
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Studies of Statistical-Mechanical Models Related to Quantum Codes

Permalink
https://escholarship.org/uc/item/5vf166gs

Author
Jiang, Yi

Publication Date
2021

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5vf166gs
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA
RIVERSIDE

Studies of Statistical-Mechanical Models Related to Quantum Codes

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Physics

by

Yi Jiang

March 2021

Dissertation Committee:

Dr. Leonid P. Pryadko, Chairperson
Dr. Michael Mulligan
Dr. Shan-Wen Tsai



Copyright by
Yi Jiang

2021



The Dissertation of Yi Jiang is approved:

Committee Chairperson

University of California, Riverside



Acknowledgments

First and foremost I am grateful to my advisor, Professor Leonid Pryadko, whose guidance

helped me in all the time of my research and the completion of this dissertation. I want to

thank him for his continuous support. His patience and immense knowledge are invaluable

for my academic life.

I also want to thank the collaborators of this research. Part of this dissertation

is a reprint of the material as it appears in “Duality and free energy analyticity bounds

for few-body Ising models with extensive homology rank”, published on May 2, 2018 on

arxiv and Aug 2, 2019 on Journal of Mathematical Physics. Professor Pryadko directed

and supervised the research. Dr. Ilya Dumer and Dr. Alexey Kovalev provided technical

expertise.

I would like to thank Dr. Michael Mulligan and Dr. Shan-Wen Tsai for being on

my dissertation committee.

I would like to thank my fellow research group members, Weilei Zeng and Michael

Woolls, for the hardware and software they built for the research group and their selfless

help when I face difficulties in my life.

iv



ABSTRACT OF THE DISSERTATION

Studies of Statistical-Mechanical Models Related to Quantum Codes

by

Yi Jiang

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, March 2021

Dr. Leonid P. Pryadko, Chairperson

As the beginning of the age of quantum supremacy comes closer, researches have been

focusing on how to harness the full power of quantum computation. Quantum states that

serve as the computational basis, known as qubits, are fragile. The interaction between

them and the environment may result in errors, a process named decoherence. In the

classical world, redundancy is the easiest way to protect information. But unlike classical

information, it’s impossible to clone an arbitrary quantum state. Fortunately, it has been

shown that a small number of logical qubits can be encoded into a large number of physical

ones, a technique known as quantum error correcting codes (QECCs). In the study of

stabilizer codes, an important family of QECCs which shares some similarities with classical

linear codes, it was discovered that the probability distribution of the decoding result can

be mapped to the partition functions of spin models on graphs, a concept in statistical

mechanics. Here we will explore the properties of certain families of QECCs and their

corresponding statistical-mechanical models.

One of the most famous examples of stabilizer codes, the toric code, has the lim-

itation that it only encodes 2 qubits regardless of how many physical qubits are used. To

overcome this limitation, hyperbolic codes were proposed, where the physical qubits are

placed on the edges of a quotient graph of a hyperbolic tessellation. Here we study the

corresponding Ising models on such graphs with theoretical and numerical methods, and
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explore their relationship to the quantum codes.

Instead of limiting ourselves to binary codes, we also consider q-ary codes where

the computational basis is formed by qudits, a generalization of qubits to q-state quantum

systems. We study the properties of qudit stabilizer codes not only in the cases where q

is prime, which forms a Galois field, but also where q is composite, which forms a ring

of integers modulo q. We find that their corresponding statistical-mechanical models are

the Potts models, a q-ary generalization to Ising models. We explore the construction and

parameters of such q-ary codes, and extend the known results on qubit stabilizer codes to

qudit codes.
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Chapter 1

Introduction

1.1 Prologue

Quantum information and quantum computation have been studied extensively based on the

idea that quantum computers have the potential to be much more efficient than classical

computers on certain kinds of problems, and several examples of quantum computation

algorithms that outperform the best classical algorithms known so far have been discovered

[1, 2]. To build a large-scale quantum computer, on the other hand, has a number of

technical challenges, and one of the greatest ones is decoherence, which would result in

errors in the computations. To overcome this obstacle, quantum error correction techniques

are developed to protect quantum information by encoding them with a quantum error

correcting code (QECC) and recover the information after decoding [3]. As long as the rate

of physical qubit errors is below a certain threshold, the quantum error correction process

will suppress the errors in the result, and the information can be preserved indefinitely.

A number of QECCs has been proposed, and one of the most important class of

them is the CSS codes, named after the inventors, Robert Calderbank, Peter Shor and

Andrew Steane [4, 5]. The decoding transition for such codes can be mapped to certain

statistical-mechanics models, such correspondence helps the study of both research areas

[6].
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In some of the QECCs, qubits can be placed on the vertices or edges of a planar

graph or a graph that tiles certain two-dimensional manifold. The most famous example

is the toric code, which has the qubits placed on the surface of a torus [7]. The toric code

has unlimited distance if given enough physical qubits, yet it can only encode 2 qubits.

To explore QECCs with better code parameters, we studied quantum code constructions

that locally have a lay-out of hyperbolic tessellation, which has a negative curvature. The

number of logical qubits that can be encoded in such hyperbolic codes increases linearly as

the number of physical qubits, so they have a finite code rate [8].

