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On the Accuracy of Vortex Methods 

Mirta Beatriz Perlman 

Abstract 

The accuracy of the vortex method depends on the choice of the cutoff 

function, of the cutoff length 0 and on the initialization of the vorticity distri

bution. We investigate the practical effect of these choices on the vortex 

method for inviscid flows in the absence of boundaries. In our examples the 

vorticity is radially symmetric and has bounded support. We consider the con

sistency error and its components, the smoothing error and the discretization 

error for high order cutoff functions and several values of the cutoff length o. 
Our numerical experiments indicate that for smooth flows, high order cutoffs 

improve the accuracy of the approximation. The best value of 0 is larger than 

h, the initial distance between the vortices; it is time dependent in the sense 

that longer time integration requires a larger o. In addition the optimal choice 

of <5 is insensitive to the smoothness of the flow. If <5 is close to h then the 

accuracy is lost in a relatively short time. This loss of accuracy is caused by 

the growth of the discretization error. 
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Introduction. 

The vortex method is a grid free method that simulates incompressible 

fluid flow by approximating the vorticity by a finite sum of functions of small 

support and computing their evolution. These functions, called cutoff or core 

functions, are parametrized by 6 and approximate the delta function as 6 

tends to zero. A general discussion of vortex methods is given by Chorin [9] 

and by Leonard [16]. The vortex method as presented by Chorin in [8] has 

been successfully used to simulate high Reynolds number fluid flow. Applica

tions of the vortex method include the calculation of unstable boundary layers 

(Chorin [9]), aerodynamic calculations (Cheer [7], Spalart [25], Leonard & 

Spalart [17]), flow through heart valves (McCracken & Peskin [18]), the simula

tion of turbulent mixing layers (Ashurst [3]), the modelling of turbulent 

combustion (Ghoniem, Chorin & Oppenheim [12], Sethian [24]) and flows of 

variable density (Anderson [1]). 

The convergence of the vortex method has been established for two 

dimensional inviscid flows in the absence of boundaries. Hald [13] showed that 

the vortex method can converge with second order accuracy to the solution of 

Euler's equations as the number of vortices increases. Subsequently Beale & 

Majda [4], [5] extended Hald's results to obtain higher order methods in two 

and three dimensions. Recently Beale & Majda's results were simplified by Cot

tet [11]. A simpler version of Beale & Majda's and Cottet's proofs is given by 

Anderson & Greengard [2]. The convergence proofs are based on consistency 

and stability estimates. 

In this ~hesis we investigate the practical accuracy of the vortex method 

for inviscid flows in the absence of boundaries. We assume that the vorticity is 
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radially symmetric and has bounded support. Thus the solution of Euler's 

equations can be given explicitly. We look at the consistency error and its 

components: the smoothing error and the discretization error. 

The accuracy of the vortex method depends on how the delta function is 

approximated. Hald [13] presented several cutoff functions which give second 

order accuracy. Beale & Majda [6] suggest a class of infinitely differentiable 

cutoff functions which in theory provide high order accuracy. We examine the 

accuracy obtained with these cutoff functions for smooth and non-smooth 

flows. 

Another factor that affects the accuracy of the approximation is the 

choice of the cutoff parameter 6. Theoretically 6 is chosen so that the smooth

ing error and the di~cretization error are of the same order. Chorin [8],[9] 

chooses rr6 equal to the average distance between the vortices created along a 

boundary. Chorin's choice of 6 is much larger than the average distance 

between the vortices. Hald [13] chooses 6 =..Jh, where h is the initial distance 

between the vortices. Beale & Majda [5] suggest that for sufficiently smooth 

flows we can choose 6 close to h and obtain an order of accuracy almost as 

high as the order of the cutoff function. Our numerical experiments indicate 

that with a suitable choice of 6 the vortex method converges. However if 6 is 

close to h the accuracy in the velocity and vorticit.y approximations is lost in a 

relatively short time. The best choice of 6 is time dependent, in the sense that 

longer time integration requires a larger 6. In addition the optimal choice of 6 

is quite insensitive to the smoothness of the flow. The loss of accuracy is 

caused by the discretization error, which comes from approximating a convo

lution integral by the trapezoidal rule. Since the discretization error 

decreases as 0 increases while the the smoothing error increases with 6 we 
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can choos~ a larger value of 6 to preserve the accuracy over a fixed time 

intervaL A possible explanation for the growth of the discretization error in 

time is the disorganization of the computational points. However we have not 

found an explanation to the observed decrease in the order of accuracy. 

The initial vorticity distribution can be approximated in two different 

ways. Hald [13] assigns to each computational point the vorticity contained in 

the blob surrounding it, while Beale & Majda [5J assign the value of the vorti

city at the point times the area of the blob. Our numerical experiments indi

cate that Hald's choice leads to second order accuracy for any cutoff function, 

while Beale & Majda's approximation can provide high order accuracy. 

Earlier numerical experiments with radially symmetric vorticity distribu

tions were presented by Hald & Del Prete [14]. They used cutoff functions of 

the type introduced by Chorin [8J and observed second order accuracy. 

Nakamura, Leonard & Spalart [20J tested the accuracy of the vortex method 

for inviscid shear layers. Numerical experiments with high order cutoff func

tions were presented by Perlman [22]. Additional numerical experiments are 

given by Beale & Majda [6]. 

This thesis is divided into five parts. In section 1 we present the derivation 

of the vortex method and a summary of the existent convergence proofs. Sec

tion 2 contains our test problems and how we measure the errors. In section 3 

we present of our numerical experiments. We study the behavior of the con

sistency error as a function of h , 6 and of the time t and look at its com

ponents: the smoothing error and discretization error. In section 4 we com

pare the two different approximations of the initial vorticity distribution. 

Finally, section 5 is devoted to a general discussion of the results. 
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1. The Vortex Method in Two Dimensions. 

Consider the vorticity-stream function formulation of Euler's equations in 

the (x ,y) plane: 

r.>t + (u· \7)r.>= 0, 

L\'It = -r.>, 

( 1.1) 

(1.2) 

(1.3) 

where u = (u 1 , U2) is the velocity vector, z = (x , y) is the position vector, G) 

is the vorticity and 'It is the stream function. 

