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RESEARCH ARTICLE https://doi.org/10.1158/2767-9764.CRC-23-0564 OPEN ACCESS 

Noninvasive Lung Cancer Subtype Classification 
Using Tumor-Derived Signatures and cfDNA 
Methylome 
Shuo Li1, Wenyuan Li1, Bin Liu2,3, Kostyantyn Krysan2,3,4, and Steven M. Dubinett1,2,3,4,5 

�
 ABSTRACT 

Accurate diagnosis of lung cancer is important for treatment 
decision-making. Tumor biopsy and histologic examination are the 
standard for determining histologic lung cancer subtypes. Liquid 
biopsy, particularly cell-free DNA (cfDNA), has recently shown 
promising results in cancer detection and classification. In this 
study, we investigate the potential of cfDNA methylome for the 
noninvasive classification of lung cancer histologic subtypes. We 
focused on the two most prevalent lung cancer subtypes, lung ade-
nocarcinoma and lung squamous cell carcinoma. Using a fragment- 
based marker discovery approach, we identified robust subtype- 
specific methylation markers from tumor samples. These markers 
were successfully validated in independent cohorts and associated 
with subtype-specific transcriptional activity. Leveraging these 
markers, we constructed a subtype classification model using cfDNA 

methylation profiles, achieving an AUC of 0.808 in cross-validation 
and an AUC of 0.747 in the independent validation. Tumor copy- 
number alterations inferred from cfDNA methylome analysis 
revealed potential for treatment selection. In summary, our study 
demonstrates the potential of cfDNA methylome analysis for non-
invasive lung cancer subtyping, offering insights for cancer moni-
toring and early detection. 

Significance: This study explores the use of cfDNA methylomes for the 
classification of lung cancer subtypes, vital for effective treatment. By 
identifying specific methylation markers in tumor tissues, we developed a 
robust classification model achieving high accuracy for noninvasive 
subtype detection. This cfDNA methylome approach offers promising 
avenues for early detection and monitoring. 

Introduction 
Lung cancer is the leading cause of cancer-related deaths globally (1) and is 
characterized by a wide range of clinicopathologic features (2). The different 
histologic subtypes of lung cancer exhibit variances at the molecular, path-
ologic, and clinical levels (3), underlining the significance of precise subtype 
classification for effective diagnosis, monitoring, and prognosis. Accurate 
classification profoundly impacts the selection of optimal treatment options 
and patient outcomes during different courses of lung cancer management 
(4, 5). In the initial diagnosis, the histologic subtype provides critical 

information about tumor characteristics, guiding treatment selection. During 
the course of treatment, the development of different histologic tumor 
profiles can indicate tumor resistance to administered therapies or a new 
second primary tumor (6, 7). Histologic subtyping of lung cancer is thus 
essential to tailor initial treatment options as well as longitudinally coordi-
nate cancer management strategies to optimize patient outcomes. 

Standard histologic subtyping relies on morphologic, immunophenotypic, 
and molecular characteristics of tissue specimens collected from tumor bi-
opsies (8). Liquid biopsy, specifically plasma cell-free DNA (cfDNA), has 
recently demonstrated the potential as a minimally invasive method for 
cancer diagnosis, typing (9, 10), subtyping (11), and monitoring (12, 13). 
Unlike a tumor biopsy from a single tumor region, cfDNA is released into 
the bloodstream by tumor cells from various regions, potentially offering a 
more comprehensive tumor profile (14, 15). cfDNA therefore represents an 
alternative method that allows for repetitive monitoring to assess the mo-
lecular characteristics of tumors. 

In this study, we investigated the potential of differentiating lung cancer 
histologic subtypes utilizing cfDNA methylome profiles generated by a cost- 
effective assay, cfMethyl-Seq (9). We classified the two most prevalent sub-
types of lung cancer, lung adenocarcinoma and lung squamous cell carci-
noma (LUSC), which represent 42% to 51% and 17% to 26% of total lung 
cancer cases, respectively (8). Subtype-specific methylation markers were 
first systematically identified from high-resolution reduced representative 
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bisulfite sequencing (RRBS) data from 31 lung adenocarcinoma and 29 
LUSC tumor tissue samples. The markers were derived at the DNA fragment 
level overcoming tumor impurity and heterogeneity and capturing methyl-
ation patterns present even in minor cell populations (9). We validated the 
markers’ reproducibility, biological impact, and discriminative power in 
independent patient cohorts. Based on these tissue-derived markers, we 
constructed a lung cancer histology classification model from the plasma 
cfDNA. This is among the first cfDNA methylation–based models to non-
invasively predict lung cancer subtypes. We evaluated the model perfor-
mance using cross-validation on cfMethyl-Seq data from 106 patients with 
lung cancer and independent validation on data from 27 patients with lung 
cancer. Our results demonstrate the potential of noninvasively subtyping 
lung cancers using cfDNA methylome. 