On the other hand, physics on curved space also attracts interest. For example,

the AdS/CFT correspondence relates quantum gravity on curved space-time with quantum

field theories [9, 10, 11, 12, 13, 14, 15]. In statistical mechanics and condensed matter

physics, curvature can serve as an additional parameter to drive the criticality, or as a way

to introduce geometrical frustration in toy models of amorphous solids, supercooled liquids,

and metallic glasses [16, 17, 18, 19, 20, 21, 22, 23]. Models like percolation on more general

expander graphs and various random graph ensembles are also common in network theory,

e.g., such models occurred in relation to internet stability and spread of infectious diseases

[24, 25, 26, 27, 28, 29, 30]. Understanding the relation between the decoding transition of

QECCs and the phase transition of thermodynamic models on hyperbolic planes helps us

to understand deeper in both areas.

Other than the QECCs on graphs, there are also QECCs that have non-local

operators. One important example is the hypergraph-product code based on classical LDPC

(low density parity check) codes. Such codes are also related to statistical mechanical

models, but with multi-particle interactions [6, 31, 32].

While most of the QECCs are based on qubits, there are also generalizations to

q-ary algebras [33]. Most often the codes are defined on Galois fields Fq, where q is a prime

or a prime power. In this work, we study qudit codes defined on modular integers Zq, and

their correspondence with Potts model is also explored. A challenge of the generalization

from binary to q-ary algebra in QECCs is that the complicated structure of modules over
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the ring of modular integers requires more careful treatment than linear spaces over Galois

fields, and the results could be much different. Also in statistical mechanics there are some

fundamental differences, for example, the Ising model on a 2D lattice has second order phase

transition, while the Potts model with q > 4 on the same lattice has first order transition

[34]. More questions may be asked such as what are the differences when they are on a

hyperbolic plane, or with multi-spin interactions. Generalizations of these studies from

binary cases to q-ary cases is another topic in this thesis.

1.2 Outline

In Chapter 2 we will introduce the background on QECCs and the correspondence between

CSS codes and Random Bond Ising Model (RBIM).

In Chapter 3 we introduce hyperbolic tessellations and their properties, then the

construction of closed hyperbolic surfaces. Analytical and numerical results for Ising models

on such graphs are given next, which are related to the hyperbolic surface codes.

In Chapter 4 we study the generalization from binary QECC to q-ary QECC and

their correspondence to Potts gauge glass model, and the construction and properties of

q-ary hyperbolic surface codes, hypergraph-product codes and more general LDPC codes.

The last is Chapter 5 which we end with a conclusion and discuss some open

questions for future research.
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Chapter 2

Preliminaries

2.1 Background

Modern computers utilize digital circuits to perform certain computation tasks. These

circuits are large assemblies of logic gates, which implement Boolean functions on binary

inputs called bits. A bit can be either in the state 0 or 1.

In quantum computation, the basic unit of information is qubit. Each qubit is

a two state quantum system that has a basis {|0〉, |1〉} which is called the computational

basis. Unlike classical bits, which can only be in one of the two states, a qubit can be in a

state that is a superposition of the computational basis, |ψ〉 = α |0〉+ β |1〉, where α and β

are complex numbers that satisfy the normalization condition |α|2 + |β|2 = 1. Such a state

is called a pure state. In the presence of interactions and decoherence, a qubit may turn

into a mixed state, which is a statistical combination of pure states.

The state of multiple qubits is a superposition of their product basis states. A

system of n qubits spans a 2n-dimensional Hilbert space.

A quantum gate is a unitary operator that rotates the state vector. A sequence of

quantum operations, including quantum gates and measurements, on a set of qubits, which

are visualized as wires, is a quantum circuit.
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2.2 Quantum error correction

In a quantum computation, quantum states may be affected by undesired interactions with

their environment. Such quantum noise may result in errors. Unlike classical information,

which one can make copies of, it is impossible to copy an arbitrary quantum state [35]. To

overcome this obstacle, quantum error correction codes (QECCs) are developed to protect

quantum information.

2.2.1 Stabilizer codes

Stabilizer codes are an important family of QECCs, which are similar to classical linear

codes. The set of n qubit states forms a Hilbert space Vn, and the Pauli operators form a

Pauli group Pn acting in that space. If S is a subgroup of Pn and Vs is a subspace of Vn

such that every element of Vs is unchanged under the action of any element in S, S is called

a stabilizer of Vs.

The Pauli Group on one qubit P1 is generated by the Pauli matrices

X = σ1 =

0 1

1 0

 , Y = σ2 =

0 −i

i 0

 , Z = σ3 =

1 0

0 −1

 (2.1)

The products of the matrices and the factors -1 and ±i gives the group:

P1 = {±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ} (2.2)

The n qubit Pauli group is generated by the tensor products of the operators on each qubit.

The stabilizer group is a subgroup of the n-qubit Pauli group which acts in an

n-qubit Hilbert space. The operators that are the elements of the group must commute

with each other so that the measurements on the stabilizer generators don’t change the

state of the code. A quantum stabilizer code Q [[n, k, d]], which encodes k logical qubits

into n physical qubits that has distance d, is a 2k-dimensional subspace of H⊗n2 , a common

+1 eigenspace of all operators in the code’s stabilizer, an abelian group S ⊂Pn such that

−I /∈ S .

5



We can write the stabilizer generators as rows of a generator matrix,

G = (GX ,GZ)

where the commutativity of the stabilizers requires that

GXGTZ + GZGTX = 0 (mod 2).

The errors of stabilizer codes is a product of Pauli operators

E ≡ imXe1
1 X

e2
2 . . . Xen

n Z
en+1

1 . . . Ze2n2n

which can be mapped to a length 2n binary vector e = (e1, e2 . . . e2n) up to a phase.