By solving the Poisson equation (1.2) above we obtain: 

'It(z) = J G(z -z ')CJ(z') dz', 

whe~e G( z ) = - 2~ log 1 z 1 , with 1 Z 1 2 = x 2 + y2, is the fundamental solution of 

the Laplace equation ( see [15, p.75] ) and dz'=d.x'dy'. The velocity u is 

obtained by differentiating the stream function with respect to y and x, and is 

given by the integral: 

u(z,t)=J K(z -z')CJ(z')dz', (1.4) 

where 

1 [ayj 1 [ Yj 
K(z) = - 211' -az G(z) = - 211'1 Z 12 -x' 

In the Lagrangian description of the flow, we follow the motion of material 

points of the fluid. Thus if a = (al' (2) denote the Lagrangian coordinates. then 

the path of a particle starting at the point z = a is determined by: 

dz 
dt (a,t) = u(z (a,t ),t), z (a,O) = a. (1.5) 

It follows from equation (1.1) that the vorticity is conserved along particle 
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paths. More precisely, ~~(a.,t)=O or equivalently CJ(z(a.,t),t)= CJ(a.,O), 

see Chorin & Marsden [10]. By using this fact and the fact that the flow is 

incompressible we can write the right hand side of equation (1.5) in the follow-

ing way: 

u(z(a.,t),t) = J K(z -z') CJ(z',t)dz' (1.6) 

= J K(z -z(a.,t» CJ(z(a.,t),t)da. 

= J K(z -z(a.,t) CJ(a.,O)da.. 

We will now describe the discretization of the system of ordinary 

differential equations (1.5). Assume that at time t = 0 the support of the vor-

ticity is contained in the region O. We introduce a square grid in the a. plane. 

The squares Bj are centered at the grid points jh = (j 1 ' j z)h and have length 

and width h. We denote by Zj(t) = z(jh,t) the position at time t of a fluid parti

cle starting at the point jh at time t = O. Let Uj (t ) = U (z j (t ), t) be the velocity 

at the point Zj' By using the grid points Zj that are contained in the support 0 

of the initial vorticity distribution, we approximate the right hand side of (1.6) 

by: 

Uh (z,t)=2:K(z -Zj(t»Cj 
j 

where the c/s have one of the following two forms: 

Cj = [ CJ(z) dz, 
~ 

Cj = CJ(jh) hZ. 

(1. 7) 

(1.7.a) 

(1. 7.b) 

One possible numerical method consists of replacing equation (1.5) by the 

system of ordinary differential equations: 



where 

'" h( Ui, t), 

uNt) = 2: K(zi,(t) -zi(t» ci' 
;¢i 
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(1.8) 

(1.9) 

Thus we expect that the z;'s will approximate the particle positions. The algo

rithm (1.8)-(1.9) is called the point vortex method. It was introduced by Rosen

head [23] to study the behavior of vortex sheets. Since uh(z ,t) = 

K*2:o(z -z;(t»c; we see that u h is the velocity corresponding to a collection 

of point vortices with strength c;. 

Since the kernel K is singular at the origin the velocity tends to infinity as 

the distance between two particles tends to zero. To overcome this difficulty, 

Chorin [8] replaced the kernel K by a kernel K6 , which is bounded at the ori-

gin. The kernel K6 can be obtained by convolving K with a smooth cutoff func-

(1.10) 

where 1/16 is a radially symmetric function and satisfies 1/I6(Z) = 0-21/1(z /0) and 

J 1/I(z )dz = 1. Thus 1/16 approximates the Dirac delta function as 0.-.0. The velo

city for the point vortex method is then replaced by: 

Uh(Z,t)=2:K6(Z -Zj(t»Cj 
j 

(1.11) 

We can then compute the particle trajectories by solving the system of ordi-

nary differential equations: 

(1.12) 

where 



7 

iLl" = 2:; K6(Z;.(t) - ~j(t» Cj. (1.13) 
j~ 

The algorithm (1.12)-(1.13) is called the vortex blob method. Since uh(z)= 

K*2:;'W6(Z -Zj(t» Cj we see that u h is the velocity field corresponding to the 

vorticity distribution c.>h(z,t)=2:;1h(z -Zj(t»Cj. Thus we arrive at Chorin's 

interpretation of the vortex method, [8], namely that the vorticity is approxi

mated by a sum of vortex blobs of common shape 'W6 centered at Zj (t) and 

with strength C j. 

The accuracy of the vortex method depends on the smoothness of the 

flow, on the initial approximation of the vorticity, and on the choice of cutoff 

function 'W. 

Numerical experiments by Hald & Del Prete [14] indicate that the rate of 

convergence for the vortex method with Chorin's cutoff functions is essentially 

second order. Hald [13] showed that the vortex method can converge with 

second order accuracy in the L2 norm, for arbitrarily long time intervals. 

Hald's cutoff functions 'W are twice continuously differentiable, have support in 

the disk I Z I ~ 1 and are constructed so that the first three moments of K - K6 

vanish. In addition Hald [13] uses (1. 7.a) to define Cj' i.e., he lets Cj be the vor-

ticity contained in the square Bj . Our numerical experiments, presented in 

section 4, and Cottet's results [11, Theorem 4.1] show that by using Hald's vor-

ticityapproximation and cutoff functions the rate of convergence for the vor-

tex method can never be larger than quadratic. 

Beale & Majda [5] have improved Hald's results by showing that the vortex 

method can converge with arbitrarily high order accuracy, provided the initial 

vorticity c.> is sufficiently smooth and that the velocity and vorticity are 

approximated using the c/s defined in (1.7.b) and finally that the cutoff func-



tion 1/1 satisfies: 

(ii) J 1/I{z) dz = 1 

J z71/1{Z) dz = 0 1~171 ~p-1 

(iii) For some L>O, and for any multi-index {3 the Fourier 

transform -${O satisfies 

8 

(1.14.a) 

(1.14.b) 

{1.14.c} 

The second condition is called the moment condition. Beale & Majda's results 

are summarized in: 

Theorem ( Beale & Majda [5] ). Assume that the cutoff function 1/1 satisfies 

(1.14.a-c) for some 2~L~00 and for somep~2. Choose 6=hQ
, with O<q <1 

if L = 00 and q < ~ ~ ; if L is finite. If the velocity field u (z ,t) is sufficiently 

smooth for z eR2 and 0 ~ t ~ T and the initial vorticity has bounded support 

then for any 1 < J-L < 00 and T> 0 there exists an ho > 0 such that for all h < ho 

max I u·(t) -u/J.(t) I ~ C h pq . 
O:s;t:S:T' 1 LA 

The convergence proofs for the vortex method by Hald [13], Beale & 

Majda [5], Cottet [11] and Anderson & Greengard [2] are based on consistency 

and stability estimates. The convergence is proved by estimating the distance 

between the exact velocity u defined in (1.4) and the computed velocity uh. 
defined in (1.11). By using the triangle inequality we can estimate the distance 
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by 

Here uh. is evaluated by using the exact particle positions Zj in equation (1.7). 

