larger is the incum-
bent party’s share in the previous election, the greater is their
chance of winning in the next election.

Another example is Goodman (2008), who studies the
effect of the Adams Scholarship program on college choices
in Massachusetts. The scholarship program provides tuition
wavers at in-state public colleges. The treatment T is Adams
Scholarship eligibility, which is determined by whether a
standardized test score exceeds a certain threshold c. The
running variable X is the number of grade points one is from
the eligibility threshold. One of the outcomes of interest Y
is the probability of choosing a public college. TED, in this
case (which we show later is negative and strongly signif-
icant), provides information on how students’ responses to
Adams Scholarship eligibility depend on their test scores,
and hence on their outside opportunities. When policy invari-
ance holds, MTTE then allows for evaluating how the
average effects of the Adams Scholarship program would
change if the qualifying threshold were marginally raised or
lowered.

A third example is Greenstone and Gallagher (2008). The
treatment T is an indicator for being eligible for Superfund-
sponsored cleanups, which is largely determined by whether
a hazardous ranking system (HRS) score assigned by the EPA
in 1982 exceeds a certain threshold. The running variable X is
a county’s 1982 HRS score minus a threshold score, and the
outcome Y is median housing prices in the surrounding area.
TED in this case shows how the effect of Superfund cleanups
on housing prices would change with the HRS score, mea-
suring the hazard level of a waste site, and thereby provides
information on the external validity of the estimated LATE at
the current regulatory threshold. MTTE, when valid, would
then tell us how the impact of Superfund cleanups would
change if the threshold changed slightly.

A few other papers consider derivative conditions in RD
analyses. Card et al. (2012) analyze a regression kink design
model, where the treatment is a continuous but kinked func-
tion of the running variable. The kink, which is a discontinuity
in a derivative, is used to identify a treatment effect. Dong
(2014a) uses changes in the derivative or slope of the treat-
ment probability at the threshold to identify standard fuzzy
RD design treatment effects in applications where there is
a kink instead of, or in addition to, a discontinuity in this
probability at the threshold. Both Abdulkadiroglu, Angrist,
and Pathak (2014) and Angrist and Rokkanen (2012) make
use of TED, citing an earlier version of our paper. But per-
haps the closest result to ours is a few paragraphs in a survey
article by Dinardo and Lee (2011), in which they informally
propose using a Taylor expansion at the threshold to identify
a sharp design average treatment effect on the treated (ATT)
parameter. In contrast, we use a similar expansion to estimate
different objects (TED and MTTE), and we provide formal
results for both fuzzy and sharp designs.

Also closely related is recent work on extrapolation away
from the cutoff in RD models, such as Kirabo Jackson (2010),
Angrist and Rokkanen (2012), and Maynard et al. (2013).
These papers work by assuming the availability of additional
variables or other information rather than through derivatives
and local neighborhood assumptions. Although the method-
ology in these papers differs substantially from ours, their
motivation is similar, further demonstrating the interest and
value of estimating how treatment effects would change with
the running variable x or the RD threshold c.

The rest of the paper is organized as follows. Sections II
and III show nonparametric identification of TED in sharp
and fuzzy RD designs, respectively. Section IV describes in
detail the local policy invariance condition required to have
MTTE equal TED. Section V discusses estimation of TED
and MTTE. Section VI provides an empirical application
based on Goodman (2008). Section VII concludes, and proofs
are provided in the appendix. We also provide some addi-
tional theoretical results and a second empirical application
based on Greenstone and Gallagher (2008) in a supplemental
online appendix.

II. Sharp Design TED

This section discusses identification of TED in sharp
design RD. As in Rubin (1974), let Y (1) and Y(0) denote
the potential outcomes when one is treated or not treated,
respectively, so the observed outcome is Y = Y (1) T +
Y (0) (1 − T). Holding the threshold fixed at the value
c, define π (X) = E [Y (1) − Y (0) | X] and its deriva-
tive π′ (X) = ∂π (X) /∂X. For simplicity, we first provide
assumptions and results without consideration of covariates
other than the running variable X. We later discuss how
additional covariates Z can be included.

Define g (x) = E (Y | X = x). For small ε > 0, define
the right and left limits of a given function h as h+ (x) =



1084 THE REVIEW OF ECONOMICS AND STATISTICS

limε−→0 h (x + ε) and h− (x) = limε−→0 h (x − ε), respec-
tively.

The main identification result in the literature for sharp
design RD is that π (c), the LATE for individuals having X
equal to the observed cutoff c, is identified by2

π (c) = g+ (c) − g− (c − ε) (1)

based on, for ε > 0,

E (Y (0) | X = c) = lim
ε−→0

E (Y (0) | X = c − ε)

= lim
ε−→0

E (Y (0) | X = c − ε, T = 0)

= lim
ε−→0

E (Y | X = c − ε) (2)

and similarly for Y (1) using X = c + ε. Formally this result
can be obtained given the following assumptions.

Assumption A1. For each unit (individual) i we observe
Yi, Ti, and Xi. Yi = (1 − Ti)Yi(0) + TiYi(1).

For ease of notation we drop the i subscript throughout.

Assumption A2 (sharp design). T = I (X ≥ c) for some
known constant threshold c. The support of X includes
a neighborhood of c. For t = 0, 1, E (Y (t) | X = x) is
continuously differentiable in x in a neighborhood of x = c.

Note that assumption A2 assumes not just continuity
but differentiability, though continuity suffices to establish
equation (1) by the derivation in equation (2). However, vir-
tually all empirical implementations of RD models satisfy
this stronger smoothness assumption. In particular, para-
metric models generally assume polynomials or other dif-
ferentiable functions, while most nonparametric estimators,
including local linear regressions, assume (for establishing
asymptotic theory) at least continuous differentiability of
E (Y (1) | X = x) for x ≥ c and of E (Y (0) | X = x) for
x ≤ c.3 We do not know of any empirical application of RD
methods where the usual continuity assumptions hold but
where the additional differentiability of assumption A2 was
not (either implicitly or explicitly for estimation) assumed to
hold.4

2 See Hahn et al. (2001), or recent surveys Lee and Lemieux (2010),
Imbens and Wooldridge (2009), and Imbens and Lemieux (2008).