An error is detectable iff it anticommutes with any of the stabilizer generators.

An error that is in the stabilizer group is not detectable and doesn’t need to be corrected,

since it doesn’t change the logical quantum state. Errors that are different by a stabilizer

operator are called degenerate, since they act identically on the code.

An operator that commutes with the stabilizer generators and changes the logical

quantum state is a codeword, represented by a length 2n vector c.

Degenerate errors are those that are different by a linear combination of rows of

G, e′ = e+αG, where α is an arbitrary vector.

Vectors of codewords are those that satisfy the commutativity requirement with

all the rows in the generator matrix, but cannot be written as a linear combination of rows

of the generator matrix. Two codewords are equivalent if they differ by a linear combination

of the rows of the generator matrix.

2.2.2 CSS codes

An important subclass of stabilizer codes is CSS codes, which is named after the initials

of the inventors: Robert Calderbank, Peter Shor and Andrew Steane [4, 5]. CSS codes can

be constructed from classical linear codes.

An [n, k, d] classical linear code C is a k-dimensional subspace of the vector space

of all binary strings of length n, Fn2 . The code distance d is the minimal weight of any

6



non-zero string in the code space, a code with distance d detects any error with weight up

to d−1 and corrects any error with weight up to b(d−1)/2c. The generator matrix G of the

code has k rows which are the k basis vectors, and the parity check matrix H is the exact

dual to G, H ≡ G∗, that is, the vector space of H is orthogonal to that of G, HGT = 0,

and also, rankH + rankG = n.

A quantum CSS code can be constructed from two generator matrices GX and

GZ , where each of the matrices has n columns and they satisfy the orthogonal condition

GXG
T
Z = 0. The code dimension k = n− rankGX − rankGZ . The rows of GX correspond

to stabilizer generators that are tensor products of X operators, so they can detect Z type

errors, which anti-commute with X. When applying the stabilizer generators to the qubits

that have an error e, the result is called a syndrome sZ = GXe
T . An error may have a

zero syndrome. One possibility is that it is in the stabilizer group of the operators of the

same type, for example an X error that is in the X stabilizer cannot be detected by Z

stabilizer generators. Such errors would not change the code, and need not to be corrected.

The other possibility is that the undetectable error is not in the stabilizer group, in this

case it is a codeword, which changes the information to a different meaning after decoding.

Two errors may have the same syndrome. If the difference between them is in the stabilizer

group, they are equivalent in the code and there is no need to distinguish them, these errors

are called degenerate. Otherwise, they are different by a codeword. The minimal weight of

a codeword is the distance of the code.

2.2.3 Maximum likelihood decoding

The goal of error correction is to correct any error(s) that happened. To this end, the degen-

eracy class of the error that happened degeneracy must be recovered. Given a syndrome s,

maximum likelihood decoding is to find the most likely degeneracy class by summing up the

probabilities of all the errors that are degenerate to an error that matches a syndrome, and

compare such sums for different error degeneracy classes (such errors differ by non-trivial

logical operators).
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In the case of independent identically distributed (i.i.d) errors where any single X

or Z error happens with probability p, the probability of an error e = (v,u) is

P (e) =

Nb∏
i=1

pei(1− p)1−ei = pw(1− p)Nb−w (2.3)

where v and u are both length n vectors corresponding to X errors and Z errors respectively,

Nb = 2n, w = wgt(e) = wgt(v) + wgt(u) is the Hamming weight of the vector.

Since degenerate errors are equivalent, with maximum likelihood decoding one

may sum up the probabilities of all the errors that are equivalent to e, which is

P0(e) =
1

2Ng

∑
σ

pw(1− p)Nb−w, w ≡ wgt(e+ σG), (2.4)

where G is the generator matrix that has dimensions Ns × Nb, Ng ≡ Ns − rankG is the

number of linear dependent rows in G, σ runs through all binary vectors of length 2n.

As for the probability of all errors that are equivalent to e+c where c is a codeword,

we define

Pc(e) ≡ P0(e+ c), (2.5)

so the total probability of all errors that result in a syndrome s is

Ptot(s) ≡
∑
c

Pc(e). (2.6)

where the summation should be done over all inequivalent codewords.

From all the codewords, we denote the one that maximizes Pc(e) by

Pmax(s) ≡ max
c

Pc(e). (2.7)

For the decoding to return the correct codeword, P0(e) needs to be the maximum in Pc(e)

for all c, and in the limit of large n, it needs to dominate the probability distribution

Ptot(se) so that the decoding would success with probability one,

[P0(e)/Ptot(se)]
n→∞−−−→ 1, (2.8)

where the brackets denote averaging over all the errors e.
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2.3 Mapping to Random Bond Ising Models (RBIM)

The relation between spin models and binary codes is well known [36, 37]. We define a

partition function of an Ising model as the following [31]:

Ze,m(Θ, {Kb}) ≡
1

2Ng

∑
{Sr=±1}

Nb∏
b=1

Rmbb
exp(Kb(−1)ebRb)

2 coshβ
, (2.9)

where Sr ∈ ±1 are the spins of the Ising model, r = 1, . . . , Ns, Rb ≡
∏
r S

Θr,b
r are the bond

interactions, Θ is the incidence matrix of the graph that the Ising spins are defined on,

Kb ≡ βJb where β is the inverse temperature and Jb is the bond strength. The vectors e,m

represent electric and magnetic disorder respectively.