The first term ~ u -uh. I is called the consistency error. It is the distance 

between the exact velocity u and the discrete velocity uh. obtained by replac-

ing the continuous vorticity distribution by a collection of vortex blobs 1/16 cen

tered at Zj(t) and with strength CJjh 2. The s,econd error term lull. _.;;11. ~ is 

called the stability error. It measures how the computed particle paths differ 

from the exact ones. 

In their proof. Beale & Majda further estimate the consistency error by 

the sum of two terms: 

lu(t)-uh.(tH = IIJK(z -z')CJ(z'.t)dz'-L;K6(z -Zj(t»CJjh 2 1 
j 

. + I J K6(Z -z ')CJ(z ')dz' - L;K6(Z - Zj (t »CJj h 2 1 
j 

The first error term ~ u -u6 U is called the smoothing error. It arises because 

the kernel K is replaced by the kernel K6 = K*1/I6. The smoothing error 

depends on the cutoff parameter «5 and on the time t. but does not depend on 

the grid size h. The second term II u 6 -uh. I is called the discretization error. 

It represents the error in the numerical integration of the function 

K6(Z -z')CJ(z') by the trapezoidal rule. The discretization error depends on 
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the mesh length h, on the cutoff parameter 6 and on the time t. 

Beale & Majda have shown that if the flow is smooth then the smoothing 

error is of order 6P • where p measures the number of moments of the cutoff 

function that vanish. The discretization error is of order 6-L h -L-I-£ , where 

& > 0 and L depends on the rate of decay of the Fourier transform of 1/1. Thus, 

the consistency error can be bounded by CloP + C2( pL 6-1
-£, where C1 and C2 

are independent of 0 and h. For a fixed mesh length h we would like to choose 

6 so that the consistency error is jlS small as possible. Beale & Majda choose 

o = h q with q = ( L -1-& )/ ( L +p ). With this choice the smoothing error and the 

discretization error are of order hpq • For smooth cutoff functions L may be 

arbitrarily large. Thus we can choose 6 close to h and obtain in principle a pUr. 

order method. 

The last choice is valid only for smooth tlows. If the tlow is not infinitely 

differentiable, then the exponent L in the estimate of the discretization error 

cannot be larger than the number of derivatives of the vorticity. see Lemma 

2.5 by Cottet [11] or the Discretization Lemma by Anderson & Greengard [2]. 

The estimate of the smoothing error also depends upon the smoothness of the 

tlow. Thus a higher order cutoff does not always lead to more accurate results. 
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2. Choice of Test Problems. 

In this section we describe the various test problems we have used in the 

numerical experiments to check the accuracy of the vortex method. We con-

sider the radially symmetric initial vorticity distribution: 

I z I ~ 1 

I z I > 1 

The corresponding velocity field is given by: 

where 

f(lzl)= 

1 ( 1-(1- I z 12)8) I z I ~ 1 
lsi z 12 

1 
lsi Z 12 I z I > 1 

The velocity field u(z ,t) is in C'(R2) and is C'" for I z I ~ 1. The flow is radially 

symmetric and rotates about the origin. Fluid particles at different radii move 

at different speeds. The particles near the origin complete one rotation at 

time t = 4rr. while the particles on I z I = 1 complete one rotation at t = 32rr. 

At time t = 0 we place the particles at the points jh = (ith • 12h) on a 

square grid on the (x. y) plane. Since Co) == 0 outside the unit circle all our com-

putational points all lie inside the unit circle. 

Our second test problem is a ceo radially symmetric vorticity distribution: 
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The corresponding velocity field is given by: 

U(2)(Z t)=- 1 (1_e-12IZI2)[ Y]. . . 241 Z 12 -x 

The flow is radially symmetric and rotates about the origin. The vorticity dis-

tribution does not have compact support. but decays rapidly at intlnity. To 

prove convergence of the vortex method Cottet [11] assumes that the vorticity 

and its derivatives decay rapidly at infinity. Thus our choice of CJ is within the 

range of validity of his theory. As in the previous test case we place the parti

cles at the points jh =(jlh .i2h) on a square grid on the (x .Y.) plane. We 

neglect those particles Zj for which CJ(2)(Zj) < 10-6. Our numerical experiments 

indicate that this does not affect the qualitative behavior of the error. 

In the third and last test case all the fluid particles inside the unit circle 

rotate at constant speed. The vorticity distribution is given by 

1 Z I ~ 1 

I Z I > 1 

and is discontinuous at I Z I = 1. The corresponding velocity field is given by: 

where 

g(lzl)= 

1 
2 I Z lSi, 

1 
I z I > 1. 

To test the accuracy of the vortex method we have used Gaussian cutoff 

functions of different orders: 
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(i) P = 2 (2.1) 

(ii) P = 4 (2.2) 

(iii) P = 6 

r2 r2 _~ 

~,,_ 1 (8 -62" - 262 + 1 462 ) 
Y'6 - -- --e - e -e 

11"62 3 12 
(2.3) 

r2 r2 r2 r2 

(iv) P = 8 
1 64 -2" 4 --2 1 --2 1 --2 

'1/16 = --( -e 6 - ~ 26 + -e 46 - --e 86 ) (2.4) 
rr62 21 3 6 168 

where r2 = x 2 + y2. These cutoff functions have L = 00 and are suggested by 

Beale & Majda in [6]. 