3 Local linear or higher-order local polynomial regressions are used to
estimate RD models to mitigate boundary bias issues as discussed by, e.g.,
Porter (2003). The asymptotic theory for local linear or local polynomial
estimation (see Fan & Gijbels, 1996) requires not just continuity but contin-
uous differentiability. Generally twice differentiability or more smoothness
is assumed. This differentiability is not required for consistent estimation
of RD models, but is always assumed in practice to reduce bias and thereby
increase estimation precision. Similarly, still greater smoothness might be
useful for bias mitigation in derivative estimation but is not required for
consistency of TED estimation.

4 Spline estimators are not differentiable at the knots, but one could define
a neighborhood around c to be smaller than the closest knot to c.

To show identification of TED, we need one-sided deriva-
tives. For small ε > 0, define the right and left derivatives of
a function h (x) at the point x as

h′
+ (x) = lim

ε−→0

h (x + ε) − h (x)

ε
and

h′
− (x) = lim

ε−→0

h (x) − h (x − ε)

ε
.

Theorem 1. If assumptions A1 and A2 hold, then the treat-
ment effect π (c) holding the threshold fixed at c is identified
by equation (1) and TED defined by π′ (c) is identified by

π′ (c) = g′
+ (c) − g′

− (c) . (3)

Proofs are in the appendix. Estimation of TED based on
theorem 1 will be discussed in more detail later, but for now,
note that local polynomial regressions can be used to estimate
the function g (x) and its derivatives separately on either side
of the threshold. Evaluating these regression derivatives in
the limits as x → c provides consistent estimators of g′+ (c)
and g′− (c), and hence consistent estimators of π′ (c). In short,
π′ (c) equals the difference between the left and right deriva-
tives of g (x) around x = c, just as the local treatment effect
π (c) equals the difference between the left and right limits
of g (x) around x = c.

As discussed in section I, TED provides a measure of the
impact of a marginal change in the running variable x on the
treatment effect, at x = c, holding c fixed. This estimate can
be used for a variety of purposes. For example, the sign of
TED tells whether an increase in the running variable is likely
to be associated with an increase versus a decrease in the size
of treatment effects. TED can be used to test for locally con-
stant treatment effects, since having TED equal 0 is necessary
for not having the treatment effect change with the running
variable. More generally, if TED is nonnegligible in magni-
tude, then one might be concerned about the external validity
of the estimated RD LATE, since a large TED suggests that
even small changes in the running variable can be associated
with large changes in treatment effects.

III. Fuzzy Design TED

We now extend our previous result to fuzzy designs. Let T
continue to indicate whether an individual is treated, but now
let T∗ = I (X ≥ c), so T∗ is a dummy indicating whether
one is above or below the threshold. T would be the same
as T∗ for all individuals if the design were sharp. Define
f (x) = E (T | X = x), so f (x) is the probability of being
treated given X = x. Let the counterfactual outcomes Y (t)
for T = t be defined as before. Analogous to Y (t) in the
sharp design, define the potential treatment status T (t∗) as
what an individual’s treatment status would be if T∗ = t∗.5

5 Here we define the potential treatment notation Ti (0) and Ti (1) in terms
of T ∗ = I(X ≥ c) only, so we implicitly assume that for any given individual
i, Ti (0) and Ti (1) are constant in a neighborhood of Xi = c. This assumption
be relaxed to allow Ti (0) and Ti (1) to futher be a function of Xi. See the
discussion in Dong (2014a, 2014b). Relaxing this assumption would not
materially change our derivations or conclusions.
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So analogous to Y = Y (1) T + Y (0) (1 − T), we have T =
T (1) T∗ + T (0) (1 − T∗). Define compliers as individuals i
having Ti (0) < Ti (1) and defiers as those having Ti (0) >
Ti (1), always takers as those having Ti (0) = Ti (1) = 1, and
never takers as those having Ti (0) = Ti (1) = 0.

Analogous to π (x) in sharp designs, define

πf (x) = E [Y (1) − Y (0) | X = x, T (0) < T (1)] (4)

where the subscript f denotes fuzzy design. The only dif-
ference between the functions πf (x) and π (x) is that
the definition of πf (x) conditions explicitly on compliers,
T (0) < T (1). Both πf (x) and π (x) implicitly condition on
having the threshold fixed at c. The standard fuzzy design
RD identification result as in Hahn et al. (2001) is that πf (x)
at the point x = c is identified by

πf (c) = g+ (c) − g− (c)

f+ (c) − f− (c)
. (5)

Assumption A3 (fuzzy design). The support of X includes
a neighborhood of a known constant threshold c. T (0) ≤
T (1). The conditional means E (Y (t) | T (0) < T (1) , X = x)
and E (Y (t) | T (0) = T (1) = t, X = x), as well as the prob-
abilities Pr (T (0) < T (1) | X = x) and Pr(T (0) = T (1) =
t | X = x) for t = 0, 1, are continuously differentiable in
x in a neighborhood of x = c. Pr (T (0) < T (1) | X = x) is
strictly positive at x = c.

Assumption A3 differs in two important ways from the
standard assumptions used by, for example, Hahn et al.
(2001), to obtain equation (5). The first difference is that
this assumption assumes continuous differentiability instead
of just continuity of some functions. Given differentiability,
we can define π′

f (x) = ∂πf (x) /∂x, and TED for compliers
is then π′

f (c). As in assumption A2 and theorem 1, differen-
tiability in assumption B2 is not needed to identify πf (c), but
is always assumed in practice to do inference on associated
estimators, and we now use it to identify the fuzzy design
TED π

′
f (c).

The second key difference between assumption A3 and
standard assumptions is that A3 does not assume that the
treatment effect Y(1) − Y(0) is independent of treatment T
conditional on X near c, nor does it assume that the treat-
ment effect and potential treatment status (Y(1)−Y(0), T(x))
are jointly independent of X near c (see theorem 2 and
assumption A3 of theorem 3 in Hahn et al., 2001).

In place of independence, assumption A3 assumes smooth-
ness of conditional means of potential outcomes for each
type of individual and smoothness of probabilities of selec-
tion into each type. Dong (2014b) shows that these alternative
assumptions (using just continuity, not differentiability) suf-
fice to obtain equation (5). Dong (2014b) also provides a
weak behavioral assumption that is sufficient to make these
alternative smoothness conditions hold. Intuitively, the mean
outcome right below or above the cutoff is a weighted
average of the mean outcomes for each type of individual,

weighted by the probabilities of each type. When the con-
ditional means for each type and the related probabilities
are all smooth at the cutoff, the mean outcome difference
at the cutoff then just equals the mean change in outcomes
for compliers.