On the other hand, we may rewrite the probability of equivalent errors as the

following:

P0(e) =
1

2Ng

∑
σ

(
p

1− p

)wgt(e+σG)

(1− p)Nb (2.10)

=
1

2Ng

∑
{σr}

Nb∏
b=1

(1− p)
(

p

1− p

)eb+∑r σrGr,b
(2.11)

By replacing p/(1−p) with e−2K , we can see that this quantity has the same form

as the partition function. Define a simplified partition function:

Z0(e, β) ≡ Ze,0(G, {Kb = β}), (2.12)

the probability is found to be the same of the partition function on the Nishimori line[36]

for the random bond Ising model:

P0(e) = Z0(e, βp) (2.13)

where βp satisfies e−2βp = p/(1− p) is the definition of the Nishimori line.

For any other temperatures not on the Nishimori line β 6= βp, the assumed proba-

bility of a 1-qubit X or Z error doesn’t match the actual one, in which case it corresponds to
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sub-optimal decoding, with the decoder given incorrect information about error probability

distribution.

In the case of CSS codes, the partition function is the product of those of the two

models, corresponding to the generating matrices GX and GZ , so we may consider G as

either of them since they work likewise.

2.3.1 Toric code

Toric code is one of the most famous QECCs, where the physical qubits are located on the

edges of a square lattice with periodic boundary conditions, which forms a torus, hence the

name. The X and Z stabilizer operators are on the vertices and faces respectively, and

the logical operators are on the non-trivial cycles. The corresponding statistical mechanics

model is RBIM on 2D square lattices [6].
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Chapter 3

Hyperbolic Codes and the Ising

Model

Toric code is a great example of a QECC that’s on a 2D plane and has a finite

threshold. Yet it has the disadvantage that as the distance increases, the code rate ap-

proaches 0 asymptotically. Many finite rate QECCs have been studied, and one family of

such codes are analogs of the toric code on locally planar graphs which look locally like a

regular tiling of a hyperbolic plane.

To have a finite code rate, the code dimension must grow linearly with the block

length. Based on toric code, an intuitive approach is to increase the number of holes on the

torus, resulting in a surface with genus g that grows linearly with n so that k = 2g ∝ n.

But how do we find a symmetric graph on such a surface? For surfaces with g > 1, the

curvature is negative, so we may find such tilings on a hyperbolic plane instead of a 2D

Euclidean plane.

Similar to the toric code, to construct hyperbolic codes the qubits are placed on

the edges of a graph, and one type of stabilizer checks are placed on vertices and the other

on faces, except that the graph is a quotient of an infinite hyperbolic tiling, instead of a

square lattice.
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3.1 Hyperbolic tilings

Hyperbolic geometry is a non-Euclidean geometry, where the axiom about parallel lines

is replaced so that more than one non-intersecting lines exist for any point that is not

on the line [38]. A hyperbolic plane has negative Gaussian curvature everywhere. For a

hyperbolic plane with constant Gaussian curvature K, denote R ≡ 1√
−K , then for a circle

of radius r the circumference is 2πR sinh r
R and the area is 2πR2(cosh r

R − 1), which both

grow exponentially with r asymptotically in the large r limit.

To visualize and study geometry on hyperbolic planes more easily, many models

that represent hyperbolic planes on other 2D planes are used. Here we use the Poincaré disk

model for showing the hyperbolic tilings. In this model the hyperbolic plane are mapped

to a disk with radius 1, and the distance between two points on the disk is

d(x, y) = cosh−1

(
1 +

2||x− y||2

(1− ||x||2)(1− ||y||2)

)
(3.1)

On an Euclidean plane there are only three regular tilings: the equilateral triangles,

the squares and the regular hexagons, which are denoted by {3,6}, {4,4} and {6,3} in Schläfli

symbol respectively. The symbol {p, q} represents a tessellation that has q regular p-sided

polygon faces around each vertex. A {p, q} tessellation on 2D Euclidean plane must obey

the constraint 1/p + 1/q = 1/2, which originates from the fact that the angles around a

vertex must sum to 2π on an Euclidean plane.

In the case of 1/p+1/q > 1/2, the tessellation is on a sphere. There are 5 possible

solutions, where {p, q} can be {3,3}, {3,4}, {4,3}, {3,5} or {5,3}. They correspond to the five

Platonic solids, namely the tetrahedron, octahedron, cube, icosahedron and dodecahedron.

When 1/p + 1/q < 1/2, the tessellation is on a hyperbolic plane, and there are

infinitely many solutions for this condition, each of them forms a regular hyperbolic tessel-

lation.
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3.1.1 Tilings with open boundary

For uniform tilings on 2D Euclidean plane inside a circle of radius r, it is easy to see that

the number of vertices or edges or faces along the circumference grows linearly with r, and

the number of them inside the area grows as r2. While for hyperbolic tessellations, they

grow exponentially with r in the large r limit, with some base c : n ∝ cr.

When creating such graphs with a computer, the memory may soon be used up

as the radius increases. To estimate the order and the size of a graph of {p, q} tiling with a

given distance from the origin to the boundary, it is necessary to determine the base c(p, q).