Materials and Methods 
Data collection 
We generated two cfMethyl-Seq datasets from plasma samples, one for marker 
discovery and model training and the other for independent validation. The first 
dataset consists of 136 plasma cfDNA samples from 106 patients with lung 
cancer (66 lung adenocarcinoma and 40 LUSC samples) and 30 noncancer 
individuals (9). The second dataset consists of 27 plasma cfDNA samples from 17 
patients with lung adenocarcinoma and 10 patients with LUSC. We also gen-
erated two RRBS datasets from solid tumor tissue samples for marker discovery 
and validation. The marker discovery set contains 60 solid tumor samples from 
an independent cohort of 60 patients with lung cancer (ref. 9; 31 lung adeno-
carcinoma and 29 LUSC), whereas the validation set contains 43 solid tumor 
samples from 30 patients with lung adenocarcinoma and 13 patients with LUSC. 
This study was approved by the Institutional Review Board (IRB) of the Uni-
versity of California at Los Angeles (IRB#19-000618, IRB#19-000230, IRB#19- 
001488, IRB#16-000659, and IRB#17-000985) and was conducted in accordance 
with the Belmont Report. All participants provided written informed consent. 
The clinicopathologic characteristics of these patients with lung cancer are 
summarized in Table 1 and Supplementary Table S1. These datasets are acces-
sible under accession codes EGAS00001006020 and EGAS00001007717 in the 
European Genome-Phenome Archive. We collected the DNA methylation data 
and the RNA sequencing (RNA-seq) data of patients with lung cancer in The 
Cancer Genome Atlas (TCGA) project. TCGA data served as the external vali-
dation data for the differential methylation markers and the classification model 
of lung cancer subtypes. The usage of these datasets and the study design are 
summarized in Fig. 1. 

cfMethyl-Seq and RRBS data preprocessing 
Three steps were performed to preprocess cfMethyl-Seq data. In Step 1, we 
removed the unique molecular identifier (UMI) sequence and trimmed the raw 
sequencing reads. Our custom adapters contain an 8-bp random UMI and a 5- 
bp fixed sequence at the beginnings of both forward and reverse reads. These 
sequences are removed before adapter trimming (and written into the read 
name). Trim Galore! (16) was then used to trim the default Illumina adapters 
from the sequencing reads (using the options –three_prime_clip_R1 15 – 
three_prime_clip_R2 13 –clip_R2 2 –length 15 –phred33). In Step 2, we 
performed sequence alignment, deduplication, and methylation calling. Bis-
mark (17) was first used to align the trimmed reads to the reference genome 
hg19 [ref. 18; GRCh37 (GCA 000001405.1)]. Umi-Grinder (19) removed PCR 
duplicates based on the UMI labels (now in the read names), allowing four 

mismatches in the total 16-bp UMI. Bismark methylation extractor was then 
used to call methylation in the mapped, deduplicated reads. In Step 3, the paired 
reads R1 and R2 were merged to form one fragment based on their mapping 
location. Tissue RRBS samples were preprocessed in the same manner as 
cfMethyl-Seq data. cfMethyl-Seq is a generalization of RRBS for the cfDNA (9). 
cfMethyl-Seq and RRBS utilize the same restriction enzyme (MspI) and thus 
enrich the same CpG-dense regions (9, 20). Based on the experimental protocols, 
we defined the unit regions in our methylation analyses to be the genomic 
regions (n ¼ 1,089,395) that are between two adjacent MspI cutting sites 
(i.e., between two CCGG sites) and that are less than 350 bp (the average region 
size is 117 bp). These regions were the enriched regions of the cfMethyl-Seq and 
RRBS. The sequenced DNA fragments from these two experiments should be 
exactly mapped to these regions. 

Preprocessing of TCGA methylation data 
Methylation data in the TCGA project (435 lung adenocarcinoma and 359 
LUSC samples) were generated using Illumina Infinium HumanMethylation 
450K microarray. These data contained the methylation level (i.e., β value) at 
predefined CpG sites (i.e., probes), which were different from the enriched 
regions in the cfMethyl-Seq and RRBS. To utilize these data to validate the 
differentially methylated markers, we mapped the probes of the 450K micro-
array to the enriched regions of the cfMethyl-Seq and RRBS. If a probe targeted 
a CpG site which fell into an enriched region, the probe was assigned to that 
region. As a result, the 450K probes could be mapped to approximately 15.1% 
enriched regions (n ¼ 164,314). Considering the pervasiveness of DNA 
methylation, we approximated the methylation level of an enriched region as 
the average methylation level of all probes assigned to that region. 