The numerical experiments by Hald & Del Prete [14]. Anderson [1] and 

Nakamura. Leonard & Spalart [20] have shown that the vortex method is 

stable. In this thesis we will therefore investigate the consistency error in 

detail. As suggested by the numerical results presented in section 4 and by 

Cottet's observation [11. Lemma 4.1] we assign to ea~h particle Zj the vorti

city value Cj = r.Jjh 2. Here r.Jj = r.J(Zj) and h 2 is the area of the square B j cen

tered at Zj. Thus we approximate the vorticity and the velocity by: 

u h(z,t)=l:K6(Z -Zj(t»r.Jjh 2, 
j 

if(z,t) = l:'I/I6(Z -Zj(t» r.Jj h 2. 
j 

The behavior of the consistency error for the velocity and for the vorticity 

as a function of h, 6 and t will suggest a choice of the cutoff parameter 6 for a 

fixed time interval [0. T]. 

We measure the consistency error for the velocity and the vorticity in the 

discrete L2 norm: 
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- [ " 11. 2 2]* ~u - 7 Iu (Zj,t) -U (Zj,t) I h • (2.5) 

- [ " 11. 2 2]* E" - 71 (.)(Zj,t) - (.) (Zj,t) I h . (2.6) 

We also compute the relative errors Eu/ II U I and E,,/ II (.) ~ , where ~ U I and 

I (.) I are the discrete L2 norms of the velocity and the vorticity. Similarly we 

measure the smoothing error and the discretization error for the vorticity in 

the discrete L2 norm: 

(2.7) 

(2.8) 

By using the cutoff functions (2.1)-(2.4) we compute the velocity u h and 

the vorticity (.)11. with 0.05~h ~0.2 and 0 =hq , 0.5 < q < 1, and in the time inter

val [0,20]' We use between 60 and 950 vortices. We compute (.)4 = 1/16 * (.) by 

numerical integration. Specifically we use the routine DOlDAF of the NAG 

library [19] with ~ error tolerance of 1O~". The method in this routine is 

. described by Patterson in [21]. Finally we estimate the rate of convergence of 

the vortex method by using two successive values of h: 

rate 0/ convergence = 
109(Eh l / Eh2) 

log~l / h2) . (2.9) 
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3. Numerical Results. 

In this section we present the results of our numerical experiments. For 

a fixed time interval [0, T] we will consider the approximations to the velo

city and the vorticity to be accurate if the rate of convergence is constant 

over the time interval. The accuracy of the vortex method depends on: 

(i) The approximation of the initial vorticity distribution. 

(ii) The choice of cutoff function '1/1 for some L and p . 

(iii) The cutoff parameter 15 = h q, for some 0 < q < 1. 

We present now the results of the numerical experiments for the first test 

problem. Our numerical experiments show that the consistency errors Eu and 

E(,l are qualitatively similar for the three cutoff functions (2.2)-(2.4) and differ 

from those of (2.1). Hence, we contrast the results obtained with these higher 

order cutoff functions with those obtained for the second order cutoff (2.1)., 

Consider one of the higher order cutoff functions. We find that for a fixed 

6 =h1-l: with t small and 0.05~ h ~ 0.2 both Eu and E(,l increase sharply in 

time. However Eu and E(,l do not increase without bound; they reach a local 

maximum at time T. and oscillate around it later on. The time T. increases as 

h decreases. We can observe this behavior of Eu and E(,l for the cutoff func

tions (2.2) and (2.3) with 6 =hO.95 in Figures 3.1.a and 3.1.b. 

In addition to the sharp increase of the error as a function of t, we find 

that as a function of h and with 6 =h1-l: with e small, neither Eu nor E(,l 

decrease uniformly as h decreases. The rate of convergence is kept constant 

for a short time interval and then decreases sharply. This can be seen in Fig

ures 3.2.a and 3.2.b for the cutoff functions (2.2) and (2.3) and 6 = h 0.95. This 

time interval becomes shorter ash decreases and as p, the order of the cutoff 
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function, increases (see Figure 3.3). We also find that for this choice of 6 and 

some T>O, the errors do not decrease with h. We observe in Figures 3.1.a and 

3.1. b that this effect is more pronounced in the consistency error of the vorti

city than in the consistency error of the velocity. 

We consider now the error as a function of 6, with h fixed and set 6 = h q , 

with 0.5 < q < 1. The theoretical estimates by Beale & Majda [5] and Cottet [11] 

show that if 6 = h q with q < 1, then the consistency error is of order h pq , where 

p is the order of the cutoff function. Hence the errors should increase as q 

decreases. We find that this holds for a short time interval [0, T·]. This time 

interval becomes shorter as h decreases and as p increases. Tables 3.1 and 

3.2 show the consistency errors Eu and E", for p = 4, h = 0.07 (465 vortices) 

and h = 0.05 (925 vortices), and 6 =hq with 0.5 < q < 1. We observe that at time 

t = 0 the errors increase as q decreases. This agrees with the theoretical esti

mates. However at time t = 10, the velocity error is the smallest for 

q = 0.85 (h = 0.07) and q = 0.8 (h = 0.05), while the vorticity error is the smal

lest for q = 0.75 (h = 0.07, 0.05). At time t = 20 the smallest velocity error is 

obtained when 0 = h O.B for h = 0.07 and 6 = h O.? for h = 0.05, while the smallest 

vorticity error is obtained when 0 =ho.? for h = 0.07 and 6 = hO.65 for h = 0.05.' 

As 6 increases the sharp increase of the error in time is gradually 

attenuated and we observe a more uniform behavior of the error as h .... O over 

the time interval [0,20] (compare Figures 3.1.a and 3.1.b with Figures 3.4.a 

and 3.4.b). 

One could think that the behavior of the error for 6 =h 1
-£ with e small, is 

due to the fact that the ft.ow in our test case is not infinitely differentiable. 

Therefore to choose 6 close to h may not be consistent with the theoretical 

estimates, and a larger 6 has to be chosen. 
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We consider now the second test problem to check how the smoothness of 

the flow will affect the choice of 6 and as a consequence the behavior of the 

error. Since the flow is infinitely differentiable. in the estimates of the con

sistency error we can take L to be arbitrarily large. This allows us the choice 

of 6 = hI-I: with t small. in accordance with the theory. Since we are interested 

only in the qualitative behavior of the error we computed the consistency 

errors Eu and Er.J using only the 4th and 6th order cutoff functions (2.2) and 

(2.3). It follows from Figures 3.5.a and 3.5.b that the behavior of the error as a 

function of hand t is similar to the behavior of the error observed in the pre

vious test case. 