We make these alternative smoothness assumptions
because we want to allow the possibility that X may be cor-
related with (Y(1) − Y(0), T(x)) even when X is near c. In
particular, if (Y(1)−Y(0), T(x)) were independent of X near
c, then that would imply that TED is 0, a restriction we do not
want or need to impose. Given our assumptions, the following
theorem shows identification of TED:

Theorem 2. If assumptions A1 and B2 hold, then the treat-
ment effect πf (c) is identified by equation (5) and the fuzzy
design RD TED π′

f (c) is identified by

π′
f (c) = g′+ (c) − g′− (c) − [

f ′+ (c) − f ′− (c)
]
πf (c)

f+ (c) − f− (c)
. (6)

The same uses for TED that we discussed in sharp designs
carry over to this fuzzy design TED. For example, a necessary
condition to have the fuzzy design treatment effect πf (c) be
locally constant is π′

f (c) = 0, so, for example, a finding
that the estimated TED was significantly different from 0
would allow us to reject the hypothesis of a locally constant
treatment effect.

Let p (c) denote the fraction of the population at X = c who
are compliers. Applying theorem 1 to the treatment equation,
treating T as the outcome and T∗ as the treatment, shows that
p (c) = f+ (c) − f− (c) and p′ (c) = f ′+ (c) − f ′− (c). We can
therefore test if the compliance rate is locally constant by
testing if p′ (c) is 0. We can also then rewrite equation (6) as

π′
f (c) = g′+ (c) − g′− (c)

p (c)
− p′ (c) πf (c)

p (c)
. (7)

Equation (7) provides a way of interpreting equation (6). The
first term on the right side of equation (7) is what the fuzzy
design TED equals if the compliance rate is locally constant
(equivalently, if the compliance rate was held fixed). In sharp
designs, the probability of compliance is constant at 1, so
p (c) = 1 and p′ (c) = 0, and equation (7) then reduces to
the sharp design TED in equation (3). The second term in
equation (7) is proportional to p′ (c) and accounts for the
effect on TED of a change in the probability of compliance.

IV. Sharp Design MTTE

We now consider how the treatment effect would change
if the threshold changed. In general, the distributions of Y(0)

and Y(1) can depend on both the running variable and the RD
threshold. For example, a person’s outcome if treated Y (1)

may depend on who else was treated, and thereby depend on
the value of the threshold, in addition to directly depending
on the value of that person’s running variable. We let τ(C)

denote the LATE that would be identified by RD methods
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if the threshold equaled C. The observed threshold is c, so
the actual RD LATE we can identify is τ(c). The goal of this
section is to identify the marginal threshold treatment effect
or the function τ′ (C) evaluated at C = c.

As in section I, define the sharp design function S (X, C) =
E (Y (1) − Y (0) | X, C), so S (X, C) is the average treatment
effect for hypothetical individuals having a running variable
equal to X , living in a world where treatment is assigned based
on whether X exceeds C. This S (X, C), while well defined
as a function, is only a hypothetical treatment effect when
X �= C or C �= c. Assuming S is differentiable, denote the
derivatives of S (X, C) by

SX (X , C) = ∂S (X, C)

∂X
, SC (X, C) = ∂S (X, C)

∂C
.

It follows from these definitions that TED π′ (c) and
MTTE τ′ (c) are given by

π′ (c) = SX (c, c) and τ′ (c) = π′ (c) + SC (c, c) . (8)

We define sharp design local policy invariance to be the con-
dition that SC (c, c) = 0. Local policy invariance means that
the change in the LATE function π (x) at x = c, relative to a
change ε in the true threshold c, shrinks to 0 as ε → 0. A suf-
ficient but stronger than necessary condition for this to hold
would be if the LATE function π (x), at points x in an arbitrar-
ily small neighborhood of x = c, did not change in response
to an infinitesimal change in the true threshold c. Note that
local policy invariance does not imply, and is not implied by,
locally constant treatment effects. In fact, local policy invari-
ance places no restriction on the shape of the function π (x). It
only restricts how this function could change if the threshold
changed marginally.

The following is an immediate implication of theorem 1
and equation (8):

Corollary 1. Let assumptions A1 and A2 and the local pol-
icy invariance condition SC (c, c) = 0 hold. Then MTTE is
nonparametrically identified by τ′ (c) = π′ (c).

Local policy invariance makes TED equal MTTE only at
the point C = c, so in general we may have τ′ (C) �= π′ (C)

for C �= c. Given MTTE, we can use the mean value theorem
to obtain an approximate estimate of the effect of a small,
discrete change in the threshold. Specifically, an estimate
of what the treatment effect τ (cnew) would be if the thresh-
old were changed a small amount from c to cnew is given
by τ (cnew) ≈ τ (c) + (cnew − c) τ′ (c). Suppose local pol-
icy invariance does not hold exactly, meaning that SC (c, c)
is not precisely 0. If SC (c, c) is negligibly small (meaning
small in magnitude relative to the approximation error in the
τ (cnew) application of the mean value theorem), then we can
approximate the new threshold treatment effect τ (cnew) by

τ (cnew) ≈ π (c) + (cnew − c) π′ (c) . (9)

Similarly, given bounds on SC (c, c), we could immediately
construct corresponding bounds on τ (cnew).

The plausibility of local policy invariance depends on con-
text. To see why local policy invariance might not hold,
consider the original Thistlethwaite and Campbell (1960)
RD model, where T is receipt of a National Merit Award,
X is the test score on the award-qualifying exam, c is the
threshold grade required to qualify for the award, and Y is
receipt of college scholarships later or other academic out-
comes. Consider a group of compliers who have test scores x
that equal a value cnew that is infinitesimally larger or smaller
than c. A sufficient condition for local policy invariance is if
the average treatment effect for students in this group, who
already have x = cnew, would not change if the threshold
test score used for determining treatment were changed from
c to cnew. This assumption might be violated if, for exam-
ple, changes in the number of award winners resulting from
infinitesimal changes in the qualifying threshold c lead to
increased or decreased competition for college scholarships,
or lead to changes in the perceived prestige of a merit award.