Consider a {p, q} tiling on a hyperbolic plane with constant Gaussian curvature

-1, where the length of an edge is a. The base of the exponential growth of the number of

vertices or edges or faces inside a circle of radius ar is given by

ln(cgeo) = 2 cosh−1

(
cos(πp )

sin(πq )

)
(3.2)

which can be calculated from the area of the circle, Area = 4π sinh2(r′/2) ≈ πer
′
, where

r′ can be converted to r, which is in the unit of the length of the edges a, r′ = ar, so

cgeo = ea. The length of the edges is easily calculated from the trigonometry of right

triangles, cosh(a2 ) = cos(πp )/ sin(πq ).

However, to create a hyperbolic graph in a computer, it is more convenient to do

it layer by layer. Thus, we also consider the growth of the size of the graph with another

two definitions of radius and distance. The first one is the distance in graph theory, which

is the number of edges in the shortest path between two vertices. On a square lattice, the

analog is Manhattan distance, corresponding to von Neumann neighborhood, where each

new layer consists of the faces that share at least one edge with the previous layer. The

second definition of the distance is analogous to the Chebyshev distance on a square lattice,

where the distance between two vertices is the minimum number of faces on any path of

vertex-face pairs that are incident to each other. This construction corresponds to Moore

neighborhood, where each new layer consists of the faces that share at least one vertex with

13



the previous layer.

It is easy to prove that the tiling graph inside a circle of geometric radius r from

a vertex at the center is always larger than the one that has r layers with Von Neumann

neighborhood for any {p, q}, and always smaller than the one that has r layers with Moore

neighborhood for any p ≥ 4. The former is true because the graph distance between any

vertex and the center vertex must be less than or equal to r, so their geometric distance

must be less than or equal to r. The latter is true because, if we draw a circle of radius 1

at any point on the boundary of the (r − 1)th layer, the circle will be fully covered by the

(r − 1)th and rth layer of the faces if p ≥ 4.

The base of the exponential growth of the graph size with radius analogous to

Chebyshev distance is easier to calculate, so let us start from this one and then go back to

the one with graph distance.

Suppose there is a {p, q} tiling with p ≥ 4, q ≥ 3 of radius r in Chebyshev distance,

and we want to find the number of vertices on the boundary. It is easy to see that the vertices

on the boundary either have degree 3 or 2, which we denote by type a and b respectively,

as shown in Fig 3.1. Denote the number of vertices of type a on the boundary of the tiling

of radius n with an and those of type b with bn, we find the recurrence relation:
an = (q − 3)an−1 + (q − 2)bn−1

bn = ((p− 3)(q − 3)− 1)an−1 + ((p− 3)(q − 2)− 1)bn−1

(3.3)

By solving the equation an + xbn = c(an−1 + xbn−1) for c, we see that it must satisfy

c2 − ((p− 2)(q − 2)− 2)c+ 1 = 0 (3.4)

When (p − 2)(q − 2) < 4, there is no real solutions for c. When (p − 2)(q − 2) = 4, c = 1.

When (p− 2)(q − 2) > 4, there are 2 positive solutions which have product 1, and at large

radius limit the contribution from the smaller solution can be ignored, and the number of

vertices grows as cn. These are the cases corresponding to spherical tiling, Euclidean plane

tiling and hyperbolic plane tiling respectively.
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Figure 3.1: Constructing the next layer with Moore neighborhood for p ≥ 4.

The recurrence equations above don’t work for p = 3, so we must calculate it

separately. The situation for p = 3 is similar, where the recurrence relation becomes:
an = (q − 5)an−1 + (q − 6)bn−1

bn = an−1 + bn−1

(3.5)

And c satisfies

c2 − (q − 4)c+ 1 = 0 (3.6)

which is the same as the previous case with p = 3.

The calculation for the case where radius is the graph distance is more complicated,

since each time we add a layer of edges instead of faces, which means the new layer depends

on many layers backwards. So instead of 2 recurrence equations, there will be p/2 of them

if p is even or p− 1 of them if p is odd.

To find the recurrence equations, we may partition the polygon layer by layer into

triangles and quadrilaterals. When p is even, we name these pieces of a face A1, A2, . . . , Ak

where k = p/2, A1 and Ak are triangles and the rest are quadrilaterals. When p is odd, we
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A1A1

A1
A1

A1

A1 A1

A1 A1

A2

A3

Ak−1

Ak

A2

A2 A2

(a) p is even

(b) p is odd

Figure 3.2: Constructing the graph with von Neumann neighborhood for q = 5 as an
example.

must also include the polygon of the opposite direction, so we have A1, A2, . . . , Ak, Ak+1,

. . . , A2k, where k = (p− 1)/2, A1 and A2k are triangles and the rest are quadrilaterals.

In the case that p is even, if we label each layer with a string, e.g. the first layer

is

q of A1︷ ︸︸ ︷
A1A1 . . . A1, the next layer can be found by the substitution rules:

A1 →A2

q−2︷ ︸︸ ︷
A1 . . . A1

A2 →A3

q−2︷ ︸︸ ︷
A1 . . . A1

...

Ak−1 →Ak−2

q−2︷ ︸︸ ︷
A1 . . . A1

Ak →−A1

(3.7)
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as shown in Fig 3.2a.Then we define the number of each pieces on layer n to be a1,n, a2,n, . . . , ak,n,

the recurrence equations are

a1,n+1 =(q − 2)a1,n + (q − 2)a2,n + · · ·+ (q − 2)ak−1,n − ak

a2,n+1 =a1,n

a3,n+1 =a2,n

...

ak−1,n+1 =ak−2,n

ak,n+1 =ak−1,n

(3.8)

solving these equations for the base c gives

ck − (q − 2)ck−1 − (q − 2)ck−2 − · · · − (q − 2)c+ 1 = 0 (3.9)

We may re-arrange the equation to be (c−(q−1))(ck−1 +ck−2 + · · ·+c+1)+q = 0

and notice that as k → +∞ the solution approaches q−1, which is expected since the graph

becomes a regular tree of degree q asymptotically.