In contrast to the first two test problems. we observe that for the third 

test problem the consistency errors Eu and Er.J are constant in time. This is 

not surprising since the particles rotate as a rigid body and therefore the dis

tance between the computational points is constant in time. We observe that 

the errors decrease with h and for a fixed h the smallest errors are obtained 

for 6 close to h. It follows from Tables 3.3.a and 3.3.b that the errors are 

reduced by a factor slightly higher than two when we increase the order of the 

cutoff function from p = 2 to P = 4, however for p ~ 4 the accuracy is not 

improved by increasing the order of the cutoff function. 

We conclude that the qualitative behavior of the consistency error is quite 

insensitive to the smoothness of the flow and that the optimal choice of O. a 6 

that will preserve a uniform accuracy over a finite time interval [0. T]. 

depends on the final time. For the first test problem the optimal choice of 6 in 

the time interval [0.10] is 6 =hO.8 for p = 4. 6 = hO.75 for p = 6 and 6 = hO.7 for 

p = 8 while in the time interval [0.20]. the optimal choice of 6 is 6 = h 0.65 for 

p = 4 and 0 = h 0.6 for p = 6 and p = 8. Tables 3.4. a and 3.4. b show the relative 
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errors Eul I u II and Er./ II (.) II for h = 0.07 and h = 0.05 with the optimal choice 

of 15 for p = 4,6,8 at times t = 10 and t = 20. We ftnd that the errors are sub

stantially reduced as we increase the order of the cutoti function. For p =4 

and h = 0.05 the velocity error at t = 10 is 0.2% while for p = 8 it is reduced to 

0.05%. At t = 20 the error for p = 4 and h = 0.05 is 0.99% and for p = 8 the velo

city error is 0.39%. 

In contrast to the higher order cutoti functions, we find that if we use the 

second order cutoti function (2.1) and 15 =hO.9, we do not observe a loss of 

accuracy in the time interval [0, 20] and the errors do not have the sharp 

increase in time that is observed when we used higher order cutotis. We there

fore obtain essentially second order accuracy with a relative velocity error of 

2.9% at time t = 20 and with h = 0.05 (see Tables 3.4.a and 3.4.b). Although we 

are able to choose 15 close to h in the time interval [0, 20] and obtain second 

order accuracy, we observe from Figure 3.6 that to preserve the accuracy 

over a longer time interval 15 will have to be larger, as in the case of the higher 

order cutoti functions. 

To understand the behavior of the consistency error, and the time depen

dency of the cutoti parameter 15, and following the spirit of the proof in [5], we 

look at the components of the consistency error, the smoothing and discreti

zation error, defined in (2.7) and (2.8). 

The smoothing error E~ is the ditierence between the exact vorticity (.) 

and (.)8 = '1/16*(.)' Since CJ and CJ6 do not change in time, E~ remains constant for 

all time. It is therefore enough to look at E~ at time t = O. Tables 3.5.a and 

3.5.b contain the smoothing error and the order of accuracy of the approxima

tion (.)6 to CJ for the first test problem. We observe that E~ is asymptotically of 

order oP, for apth. order cutoti function and a smooth enough vorticity. 
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The discretization error E£ is the difference between c,} = '1/16*(.) and its 

trapezoidal rule approximation d". E£ is of order (hi o)L, (see Lemma 2.5 by 

Cottet [11] or the Discretization Lemma by Anderson & Greengard [2]), where 

L depends on the smoothness of the flow and of the cutoff function '1/1. Thus if 

we choose 6 = h q. with q < 1. the error should decrease for any q < 1. 

Our numerical experiments indicate that the discretization error E£ has 

the same qualitative behavior for all cutoff functions. including the second 

order cutoff function. Hence. we will now describe the discretization error for 

these cutoff functions as a function of h . 0 and t. The numerical experiments 

relate to the first test problem. Partial runs for the second test problem. not 

presented here. indicate a similar behavior of the discretization error. 

We find that E£ behaves in an unexpected fashion both as a function of h 

and of the time t. while E£ has the expected behavior as a function of 0 i. e .. 

the error decreases as 0 increases. 

Consider a fixed h and any 6=hq with 0.5<q <1. We present in Figures 

3.7.a-d the discretization error for p = 2 andp = 4 with 0 = hO.95 and 6 =hO.65• We 

find that the E£ increases sharply in time. however it does not increase 

without bound, (Figures 3. 7. a-d). The rate at which the error increases. 

decreases in time. For example. for p = 4 and h = 0.05. with 6 = h 0.95 the error 

at t = 2 is 8 times larger than the error at time t = 1, while the error at t = 20 

is only 1.05 times larger than the error at t = 19. The major difference in the 

approximation of (.)6 by r.P is the position of the computational points. When 

one observes the flow. one can see that as time increases. there is a rapid 

decrease in the degree of organization of the flow. At time t = 0. when the com

putational points are equally spaced. the approximation is extremely accu

rate; but as soon as the points become disorganized. there is a sharp increase 
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in the error. On the other hand further disorganization of the computational 

points does not affect the approximation drastically. This is seen in the small 

increase of the error from time t = 19 to t = 20, and in longer time computa

tions. It would seem that the accuracy of the approximation depends on the 

organization of the computational points. 

As a function of h and for any 0 = h q , with 0.5 < q < 1, we observe a loss of 

accuracy over time in the approximation of (.)6 by (.)h.. This loss of accuracy is 

more pronounced for 0 close to h, 0 =hq with 0.75<q < 1. For 0.05~h~0.2 we 

observe that for any 0 and for some T > 0 the error does not decrease as we 

increase the number of vortices, (see Figures 3.7.a-d). For h ~ 0.05, which 

corresponds to more than 900 vortices, we find that while the errors do not 

decrease for 0 close to h and some T> 0, they do decrease for larger 0 over 

the time interval [ 0, 20 ]. 

If h is fixed then E£ decreases as 0 increases (see Figure 3.8). This agrees 

with the negative powers of 0 which occur in the theoretical estimates of E£, 

see Beale & Majda [5], Cottet [11], Anderson & Greengard [2]. The decrease of 

E£ as 0 increases allows us to create a balance between the smoothing and 

discretization errors, to obtain accurate results over a fixed time interval. 