For another example, consider an RD model like that of
Jacob and Lefgren (2004). The treatment T is attending sum-
mer school or repeating a grade, which is determined by
whether a standardized test score X falls below a threshold
failing score c and the outcome is later academic perfor-
mance. Local policy invariance here would hold if the effect
of repeating a grade or attending summer school (as a func-
tion of X) did not change for compliers at a marginally lower
or higher threshold. Such an assumption might not hold if a
marginal change in the threshold failing score would affect
the curriculum or quality of instruction, or if the resulting
small compositional change in the population of students in
the grade repeated or in the summer school affected learning
through peer effects.

Conditioning on covariates could help in making local pol-
icy invariance hold. For example, in an application where
treatment is attending summer school, if the only source of
potential violation of local policy invariance is that a change
in threshold could change summer school class sizes, then
including class sizes as an additional covariate would suffice
to satisfy a conditional local policy invariance restriction.

These examples illustrate cases where local policy invari-
ance might be violated. In other contexts, local policy
invariance is more likely to hold. We explain in detail the
plausibility of local policy invariance (or at least plausibility
of having SC (c, c) be negligibly small) later in our empiri-
cal applications, including the Adams Scholarship program
in Massachusetts following Goodman (2008) and Superfund
cleanups as analyzed by Greenstone and Gallagher (2008).

V. Fuzzy Design MTTE

The results of section IV extend immediately to fuzzy
designs. Replace the function S and its derivatives there with
the function Sf and its derivatives, defined as
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Sf (X , C) = E (Y (1) − Y (0) | X, C, T (0) < T (1)) ,

SfX (X , C) = ∂Sf (X, C)

∂X
, SfC (X, C) = ∂Sf (X, C)

∂C
.

We use the subscript f to denote fuzzy design. The only
difference between functions Sf and S is that Sf also con-
ditions on compliers—individuals with T (0) < T (1). The
standard fuzzy design RD LATE with a threshold C is
τf (C) = Sf (C, C). The fuzzy design MTTE is then τ′

f (c).
Analogous to equation (8), the fuzzy design TED and MTTE
are given by

π′
f (c) = SfC(c, c), and τ′

f (c) = π′
f (c) + SfC (c, c).

(10)

Fuzzy design local policy invariance is the condition that
SfC (c, c) = 0. As in the sharp design case, local policy invari-
ance does not place any restriction on how the treatment effect
depends on the running variable, that is, it does not restrict
the function πf (x).

Corollary 2. Let assumptions A1, A3, and the local
policy invariance condition SfC (c, c) = 0 hold. Then the
fuzzy design MTTE τ′

f (c) is nonparametrically identified by
τ′

f (c) = π′
f (c).

The immediate analog to equation (9) is that if SfC (c, c)
is small, then τf (cnew) ≈ πf (c) + (cnew − c) π′

f (c), which
allows us to assess what the RD treatment effect would equal
if the threshold were changed slightly from c to cnew.

A difference between sharp and fuzzy designs for MTTE
is that if the threshold changed, then in general, the set of
people who are compliers would change. This is reflected
in equations (6) and (7). As discussed previously, in fuzzy
designs, the denominator f+ (c) − f− (c) represents the com-
pliance rate p(c). Therefore, given local policy invariance,
p′(c) = f ′+ (c) − f ′− (c) equals the change in the compliance
rate that would result if the threshold changed marginally.
By applying the mean value theorem as before, one could
approximate the compliance rate at a new threshold cnew by

p (cnew) ≈ p (c) + (cnew − c) p′ (c) . (11)

So even though the fraction of the population who would be
compliers can change in unknown ways when the threshold
changes, local policy invariance allows us to approximate
the compliance rate and the treatment effect, p (cnew) and
τf (cnew), respectively, at the new threshold.

Local policy invariance along with equation (7) gives

τ′
f (c) = g′+ (c) − g′− (c)

p (c)
− p′ (c) πf (c)

p (c)
. (12)

VI. Estimation

Here we describe estimators for TED and hence for MTTE.
The estimators we provide here are not themselves new, being

equivalent to estimators for treatment effects like those sum-
marized in surveys such as Imbens and Wooldridge (2009)
and Lee and Lemieux (2010). We therefore do not provide
associated limiting distribution theory, since it corresponds
to the standard theory of estimation of local polynomial esti-
mators, albeit at boundary points. (See, e.g., Fan and Gijbels,
1996, and Porter, 2003.) What is new here is not the estimators
themselves but their application to estimation of TED.6

First consider standard local linear estimation of sharp
design RD models, having T = T∗ = I (X > c), with a
uniform kernel. This is equivalent to selecting observations i
such that −ε ≤ Xi − c ≤ ε for a chosen bandwidth ε and then
using just those observations to estimate the model,

Yi = α + (Xi − c) β + T∗
i γ0 + (Xi − c) T∗

i γ1 + ei, (13)

by ordinary least squares (OLS). Let α̂, β̂, γ̂0, and γ̂1 be
the OLS estimates of the coefficients α, β, γ0, and γ1. The
line (α + γ0) + (β + γ1) (X − c) is a linear approxima-
tion to E (Y | X, c ≤ X ≤ c + ε), so by the standard theory
of local linear estimation, in the limit as ε → 0 (at an
appropriate rate), this approximation becomes equal to the
tangent line to the function g (x) as x −→ c+, making
plim ( α̂ + γ̂0) = g+ (c) and plim

(
β̂ + γ̂1

) = g′+ (c). Sim-
ilarly, the line α + β (X − c) is a linear approximation to
E (Y | X, c − ε ≤ X < c), making plim (̂α) = g− (c) and
plim

(
β̂

) = g′− (c).
It follows immediately that

plim ( γ̂0) = g+ (c) − g− (c) and

plim ( γ̂1) = g′
+ (c) − g′

− (c) , (14)

and therefore, by theorem 1, τ̂ (c) = π̂ (c) = γ̂0 is a con-
sistent estimator of the sharp design treatment effect and
π̂′ (c) = γ̂1 is a consistent estimator of the sharp design TED.
Given local policy invariance, by corollary 1, τ̂′ (c) = γ̂1 is a
consistent estimator of the sharp design MTTE.

This local linear estimator of τ̂ (c) is standard in the liter-
ature. What we are adding here is just the observation that
these same commonly used local linear estimators also pro-
vide estimates of derivatives, which is all that we need to
recover TED and hence MTTE.

