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| INVESTIGATION

The Enigmatic Canal-Associated Neurons Regulate
Caenorhabditis elegans Larval Development Through

a cAMP Signaling Pathway
Jason Chien,* Fred W. Wolf,† Sarah Grosche,*,1 Nebeyu Yosef,*,2 Gian Garriga,‡,3 and Catarina Mörck*

*Department of Chemistry and Molecular Biology, University of Gothenburg, Sweden 405 30, †Department of Molecular and Cell
Biology, University of California, Merced, California 95343, and ‡Department of Molecular and Cell Biology, University of

California, Berkeley, California 94720-3204

ORCID ID: 0000-0003-3641-9439 (G.G.)

ABSTRACT Caenorhabditis elegans larval development requires the function of the two Canal-Associated Neurons (CANs): killing the
CANs by laser microsurgery or disrupting their development by mutating the gene ceh-10 results in early larval arrest. How these cells
promote larval development, however, remains a mystery. In screens for mutations that bypass CAN function, we identified the gene
kin-29, which encodes a member of the Salt-Inducible Kinase (SIK) family and a component of a conserved pathway that regulates
various C. elegans phenotypes. Like kin-29 loss, gain-of-function mutations in genes that may act upstream of kin-29 or growth in
cyclic-AMP analogs bypassed ceh-10 larval arrest, suggesting that a conserved adenylyl cyclase/PKA pathway inhibits KIN-29 to pro-
mote larval development, and that loss of CAN function results in dysregulation of KIN-29 and larval arrest. The adenylyl cyclase ACY-2
mediates CAN-dependent larval development: acy-2 mutant larvae arrested development with a similar phenotype to ceh-10 mutants,
and the arrest phenotype was suppressed by mutations in kin-29. ACY-2 is expressed predominantly in the CANs, and we provide
evidence that the acy-2 functions in the CANs to promote larval development. By contrast, cell-specific expression experiments suggest
that kin-29 acts in both the hypodermis and neurons, but not in the CANs. Based on our findings, we propose two models for how
ACY-2 activity in the CANs regulates KIN-29 in target cells.

KEYWORDS C. elegans; KIN-29; salt-inducible kinase (SIK); cAMP; canal-associated neuron

THE nematode Caenorhabditis elegans requires only three
neurons for survival: the M4 motor neuron and the two

Canal-Associated Neurons (CANs). The M4 neuron is located
in the pharynx—the C. elegans feeding organ—and is re-
quired for peristaltic movements that move food along the
pharynx (Avery and Horvitz 1987, 1989). The CANs are two
bilaterally symmetric neurons that are born in the head and
migrate posteriorly to the middle of the worm during em-
bryogenesis. After the CANs have completed their migration,
each neuron extends two axons: one axon grows anteriorly

toward the head, and the other grows posteriorly toward the
tail (White et al. 1986; Wu et al. 2011). If the CANs are killed
by laser microsurgery or if the neurons fail to differentiate,
the worms arrest their development early in larval develop-
ment (Forrester and Garriga 1997; Forrester et al. 1998).
How the CANs regulate larval development is unknown.

Phenotypic analysis of mutants with CAN defects also
reveals their role in larval development. The CANs express
two differentiation markers, the homeodomain transcription
factors CEH-10 and CEH-23 (Wang et al. 1993; Svendsen and
McGhee 1995). Loss of ceh-10 also results in larval arrest,
which is thought to result from the failure of the CANs to
differentiate (Forrester and Garriga 1997; Forrester et al.
1998). The posteriorly directed migrations of many cells
and growth cones require the gene vab-8 (variable abnormal)
(Wightman et al. 1996; Wolf et al. 1998). In vab-8 null mu-
tants, the CANs fail to migrate posteriorly, and their posterior
axons fail to extend or extend a short distance. The posterior
body of older vab-8 mutant larvae and adults becomes thin
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and develops abnormally. This withered tail (Wit) phenotype
is thought to result from the lack of CAN function in the
posterior of the mutant animals (Wightman et al. 1996)—a
hypothesis that is supported by a correlation in different mu-
tants between the severity of the defect in the extension of
the CAN posterior axon and the penetrance of the Wit phe-
notype (Forrester and Garriga 1997).

In an attempt to reveal the function of the CANs, we
mutagenized ceh-10 or vab-8 mutants and screened for mu-
tations that can suppress the mutant larval arrest or Wit phe-
notypes without suppressing their CAN neuron defects. In
our screens, we identified three alleles of kin-29, which en-
codes a serine/threonine kinase that is a member of the Salt-
Inducible Kinase (SIK) family involved in the regulation of
feeding and fasting states (Koo et al. 2005; Dentin et al. 2007;
Wang et al. 2008; Choi et al. 2011).

The three mammalian SIKs are inhibited by a conserved
G-protein Coupled Receptor (GPCR) pathway that activates
adenylyl cyclase (ACY) and Protein Kinase A (PKA) (Wang
et al. 1999; Takemori et al. 2002; Okamoto et al. 2004; van
der Linden et al. 2008). Here, we report that mutations that
cause an increase of cAMP levels or the activation of PKA
rescue the ceh-10 larval arrest phenotype. We also provide
evidence that ACY-2 is the adenylyl cyclase that generates the
cAMP necessary for CAN-dependent larval development.
ACY-2 is expressed in the CANs and in a few other neurons
(Korswagen et al. 1998). We found that, when expressed in
the CANs, acy-2 partially rescued the mutant acy-2 larval
arrest phenotype. Furthermore, CAN-specific RNAi of acy-2
induced larval arrest. Together, these findings suggest that
ACY-2 produces cAMP in the CANs. To address where KIN-29
acts when CAN function is defective, we performed cell-
specific expression experiments that suggest that KIN-29
functions in the hypodermis and neurons, but not in the
CANs. Our observations are consistent with a model where
cAMP produced by ACY-2 in the CANs negatively regulates
KIN-29 in neurons and hypodermal cells to promote larval
development. We propose that cAMP diffuses from the CANs
through gap junctions to inhibit KIN-29 though PKA to pro-
mote proper larval development.

Materials and Methods

C. elegans genetics

Worms were cultured as previously described (Brenner
1974). All strains were maintained at 20�, unless otherwise
noted. The following mutant alleles were used: LGI: gsa-
1(ce94), lin-35(n745), mef-2(gv1) LGII: pde-4(ce268) LGIII:
acy-1(pk1279), ceh-10(gm58), rrf-3(pk1426) LGIV: eri-
1(mg366) LGV: acy-2(pk465), ergo-1(gg100), nre-1(hd20),
rde-1(ne219), vab-8(e1017) LGX: hda-4(oy59), kin-2(ce179),
kin-29(gm112), kin-29(jehm1), kin-29(jehm2), kin-29(gk288),
lin-15B(n744), lin-15B(hd126).