Fragment-based marker discovery between lung 
adenocarcinoma and LUSC 
Tumor-derived methylation alterations may only be present in a small 
fraction of the DNA molecules in a solid tumor sample because of con-
taminating noncancer cells (ref. 21; e.g., tumor-associated normal epithelial 
and stromal cells, immune cells, and vascular cells) and tumor heterogeneity 
(ref. 22; i.e., presence of the alteration within only a subpopulation of the 
tumor cells). Conventional methods for methylation marker discovery rely 
on the averaged methylation level, i.e., β values, defined as the fraction of 
methylated alleles of all alleles mapped to a genomic region in a sample 
(23–25). These methods intrinsically blur the differential signals by including 
the background alleles that are invariant between subtypes (ref. 9; e.g., lung 
adenocarcinoma and LUSC). Thus, they are insensitive to the differential 
methylation signals present only in a small proportion of DNA fragments. 
To overcome impurity and heterogeneity in the tumor samples, we used a 
fragment-based marker discovery framework to stratify subtype-specific 
DNA fragments from background DNA fragments (subtype-invariant DNA 
fragments) to capture tumor subtype signals in a sensitive and specific 
manner (9). We utilized our previously proposed concept of α value, defined 
as the percent of methylated CpGs of all CpGs on a DNA fragment (9). This 
concept has been adopted in several studies to identify cancer-specific 
methylation markers (9, 25, 26). In brief, we compared samples from two 
subtypes at the fragment level, by the α values of individual fragments 
mapped to a genomic region (i.e., the α-value distribution of each sample, 
Supplementary Fig. S1A). Taking lung adenocarcinoma–specific hypo-
methylation marker discovery as an example, we identified regions where the 
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α-value distributions of the lung adenocarcinoma samples have a 
well-separated hypomethylated component from those of the LUSC samples. 
Our marker discovery method then automatically determines an α-value 
threshold, i.e., αhypo, in which fragments with α values ≤ αhypo are defined as 
hypomethylated fragments. Given an αhypo, if the number of lung adeno-
carcinoma samples with hypomethylated fragments (nLUAD

hypo ) is significantly 
larger than the number of LUSC samples with hypomethylated fragments 
(nLUSC

hypo ), then this genomic region carries significant tumor signals (Sup-
plementary Fig. S1B). If there exists an αhypo for a genomic region that 
satisfies nLUSC

hypo < 2, we considered this genomic region as a candidate lung 

adenocarcinoma–specific hypomethylation marker. In this case, the more 
lung adenocarcinoma samples with hypomethylated fragments, the more 
robust a candidate lung adenocarcinoma–specific hypomethylation marker. 
Therefore, we ranked all candidate lung adenocarcinoma–specific hypo-
methylation markers by nLUAD

hypo . As these methylation markers would be used 
to distinguish patients with lung adenocarcinoma and LUSC based on their 
cfDNA, we further required the candidate markers to be differential be-
tween 60 lung tumor samples (i.e., lung adenocarcinoma and LUSC) 
and 30 plasma samples from noncancer individuals. Candidate markers were 
removed if more than 20% of noncancer plasma samples contained 

FIGURE 1 Overview of the data usage 
and study design. A tissue RRBS dataset (n ¼
60) was used to identify subtype-specific 
methylation markers. We filtered the 
markers that were not differential between 
the solid tumor tissues and the noncancer 
plasma samples (n ¼ 30). The remaining 
subtype-specific markers were then validated 
using an independent tissue RRBS dataset 
(n ¼ 43), TCGA project’s tumor tissue 
methylation data (n ¼ 794), and RNA-seq 
data (n ¼ 1,029). We applied the subtype- 
specific markers identified from tumor 
tissue to train and validate the subtype 
classification model on plasma cfDNA using 
the cfMethyl-Seq data of the patients with 
lung cancer (n ¼ 106). Then we validated this 
cfDNA-based classification model on an 
independent cfMethyl-Seq dataset (n ¼ 27). 

TABLE 1 Demographic and clinical characteristics of patients with lung cancer. We collected two plasma cfDNA cohorts and two tumor tissue 
cohorts from patients with lung cancer. One sample was collected per patient. The plasma cfDNA samples were profiled using cfMethyl-Seq; the solid 
tumor samples were profiled using RRBS. The donors in plasma cfDNA cohorts are independent of those in the tissue cohort for marker discovery 