Porter (2003) suggests using local polynomial regres-
sions rather than ordinary kernel (locally constant) estimators
because inclusion of the linear terms (Xi − c) and (Xi − c) Ti

reduces small sample boundary bias in α̂ and γ̂0. For the same
reason, to reduce bias in β̂ and γ̂1, it could be advantageous to
use local quadratic rather than local linear estimation, which
with a uniform kernel corresponds to ordinary least squares
estimation of the model:

Yi = α + (Xi − c) β + (Xi − c)2 δ + T∗
i γ0

+ (Xi − c) T∗
i γ1 + (Xi − c)2 T∗

i γ2 + ẽi. (15)

6 Note that TED is a function of regression derivatives, which if estimated
nonparametrically converge at slower rates than estimates of levels. So, for
example, in equation (9) one can asymptotically ignore the estimation error
in π (c) when evaluating the distribution of τ (cnew).
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Equation (14) depends only on consistency of local (qua-
dratic) polynomial estimation, and so will continue to hold if
equation (15) is used instead of equation (13) for estimation.

For fuzzy designs, we can still use equation (13) or (15); in
addition, we can use local linear or local quadratic estimation
on the same observations i such that −ε ≤ Xi − c ≤ ε to
estimate

Ti = αT + (Xi − c) βT + T∗
i γT

0 + (Xi − c) T∗
i γT

1 + eT
i
(16)

or

Ti = αT + (Xi − c) βT + (Xi − c)2 δT + T∗
i γT

0

+ (Xi − c) T∗
i γT

1 + (Xi − c)2 T∗
i γT

2 + ẽT
i (17)

by ordinary least squares, yielding estimated coefficients
including γ̂T

0 and γ̂T
1 . By the exact same derivations as above,

we have consistent estimators

plim
(̂
γT

0

) = p (c) = f+ (c) − f− (c) and

plim
(̂
γT

1

) = p′ (c) = f ′
+ (c) − f ′

− (c) . (18)

Then by theorem 2, we have consistent estimators of the
fuzzy design treatment effect and TED given by

π̂f (c) = γ̂0/ γ̂T
0 and π̂′

f (c) = (̂
γ1 − γ̂T

1 π̂f (c)
)
/ γ̂T

0 ,
(19)

and, given policy invariance, the estimated fuzzy design
MTTE is τ̂ ′

f (c) = π̂′
f (c).

In empirical practice, it is common to add other covari-
ates Zi as additional controls in these regressions. Adding or
omitting these additional terms can be helpful for estimation
precision but does not affect the consistency of the estima-
tors described. All of our results extend immediately to the
inclusion of covariates.7

VII. Empirical Application

We provide two empirical applications of our results. The
first is a sharp design RD investigating the impact of the
Adams Scholarship program on college choices, following
Goodman (2008). The second is a fuzzy design RD assessing
the impact of Superfund cleanups on housing prices, based on
Greenstone and Gallagher (2008). Due to space limitations,
we present this second empirical application in an online
supplemental appendix.

The Adams Scholarship program is a U.S. merit-based
scholarship program in Massachusetts. The program waives
tuition at in-state public colleges if a student’s score on a stan-
dardized test (the Massachusetts Comprehensive Assessment
System, or MCAS) exceeds certain thresholds. The program

7 A conditional on covariates MTTE could be obtained by including
covariates interacted with T ∗ in the estimating regressions, and an uncondi-
tional MTTE would then be obtained by averaging the conditional MTTE
over covariate values.

is intended to attract talented students to the state’s public
colleges.

Applying a standard RD analysis, Goodman (2008) finds
that qualifying for an Adams Scholarship induces 7.6%
of recipients (at the threshold) to choose four-year pub-
lic colleges instead of four-year private colleges. Goodman
(2008) also uses a differences-in-differences (DID) analy-
sis (comparing the cohorts immediately before and after the
introduction of the scholarship program) and shows substan-
tial treatment effect heterogeneity by academic skill levels.
In particular, winners near the treatment threshold, who thus
have relatively lower academic skills, respond much more
strongly to the scholarship than more highly skilled win-
ners. This is likely because highly skilled students can gain
admission to private colleges of much higher quality than
public colleges, and so the relatively small price reduction
resulting from the Adams Scholarship is insufficient to com-
pensate for the difference in school quality. In contrast, for
the lowest-skilled winners (those with test scores right above
the threshold), the quality difference is smaller or nonexis-
tent, making the choice of a public college more worthwhile
given its lower price.

Figure 2 shows the probability of choosing a four-year pub-
lic college as a function of the number of grade points from
the eligibility threshold. As is clear figure, the probability
of choosing a four-year public college jumps substantially
at the threshold but then declines quickly with test scores
above the threshold. This dramatic downward slope change
right above the threshold suggests that the Adams Scholar-
ship mainly attracts relatively less skilled winners to public
colleges, consistent with Goodman’s DID analysis.

We formally investigate the hypothesis that the impact of
an Adams Scholarship on the probability of choosing a pub-
lic college declines as test scores rise by estimating TED.
Further, we argue that local policy invariance plausibly holds
in this application, making TED equal MTTE, which then
allows us to estimate how the effects of the Adams Scholar-
ship would change if the eligibility threshold were marginally
changed. We show that this provides important information
for public policy if the goal is to increase public college
enrollment or college attendance in general.

The running variable X is the minimum distance to the
relevant eligibility threshold, defined as the number of grade
points by which a student succeeds or fails to win a schol-
arship.8 In the data X, referred to as GAP∗ in Goodman
(2008), ranges from –132 to 20. The treatment indicator T
is a dummy indicating whether a student is eligible for an
Adams Scholarship. By construction, a student is eligible for
the scholarship if and only if her or his test score is above the

8 A student qualifies for Adams Scholarship if her or his total MCAS
score (the sum of English and mathematics scores) falls in the top 25%
of her or his school district grade distribution, so each school district has
its own threshold. A student can also qualify if one of her or his scores
reaches 260 and the other reaches 240. The running variable is therefore
constructed as the minimum distance to the relevant threshold. Details about
the construction of the running variable can be found in Good (2008).
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Figure 2.—Probability of Attending a Four-Year College and Number

of Grade Points from the Eligibility Threshold

threshold, so the RD model is a sharp design. We examine
three outcomes: whether a student chooses a four-year public
college, a four-year private college, or any college. Most of
the students in the sample choose either a four-year public or
a four-year private college (other choices include two-year
colleges and trade schools).