Transgenes: gmIs18[Pceh-23::GFP]; pRF4 [rol-6(su1006)]
(Zinovyeva and Forrester 2005).

The double and triple mutants created in the genetic in-
teraction studieswere sequenced to confirmthat allmutations
were present.

ceh-10 and vab-8 suppressor screens

ceh-10(gm58)/ht2; gmIs18 or vab-8(e1017) gmIs18 worms
were mutagenized for 4 hr by incubation in 0.05 M ethyl
methane sulfonate (EMS). Worms were washed in M9
buffer (22 mM KH2P04, 42 mM Na2HP04, 85.5 mM NaCl,
and 1 mM MgS04) and placed on a large culture dish; 2 h
later, L4 hermaphrodites were transferred to new plates in
groups of 10 worms for the vab-8 suppressor screen or
5 worms for the ceh-10 suppressor screen. F1 progeny were
picked individually to new plates 5–6 days later, and, on
days 9–13, the F2 progeny were screened for ability to res-
cue ceh-10 larval arrest or vab-8 withered tail (Wit) pheno-
type. More than 40,000 mutagenized genomes were
screened in the vab-8 suppressor screen, and �20,000 ge-
nomes were screened in the ceh-10 suppressor screen. Of the
five mutations that suppressed the vab-8 Wit phenotype,
only gm112 did not suppress the CAN migration defect. Of
the four mutations that suppressed ceh-10 larval lethality,
only jehm1 and jehm2 were kin-29 alleles. Neither of the
other two suppressor mutations were mef-2 alleles. All sup-
pressors were outcrossed at least three times to the wild-
type N2 strain.

Mutant identification

For identification of kin-29(gm112), we used a combination
of SNP mapping, RNAi interference, and sequencing. The
Hawaiian isolate CB4856 was used for SNP mapping
(Wicks et al. 2001), which placed gm112 between SNPs in
the H01M10.1 and pccb-1 genes. Genes located between
H01M10.1 and pccb-1 were tested for suppression of vab-8
Wit and ceh-10 larval arrest by feeding worms bacteria
expressing double-stranded RNA specific to a single gene.
RNAi clones were obtained from the Ahringer RNAi library
(Kamath et al. 2003) or the C. elegans ORFeome library
(Rual et al. 2004) and were verified by sequencing. The ex-
periments were performed as previously described (Timmons
et al. 2001).

RNAi against kin-29 rescued both vab-8 Wit and ceh-10
larval arrest phenotypes. The mutant kin-29 genes were se-
quenced by amplifying fragments covering the entire kin-29
gene by PCR.

DNA plasmid constructs and transgenic lines

Pges-1: kin-29cDNA was generated by PCR amplifying
3323 bp of the ges-1 promoter using wild type genomic
DNA as template with the following primers: 59-ctcgagctaagc
ttaatgaagtttatttc -39 (XhoI site underlined) and 59-ggatccct
gaattcaaagataagatatgt-39(BamHI site underlined). The PCR
productwas cloned into pCR2.1-TOPO (Invitrogen), cut outwith
XhoI and BamHI, and ligated into pBluescriptKS–. The 2468-bp
kin-29cDNA was amplified from Pkin-29::kin-29cDNA::GFP
(a kind gift from Piali Sengupta) with the following primers:

1466 J. Chien et al.

https://identifiers.org/bioentitylink/WB:WBGene00000435?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00006874?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00002210?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00000435?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00000069?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00000069?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00000069?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00000069?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00000069?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00000069?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00002210?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00002210?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00000069?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00002210?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00002210?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00001745?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00001745?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBVar00053972?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00023497)?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBVar00089719?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00003182?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBVar00146389?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00020114?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBVar00053982?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00000068?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBVar00239355?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00000435?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBVar00146324?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00004510?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBVar00239370?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00001332?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00001332?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBVar00088949?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00000069?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBVar00239312?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00019971?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBVar00145453?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00045274?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBVar00087841?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00004323?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBVar00090963?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00006874?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBVar00143682?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00001837?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBVar00095045?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00002190?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBVar00053977?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00002210?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBVar02125031?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00002210?doi=10.1534/genetics.119.302628
http://www.wormbase.org/db/get?name=WBVar02150072;class=Variation
https://identifiers.org/bioentitylink/WB:WBGene00002210?doi=10.1534/genetics.119.302628
http://www.wormbase.org/db/get?name=WBVar02150073;class=Variation
https://identifiers.org/bioentitylink/WB:WBGene00002210?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBVar00145695?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00023497?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBVar00089718?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00023497?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBVar00087856?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00004397?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBVar00248869?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00000435?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBVar00146324?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00006874?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBVar00143682?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00006874?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00000435?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00000435?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00006874?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00006874?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00000435?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00006874?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBVar02125031?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00000435?doi=10.1534/genetics.119.302628
http://www.wormbase.org/db/get?name=WBVar02150072;class=Variation
http://www.wormbase.org/db/get?name=WBVar02150073;class=Variation
https://identifiers.org/bioentitylink/WB:WBGene00002210?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00003182?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00002210?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBVar02125031?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBVar02125031?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00019143?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00018701?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00019143?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00018701?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00006874?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00000435?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00002210?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00006874?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00000435?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00002210?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00002210?doi=10.1534/genetics.119.302628
https://identifiers.org/bioentitylink/WB:WBGene00001578?doi=10.1534/genetics.119.302628


59-ggatccatggctgcgccacggcggc-39 (BamHI site underlined) and
59-gcggccgctcactccgagctccagcttg-39(NotI site underlined). The
PCR product was cloned into pCR2.1-TOPO (Invitrogen), cut
out with BamHI and NotI and ligated into the pBluescriptKS–
vector containing the promoter of ges-1 (Pges-1). A 744-bp
fragment of the unc-54 39UTR was generated by PCR am-
plification using wild type genomic DNA as template with
the following primers: 59-gcggccgccatctcgcgcccgtgcctc-39
(NotI site underlined) and 59-gcggccgcaaacagttatgtttggtat-39
(NotI site underlined). The PCR product was cloned
into pCR2.1-TOPO (Invitrogen), cut out with NotI and
ligated into Pges-1::kin-29cDNA;pBluescriptKS– creating
Pges-1::kin-29cDNA::unc-54 39UTR. The plasmidwas injected
into ceh-10;kin-29 at 25 ng/ml together with 2 ng/ml
Pmyo-2::mCherry.

Pges-1: GFPwas generated by PCR amplifying 3323 bp of the
ges-1 promoter using wild type genomic DNA as template
with the following primers: 59-ggatccctaagcttaatgaagtt-
tatttc-39 (BamHI site underlined) and 59-ccatggctgaattcaaa-
gataagatatgt-39(NcoI site underlined). The PCR product was
cloned into pCR2.1-TOPO (Invitrogen), cut out with BamHI
and NcoI and ligated into pPD95.77. The plasmid was in-
jected into wild-type worms at 25 ng/ml together with
40 ng/ml pRF4 [rol-6(su1006)].