If we compare the discretization error for different cutoff functions, with 

a fixed h and 0, we find that the discretization error for p = 2 is substantially 

smaller than the discretization error for higher order cutoff functions. The 

latter are of comparable size. On the other hand the smoothing error 

decreases as we increase the order p of the cutoff function (see Table 3.5.a). 

Because of these two facts we need to choose a larger 0 as p increases. This is 

not consistent with the theory for L = 00, i.e., for infinitely differentiable !lows, 

but is qualitatively consistent with the theory if L is finite. 
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Having observed the behavior of the smoothing and discretization errors, 

we can understand how the consistency error develops as a function of h, 6 

and t. Consider the second order cutoff function. As we mentioned above, the 

discretization error Eg increases in time and for some T> 0 does not decrease 

as h decreases, however it is small relative to the size of the smoothing error, 

which is of order 62• Thus the behavior of Eg is not felt in the consistency 

error and we obtain an accuracy of 2q, with q ~ 0.9. 

For higher order cutoff functions and 6 = h q, with 0.75 < q < 1, the sharp 

increase of the consistency error in time and its behavior as h decreases is 

caused by the discretization component. We observe that for some T >0 the 

consistency error is almost equal to its discretization component. This indi

cates that except for a short initial time, the dominant term in the con

sistency error is the discretization error. This neutralizes the advantages pro

vided by higher order cutoff functions. Because E~ increases with 6, while Eg 

decreases as 6 increases, by choosing 6 larger we are able to eliminate the 

sharp increase of the consistency error as a function of t and we obtain a 

more uniform decrease of the error as a function of h. In doing so, we lose 

some of the increased accuracy provided by the higher order cutoff functions. 

We conclude this section with a summary of the results of our numerical 

experiments: 

If the flow is smooth enough, the accuracy of the vortex method is 

improved by increasing the order of the cutoff function. This is not the case 

for non-smooth flows, as we showed in the numerical experiments with the 

third test problem. 

Our numerical experiments indicate that for the values of h tested, the 

choice of 6 is quite insensitive to the smoothness of the flow. We find that if 6 is 
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close to h, as suggested by Beale & Majda [5], then the accuracy is lost in a 

relatively short time, even for infinitely differentiable fiows. By increasing 6 we 

are able to preserve the accuracy of the method over longer time intervals. 

Thus the predicted pth order accuracy is reduced to pq, with q closer to y,. 

than to 1. In addition we observe that the discretization error does not grow 

without bound. Therefore by choosing 0 large enough so that the smoothing 

error is larger than the discretization error we can obtain accurate results 

over long time intervals~ 
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Eu Ew 

t5 =hq t=O t = 10 t =20 t=O t = 10 t =20 

q =.95 1.628-4 1.252-3 2.809-3 1.173-3 4.729-2 . 9.122-2 

q =.90 2.694-4 8.873-4 2.158-3 1.946-3 2.933-2 6.103-2 

q =.85 4.427-4 7.009-4 1.647-3 3.179-3 1. 732-2 3.969-2 

q =.80 7.211-4 7.932-4 1.348-3 5.136-3 1.076-2 2.558-2 

q =.75 1.161-3 1.178-3 1.411-3 8.189-3 9.709-3 1. 787-2 

q =.70 1.844-3 1.848-3 1.927-3 1.284-2 1.318-2 1.657-2 

q =.65 2.880-3 2.881-3 2.907-3 1.976-2 1.983-2 2.106-2 

q =.60 4.410-3 4.410-3 4.418-3 2.971-2 2.972-2 3.018-2 

q =.55 6.598-3 6.598-3 6.601-3 4.348-2 4.349-2 4.366-2 

Table 3.1 

Velocity and vorticity consistency errors at t = 0, 10, 20 with Co) = c,P>, p = 4 

and h = 0.07. 
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E'U_ EJ.L 

o=hq t=O t = 10 t =20 t=O t = 10 t =20 

q =.95 4.547-5 8.415-4 3.349-3 3.291-4 4.688-2 1.142-1 

q =.90 8.144-5 5.366-4 2.831-3 5.949-4 2.614-2 8.803-2 

q =.85 1.452-4 3.315-4 2.295-3 1.056-3 1.317·1 6.596·2 

q =.80 2.570-3 2.974-4 1.773-3 1.859-3 6.181-3 4.692-2 

q =.75 4.510-4 4.566-4 1.339-3 3.237-3 4.070-3 3.121-2 

q =.70 7.819-4 7.827-4 1.156-3 5.561-3 5.664·3 1.978·2 

q =.65 1.335-3 1.366-3 1.445-3 9.836-3 9.399-3 . 1.429-2 

q =.60 2.239-3 2.239-3 2.268-3 1.549-2 1.550·2 1.656·2 

q =.55 3.667-3 3.667-3 3.675-3 2.491-2 2.491-2 2.511-2 

Table 3.2 

Velocity and vorticity consistency errors at t = 0, 10, 20 with Co) = Co)(l), P = 4 

and h = 0.05. 
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h P = 2 P = 4 P = 6 P = 8 

0.20 2.621-2 1.267-2 1.180-2 1.151-2 

0.14 1.561-2 6.984-3 6.401-3 6.209-3 

0.10 9.271-3 4.344-3 4.051-3 3.957-3 

0.07 5.520-3 2.331-3 2.126-3 2.059-3 

0.05 3.291-3 1.511-3 1.415-3 1.384-3 

0.03 2.018-3 8.549-4 7.834-4 7.605-4 

Table 3.3.a 

Relative velocity errors for", = ",(3) and 0 = h·95 • 

h P = 2 P =4 P = 6 P = 8 

0.2 1.682-1 1.354-1 1.319-1 1.304-1 

0.14 1.382-1 1.113-1 1.082-1 1.068-1 

0.10 1.113-1 8.771-2 8.485-2 8.362-2 

0.07 9.303-2 7.306-2 7.044-2 6.929-2 

0.05 7.553-2 5.806-2 5.579-2 5.481-2 

0.03 6.477-2 5.030-2 4.834-2 '4.748-'2 

Table 3.3.b. 