Plasma cfDNA Solid tumor 

Model training Independent validation Marker discovery Marker validation 

N 106 27 60 43 
Age (range) 63.5 (32–81) 67 (51–84) 70.5 (44–82) 71 (44–86) 
Gender (%) 
Female 28 (26.4%) 7 (25.9%) 28 (46.7%) 20 (46.5%) 
Male 56 (52.8%) 19 (70.4%) 32 (53.3%) 23 (53.5%) 
Unknown 22 (20.8%) 1 (3.7%) 0 (0.0%) 0 (0.0%) 
Stage (%) 
I 27 (25.5%) 10 (37.0%) 35 (58.3%) 24 (55.8%) 
II 19 (17.9%) 4 (14.8%) 9 (15.0%) 12 (27.9%) 
III 24 (22.6%) 7 (25.9%) 11 (18.3%) 6 (14.0%) 
IV 36 (34.0%) 5 (18.5%) 2 (3.3%) 0 (0.0%) 
Unknown 0 (0.0%) 1 (3.7%) 3 (5.0%) 1 (2.3%) 
Histology (%) 
Lung adenocarcinoma 66 (62.3%) 17 (63.0%) 31 (51.7%) 30 (69.8%) 
LUSC 40 (37.7%) 10 (37.0%) 29 (48.3%) 13 (30.2%) 
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FIGURE 2 Identification and validation of the subtype-specific methylation markers. A, Heatmap of the logarithm-scaled normalized read count 
at the markers in the tumor tissue RRBS data. For lung adenocarcinoma and LUSC, we selected the top 2,500 hypermethylation and hypomethylation 
regions using the fragment-based marker discovery method. The color in the heatmap represents the logarithm-scaled normalized count of the 
hypermethylated (hypomethylated) reads at the hypermethylation (hypomethylation) markers. B, Heatmap of the logarithm-scaled normalized 
read count at the markers in the independent tumor tissue RRBS data. C, Heatmap of the methylation levels at the markers in TCGA methylation data. 
Methylation levels were quantified as the average β value across all probes covered by a marker. D, Heatmap of the logarithm-scaled transcription 
level at the marker-associated genes in the TCGA RNA-seq data. A gene is marker-associated if its promoter has more than 50% overlap with a 
marker. Every row in the heatmap represents a marker-associated gene, and every column represents a patient with cancer. A transcription level 
was quantified as the TPM. (Continued on the following page.) 
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hypomethylated fragments. This filter ensured that the subtype-specific meth-
ylation signals were unlikely to be observed in the noncancer plasma samples. 
The subtype-specific hypomethylated fragments were thus more likely derived 
from the tumor rather than the background blood cells. This same principle 
applies to the lung adenocarcinoma–specific hypermethylation marker discov-
ery, in which an α-value threshold, i.e., αhyper, will be determined and those reads 
with α values ≥ αhyper are defined as hypermethylated reads. Similarly, we also 
required nLUSC

hyper < 2 for all lung adenocarcinoma–specific hypermethylation 
markers and ranked them by nLUAD

hyper . Following this procedure, we identified 
markers using the solid tumor RRBS data. In addition, we switched the roles of 
the lung adenocarcinoma and LUSC samples in the marker discovery and 
identified LUSC-specific hypomethylation and hypermethylation markers. We 
utilized the top 2,500 candidates (ties are included) from all marker discoveries 
as markers for the remaining analyses, i.e., in total, 10,941 subtype-specific 
markers. 

Validation of the methylation markers between lung 
adenocarcinoma and LUSC 
Methylation markers were validated by three parameters: reproducibility in 
independent cohorts, association with subtype-specific transcription activity, 
and distinguishing power between lung adenocarcinoma and LUSC. To assess 
reproducibility, we used RRBS data from an independent tissue cohort and 
450K methylation microarray data from the TCGA project. Due to the small 
sample size of the RRBS data, we assessed differential methylation by calculating 
the fold change of the subtype-specific DNA fragments. The 450K data were 
generated using an experimental platform distinct from the RRBS data. It 
covered approximately 32.0% of subtype-specific markers (n ¼ 3,506) derived 

from the RRBS data. Differential methylation in the 450K data was evaluated 
using Student t tests following a Benjamini–Hochberg correction for multiple 
testing. 

To evaluate the downstream effects of subtype-specific markers on subtype- 
specific transcription activity, we analyzed RNA-seq data of tumor samples 
from patients with lung adenocarcinoma (n ¼ 528) and LUSC (n ¼ 501) in the 
TCGA project. RNA-seq data were processed as the transcript per million 
(TPM) for each gene. To map the transcription data to the markers, we over-
lapped the promoter regions [defined by GeneHancer (27)] with the marker 
regions. If the promoter of a gene was identified to have more than 50% overlap 
with a marker, we defined the gene to be associated with the marker. A heatmap 
for the TPM of these marker-associated genes was generated. We also per-
formed differential expression analysis on the TPM of the marker-associated 
genes between the lung adenocarcinoma and LUSC samples using the limma 
package (28). A Benjamini–Hochberg adjusted P value was calculated for each 
gene. We defined a gene as differentially expressed if its Benjamini–Hochberg 
adjusted P value was < 0.05. We compared the fraction of differentially 
expressed genes in the marker-associated genes and the fraction of differentially 
expressed genes in 500 randomly selected gene sets. An empirical P value was 
calculated based on the rank of the fraction of differentially expressed genes in 
the marker-associated genes among the random genes. 