Phlh-1: kin-29cDNA was generated by PCR amplifying
3052 bp of the hlh-1 promoter using wild-type genomic DNA
as template with the following primers: 59-ctgcagcagaattctgt
gaaataagc-39 (PstI site underlined) and 59-ggatccttctggaaaat
tattggaaaat-39(BamHI site underlined). The PCR product was
cloned into pCR2.1-TOPO (Invitrogen), cut out with PstI and
BamHI and ligated into pBluescriptKS-. The kin-29cDNA and
unc-54 39UTR was amplified, cloned, cut and ligated as de-
scribed for the Pges-1::kin-29cDNA construct (see above). The
plasmid was injected into ceh-10; kin-29 at 25 ng/ml together
with 2 ng/ml Pmyo-2::mCherry.

Phlh-1: GFP was generated by cutting out Phlh-1 from
pCR2.1-TOPO (Invitrogen) (see above) with PstI and
BamHI and ligate the fragment into pPD95.77. The plasmid
was injected into wild-type worms at 25 ng/ml together with
40 ng/ml pRF4 [rol-6(su1006)].

Pelt-3: kin-29cDNA was generated by PCR amplifying
1964 bp of the elt-3 promoter using wild-type genomic
DNA as template with the following primers: 59-ctgcagtgtga
cacgttgtttcacggtc-39 (PstI site underlined) and 59-ggatcc
gaagtttgaaataccaggtagc-39(BamHI site underlined). The
PCR product was cloned into pCR2.1-TOPO (Invitrogen), cut
out with PstI and BamHI and ligated into pBluescriptKS–.
The kin-29cDNA and unc-54 39UTR were amplified, cloned,
cut and ligated as described for the Pges-1::kin-29cDNA
construct (see above). The plasmid was injected into ceh-
10; kin-29 at 25 ng/ml together with 2 ng/ml Pmyo-
2::mCherry.

Pelt-3: GFPwas generated by cutting out Pelt-3 from pCR2.1-
TOPO (Invitrogen) (see above) with PstI and BamHI, and the
fragment ligated into pPD95.77. The plasmid was injected
into wild-type worms at 25 ng/ml together with 40 ng/ml
pRF4 [rol-6(su1006)].

Prab-3: kin-29cDNA was generated by PCR amplifying
1329 bp of the rab-3 promoter using wild-type genomic
DNA as template with the following primers: 59-ctgcagcg
aagctataatagtttttc-39 (PstI site underlined) and 59-ggatccg
gtcttcttcgtttccgcc-39(BamHI site underlined). The PCR prod-
uct was cloned into pCR2.1-TOPO (Invitrogen), cut out with
PstI and BamHI and ligated into pBluescriptKS–. The kin-
29cDNA and unc-54 39UTR was amplified, cloned, cut and
ligated as described for the Pges-1::kin-29cDNA construct
(see above). The plasmid was injected into ceh-10; kin-29
at 10 ng/ml together with 2 ng/ml Pmyo-2::mCherry.

Prab-3: GFP was generated by cutting out Prab-3 from
pCR2.1-TOPO (Invitrogen) (see above) with PstI and
BamHI and ligating the fragment into pPD95.77. The plasmid
was injected into wild-type animals at 10 ng/ml together
with 40 ng/ml pRF4 [rol-6(su1006)].

Pkin-29: kin-29cDNA was generated by PCR amplifying
1400 bp of the kin-29 promoter using wild-type genomic
DNA as template with the following primers: 59-ctgcagctat
tactgtaacacctcttac-39 (PstI site underlined) and 59-ggatcctg
cagtgttggtgtggcggcgc-39(BamHI site underlined). The PCR
product was cloned into pCR2.1-TOPO (Invitrogen), cut
out with PstI and BamHI and ligated into pBluescriptKS–.
The kin-29cDNA and unc-54 39UTR were amplified, cloned,
cut, and ligated as described for the Pges-1::kin-29cDNA
construct (see above). The plasmid was injected into wild
type worms at 25 ng/ml together with 2 ng/ml Pmyo-
2::mCherry.

Pkin-29: kin-29::GFP was generated by cutting out Pkin-29
from pCR2.1-TOPO (Invitrogen) (see above) with PstI and
BamHI and ligating the fragment into pPD95.77. The plasmid
was injected into wild-type animals at 25 ng/ml together
with 40 ng/ml pRF4 [rol-6(su1006)].

Pkin-29: kin-29SER517ALA was generated by modifying
Pkin-29::kin-29cDNA using PCR-based mutagenesis
(Quickchange II XL site-directed mutagenesis kit, Strata-
gene). The following primers were used: 59-ccaaagagt
gaacgccgagctgccgccggtgaaactcttctgcc-39 and its reverse com-
plement. The plasmid was injected into wild-type worms at
25 ng/ml together with 2 ng/ml Pmyo-2::mCherry.

Pceh-23_L: acy-2 fragment (sense/anti-sense) Pceh-23_
L::acy-2 fragment(sense) was generated with a Gibson
assembly cloning kit (NEB) by assembly of the
following two DNA fragments: (1) Pceh-23_L, which was
amplified from Pceh-23_L::unc-53cDNA with the primers:
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59- ggtactccagccgactccatatgattgcggccgcattttcaaattttaaata-39and
59- ctactctccctgtttccagcttatggctgcagtttttctaccggtaccctca-39; and
(2) 1252 bp acy-2 genomic fragment, which was amplified
from N2 genomic DNA with the primers: 59- tgagggtaccggta
gaaaaactgcagccataagctggaaacagggagagtag-39and 59- tatt
taaaatttgaaaatgcggccgcaatcatatggagtcggctggagtacc-39.

Pacy-2: acy-2 genomicwas generated with a Gibson assembly
cloning kit (NEB) by assembly of the following two DNA
fragments: (1) 1200 bp Pacy-2, which was amplified from
wild-type genomic DNA template with the primers: 59-
gctgtctactgccaaatacgtc-39and 59- tgcgcgcctggaattcagg-39;
and (2) acy-2 genomic backbone, which was amplified from
Pceh-23_L::acy-2(genomic) with the primers: 59- cctgaattc
caggcgcgcaatgtcgacagtgatggaaatgtcgacg-39 and 59- gacg
tatttggcagtagacagccccagcttttgttccctttagtg-39. Pacy-2::acy-2
genomic was injected into wild-type worms at 20 ng/ml with
3 ng/ml Pmyo-2::GFP.