We use the sample of the class of 2005 from Goodman
(2008), the first cohort exposed to the scholarship program.9
We estimate models like those in Goodman (2008). In par-
ticular, we estimate RD regression models with regressors
X, the crossing threshold dummy T∗ = 1(X > 0), and an
interaction term X times T∗, equivalent to local linear regres-
sions above and below the threshold with a uniform kernel.
In practice, different choices of kernel functions rarely make
a difference. We consider two very different bandwidths to
check the sensitivity of our results to greatly varying the
weight put on observations close to the threshold. We start
with the bandwidth used in Goodman (2008), which limits
the sample to students with test scores within 20 points of
the eligibility threshold. We then cut the bandwidth by half,
using the sample of students with test scores within 10 points
of the threshold.

Table 1 presents the estimation results. Estimates in the top
panel are based on the bandwidth |X| ≤ 10, and those in the
bottom panel are based on |X| ≤ 20. The corresponding sam-
ple sizes are 18,456 and 27,885, respectively. In each panel,
the first row reports the estimated RD treatment effect at the
current eligibility threshold, and the second row reports the
estimated TED, which is also MTTE given local policy invari-
ance. Based on MTTE, the last row in each panel reports what
the estimated RD treatment effect would be if the threshold
were marginally lowered by two grade points.10 For each
outcome, we report estimates both with and without control-
ling for covariates. The covariates are demographic variables
consisting of indicators for female, black, Hispanic, poverty
status, receiving special education or vocational education,

9 In his DID analysis, Goodman (2008) additionally uses data on the
pretreatment cohort, the class of 2004.

10 This is because the MCAS test score is in multiples of 2. Note also that
since there are multiple thresholds, this threshold change means that all the
relevant thresholds are lowered by two points.

limited English proficiency, speaking English as a second
language, and coming from a medium-poverty district (if the
poverty rate of the graduating class is between 20% and 40%)
or a high-poverty district (if the poverty rate of the graduating
class is above 40%). We report robust standard errors clus-
tered at the school district level. Standard errors for the RD
treatment effect at the new threshold are computed using the
delta method.

As table 1 shows, the estimates are robust to different win-
dow widths used. Almost all of the estimates are significant
at the 1% level. The point estimates barely change regard-
less of whether we control for covariates. The fact that the
estimated TED (MTTE) is insensitive to including covariates
provides strong evidence that the slope change at the cutoff is
not driven by potentially omitted covariates, but rather indi-
cates a direct relationship between students’ response to the
Adams Scholarship and test scores.

Consistent with Goodman’s results, estimates in the top
panel show that at the RD threshold, qualifying for an Adams
Scholarship increases the probability of choosing a four-year
public college by about 8% and decreases the probability of
choosing a four-year private college by 7% to 8%. The impact
on the overall college attendance is less than 2%. These results
indicate that among marginal winners, the Adams Scholar-
ship mainly encourages students to switch from four-year
private colleges to four-year public colleges and has little
impact on overall college attendance at the current eligibility
threshold.

The estimated TED or MTTE for the four-year public col-
lege is –1.9%, which is significant at the 1% level, implying
that the impact of Adams Scholarship negatively depends
on the distance to the eligibility threshold, so students with
higher test scores are less responsive, and if local policy
invariance holds, then the Adams Scholarship program would
encourage more students to choose four-year public colleges
if the eligibility threshold were marginally lowered. The esti-
mated TED for choosing a four-year private college is of a
similar magnitude but has an opposite sign, implying that
switching from private to public holds not only among the
marginal winners at the current threshold but also among
students with slightly lower or higher scores.

A sufficient (though stronger than necessary) condition for
local policy invariance to hold in this application is if any
given student’s choice of college with an Adams Scholarship
and her or his choice without one (one of these choices is
a counterfactual) would not change if the eligibility thresh-
old itself were marginally changed, ceteris paribus. Local
policy invariance allows these choices to depend on the stu-
dent’s skill level and hence on her or his test score. Local
policy invariance could be violated here if a marginal change
in threshold changed people’s perceptions of the value of
attending a public college vs alternatives. So, for example,
local policy invariance could be violated (through general
equilibrium effects) if the marginally increased enrollment
in public college due to a marginally increased number of
offered scholarships caused a perceived decline in the value
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Table 1.—RD Estimates of the Effect of Adams Scholarship on College Choices

Four-Year Public College Four-Year Private College Any College

A. |X| <= 10
Treatment effect 0.081 0.082 −0.080 −0.071 0.012 0.019

(0.015)∗∗∗ (0.015)∗∗∗ (0.015)∗∗∗ (0.015)∗∗∗ (0.009) (0.008)∗∗
MTTE(TED) −0.019 −0.019 0.018 0.017 −0.004 −0.004

(0.003)∗∗∗ (0.002)∗∗∗ (0.002)∗∗∗ (0.002)∗∗∗ (0.001)∗∗∗ (0.001)∗∗∗
Treatment effect_new 0.120 0.120 −0.117 −0.105 0.019 0.027

(0.015)∗∗∗ (0.015)∗∗∗ (0.015)∗∗∗ (0.015)∗∗∗ (0.009)∗∗ (0.000)∗∗∗
B. |X| <= 20

Treatment effect 0.075 0.076 −0.061 −0.056 0.023 0.027
(0.011)∗∗∗ (0.011)∗∗∗ (0.012)∗∗∗ (0.011)∗∗∗ (0.008)∗∗∗ (0.006)∗∗∗

MTTE(TED) −0.017 −0.017 0.013 0.012 −0.003 −0.003
(0.001)∗∗∗ (0.001)∗∗∗ (0.001)∗∗∗ (0.001)∗∗∗ (0.001)∗∗∗ (0.001)∗∗∗

Treatment effect_new 0.110 0.110 −0.086 −0.079 0.028 0.033
(0.011)∗∗∗ (0.011)∗∗∗ (0.012)∗∗∗ (0.011)∗∗∗ (0.008)∗∗∗ (0.006)∗∗∗

Covariates No Yes No Yes No Yes

The sample size for the top panel A is 18,456, and for the bottom panel B is 27,885. Treatment effect - new refers to the RD treatment effect if the eligibility threshold were marginally lowered by two grade points.
Robust standard errors are in parentheses. Significant at *10%, **5%, ***1%.

or prestige of the public college education. Or a violation
might be possible through peer effects, for example, if see-
ing more of one’s friends qualify for an Adams Scholarship
changed one’s own college choice. It seems unlikely that the
magnitudes of these effects could be large enough to cause
more than a very small difference between TED and MTTE.
For example, the monetary value of the scholarship is rela-
tively low,11 making it unlikely to have a significant impact
on the perceived value of the public schools.