To evaluate the distinguishing power of the markers, we constructed a lo-
gistic regression classifier (with the L2 penalty) to distinguish lung adeno-
carcinoma and LUSC tumor samples in the TCGA project. The model was 
trained using the methylation level at the subtype-specific markers which 
were covered in the 450K data. We set the C parameter to C ¼ 0:1, and all 
other hyperparameters use the default values provided using the Python 

FIGURE 2 (Continued) E, Differential gene expression between lung adenocarcinoma and LUSC in TCGA RNA-seq data. The statistical 
significance of the genes was determined by the Benjamini–Hochberg adjusted P values at 0.05. The adjusted P values are shown in a negative 
logarithm (base 10) scale. F, The discriminative power of the whole marker set was evaluated using a 10-fold cross-validation on tumor tissues. The 
discriminative power was quantified as the ROC curve, shown as the bold black curve. The gray area represents the CI of the ROC curve. The AUC 
was calculated, and the corresponding 95% DeLong CI is shown in the parentheses. 
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scikit-learn machine learning package (29). To evaluate the classification 
results, we performed 10-fold cross-validation on the samples and calculated 
the AUC. 

Classification of lung adenocarcinoma and LUSC using 
the methylation profile of the cfDNA 
Using the fragment-based marker discovery method, each methylation 
marker is associated with a threshold, i.e., αhypo or αhyper, which defines 
hypomethylated or hypermethylated reads, respectively. As the threshold 
associated with the methylation markers reflects subtype-specific methyla-
tion patterns, we regard those hypomethylated or hypermethylated reads as 
subtype-specific reads. Specifically, for hypermethylation markers, we can 
identify those fragments that have α-values ≥ αhyper as hypermethylated 
reads and normalize the number of these reads by the sample sequencing 
depth, i.e., dcountðmarkerÞ ¼ 109 countðmarkerÞ

raw read count of the genome. Similarly, for hypo-
methylation markers, we can identify those fragments that have α-values 
≤ αhypo as hypomethylated reads and normalize the number of these reads by 
the sample sequencing depth. 

The subtype-specific signal in cfDNA can be weak and unstable because of 
the limited sequencing depth of our cfMethyl-Seq data (median 22.6�) and 
the generally low tumor content. To obtain robust features for the subtype 
classification, we combined multiple individual markers into a merged 
marker. We performed constrained K-means clustering (30) on four types of 
markers, namely, lung adenocarcinoma–specific hypermethylation markers, 
lung adenocarcinoma–specific hypomethylation markers, LUSC-specific 
hypermethylation markers, and LUSC hypomethylation markers. For each 
type of marker, we allowed 45 to 55 individual markers to be clustered as a 
group. We then combined the individual markers within a cluster as a merged 
marker. By combining individual markers, the merged markers have high read 
coverage and provide stable subtype-specific signals. For every merged marker, 
we derived a numerical feature by calculating the average normalized read 
count at this merged marker and transforming the normalized read count by a 
logarithm, i.e., lnðaverageðdcountðmarkerÞÞ þ 1Þ. The logarithmic averaged 
read counts at all merged markers are concatenated into a feature vector, 
which is used as the fragment-based methylation profile of the cfDNA sample. 
We created 219 merged markers (i.e., features) from the 10,941 individual 
subtype-specific markers that were identified from the solid tumor tissues. 

We constructed a logistic regression classifier with the L2 penalty to dis-
tinguish plasma samples from patients with lung adenocarcinoma and LUSC 
using the fragment-based methylation profiles. Note that the fragment-based 
methylation profile of a cfDNA sample was constructed based on the tissue- 
derived markers. We set the C parameter to C ¼ 0:1, and all other hyper-
parameters use the default values provided using the Python scikit-learn 
machine learning package (29). To maximally utilize the available samples in 
the training, we performed leave-one-out cross-validation (LOOCV) on the 
samples and calculated the AUC. 

Tumor fraction estimation and tumor copy-number 
alteration detection in the plasma cfDNA using 
ichorCNA 
We utilized ichorCNA (31) to quantify tumor fraction and detect tumor 
copy-number alterations from plasma cfDNA. ichorCNA compares the se-
quencing read coverage in the cfDNA with a reference panel in large 

genomic bins to estimate the tumor fraction. The hg19 genome was seg-
mented into 1 million bp bins, and a reference panel was created from 30 
noncancer plasma samples. We applied ichorCNA to the plasma samples 
from patients with lung cancer in its default settings. If a plasma sample has a 
nonzero tumor fraction, we consider it to have a detectable tumor fraction 
when using ichorCNA. Given that ichorCNA has a detection limit of ap-
proximately 3% (31), all samples with undetectable tumor fractions are 
considered to have a tumor fraction of less than 3%. Using the tumor 
fraction estimated from ichorCNA, we evaluated the accuracy of lung cancer 
subtype classification in the plasma samples with detectable and undetectable 
tumor fractions separately. Tumor copy-number alteration was determined 
for each bin. After purity adjustment, we consider a log2-transformed copy- 
number ratio >0.3 as a gain and < �0.3 as a loss (32). Chromosome 9p21.3 
loss is defined by loss of CDKN2A/B and/or MTAP genes (33). 