Pceh-23_L: acy-2 fragment(anti-sense) was generated with
a Gibson assembly cloning kit (NEB) by assembly of the
following two DNA fragments: (1) Pceh-23_L, which was
amplified from Pceh-23_L::unc-53cDNA with the primers:
59- ctactctccctgtttccagcttatgggcggccgcattttcaaattttaaata-39;
and 59- ggtactccagccgactccatatgattctgcagtttttctaccggtaccctca-39
and (2) 1252 bp acy-2 genomic fragment, which was amplified
from N2 genomic DNA with the primers: 59- tgagggtaccg
gtagaaaaactgcagaatcatatggagtcggctggagtacc-39and 59- tatt
taaaatttgaaaatgcggccgcccataagctggaaacagggagagtag-39.

Pceh-23: acy-2 fragment(sense) and Pceh-23::acy-2
fragment(anti-sense) were injected together into wild-type
worms at 20 ng/ml each with 3 ng/ml Pmyo-2::GFP.

Pceh-23_L: acy-2(genomic) was generated with a Gibson
assembly cloning kit (NEB) by assembly of the following
two DNA fragments: (1) Pceh-23_L, which was amplified
from Pceh-23_L::GFP with the primers: 59- gacactccaaaattttc
caaacttaacttataaatcaaaagaatagaccgaga-39; and 59- cgtcga
catttccatcactgtcgacatctgcagtttttctaccggtaccctca-39and (2)
acy-2 genomic DNA, which was amplified from N2 genomic
DNA with the primers: 59- tgagggtaccggtagaaaaactgcagatgtc
gacagtgatggaaatgtcgacg-39 and 59- tctcggtctattcttttgattta
taagttaagtttggaaaattttggagtgtc-39. Pceh-23_L::acy-2(genomic)
was injected into wild-type worms at 20 ng/ml together with
3 ng/ml Pmyo-2::GFP.

Germline transformationwasperformedbydirect injection
of various plasmid DNAs into the gonads of adult wild-type
animals as described (Mello et al. 1991).

Survival assay

Eggs were transferred to fresh NGM plates and allowed to
hatch. The newly hatched L1 larvae were transferred to new
plates and the stage of the worms were studied after 24, 48,
and 72 hr. At least three biological replicates were performed
for each strain. Error bars show the 95% confidence interval
determined by Z-tests. The P-values were calculated using
Fisher’s exact test.

cAMP feeding

8-Br-cAMP (Tocris) was mixed with fresh growing
Escherichia coli (OP50) bacteria (grown overnight in Luria
Broth medium with shaking at 37�); 75 ml of bacteria-cAMP
mix was seeded onto small NGM plates and the plates
allowed to dry for 1 hr. Worms were transferred to the plates,
and immediately another batch of 75 ml bacteria-cAMP mix
was added on top of the worms. For survival studies, eggs
from mothers previously grown on cAMP plates were trans-
ferred to new cAMP plates and allowed to hatch and develop
for 72–96 hr; the stage of the worms was then determined.

Fluorescence microscopy

Worms were anesthetized in 10 mM levamisole. A Zeiss
Axioskop two microscope was used to examine worms.
Images were collected using an ORCA-ER CCD camera
(Hamamatsu) and Openlab imaging software (Improvision).

Data availability statement

The authors affirm that all data necessary for confirming the
conclusions of this article are represented fully within the
article and its tables and figures.

Results

Mutations in kin-29 rescued phenotypes caused by
defective CANs

The two bilaterally symmetrical C. elegans CANs are gener-
ated in the head, and migrate toward the tail to occupy po-
sitions near the center of the embryo (Sulston 1983). Each
CAN extends an anterior axon to the head and a posterior
axon to the tail (White et al. 1986; Wu et al. 2011) (Figure
1A). Normal morphogenesis and larval development require
CAN neuron function (Forrester and Garriga 1997; Forrester
et al. 1998). In mutants lacking vab-8 function, for example,
the CAN cell bodies usually fail to migrate, and either lack, or
have short, posterior axons (Hedgecock et al. 1987; Manser
andWood 1990;Wightman et al. 1996) (Figure 1C). The lack
of CAN function in the posterior of vab-8 mutants is thought
to result in thinning of the posterior body leading to the Wit
phenotype (Figure 1D). In ceh-10(gm58) mutants, the CANs
cannot be detected using Nomarski optics or a CAN differen-
tiationmarker, and theworms arrest as early larvae (Figure 1,
G and H) (Forrester and Garriga 1997; Forrester et al. 1998).
Because laser killing of the CANs also results in larval arrest
(Forrester and Garriga 1997), the developmental arrest phe-
notype of ceh-10mutants is thought to result from loss of CAN
function. It is unclear, however, whether the CANs are absent
in ceh-10(gm58)mutants or whether they are present but fail
to differentiate.

To investigate how the CANs regulate larval development,
we carried out two suppressor screens. In the first screen, we
mutagenized vab-8(e1017) mutants and screened for sup-
pressor mutations that rescued the Wit phenotype without
rescuing the CAN migration or axon extension defects, and
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Figure 1 Mutations in kin-29 rescue phenotypes caused by defective CANs. (A), (C), (E), and (G) Fluorescence photomicrographs and (B), (D), (F), and (I)
Nomarski microscopy of worms containing the Pceh-23::GFP transgene, which is expressed in the CANs and in tail and head neurons. (A–J) Anterior is to
the left and dorsal is up, the Bar, represents 100 mm. (A) In wild-type worms, the CAN cell bodies are located in the middle of the worm and each
neuron extends axons both anteriorly and posteriorly. (B) The body morphology of a wild-type worm. (C) In vab-8mutants, the CANs fail to migrate and
are located in the head among the other neurons that express GFP. The CAN axons fail to extend to the tail (the arrowhead indicates where one of the
axon’s projection stops). (D) The posterior body, as indicated by the arrows, is much thinner in vab-8mutants (the Withered Tail or Wit phenotype). (E) In
vab-8; kin-29 double mutants, the CAN migration and extension defects are not rescued, (F) but the Wit phenotype is rescued. (G) In ceh-10 mutants,
the CANs fail to express Pceh-23::GFP. (H) ceh-10 mutants arrest their development during the L1-L2 larval stage. (I) In ceh-10; kin-29 double mutants,
the CANs still are undetectable (J), but the larval arrest is rescued. (K) The structure of kin-29 cDNA and the different mutant alleles used in this study. (L)
and (M) Quantification of survival past the L3 larval stage. The number of animals scored for each genotype is indicated above each bar. Error bars show
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identified kin-29(gm112). Because this mutation also sup-
pressed the larval arrest phenotype of ceh-10 mutants (see
below), we mutagenized ceh-10(gm58) mutants and
screened for mutations that suppressed the larval arrest phe-
notype but did not restore the CANs based on our inability to
detect the cells using Nomarski optics or a Pceh-23::gfp re-
porter transgene. In this screen, we isolated four suppressed
strains. Two of these strains contained the kin-29(jehm1) or
kin-29(jehm2) mutations (Figure 1, E, F, I, and J).