Given local policy invariance, our estimates show that low-
ering the scholarship grade threshold by 1% would increase
the probability of attending a four-year public college by
1.9% and would increase the probability of attending any
college by 0.4%. Both estimates are significant at the 1%
level. Intuitively, it seems plausible that Adams Scholarships
may induce students with relatively low academic skills to go
to college, since these students also tend to come from poor
families (see more discussion on this in Goodman, 2008).
Knowledge of these magnitudes should be useful for policy-
makers for assessing the likely impacts and costs of changing
the scholarship eligibility requirements.

VIII. Conclusion

We have shown that in RD models, the treatment effect
derivative (TED) is nonparametrically identified and easily
estimated under smoothness assumptions that are already
assumed in empirical applications of RD models.

This TED estimate can be useful in investigating treatment
effect heterogeneity with respect to the running variable and
in investigating external validity near the RD threshold. Hav-
ing TED equal 0 is a necessary condition (which can be easily
tested) for locally constant treatment effects. More generally,
having TED be relatively large in magnitude may raise con-
cern about the external validity of an RD LATE estimate,
since a large TED indicates that a small change in the context,

11 Adams Scholarships covered about 16% to 24% of the direct cost of
attending public colleges in Massachusetts in 2005 according to Goodman
(2008). In addition, the costs of these colleges were already relatively low.

such as a small change in the running variable, is associated
with large changes in average treatment effects.

We also show that if a local policy invariance assump-
tion holds, then TED equals the marginal threshold treatment
effect (MTTE), which can then be used to evaluate the likely
changes in treatment effects that would result from a small
change in the cutoff threshold. Local policy invariance is
essentially a ceteris paribus assumption of the type often
used in, for example, partial equilibrium analyses. Equiva-
lently, local policy invariance is a type of external validity
assumption for applying program evaluation results when
the environment changes. In any particular application, one
may assess from the institutional setting whether local policy
invariance is likely to hold, at least approximately. To save
space, some theoretical extensions of these results based on
higher-order derivatives are provided in the online appendix
to this paper.

We empirically apply our results first to evaluation of the
Adams Scholarship program, where we find TED to be large
and significant. We argue that this is a scenario where local
policy invariance is at least a plausible approximation, so we
can interpret TED as MTTE and hence provide counterfac-
tual estimates regarding likely changes in the treatment effect
that would result if the scholarship qualifying threshold were
marginally raised or lowered.

We provide another empirical application in the online
appendix. That application, a fuzzy design RD, considers
estimation of the effects of Superfund cleanup eligibility
on nearby housing prices. Greenstone and Gallagher (2008)
found these effects to be quite small. In that application we
find the estimated TED is also numerically small, imply-
ing that the impacts of eligibility on housing prices would
remain small for sites with marginally higher or lower haz-
ardous waste levels. Local policy invariance is also plausible
in this application, as areas with hazardous waste sites are
geographically separated and constitute a very small frac-
tion of total available housing, so any potential general
equilibrium effects should be negligible. Our MTTE then
suggests that marginally raising or lowering the regulatory
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threshold would not result in a significant change in the
estimated effects of Superfund cleanups on nearby housing
prices.

REFERENCES

Abbring, J. H., and J. J. Heckman, “Econometric Evaluation of Social
Programs, Part III: Distributional Treatment Effects, Dynamic Treat-
ment Effects, Dynamic Discrete Choice, and General Equilibrium
Policy Evaluation,” in J. J. Heckman & E. E. Leamer, eds., Handbook
of Econometrics (New York: Elsevier, 2007).

Abdulkadiroglu, A., J. D. Angrist, and P. A. Pathak, “The Elite Illusion:
Achievement Effects at Boston and New York Exam Schools,”
Econometrica 82 (2014), 137–196.

Angrist, J. D. and J.-S. Pischke, Mostly Harmless Econometrics: An
Empiricist’s Companion (Princeton, NJ: Princeton University Press,
2008).

Angrist J., and M. Rokkanen, “Wanna Get Away? RD Identification Away
from the Cutoff,” NBER working paper 18662 (2012).

Card, D., D. S. Lee, Z. Pei, and A. Weber, “Nonlinear Policy Rules and
the Identification and Estimation of Causal Effects in a Generalized
Regression Kink Design,” NBER working paper 18564 (2012).

Carneiro, P., J. J. Heckman, and E. Vytlacil, “Evaluating Marginal Policy
Changes and the Average Effect of Treatment for Individuals at the
Margin,” Econometrica 78 (2010), 377–394.

Dinardo, J., and D. S. Lee, “Program Evaluation and Research Designs” (pp.
463–536), in Handbook of Labor Economics (New York: Elsevier,
2011).

Dong, Y., “Jump or Kink? Identification of Binary Treatment Regres-
sion Discontinuity Design without the Discontinuity,” unpublished
manuscript (2014a).

——— “An Alternative Assumption to Identify LATE in Regression
Discontinuity Designs,” unpublished manuscript (2014b).

Fan, J., and I. Gijbels, Local Polynomial Modelling and Its Applications
(London: Chapman and Hall, 1996).

Goodman, J., “Who Merits Financial Aid? Massachusetts’ Adams Schol-
arship,” Journal of Public Economics 92 (2008), 2121–2131.

Greenstone, M., and J. Gallagher, “Does Hazardous Waste Matter? Evi-
dence from the Housing Market and the Superfund Program,”
Quarterly Journal of Economics 123 (2008), 951–1003.

Hahn, J., P. E. Todd, and W. Van der Klaauw, “Identification and Estima-
tion of Treatment Effects with a Regression-Discontinuity Design,”
Econometrica 69 (2001), 201–209.

Heckman, J. J., “Building Bridges between Structural and Program Eval-
uation Approaches to Evaluating Policy,” Journal of Economic
Literature 48 (2010), 356–398.

Imbens, G. W., and T. Lemieux, “Regression Discontinuity Designs: A
Guide to Practice,” Journal of Econometrics 142 (2008), 615–
635.