Data availability 
The following data are used in this study: the RRBS data of solid tumor tissue 
samples and the cfMethyl-Seq data of plasma samples are accessible in the 
European Genome-Phenome Archive under accession codes 
EGAS00001006020 and EGAS00001007717. 

Results 
Identification of methylation markers between lung 
adenocarcinoma and LUSC 
To identify the methylation markers for the two lung cancer subtypes, we 
collected RRBS data for 60 solid tissues for marker discovery, including 31 
tumor samples from patients with lung adenocarcinoma and 29 tumor 
samples from patients with LUSC. Using our fragment-based marker dis-
covery method (see “Material and Methods”), we identified subtype-specific 
markers that differ significantly between lung adenocarcinoma and LUSC 
tumor tissues. We also required the markers to have differential methylation 
between the solid tumors and the cfDNA of 30 noncancer individuals. The 
cfDNA of noncancer individuals is derived from blood cells and normal 
tissue cells. Therefore, the methylation markers were distinct between the 
two lung cancer subtypes as well as between the tumor and noncancer 
background. We ranked the markers by their robustness (see “Material and 
Methods”) and selected the top 2,500 hypermethylation markers and 
hypomethylation markers for lung adenocarcinoma and LUSC, respectively 
(ties are included), resulting in 10,941 markers for the lung cancer subtype 
prediction (Fig. 2a). 

Validation of the subtype-specific methylation markers 
To ensure that the methylation markers represent the difference between 
lung adenocarcinoma and LUSC, we validated the reproducibility of these 
markers using the RRBS data of an independent tissue cohort and the 450K 
data from the TCGA project. On the independent RRBS dataset, we 
compared the normalized subtype-specific read counts between the lung 
adenocarcinoma and LUSC tumor tissue samples; 68.3% of our markers 
showed subtype-specific methylation patterns (i.e., a fold change of >1.5, 
Fig. 2B) consistent with the tumor tissue data for marker discovery. On 
TCGA data, approximately 32.0% of our markers contained at least one 
probe in the Infinium HumanMethylation 450K microarray because of the 
difference in experimental platforms. The methylation level of these 
markers in TCGA data is illustrated in Fig. 2C. In this large independent 
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cohort, 68.7% of the markers had a statistically significant subtype-specific 
methylation pattern (Benjamini–Hochberg adjusted P value > 0.05) con-
sistent with the tumor tissue data for marker discovery. These results 
demonstrate that our methylation markers captured the subtype-specific 
methylation difference that was mostly reproducible in other patient 
cohorts. 

The potential biological functions related to our methylation markers were 
then investigated. Using RNA-seq data from the TCGA project, we analyzed 
the transcription level of a gene if its promoter overlapped with the markers. 
Approximately 35.8% of the subtype-specific markers (n ¼ 3,918) overlapped 
with the promoter region of genes included in TCGA RNA-seq data. These 
markers corresponded to 2,996 genes. From the RNA-seq data, we observed 
different transcription levels between lung adenocarcinoma and LUSC 

(Fig. 2D). There was a significant difference in the transcription levels of 
44.3% of the genes (Fig. 2E). This fraction of genes was significantly larger 
than the random genes (empirical P value ¼ 0). These results suggest that 
our methylation markers likely impact downstream subtype-specific tran-
scription activity. 

We assessed the overall discriminative power of the marker set in dis-
tinguishing between lung adenocarcinoma and LUSC. With individual 
methylation markers validated in the independent cohorts, we built a logistic 
regression classification model using the solid tumor samples from the pa-
tients with lung adenocarcinoma and LUSC in the TCGA project. Using 435 
lung adenocarcinoma and 359 LUSC solid tumor samples, we used the 
methylation levels at each marker as features. We used a 10-fold cross- 
validation approach and divided samples into 10 folds, training the model on 

FIGURE 3 Classification of lung cancer subtypes using plasma cfDNA. A, ROC curve of subtype classification on plasma cfDNA. The performance 
of the subtype classification model was evaluated using LOOCV. The bold curves are the ROC curve. The colored areas represent the CI of the ROC 
curve. B, Accuracy of the subtype classification. Accuracy was evaluated on the plasma samples with detectable and undetectable tumor fractions, 
as estimated using ichorCNA. C, ROC curve of subtype classification on an independent validation set. 
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nine folds and testing it on the remaining fold. Across 10 folds, our meth-
ylation markers achieved an AUC of 0.987 [95% DeLong confidence interval 
(CI) ¼ (0.979, 0.994), Fig. 2F], indicating a high distinctive power of our 
marker set. 