kin-29 encodes a serine/threonine kinase that is homolo-
gous to the SIKs that are related to the AMPK/SNF1 family of
kinases (Lanjuin and Sengupta 2002). Sequencing of the kin-
29 gene from the different mutants revealed that the jehm1
allele is a missense mutation that changes a conserved glu-
tamate in the kinase domain to lysine (E112K), that the
jehm2 allele is a nonsense mutation that changes a conserved
tryptophan in the kinase domain to an amber stop codon
(W172STOP), and that the gm112 allele is a nonsense
mutation that changes a glutamine to an amber stop co-
don (Q447STOP) (Figure 1K). We also analyzed the kin-
29(gk288) allele isolated by the International C. elegansGene
Knockout Consortium. The 575-bp deletion removes most of
the kinase domain and results in a downstream frameshift.
All of the kin-29mutant alleles rescued the vab-8Wit pheno-
type (data not shown), and, by scoring the ability of animals
to develop past the third larval (L3) stage, all of the kin-29
mutant alleles also suppressed the ceh-10 mutant larval ar-
rest phenotype (Figure 1L). These findings indicate that the

morphological and larval arrest phenotypes caused by CAN
dysfunction or loss require kin-29 function. In all of the stud-
ies described below, we used the kin-29(gm112) allele.

kin-29 functions in neurons and hypodermal cells to
mediate CAN function

To determine where the kin-29mutations act to suppress the
ceh-10 larval arrest phenotype, we expressed a kin-29 cDNA
from cell-specific promoters in ceh-10; kin-29 double mu-
tants, and asked whether kin-29 expression in specific cell
types produced the larval arrest phenotype of the ceh-10 sin-
glemutant.We tested expression in intestine, body-wall mus-
cle, hypodermal cells, and neurons—cell types known to
express kin-29 (Maduzia et al. 2005). For intestinal expres-
sion we used the ges-1 promoter (Aamodt et al. 1991), for
body-wall muscle expression we used the hlh-1 promoter
(Qadota et al. 2007), and for hypodermal expression we used
the elt-3 promoter (Gilleard et al. 1999). For neuronal expres-
sion we used the rab-3 promoter, which is expressed in all
neurons except the CANs (Stefanakis et al. 2015). To confirm
that the promoters used to drive kin-29 in these cells were
indeed specific, we also fused the promoters to the GFP gene,
studied the expression of the transgenic animals at different
developmental stages, and found that the promoters drove
expression in the predicted cells. Only when neurons or hy-
podermal cells expressed the kin-29 cDNA was the ceh-10
larval arrest phenotype restored, suggesting that deregulated
kin-29 activity in either neurons (other than the CANs) or

Figure 2 Mutations that upregulate cAMP
levels and PKA activity and reduce the func-
tion transcription factor MEF-2 rescue the
ceh-10 mutant larval arrest phenotype.
Quantification of survival past the L3 larval
stage of wild type, single, double, and triple
mutant strains containing the ceh-10 muta-
tion. The number of animals scored for each
genotype is indicated above each bar. Error
bars show the 95% confidence interval de-
termined by Z-tests. * P , 0.00001 (Fisher’s
exact test).

the 95% confidence interval determined by Z-tests. (L) kin-29 mutant alleles rescue the larval arrest phenotype of ceh-10 mutants. (M) Tissue-specific
expression of kin-29 cDNA in ceh-10; kin-29 mutants. kin-29 cDNA was expressed from an intestinal specific (Pges-1), a body wall muscle specific
(Phlh-1), a hypodermal specific (Pelt-3) and a pan-neuronal promoter (Prab-3). The number of animals for ceh-10; kin-29; Pelt-3::kin-29 and ceh-10;
kin-29; Prab-3::kin-29 were small because these animals arrested development and could not be propagated. The arrested transgenic animals were
identified based on the presence of the cotransforming marker.
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hypodermal cells is sufficient to arrest larval development
(Figure 1M).

Because all knownCANpromoters require ceh-10 function,
we were unable to confirm that kin-29 does not act in the
CANs to suppress ceh-10 lethality. However, we were able to
express a kin-29 cDNA in the CANs of vab-8; kin-29 double
mutants since the CANs are present in these animals. To
ensure specific expression in the CANs, we used a part of
the ceh-23 promoter that drives expression only in the CANs
(Pceh-23_L) (Wenick and Hobert 2004). CAN-specific expres-
sion of kin-29 did not restore the Wit phenotype (N = 50),
consistent with the hypothesis that KIN-29 can act in neurons
and the hypodermis to mediate the effects of CAN function.

Loss of the MEF-2 MADS domain transcription factor
also rescues ceh-10 mutant larval arrest

In C. elegans and cultured cells, SIKs phosphorylate and in-
hibit class II histone deacetylases, which act either upstream
of, or in a complex with, the transcription factor MEF2 to
regulate gene transcription (Miska et al. 1999; Lanjuin and
Sengupta 2002; Chan et al. 2003; van der Linden et al. 2008;
Cohen et al. 2009). Loss of the C. elegans homologs of MEF2
(mef-2) and the class IIa HDACs (hda-4) suppress several kin-
29 mutant phenotypes: small body size, long lifespan, slow
growth, hyper-foraging, and chemoreceptor gene regulation
(van der Linden et al. 2007). If the sole activity of KIN-29 in
suppressing the larval arrest phenotype of ceh-10 mutants is
to inhibit the function of a HDA-4/MEF-2 repressive complex,
then hda-4 and mef-2 mutants should exhibit a larval arrest
phenotype similar to ceh-10 mutants, but both hda-4 and
mef-2 mutants are viable and fertile.

To determine whether HDA-4 and MEF-2 function differ-
ently in the regulation of morphogenesis and larval develop-
ment, we asked whether mutations in these genes interacted
with a ceh-10 mutation. Although an hda-4 mutation had
no effect on the ceh-10 larval arrest phenotype, both the
mef-2(gv1) mutation and mef-2(RNAi) suppressed larval ar-
rest (Figure 1L and Figure 2). The ceh-10;mef-2; kin-29 triple
mutant has survival rates similar to the ceh-10; kin-29 and
ceh-10; mef-2 double mutants. These findings indicate that
the functional relationship between kin-29 and mef-2 differs
in chemoreceptor regulation and CAN-dependent larval
development.

Mutations that upregulate the cAMP-dependent PKA
pathway suppressed ceh-10 mutant larval arrest

cAMP-dependent protein kinase A (PKA) inhibits KIN-29
and its SIK homologs at both the transcriptional and post-
translational levels (Takemori et al. 2002; Okamoto et al.
2004; Berdeaux et al. 2007; van der Linden et al. 2008;
Wang et al. 2008). In C. elegans, PKA consists of two sub-
units, the catalytic subunit KIN-1 and the regulatory subunit
KIN-2. PKA is activated by cAMP that is produced by adenylyl
cyclases. One of these, ACY-1, can be activated by the heter-
otrimeric G protein GSA-1 (Berger et al. 1998). Loss of acy-1,
gsa-1, kin-1, and kin-2 result in embryonic or larval lethality.