Relative vorticity errors for'" = ",(3) and 0 = h·95• 
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h = 0.07 h = 0.05 

Eu/ I u II E,,/ I CJ I Eu/ Ilu I E,,/ II CJII 

p =2, 0= h·9O 5.009-2 8.691-2 2.764-2 4.865-2 

P =4, <5 =h·BO 5.407-3 2.351-2 2.030-3 1.351-2 

P =6, <5=h''7'5 2.563-3 1.398-2 7.626-4 6.270-3 

P =8, o =h·'70 2.181-3 8.795-3 5.056-4 2.540-3 

Table 3.4.a 

Relative velocity and vorticity errors for CJ = CJ(I) with the optimal values of <5 at 

time t = 10. 

h = 0.07 h = 0.05 

Eu/ I u II E,,/ I CJ I Eu/ II u I E,,/ II CJII 

p =2, <5 = h·9O 5.044-2 8.964-2 2.869-2 6.976-2 

P =4, 6=h·6 '5 1.981-2 4.603-2 9.866-3 3.123-2 

P =6, 0= h·6O 1.385-2 3.527-2 6.001-3 2.042-2 

P =8, 6 =h·6O 2.870-3 2.546-2 3.935-3 1.823-2 

Table 3.4.b. 

Relative velocity and vorticity errors for CJ = CJ(I) with the optimal values of <5 at 

time t = 20. 
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6 P =2 .p =4 P =6 P =8 

0.2 1.415-1 2.810-2 1.415-2 9.430-3 

0.15 9.186-2 1.118-2 3.975-3 2.055-3 

0.1 4.485-2 2.646-3 5.109-4 1.641-4 

0.075 2.695-2 8.954-4 1.060-4 2.307-5 

0.05 1.237-2 1.858-4 1.068-5 1.268-6 

0.04 7.994-3 7.725-4 2.850-6 2.460-7 

Table 3.5.a 

Smoothing error for (.) = (.)(1) and p = 2, 4, 6, 8 

6 P =2 P =4 P =6 P =8 

0.2 1.50 3.20 4.41 5.30 

0.15 1.71 3.55 5.06 6.23 

0.1 1.85 3.77 5.46 6.82 

0.075 1.92 3.88 5.66 7.15 

0.05 1.96 3.93 5.92 7.35 

Table 3.5.b 

Order of accuracy of the approximation (.)4 computed by using two successive 

values of 0 from Table 3.5.a. 
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4. The Approximation of the Initial Vorticity Distribution. 

The initial vorticity distribution can be approximated by one of the two 

following forms 

or 

CJ~ = ~'¢'6(Z -Zj) r CJ(z)dz 
J ilj 

CJ~ = ~ '¢'6(Z - Zj) CJj h 2, 
j 

(4.1) 

(4.2) 

where the z/s are the grid points and h 2 is the area of the square Bj centered 

at Zj' The corresponding velocity approximations are given by ut = K· CJt, for 

l = 1.2. The approximation (4.2) is the approximation of the convolution 

integral '¢'6 • CJ by the trapezoidal rule. The error is of order 6P + (hi 6)L where 

p is the order of the cutoff function and L depends on the number of deriva

tives of the vorticity ( see Anderson [1] ). Cottet has shown that if the vorticity 

is approximated by (4.1) there is an additional error of order h 2• Thus if the 

cutoff function is of order p ~ 4 and Vii ~ 0 ~ h. the approximation (4.1) is only 

second order accurate. On the other hand, for sufficiently smooth flows and 0 

close to h the vorticity approximation (4.2) is, at least at time t = 0, pth. order 

accurate for a pth. order cutoff function. 

The numerical experiments presented in Section 3 indicate that to 

preserve the accuracy of the velocity and vorticity approximation over a fixed 

time interval [0, T] the smoothing error should be larger than the discretiza-

tion error. This is always the case at t = O. As our initial vorticity is radially 

symmetric the smoothing error is independent of time. Thus we compare the 

velocity and vorticity approximations at time t = O. We use the first test prob-

lem of section 2 and compute the discrete velocity and vorticity approxima-



42 

tions u!" and c..>!" (l = 1.2) at time t = 0 for the cutoff functions (2.1)-(2.4), 

0.03~h~0.2 and 6=hq with 0.5<q <1. We measure the consistency errors 

t = 0 in the discrete L2 norm: 

and 

E~ = (~ 1 c..>(Zj) - c..>l"(Zj) 12 h 2 )*, 
j 

where l = 1,2. We estimate the rate of convergence by using two successive 

values of h in equation (2.9). 

With both approximations the velocity and vorticity errors decrease as 

h .... O for any 6=hq , with 0.5<q <1, and for a fixed h the errors increase as 6 

increases. For a fixed hand q both El and E2 decrease as the order of the 

cutoff function increases. 

We find that for any 0.03~h~0.2 and for any 6=hQ
, with 0.5<q <1, the 

errors E,1 and E~ are larger than the errors E3 and E~. Tables 4.1.a-b com-

pare the velocity and vorticity errors obtained with both approximations. For 

the second order cutoff function (2.1), El and E2 are of the comparable order. 

Both approximations are 2q order accurate for 6 =hQ • For higher order cutoff 

functions and 6 = h q, with O. 75 ~ q < 1, there is a significant difference between 

the two approximations. For example, with h = 0.05 , 6 = h·95 and p = 6, E,1 is 

approximately 10-4 while E3 is approximately 10-6. In addition we find that for 

these values of 6 and p =6 and 8 u~ and c..>r are quite insensitive to the order 

of cutoff function and to the choice of 6, (see Figure 4.1). With these values of 