If p is odd, the construction goes similarly from A1 to A2k except for Ak where it

becomes

Ak → −A1Ak+1

q−3︷ ︸︸ ︷
A1 . . . A1 (3.10)

since it is the end of the first face and is the neighbor of the next face as shown in Fig 3.2b,

which means that the coefficient of ak,n in the recurrence equation for a1,n+1 is q−4 instead

of q − 2. The equation for c becomes

c2k − (q − 2)c2k−1 − (q − 2)c2k−2 − · · · − (q − 4)ck − · · · − (q − 2)c+ 1 = 0 (3.11)

We see that the equations for c above are different from them of the Moore neigh-

borhood construction, except for p = 3.

On an Euclidean plane, the tiling grows polynomially, so c must equal 1. Replacing

c with 1 in either of the equations for p even or odd gives the same constraint (p−2)(q−2) =

4, which is also the same condition we found out for Moore neighborhood construction on

Euclidean plane.
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3.1.2 Compact tilings by group theory

A regular tiling can be constructed with Wythoff construction, which partition the polygons

into Schwarz triangles. E.g. if we connect the vertices of a regular polygon of p edges to

its center, we partition it into p isosceles triangles, and further we may partition it into

2p congruent right triangles. So start from a right triangle, we can construct the polygon

by reflection and rotation. The rest of the polygons in the tiling can be constructed by

rotation of the polygon with respect to the vertices. The infinite tiling can be constructed by

identifying a right triangle with identity element e and all the other triangles are generated

by rotation and reflection group operations in the triangle group.

To form a compact surface from an infinite tiling, we may pick a few pairs of

elements and identify the two elements in each pair. To make sure the transformation is

orientation-preserving, we may express the tiling with von Dyck group which is a subgroup

of the triangle group. Hence the infinite {p, q} tiling can be seen as the elements of the group

D(p, q, 2) = 〈a, b|ap, bq, (ab)2〉, where a and b are group generators that act as a clockwise

rotation with respect to the center of the polygon or to the vertex respectively, and the

terms on the right hand side are relators that equal identity. By adding additional relators,

we may find a finite quotient group which corresponds to a tiling on a closed surface. With

this presentation, the faces, edges and vertices of the tiling correspond to the right cosets

with respect to the subgroups 〈a〉, 〈ab〉 and 〈b〉, respectively. More details can be found in

[39].

Similar to toric codes, the hyperbolic codes on such graphs have physical qubits

placed on edges and logical operators on non-trivial cycles, so the code rate R = k
n is

R =
k

n
=

2g

|E|
=

2− χ
|E|

=
2− |V |+ |E| − |F |

|E|
= 1− 2

q
− 2

p
+

2

n
(3.12)

where g is the genus, χ is the Euler characteristic. Since 1/p + 1/q < 1/2 for hyperbolic

codes, the code rate approaches a positive constant asymptotically with large n.

To find additional relators that gives a finite group, we repeated creating a pseudo

random string of generators as the additional relator until a finite group is obtained. The
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vertex-edge and face-edge incidence matrices are obtained from the coset tables. Namely,

non-zero matrix elements are in positions where the corresponding pair of cosets share an

element.

Another way to find an additional relator is by traversing every element in the

graph and check if identifying it with identity results in a finite group. A traversal algorithm

can be found readily with the “layer by layer” recurrent construction we described in the

previous section. Either a breadth-first search or a deep-first search would work. The former

is straight-forward, since we can construct the graph layer by layer, but each time we have

to store the information of all the elements in one layer in memory. The latter is more

space-efficient. Noticing that by removing certain types of edges (e.g., the edges connecting

B and C type pieces and the left or right side edges that connect D and A type pieces in

Fig. 3.3), it is easy to create a spanning tree of the tiling graph. The resulting tree is a

tree of finite cone type, which retains the feature of recurrent construction [40]. Traversing

every edge in the tree and traverse the elements that are incident to it, every element can

be reached exactly once with this method.

Taking {5, 5} tiling as an example, denoting the 4 pieces of face as A,B,C,D, the

first layer is AAAAA, and each edge is between AA pieces. To find the next layers of edges

in the spanning tree, take any edge and construct the next layer which is BAAAB, as Fig

3.3 shows on the top-left.

The other possibilities include AB/BA,AC/CA,AD/DA, which are also shown in

Fig 3.3. So if we know the pieces of faces that is incident to the edge, we can construct the

edges on the next layer. A depth-first search can be performed by recording the neighboring

pieces of the edges from the root to the current location, and the ordinal number of each

edge according to the vertex above it.

To traverse all the group elements on the graph up to a radius, we can do so by

traversing all the edges. Each edge has 1 element on each side of it, as shown in Fig 3.4. We

may choose one of them as the moving element (gray-filled triangles), and the other element
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Figure 3.3: Constructing the next layer of the edges of a {5,5} tiling.

(blue-filled triangles) can be found by reflection operation. The change of the location of

the element can be expressed by multiplication of the rotation operations a and b.

3.2 Ising models on hyperbolic tilings

In section 2.3 we discussed the mapping from maximum likelihood decoding of QECCs to

random bond Ising models. Here we study the Ising models on the hyperbolic tiling graphs.