If the proteins encoded by these genes inhibit KIN-29 func-
tion, then, like loss-of-function mutations in kin-29, gain-of-
function mutations in these genes might also suppress the
larval arrest phenotype of ceh-10 mutants. kin-2(ce179) mu-
tants express a PKA holoenzyme that is hypersensitive to low
levels of cAMP, and gsa-1(ce94)mutants express a Ga protein
that constitutively activates PKA (Korswagen et al. 1997;
Schade et al. 2005; Charlie et al. 2006). Similar to the
kin-29 loss-of-function mutations, the gain-of-function
kin-2(ce179) and gsa-1(ce94) mutations suppressed the ceh-
10 larval arrest phenotype without suppressing the CAN de-
fects of ceh-10 mutants (Figure 2 and data not shown).

We also asked whether elevating the levels of cAMP could
suppress the ceh-10 larval arrest phenotype. The gene pde-4
encodes a cAMP phosphodiesterase that is homologous to
human cAMP phosphodiesterase 4D (Charlie et al. 2006).
cAMP phosphodiesterases convert cAMP to 59-AMP and thus
lower cAMP levels (Sunahara et al. 1996). The pde-4(ce268)
mutation disrupts the PDE-4 catalytic domain and reduces
PDE-4 function, which is predicted to increase cAMP levels
(Charlie et al. 2006). This mutation suppressed ceh-10 mu-
tant lethality (Figure 2).

Hyperactive KIN-29 results in larval arrest

We asked if we could phenocopy the larval arrest phenotype
of ceh-10 mutants by introducing a hyperactive version of
KIN-29 into wild-type hermaphrodites. We created a con-
struct with a mutation in the conserved PKA phosphorylation

Figure 3 Feeding ceh-10 mutants synthetic cAMP rescues the larval ar-
rest phenotype. Quantification of survival past the L3 larval stage of ceh-
10 mutants grown on normal plates seeded with bacteria mixed with
different concentrations of 8-Br-cAMP. The number of animals scored
for each genotype is indicated above each bar. Error bars show the
95% confidence interval determined by Z-tests. * P , 0.00001 (Fisher’s
exact test).
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site (Ser 517-Ala) (Takemori et al. 2002; van der Linden et al.
2008) and expressed it using the kin-29 promoter, Pkin-
29::kin-29cDNA(Ser517-Ala). As controls, we made two
constructs lacking the mutation, Pkin-29::kin-29cDNA and
Pkin-29::GFP. The control constructs were injected into
wild-type worms, creating several stable transgenic lines
lacking obvious phenotypes. The construct with the kin-29
promoter driving GFP showed the same expression pattern as
described previously by Lanjuin and Sengupta, (2002): it is
expressed broadly in the nervous system, including the CANs,
in body wall muscle cells, and in the hypodermis, persisting
through development. We injected the mutated construct
into wild-type hermaphrodites, and 72% (N = 58) of the
transgenic worms arrested as early larvae. The surviving
transgenic worms failed to produce lines. This finding is con-
sistent with the hypothesis that KIN-29 is a PKA target.

ACY-2 functions in the CANs to produce essential levels
of cAMP

Our results suggest that the CANs signal to the hypodermis
and other neurons, activating PKA in these tissues. PKA
represses KIN-29, which allows larval development to pro-
ceed. Because the pde-4 mutation rescued the ceh-10 larval
arrest phenotype to a similar degree as the kin-29mutations,
we asked if exogenous cAMP could also rescue ceh-10 loss. To
explore this possibility, we fed ceh-10 mutants a synthetic
version of cAMP, 8-Br-cAMP, which is a cell-permeable cAMP
analog that is resistant to hydrolysis by phosphodiesterases
(Sandberg et al. 1991). We tested different concentrations
and found that 5 mM 8-Br-cAMP gave the best rescue, with
75% of the ceh-10mutants developing past the L3 stage (Fig-
ure 3). The ceh-10 mutants could be maintained for genera-
tions on 8-Br-cAMP, but, within hours of removing theworms
from 8-Br-cAMP, the animals became sick and arrested
development.

cAMP is synthesized fromATPby adenylyl cyclases (ACYs).
C. elegans has four ACYs: ACY-1, ACY-2, ACY-3, and ACY-4.
With the exception of ACY-1, which is broadly expressed in
neurons and body wall muscles (Moorman and Plasterk
2002), the other three ACYs have relatively restricted expres-
sion patterns. For example, ACY-2 is only expressed in a few
neurons in head ganglia and in the CANs (Korswagen et al.
1998) (Table 1). Loss-of-function mutations in acy-1 or acy-2
result in larval arrest (Korswagen et al. 1998; Moorman and
Plasterk 2002), which prompted us to examine if acy-1 and

acy-2 mutants arrest development in a similar way to ceh-10
mutants. The acy-1(pk1279), acy-2(pk465) and ceh-
10(gm58) mutants were maintained as balanced strains.
To score the arrested larvae, we picked newly hatchedworms
that lacked the balancer chromosome and scored their phe-
notypes after 72 hr. We noted that the arrested larvae dis-
played three different phenotypes: normal (Figure 4A),
morphological defective (Figure 4B), or clear (Figure 4C).
Most of the acy-1 arrested worms appeared normal, while
acy-2 and ceh-10 mutants displayed the morphological de-
fective and clear phenotypes at similar frequencies (Figure
4D). We then asked if acy-1 and acy-2 mutants could be
rescued by the same mutations and treatments as ceh-10.
The pde-4 mutation was previously shown to partly suppress
the acy-1 mutant (Charlie et al. 2006), and we found that it
also rescued the acy-2 mutant (Figure 4E). Feeding acy-2
mutants with 8-Br-cAMP also rescued larval arrest (Figure
4E). These findings are not unexpected for an adenylyl cy-
clase mutant. The kin-29 or mef-2 mutations, however, sup-
pressed the acy-2 but not the acy-1 mutant phenotypes,
consistent with the hypothesis that cAMP produced by ACY-
2 negatively regulates KIN-29 to promote larval development
(Figure 4E, and data not shown).

Mutations in kin-29 and mef-2 rescued the acy-2 and ceh-
10mutant defects slightly better than kin-29 andmef-2 RNAi
(Figure 2 and Figure 5A and data not shown). It is notewor-
thy that many of the RNAi-treated acy-2 and ceh-10 mutant
worms became visibly sick hours after being transferred to
plates with bacteria that did not express kin-29 or mef-2
dsRNA (data not shown), suggesting that the activities of
KIN-29 and MEF-2 need to be continuously provided for
acy-2 and ceh-10worms to survive. These observations imply
that CANs need to constantly signal, presumably by produc-
ing cAMP that acts in the nervous system and hypodermis.