Distinguishing lung cancer subtypes using plasma 
cfDNA 
After validating the subtype-specific markers, we next evaluated whether 
lung cancer subtypes can be identified from cfDNA methylation. Because 
tumor cells from all tumor sites and clones can release DNA into the 
bloodstream, cfDNA potentially contains a more comprehensive profile of 
the heterogeneous tumor than a tumor sample biopsied at a single tumor site 
(14, 15). Considering the heterogeneity of lung cancer, subtyping lung 
cancers with cfDNA holds promise in cancer detection and monitoring. We 
generated cfMethyl-Seq data of the plasma cfDNA samples collected from 66 
patients with lung adenocarcinoma and 40 patients with LUSC. Using the 
data from a patient cfDNA sample, we extracted the cfDNA fragment–based 
methylation patterns at the markers. Fragment-based methylation patterns 
can separate the cfDNA fragments carrying the subtype-specific methylation 
from the leukocyte-derived background, enhancing weak tumor signals in 
the cfDNA with low tumor content (9). 

Utilizing the extracted fragment-based methylation profiles, we built a 
logistic regression classification model to distinguish lung adenocarci-
noma and LUSC using the cfDNA. The model was first evaluated using 
LOOCV. Our methylation markers achieved an AUC of 0.808 [95% 
DeLong CI ¼ (0.722, 0.893), accuracy ¼ 0.764, Fig. 3A] across all stages, 
an AUC of 0.729 [95% DeLong CI ¼ (0.565, 0.893), accuracy ¼ 0.739] for 
stages I to II patients (n ¼ 46), and an AUC of 0.867 [95% DeLong CI ¼
(0.780, 0.954), accuracy ¼ 0.783] for stages III to IV patients (n ¼ 60). We 
then evaluated the classification accuracy in the plasma samples based on 
their tumor fractions. We estimated the tumor fraction and identified 
tumor copy-number alterations from the cfMethyl-Seq data using 
ichorCNA (31). Because the detection limit of ichorCNA is at a tumor 
fraction of approximately 3% (31), we divided the plasma samples into two 
groups, with detectable tumor fractions ( ≥ 3%) and undetectable tumor 
fractions ( < 3%). The accuracy of subtype classification was higher in the 
plasma samples with a detectable tumor fraction (n ¼ 13, accuracy ¼
92.3%) than in the plasma samples with an undetectable tumor fraction 
(n ¼ 93, accuracy ¼ 74.2%, Fig. 3B). The tumor copy-number alteration 
analysis on cfDNA methylome revealed that 4 of the 13 patients with 
detectable tumor fractions showed chromosome 9p21.3 loss (Supple-
mentary Fig. S2), a known indicator associated with profound immune- 
cold tumors (32). This suggests that tumor aneuploidies inferred from 
cfDNA methylome may potentially help inform personalized treatment 
selection for immunotherapy. 

We evaluated the performance of this cfDNA-based classification model 
using an independent cfMethyl-Seq dataset derived from plasma cfDNA 
samples collected from 17 patients with lung adenocarcinoma and 10 
patients with LUSC. The model achieved an AUC of 0.747 [95% DeLong 
CI ¼ (0.543, 0.951), accuracy ¼ 0.704, Fig. 3C] in this independent vali-
dation. The model performance for different cancer stages was not eval-
uated because of the limited sample size. In this independent validation set, 
three patients had detectable tumor fractions by ichorCNA, one of whom 

showed chromosome 9p21.3 loss (Supplementary Fig. S3). Despite the 
small sample size and the limited sequencing depth of these cfMethyl-Seq 
data (median 22.6�), these results demonstrate the potential of non-
invasively subtyping lung cancers and detecting tumor molecular charac-
teristics using cfDNA methylome. 

Discussion 
Accurate classification of histologic subtypes of lung cancers is essential for 
diagnosis, treatment, and prognosis. The current practice of tumor biopsy 
provides standard classification of the histologic subtypes. With the 
emerging potential of noninvasive cancer detection and typing through 
cfDNA, we explored the feasibility of utilizing cfDNA for the noninvasive 
classification of histologic subtypes in lung cancers. We focused on the two 
most prevalent subtypes of lung cancer, lung adenocarcinoma and LUSC, 
and developed one of the first cfDNA methylation–based classification 
models. This method provides a supplemental strategy for lung cancer 
subtyping. 