Imbens, G. W., and J. M. Wooldridge, “Recent Developments in the Econo-
metrics of Program Evaluation,” Journal of Economic Literature 47
(2009), 5–86.

Jacob, B. A., and L. Lefgren, “Remedial Education and Student Achieve-
ment: A Regression-Discontinuity Analysis,” this review 86 (2004),
226–244.

Kirabo Jackson, C., “Do Students Benefit from Attending Better Schools?
Evidence from Rule-Based Student Assignments in Trinidad and
Tobago,” Economic Journal 120 (2010), 1399–1429.

Lee, D. S., “Randomized Experiments from Non-Random Selection in U.S.
House Elections,” Journal of Econometrics 142 (2008), 675–697.

Lee, D. S., and T. Lemieux, “Regression Discontinuity Designs in Econom-
ics,” Journal of Economic Literature 48 (2010), 281–355.

Maynard, R. A., K. A., Couch, C. Wing, and T. D. Cook, “Strengthening
the Regression Discontinuity Design Using Additional Design Ele-
ments: A Within-Study Comparison,” Journal of Policy Analysis and
Management 32 (2013), 853–877.

Porter, J. R., “Estimation in the Regression Discontinuity Model,” unpub-
lished manuscript (2003).

Rubin, D. B., “Estimating Causal Effects of Treatments in Randomized
and Nonrandomized Studies,” Journal of Educational Psychology
66 (1974), 688–701.

Thistlethwaite, D., and D. Campbell, “Regression-Discontinuity Analy-
sis: An Alternative to the Ex-Post Facto Experiment,” Journal of
Educational Psychology 51 (1960), 309–317.

APPENDIX

Proofs

Proof of theorem 1. Define Gt (x) = E (Y (t) | X), so π (c) = G1 (c) −
G0 (c). Now

G0 (c) = E (Y (0) | X = c) = lim
ε→0

E (Y (0) | X = c − ε)

= lim
ε→0

E (Y (0) | X = c − ε, T = 0)

= lim
ε→0

E (Y | X = c − ε) = g− (c)

and, similarly, G1 (c) = g+ (c), which gives equation (1).
By assumption, Gt (x) is continuously differentiable at x = c. This dif-

ferentiability means that G′
0 (c) equals its own one-sided derivative G′

0− (c).
Similarly G0 (c) = G0− (c) and from above G0 (c) = g− (c). Using these
equalities we have

G′
0 (c) = G′

0− (c) = lim
ε→0

G0 (c − ε) − G0 (c)

ε

= lim
ε→0

E (Y (0) | X = c − ε) − g (c)

ε

= lim
ε→0

E (Y (0) | X = c − ε, T = 0) − g (c)

ε

= lim
ε→0

E (Y | X = c − ε) − g (c)

ε

= lim
ε→0

g (c − ε) − g (c)

ε
= g′

− (c) .

An analogous derivation using x = c + ε gives G′
1 (c) = g′

+ (c). Now
π (c) = G1 (c)−G0 (c), and taking the ordinary derivative of this expression
and substituting in the above equalities gives

π′ (c) = G′
1 (c) − G′

0 (c) = g′
+ (c) − g′

− (c) ,

which proves the theorem.

Proof of theorem 2. By our definitions, p (x) = Pr(T (0) < T (1) |
X = x), g (x) = E (Y | X = x), g+ (x) = limε→0 g (x + ε) and g− (x) =
limε→0 g (x − ε). Note that in all these definitions and the derivation below,
we hold the threshold fixed at C = c. For now, assume no defiers at x, a
value near c, but since we will evaluate x actually at x = c, we only need
no defiers holding at the threshold c.

g+ (x) − g− (x)

= lim
ε→0

E (Y | X = x + ε) − lim
ε→0

E (Y | X = x − ε)

= lim
ε→0

[E (Y (1) | X = x + ε, T (0) = T (1) = 1) Pr (T (0) = T (1)

= 1 | X = x + ε)]

− lim
ε→0

[E (Y (1) | X = x − ε, T (0) = T (1) = 1) Pr (T (0) = T (1)

= 1 | X = x − ε)]

+ lim
ε→0

[E (Y (0) | X = x + ε, T (0) = T (1) = 0) Pr (T (0) = T (1)

= 0 | X = x + ε)]

− lim
ε→0

[E (Y (0) | X = x − ε, T (0) = T (1) = 0) Pr (T (0) = T (1)

= 0 | X = x − ε)]

+ lim
ε→0

[E (Y (1) | X = x + ε, T (0) < T (1)) Pr (T (0)

< T (1) | X = x + ε)]

− lim
ε→0

[E (Y (0) | X = x − ε, T (0) < T (1)) Pr (T (0)

< T (1) | X = x − ε)]

= [E (Y (1) | X = x, T (0) = T (1) = 1) Pr (T (0)

= T (1) = 1 | X = x)]

− [E (Y (1) | X = x, T (0) = T (1) = 1) Pr (T (0)

= T (1) = 1 | X = x)]
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+ [E (Y (0) | X = x, T (0) = T (1) = 0) Pr (T (0)

= T (1) = 0 | X = x)]

− [E (Y (0) | X = x, T (0) = T (1) = 0) Pr (T (0)

= T (1) = 0 | X = x)]

+ [E (Y (1) | X = x, T (0) < T (1)) Pr (T (0) < T (1) | X = x)]

− [E (Y (0) | X = x, T (0) < T (1)) Pr (T (0) < T (1) | X = x)]

= E (Y (1) − Y(0) | X = x, T (0) < T (1)) Pr (T (0) < T (1) | X = x)

= πf (x)p (x) ,

where the second equality follows from monotonicity and hence no defiers,
the third equality follows from smoothness of the probabilities of types and

smoothness of conditional means of potential outcomes for each type of
individual.

The above shows that πf (x) = [
g+ (x) − g− (x)

]
/p (x). With contin-

uous differentiability, one can take the derivative of this expression with
respect to x and evaluate the result at x = c to get

π′
f (c) = g′

+ (c) − g′
− (c)

p (c)
− πf (x)

p′ (c)
p (c)

. (A1)

Note that p (x) = E(T (1) > T (0) | X = x) = E (T (1) − T (0) | X = x).
Applying theorem 1, replacing Y with T , then gives p (c) = f+ (c) − f− (c)
and p′ (c) = f ′

+ (c) − f ′
− (c). Substituting these expressions into equation

(A1) proves equation (6).