The expression pattern of ACY-2 suggests that it could act
in the CANs to promote larval development. To test this hy-
pothesis, we expressed ACY-2 specifically in the CANs of acy-2
mutants. Our attempt to isolate an acy-2 cDNA was unsuc-
cessful, possibly because acy-2 is expressed in only a few cells
(Korswagen et al. 1998). Instead, we expressed the wild-type
acy-2 genomic DNA fused to GFP under the control of
the CAN-specific promoter Pceh-23_L (Wenick and Hobert
2004). We generated two independent, nonintegrated trans-
genic lines (Pceh-23_L::acy-2(genomic)::GFP), and only the
CANs and a single tail neuron expressed these transgenes

Table 1 C. elegans adenylyl cyclases

Gene Homolog Expression Phenotype

acy-1 AC9 Neurons in head and tail ganglia, ventral nerve cord,
weak in CANs, vulva and body wall muscles

Larval arrest, paralysis Moorman and Plasterk (2002)

acy-2 AC2 Few neurons in head ganglia and ventral nerve cord,
strong expression in CANs

Larval arrest, clear Korswagen et al. (1998)

acy-3 AC5 Support cells of ciliated neurons, head and tail ganglia,
two pairs of neurons in the retrovesicular ganglia,
spermatheca

Reduced fat content Ashrafi et al. (2003),
improved mitochondrial function, antioxidant
defense and lifespan Vatner et al. (2015)

acy-4 AC5,6 Gonad sheath cells, spermatheca Sterile adults Govindan et al. (2009)
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(not shown). Because the transgenes were extrachromo-
somal and can be lost meiotically, we compared transgenic
and nontransgenic worms originating from the same trans-
genic mother. Both transgenic lines rescued the larval arrest
phenotype, with .40% of the transgenic worms develop-
ing past L3 stage (Figure 5B). Those progeny that had lost
the transgenes arrested development. We also generated
transgenic lines that express acy-2 from its endogenous pro-
moter (Pacy-2::acy-2(genomic). We observed a more robust
rescue compared to CAN-specific expression of ACY-2 with
.90% of the transgenic worms developing past the L3 stage.
This finding suggests either that the endogenous promoter
drives higher levels of acy-2 in the CANs or that neurons other
than the CANs are also important for acy-2 mutant larvae to
develop.

As an alternative test of this hypothesis, we performed
CAN-specific acy-2 RNAi to ask if we could phenocopy the
acy-2 mutant phenotype. We generated transgenes that
expressed both acy-2 sense and acy-2 antisense RNA driven
from the CAN promoter to generate acy-2 dsRNA in the CANs.
These transgenes were expressed in an ergo-1mutant to sen-
sitize the background to RNAi effects (Pavelec et al. 2009). To
obtain viable transgenic lines, we grew the worms on plates
with bacteria that produced dsRNA that targeted kin-29,
transferred transgenic worms to plates with control bacteria
that did not express kin-29 dsRNA and scored survival in the
next generation. As a control, we subjected acy-2(pk465)mu-
tants to the same protocol. When the Pceh-23_L::acy-2(RNAi)
transgenic worms and the acy-2 mutants were transferred to
plates with control bacteria, both strains arrested development

Figure 4 The kin-29 and acy-2 mutants
have similar phenotypes. (A) An arrested
ceh-10 larva with normal body morphology.
The arrowheads mark the width of the in-
testine. (B) A ceh-10 mutant with a morpho-
logical defective body in which the internal
cells appear abnormal. (C) An arrested ceh-
10 mutant with a Clr phenotype. Note that
the intestine is much thinner compared to
the intestine in the worm in (A) (see arrow-
heads). (D) Quantification of acy-1, acy-2,
and ceh-10 mutants that arrest either with
a normal body, a morphological defective
body or with a Clr phenotype. (E) Quanti-
fication of survival past the L3 larval stage
of acy-2 single mutants, acy-2; kin-29,
mef-2; acy-2 and pde-4; acy-2 double
mutants and acy-2 mutants fed with
5 mM 8-Br-cAMP. The number of animals
scored for each genotype in (E) is indicated
above each bar. Error bars show the 95%
confidence interval determined by Z-tests.
* P , 0.00001, NS, Not Significant (Fisher’s
exact test). For (D) significance was deter-
mined for each phenotypic class.
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at similar frequencies (Figure 5A). These findings further sup-
port the hypothesis that ACY-2 can act in the CANs to promote
larval development.

Discussion

A conserved pathway mediates the essential function of
the CANs

The function of the CANs is mysterious. It has been proposed
that theCANs regulate the function of the excretory canal cell,
which is involved in osmoregulation (Hedgecock et al. 1987;
Forrester and Garriga 1997). This hypothesis is based on the
accumulation of fluid in the pseudocoelom, the Clear (Clr)
phenotype, in animals missing their CANs. In screens for mu-
tations that bypass the requirement for the CANs in larval
development, we identified the gene kin-29, which encodes
a SIK homolog, and showed that the CANs regulate a con-
served cAMP pathway that inhibits kin-29.

The KIN-29/SIK pathway mediates diverse functions that
range from transcriptional regulation of C. elegans chemore-
ceptors to lipid metabolism in adipocytes (van der Linden
et al. 2007; Henriksson et al. 2012). In C. elegans, kin-29
functions in sensory neurons to regulate body size, entry into
the dauer stage, and foraging behavior (Lanjuin and
Sengupta 2002; Maduzia et al. 2005). Although the CANs
have no obvious role in any of these processes, the essential
nature of the cell makes testing its role in other processes
difficult. In this context, it is noteworthy that the analogous
cell in the nematode Pristionchus pacificus expresses the gene
dauerless, which antagonizes dauer development. Although
killing the CAN-like cell in this species does not cause larval
arrest, it makes the animals more sensitive to dauer phero-
mone (Mayer et al. 2015).

Suppression of the ceh-10 larval arrest phenotype by mu-
tations in genes that act in the kin-29 pathway suggests that

the adenylyl cyclase ACY-2 acting through PKA inhibits KIN-
29 activity, allowing larval development to progress. It is un-
clear whether the CANs and this pathway regulate larval
development directly or a physiological state that allows de-
velopment to proceed.