To build this classification model, we systematically examined the methyl-
ation profiles of 31 lung adenocarcinoma and 29 LUSC tumor tissues. We 
identified differentially methylated markers using a fragment-based marker 
discovery strategy, which overcomes the impure and heterogeneous signals 
from the tumor samples. These markers were successfully reproduced in two 
independent patient cohorts, which indicated the robust methylation dif-
ference between the two subtypes. By investigating the RNA-seq data from 
TCGA, we found that 44.3% of genes associated with the methylation 
markers had a significant differential transcription level. These results 
demonstrate that our methylation markers are related to the differential gene 
expression signatures characteristic of the two subtypes. We further dem-
onstrated the ability of the markers to distinguish between lung adenocar-
cinoma and LUSC, achieving an AUC of 0.987 in the 10-fold cross-validation 
using tumor tissue data from TCGA. 

Based on these markers, we built a logistic regression model to classify 
plasma samples from the patients with lung adenocarcinoma and LUSC 
based on the cfDNA methylation profiles. The plasma samples were profiled 
with cfMethyl-Seq at a limited depth (median 22.6�). With these data, we 
achieved an AUC of 0.808 using LOOCV and an AUC of 0.747 in the 
independent validation. This performance is consistent with existing studies 
of lung cancer subtyping using cfDNA fragmentation patterns (34) and 
cfDNA methylation at a limited number of genes (35). Apart from them, 
another epigenetic molecular marker, transcription factor binding inferred 
from cfDNA fragmentation patterns, has been used in classifying lung cancer 
subtypes with promising accuracy (36). cfMethyl-Seq retains the genome- 
wide methylation profiles of cancer abnormalities in a cost-effective manner, 
allowing the classification model to learn and exploit newly identified sig-
nificant features as the training cohorts expand (9). With a higher se-
quencing depth and larger training size, we anticipate the classification 
performance to further improve. 

Our tumor copy-number alteration analysis on cfDNA methylome data 
derived from plasma cfDNA samples identified chromosome 9p21.3 loss in a 
total of 5 of 16 patients with non–small cell lung cancer with detectable 
tumor fractions ( ≥ 3%; 4 of 13 in the training cohort and 1 of 3 in the 
validation cohort), including 4 of 12 patients with lung adenocarcinoma 
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(33%) and 1 of 4 patients with LUSC (25%). Among chromosome 9p al-
terations, 9p21.3 homozygous deletions (9p21.3 loss) are among the most 
prevalent events of somatic copy-number alterations (SCNA) occurring in 
∼13% of all cancers, including ∼20% of human papillomavirus–negative 
head and neck cancers, ∼15% of lung adenocarcinoma, and ∼25% of LUSC 
(32, 33, 37). Chromosome 9p21.3 loss eliminates CDKN2A/B tumor 
suppressors and often encompasses codeletions of a cluster of 16 type I 
IFN genes (32, 33, 37). Recent studies demonstrate that 9p21.3 loss is 
associated with a type I IFN–mediated immune-cold tumor phenotype 
and resistance to immune checkpoint inhibitors (32, 33, 37, 38). Our 
cfDNA methylome platform therefore has the potential to identify SCNAs 
noninvasively and facilitate personalized and optimal treatment decisions 
for each patient. Although the sample size is small, we detected a higher 
percentage of patients with lung adenocarcinoma harboring chromosome 
9p21.3 loss than that identified by TCGA datasets (33, 37), suggesting that 
genomic data derived from cfDNA secreted by all tumor cells may en-
hance the probability of detecting SCNAs compared with data generated 
from tumor biopsies. Future studies with larger patient cohorts will offer 
validation about the detection of cancer aneuploidies by cfDNA 
methylome. 

In summary, we identified robust differential methylation markers with 
strong distinguishing power between lung adenocarcinoma and LUSC and 
developed a classification model to noninvasively distinguish these subtypes 
using cfDNA methylation. Our cfDNA methylome analysis has the potential 
for noninvasive early detection as well as cancer monitoring. It enables 
longitudinal cancer monitoring by tracking lung adenocarcinoma and LUSC 
progression during treatment, potentially indicating either treatment re-
sponse or resistance. The tumor copy-number alterations identified from the 
cfDNA methylome data can offer additional insights for treatment selection. 
For early detection, the platform seamlessly integrates into existing work-
flows (9), providing preliminary histologic subtype information to comple-
ment current cancer detection and tissue origin assessment. For example, the 
use of cfDNA methylome analysis could be implemented in the context of 
lung cancer screening with low-dose CT scanning to aid in the diagnosis of 
indeterminant pulmonary nodules. Our primary focus on the two most 
prevalent subtypes of non–small cell lung cancer serves as a promising ex-
ample. Future studies may extend this method to encompass other subtypes 
when adequate data are available for marker discovery and model training. 
This cost-effective genome-wide methylation profiling utilizing cfDNA 

methylome analysis holds promise for the enhancement of early cancer 
detection and cancer monitoring. 
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