We consider pairs of few-body Ising models where each spin enters a bounded number of

interaction terms (bonds), such that each model can be obtained from the dual of the other

after freezing k spins on large-degree sites. Such a pair of Ising models can be interpreted as

a two-chain complex with k being the rank of the first homology group. Our focus is on the

case where k is extensive, that is, scales linearly with the number of bonds n. Flipping any

of these additional spins introduces a homologically non-trivial defect (generalized domain

wall). In the presence of bond disorder, we prove the existence of a low-temperature weak-

disorder region where additional summation over the defects have no effect on the free energy

density f(T ) in the thermodynamical limit, and of a high-temperature region where in the

ferromagnetic case an extensive homological defect does not affect f(T ). We also discuss
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Figure 3.4: Traversing every element on the {5,5} tiling graph.

the convergence of the high- and low-temperature series for the free energy density, prove

the analyticity of limiting f(T ) at high and low temperatures, and construct inequalities

for the critical point(s) where analyticity is lost. As an application, we prove multiplicity of

the conventionally defined critical points for Ising models on all {f, d} tilings of the infinite

hyperbolic plane, where df/(d + f) > 2. Namely, for these infinite graphs, we show that

critical temperatures with free and wired boundary conditions differ, T
(f)
c < T

(w)
c . Most of

the results in this subsection are summarized in Ref.[8].

3.2.1 Introduction

Singular behavior associated with a phase transition may emerge only in the thermodynam-

ical limit, as the system size goes to infinity. One example are spin models on any finite-

dimensional lattice, where both the interaction strength and its range are finite. Then the

thermodynamical limit is well defined thanks to the fact that boundary contribution scales

sublinearly with the system size[41]. Respectively, e.g., in the case of an Ising model, the

same transition can be alternatively defined as the temperature where spontaneous magne-

tization appears, spin susceptibility diverges, spin correlations start to decay exponentially,
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domain wall tension is lost, or as a singular point of the free energy[42, 43, 44, 41].

Situation is different if we have a model on a non-amenable graph characterized by

a non-zero Cheeger constant, the lower bound on the perimeter to size ratio for all its finite

subgraphs[45, 46]. Examples include infinite transitive expander graphs like a degree-regular

tree, and regular {f, d} tilings of the hyperbolic plane, with (f − 2)(d− 2) > 2. Physically,

non-amenability of a graph implies that the boundary gives a finite contribution to any bulk

average, so that both the location of a transition and its properties may depend on both

the quantity being probed and the boundary conditions used to define the infinite-graph

limit.

A number of general results are known that relate properties of a statistical-

mechanical model to amenability/non-amenability of the underlying graph. In particular,

for a random walk on a bounded-degree graph, the return probability decays exponentially

with time iff the graph is non-amenable[47]. In the case of Bernoulli percolation, an infinite

cluster is necessarily unique on amenable graphs, but it is conjectured that on any tran-

sitive non-amenable graph there is necessarily an interval where multiple infinite clusters

coexist[48, 49, 50]. Among other cases, this conjecture has been verified for planar transi-

tive graphs with bounded-degree duals[51]. In the case of the Ising model, there is never a

phase transition with a finite coupling and a non-zero magnetic field on an amenable transi-

tive graph, while such a transition necessarily exists on any bounded-degree non-amenable

graph[52]. Further, phase transition points in Bernoulli percolation, Ising, and q-state Potts

models (these have the Fortuin-Kasteleyn random cluster representation with parameter 1,

2, and q, respectively[53, 54]) are known to depend on the boundary conditions when the

Cheeger constant is sufficiently large[55], and on planar non-amenable graphs with regular

duals when q is large enough[56].

From physics perspective, non-amenable graphs are non-local, in the sense that

they cannot be embedded in a Euclidean space without infinitely stretching some edges.

Most natural geometry for such graphs is hyperbolic, with constant negative curvature.

Interest in quantum field theory models on curved space-time is motivated by quantum
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gravity and, in particular, the AdS/CFT correspondence[9, 10, 11, 12, 13, 14, 15]. There is

an independent interest in models on curved spaces in statistical mechanics and condensed

matter communities, e.g., since curvature can serve as an additional parameter to drive

the criticality, or as a way to introduce geometrical frustration in toy models of amorphous

solids, supercooled liquids, and metallic glasses[16, 17, 18, 19, 20, 21, 22, 23]. Models like

percolation on more general expander graphs and various random graph ensembles are also

common in network theory, e.g., such models occurred in relation to internet stability and

spread of infectious diseases[24, 25, 26, 27, 28, 29, 30]. Finally, the strongest motivation

to study non-local Ising models comes from their relation[6, 31, 32] to certain families of

finite-rate quantum error-correcting codes (QECCs).

The Ref.[32] studied pairs of weakly-dual few-body Ising models where each spin

enters a bounded number of interaction terms (bonds). Each model can be obtained from

the exact dual of the other after freezing k spins which enter a large number of bonds. For

the related QECC, k is the number of encoded qubits, and its ratio to the number of bonds,

R ≡ k/n, is the code rate. One can also map such a pair of Ising models to a 2-chain

complex Σ, in which case k is the rank of the first homology group H1(Σ). In particular,

Ref. [32] introduced the homological difference ∆F ≥ 0, the difference of the free energies of

two models with and without the additional summation over the homological defects, and

gave the sufficient conditions for the existence of a low-temperature low-disorder region on

the phase diagram where in the large-system limit ∆F = 0.