SIKs inhibit the function of class IIa histone deacetylases,
which can interact with the MEF2 transcription factor to
repress the transcription of target genes (Di Giorgio and
Brancolini 2016). The sole C. elegans member of the class
IIa HDAC family is HDA-4. Mutations in either hda-4 or
mef-2 suppress the effects of kin-29 mutations on chemore-
ceptor gene transcription, consistent with the inhibition of
HDA-4/MEF-2 repressor activity by KIN-29 (van der Linden
et al. 2007). If KIN-29 inhibits HDA-4/MEF-2 repressor func-
tions in larval development as it does in chemoreceptor reg-
ulation, hda-4 and mef-2 mutations should cause larval
arrest, which they do not. Themef-2mutation, however, sup-
pressed the larval arrest phenotype of the ceh-10mutant. One
model to explain these observations is that KIN-29 activates
MEF-2, either directly or indirectly. Stimulation of cortical
neurons by BDNF results in the activation of MEF2 transcrip-
tional targets. In these cells, SIK1 phosphorylates the class
IIa histone deacetylase HDAC5, resulting in HDAC5 export
from the nucleus and allowing MEF2 to function as a tran-
scriptionally activator (Finsterwald et al. 2013).

Models

cAMP has traditionally been described as an intracellular
“secondary messenger” that is released in response to signals
from “first messengers.”How then can cAMP produced in the
CANs regulate KIN-29 in other cell types? We can think of
two explanations. One possibility is that there is a cAMP
pathway that functions in the CANs and results in the CANs
providing a signal to neurons and hypodermal cells that reg-
ulates the KIN-29 pathway (Figure 6A). KIN-29 could be

Figure 5 Larval development requires acy-2
function in the CANs. (A) Quantification of
survival past the L3 larval stage of acy-2
mutant worms or wild-type worms carrying
transgenes that express acy-2 dsRNA specif-
ically in the CANs [acy-2(CAN RNAi)]. The
worms were initially grown on bacteria that
produce kin-29 dsRNA (kin-29 RNAi) and
then transferred to plates with bacteria that
do not express kin-29 dsRNA. (B) Quantifica-
tion of survival past the L3 larval stage of
acy-2 mutant worms either lacking or carry-
ing the extrachromosomal PCAN::acy-2
transgene that expresses acy-2 specifically
in the CANs (two lines). As control ACY-2
was expressed from its endogenous pro-
moter. The number of animals scored for
each genotype in (E–G) is indicated above
each bar. Error bars show the 95% confi-
dence interval determined by Z-tests. * P ,
0.0001 (Fisher’s exact test).
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regulated in neurons and hypodermal cells by cAMP. Sup-
pression of the ceh-10 developmental arrest by the gsa-1
and kin-2 gain-of-function mutations and the pde-4 reduc-
tion-of-function mutation could result from decreased activ-
ity of kin-29 in the nervous system and hypodermis. The
ability of CAN-specific expression of acy-2 to rescue the acy-
2 mutant phenotype suggests that the sole adenylyl cyclase
functioning in this pathway is not ACY-2. It is possible that
ACY-1 provides this cyclase function in the nervous system
and hypodermal cells, but our finding that ceh-10 and acy-1
mutants arrest development with distinct phenotypes does
not support this idea (Figure 4D). Although the more com-
plex phenotypes of the ceh-10mutants could reflect the func-
tion of the gene in other cells, laser killing of the CANs can
result in a clear phenotype (Forrester and Garriga 1997)—a
phenotype displayed by ceh-10 and acy-2mutants, but not by
acy-1 mutants. Mutations in, or RNAi of, the remaining two
adenylyl cyclase genes, acy-3 and acy-4, do not produce a
larval arrest phenotype (Table 1) (Ashrafi et al. 2003;
Govindan et al. 2009; Vatner et al. 2015).

A specific version of this model proposes that cAMP is the
signal from the CANs. This model is similar to the role played
by cAMP in the slime mold Dictyostelium discoideum. Under

nutrient-limiting conditions, Dictyostelium cells release cAMP
through the ABC transporter AbcB3 (Miranda et al. 2015).
The released cAMP binds to a GPCR in the secreting and
surrounding cells, leading to activation of a signal transduc-
tion pathway that promotes aggregation and subsequent
differentiation (Loomis 2014). In mammals, a few ABC trans-
porters are known to export cAMP (Chen et al. 2001; van
Aubel et al. 2002;Wielinga et al. 2003). C. elegans has 14 pre-
dicted AbcB3 homologs, but none have been shown to be
expressed in the CANs. In addition, none of the C. elegans
GPCRs are obvious homologs of the D. discoideum cAMP
receptor.

A secondpossibility is cAMPcoulddiffusebetween theCAN
and other cells via gap junctions, intercellular channels that
allow passive transport of ions and small molecules (Figure
6B). Vertebrate gap junctions are hemichannels that consist
of connexin (Cx) proteins (Elfgang et al. 1995). Several stud-
ies have shown that cAMP diffuses between cells via connex-
ins; for example, it is well established that cAMP passes
through the Cx26, Cx32, Cx36, Cx43, Cx45, and Cx47 gap
junction channels in Hela cells (Bedner et al. 2003, 2006;
Hernandez et al. 2007; Chandrasekhar et al. 2013). It is note-
worthy that White et al. (1986) described the CAN as other

Figure 6 Models for CAN function in larval development. (A) In this model, cAMP promotes the release of a CAN signal (black squares) that acts
through a GPCR/Adenylyl Cyclase (AC)/PKA/KIN-29 pathway in the target cells. An uncharacterized pathway (thick black arrows) mediates the release of
the signal by cAMP. (B) In this model, cAMP synthesized in the CANs enters the target cells through gap junctions to regulate PKA and KIN-29.
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than having “a few unconvincing gap junctions to the excre-
tory cell, no other synapses can be assigned to CAN”. Yet, the
CANs express the innexin (INX) genes inx-7 and inx-13
(Bhattacharya et al. 2019), and an inx-13 mutation results
in larval arrest (Johnsen et al. 2000). C. elegans gap junctions
are assembled from INX proteins (Phelan et al. 1998). The
CAN-specific RNAi of inx-13 also produced larval arrest
(not shown), which suggests that the gap junctions between
the CANs and other cells promote larval development. How-
ever, loss of neither kin-29 nor mef-2 suppressed the larval
arrest phenotype of an inx-13 mutant (not shown). The lack
of suppression may reflect the expression of inx-13 in other
cell types, where it could function to promote larval develop-
ment. The ALA, CAN, and PVD neuronal processes run to-
gether in the lateral fascicule, and the site of KIN-29 neuronal
function could be the ALA and PVD neurons.

A major concern with this model is the suppression of ceh-
10 mutants by mutations predicted to increase endogenous
cAMP levels when the CAN is missing. Reduction of pde-4
function, for example, significantly reduces larval arrest by
ceh-10 loss. Low levels of cAMP produced by cyclases in the
target cells of this mutant could rise to levels sufficient to
inhibit KIN-29 in pde-4 mutants.

Ourfindingsprovidea framework that canbeused in future
experiments to address the role of the CANs in larval devel-
opment. In particular, the observation that loss of mef-2 can
bypass the need for the CANs suggests that the transcrip-
tional targets of MEF-2 could provide important insights into
how the CANs regulate larval development.
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