6 the rate of convergence of the approximation (4.1) decreases to 2, while the 

rate of convergence obtained with (4.2) increases as h .... O. 
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Our numerical examples show that for «5 = h q. with 0.5 < q ~ 0.75. the 

difference between El and E2 is not so drastic. although El > E2 still holds 

(see Table 4.2). We find that for a fixed q in the range specified above. the rate 

of convergence of (4.1) increases up to approximately 3 and decreases again 

for smaller values of h. however it does not decrease to 2. A similar 

phenomena has been observed by Hald and Del Prete [14]. A possible explana

tion to this fact is that these values of «5 are not in the region where the 

asymptotic estimates are valid. 
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p = 2 p = 4 P = 6 p = 8 

h EJ £,2 
u 

£,1 
u 

£,2 
u 

£,1 
u 

£,2 
u 

£,1 
u 

£,2 
u 

0.2 3.394-2 3.219-2 7.885-3 5.333-3 5.156-3 2.607-3 4.301-3 1.731-3 

0.14 2.006-2 1.894-2 3.209-3 1.821-3 1.999-3 6.002-4 1.735-3 2.989-4 

0.1 1.123-2 1.058-2 1.286-3 5.621-4 8.565-4 1.132-4 7.985-4 3.811-5 

0.07 6.065-3 5.711-3 5.343-4 1.628-4 4.022-4 1.877-5 3.919-4 3.984-6 

0.05 3.210-3 3.025-3 2.348-4 4.547-5 1.970-4 2.903-6 1.954-4 5.113-7 

0.03 1.680-3 1.585-3 1.083-4 1.245-5 9.793-5 4.685-7 9.768-5 1.979-7 

Table 4. La 

Velocity errors obtained with approximations (4.1) and (4.2) and 6 =h·95• 

p = 2 p =4 p = 6 p = 8 

h EJ EJ Eu1 EJ EJ EJ EJ EJ 

0.2 1.651-1 1.576-1 4.867-2 3.523-2 3.288-2 1.897-2 2.721-2 1.321-2 

0.14 1.030-1 9.767-2 2.024-2 1.260-2 1.235-2 4.647-3 1.025-2 2.460-3 

0.1 5.961-2 5.628-2 8.021-3 3.996-3 4.985-3 9.707-4 4.469-3 3.248-4 

0.07 3.281-2 3.093-2 3.238-3 1.173-3 2.255-3 1.515-4 2.156-3 3.628-5 

0.05 1.754-2 1.654 .. 2 1.378-3 3.291-4 1.088-3 2.401-5 1.071-3 1.227-5 

0.03 9.230-3 8.710-3 6.196-4 8.998-5 5.379-4 7.964-6 5.348-4 8.308-6 

Table 4.1.b 

Vorticity errors obtained with approximations (4.1) and (4.2) and 6 =h·95• 
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1> = 2 p = 4 p = 6 p=8 

h El u E2 u El u E2 u 
£,1 

u E2 u EJ E2 u 

0.2 6.224-2 6.114-2 1.814-2 1.941-2 1.567-2 1.368-2 1.341-2 1.146-2 

0.14 4.703-2 4.634-2 9.687-3 1.110-2 7.895-3 6.785-3 6.287-3 5.221-3 

0.1 3.241-2 3.378-2 6.490-3 5.865-3 3.538-3 2.954-3 2.555-3 1.999-3 

0.07 2.403-2 2.377-2 3.209-3 2.880-3 1.429-3 1.129-3 9.277-4 6.400-4 

0.05 1.640-2 1.625-2 1.504-3 1.336-3 5.405-4 3.876-4 3.270-4 1.745-4 

0.03 1.095-2 1.087-2 6.785-4 5.935-4 2.007-4 1.222-4 1.247-4 4.164-5 

Table 4.2.a. 

Velocity errors obtained with approximations (4.1) and (4.2) and «5 =h·65• 

1> = 2 p = 4 p = 6 p = 8 

h El u E2 u El u E~ El u E2 u El u E2 u 

0.2 2.683-1 2.644-1 1.077-1 1.160-1 9.851-2 8.915-2 8.731-2 7.759-2 

0.14 2.164-1 2.136-1 6.114-2 7.049-2 5.330-2 4.734-2 4.411-2 3.810-2 

0.1 1.661-1 1.643-1 4.223-2 3.891-2 2.516-2 2.182-2 1.894-2 1.568-2 

0.07 1.215-1 1.203-1 2.159-2 1.976-2 1.050-2 8.746-3 7.011-3 5.336-3 

0.05 8.539-2 8.467-2 1.034-2 9.386-3 4.006-3 3.114-3 2.387-3 1.530-3 

0.03 5.819-2 5.778-2 4.730-3 4.242-3 1.459-3 1.010-3 8.320-4 3.813-4 

Table 4.2. b. 

Vorticity errors obtained with approximations (4.1) and (4.2) and «5 =h·65• 
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5. Conclusions . 

We have presented a series of numerical experiments which test the accu-

racy of the vortex method for inviscid tlows in the absence of boundaries. Our 

numerical experiments indicate that with a suitable choice of the cutoff 

parameter 6 the vortex method converges. 

We examined the accuracy provided by high order cutoff functions. If the 

tlow is smooth enough then the accuracy of the method is improved by 

increasing the order of the cutoff function. In the caSe of non-smooth tlows we 

observed that the accuracy of the approximation is not improved by increas-

ing the order of the cutoff function beyond p = 4. 

We have also looked at the accuracy of the method as a function of the 

cutoff parameter 6. We found that the best choice of 6 is time dependent, in 

the sense that longer time integration requires a larger 6. In addition the 

optimal choice of 6 is quite insensitive to the smoothness of the tlow. If 6 is 

close to h, as suggested by Beale & Majda [5], the accuracy is lost in a rela-

tively short time. This loss of accuracy is caused by the discretization error 

which comes from approximating a convolution integral by the trapezoidal 

rule. We found that the discretization error grows sharply in time and it does 

not decrease uniformly with h for large values of t. This behavior is common 

to all 62 <h 5; O. However, as a function of 15 the error decreases in accordance 

with the theoretical estimates. The decrease of the discretization error as 6 

increases allows us to choose 6 so that the smoothing error is larger than the 

discretization error. In doing so we preserve the accuracy over a fixed time 

intervaL Thus the predicted pUr, order accuracy (see Beale & Majda [5]) is 

reduced to pq with q closer to * than to 1. A possible explanation for the 
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growth of the discretization error is the disorganization of the computational 

points. The reason for the observed decrease in the order of accuracy of the 

trapezoidal rule remains to be found. 

In addition we have compared the approximations to the initial vorticity 

distribution used by Rald [13] and Beale & Majda [5]. We found that Rald's 

approximation gives larger errors. For 0 close to h the differences are 

significant, while for larger values of 6 the errors are of comparable size. 
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