In this Chapter we study duality and phase transitions in general Ising models,

focusing on the case where the homology rank k scales linearly with the number of bonds n.

Our main tool is the specific homological difference scaled by the number of bonds, ∆f =

∆F/n. Upon duality ∆f is mapped to R ln 2−∆f∗, where ∆f∗ is the homological difference

for the other model in the pair, at the dual temperature. Existence of a low-temperature

homological region where asymptotically ∆f = 0 implies that at high temperatures ∆f∗ =

R ln 2; with R > 0 this implies the existence of at least two distinct points where ∆f is non-

analytic as a function of temperature. Combining with the analysis of convergence of the
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high-temperature series expansion for the free energy density, we obtain several bounds for

critical temperatures associated with the non-analyticity of the limiting free energy densities

of the two models. Main result is the inequality for the change of thus defined critical point

due to summation over the homological defects.

Second, we discuss applications of these general results to two-body Ising models

on transitive graphs, with the infinite graph G obtained as the weak limit of the sequence of

finite transitive graphs. Finite rate R implies that the corresponding infinite graph has to

be non-amenable. In particular, we prove multiplicity of the conventionally defined critical

points for Ising models on all {f, d} tilings of the hyperbolic plane with df/(d + f) > 2.

That is, we show that transition temperatures with wired and free boundary conditions

differ, T
(w)
c > T

(f)
c , which extends the results of Refs. [57, 55, 56].

The rest of this section is organized as follows. We introduce the notations and

review some known facts from theory of general Ising models and theory of QECCs in Sec.

3.2.2. Our results are given in Sec. 3.2.3, where we first discuss properties of the homological

difference ∆f , analyze the convergence and analyticity of free energy density for a sequence

of weakly-dual Ising model pairs, and finally apply the obtained results to Ising models on

{f, d} tilings of the hyperbolic plane, additionally illustrating the conclusions with numerical

simulations. We summarize the results and list some related open questions in Sec. 3.2.4.

Most of the proofs are given in the Appendices.

3.2.2 Notations and background

We consider general Ising models in Wegner’s form[58], which describes joint probability

distribution of r ≡ |V| Ising spin variables, Sv ∈ {−1, 1}, associated with elements of the

vertex set, V,

Probe[{S}; Θ;K,h] =
1

Z

∏
b∈B

eK(−1)ebRb
∏
v∈V

ehSv , (3.13)

where each bond Rb ≡
∏
v∈V S

Θvb
v , b ∈ B, |B| = n, is a product of the spin variables

corresponding to non-zero positions in the corresponding column of the r×n binary coupling
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matrix Θ, the binary “error” vector e with components eb, b ∈ B, describes quenched

disorder, and the dimensionless coupling coefficients are K ≡ βJ and h ≡ βh′, where J is

the Ising exchange constant, h′ is the magnetic field, and β ≡ 1/T the inverse temperature

in energy units. The normalization constant Z ≡ Ze(Θ;K,h) in Eq. (3.13) is the partition

function,

Z ≡ Ze(Θ;K,h) ≡
∑

{Sv=±1}

∏
b∈B

eK(−1)ebRb
∏
v∈V

ehSv . (3.14)

The partition function is commonly written in terms of the corresponding logarithm, the

free energy, F = − lnZ, or the free energy density (per bond), f = F/n.

The binary coupling matrix Θ in Eq. (3.13) can be interpreted geometrically in

terms of a bipartite Tanner graph[59], or, equivalently, as the vertex-edge incidence matrix

for a hypergraph H = (V,B) with vertex set V and hyperedge (bond) set B, with each

hyperedge b ∈ B a non-empty subset of the vertex set, b ⊆ V. In comparison, in a (simple

undirected) graph G = (V, E), each edge b ∈ E is an unordered pair of vertices, b = {i, j} ⊆

V. The degree dv of a vertex v ∈ V in a (hyper)graph is the number of edges that contain

v, it is equal to the number of non-zero entries in the v th row of the vertex-edge incidence

matrix Θ. Similarly, the size of an edge in a hypergraph is called its degree, db = |b|, b ∈ B.

In a graph, all edges are pairs of vertices, and all columns of the incidence matrix Θ have

exactly two non-zero entries.

The probability distribution (3.13) can be characterized via the corresponding

marginals, the spin correlations

〈SA〉 ≡
∑

{Sv=±1}

SA Probe({S}; Θ;K,h), (3.15)

where A ⊆ V is a set of vertices, SA =
∏
v∈A Sv; by convention, S∅ = 1. At h = 0, on a

finite system and with e = 0, non-zero expectation is obtained for the sets (and only the

sets) that can be constructed as products of bonds[58],

SA =
∏

b:mb 6=0

Rb =
∏
v

∏
b

SΘvbmb
v , (3.16)
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where bonds in the product correspond to non-zero positions mb 6= 0 in the binary vector

m ∈ Fn2 of magnetic charges. A number of correlation inequalities for spin averages have

been constructed, see, e.g., Refs. [60, 61]. Particularly important for this work are Griffiths-

Kelly-Sherman (GKS) inequalities[62, 63],

〈SA〉 ≥ 0, (3.17)

〈SASB〉 ≥ 〈SA〉〈SB〉, (3.18)

valid in the ferromagnetic case, e = 0, for any A,B ⊆ V.

The second GKS inequality (3.18) can also be written[62, 63] in terms of the

derivative of 〈SA〉 with respect to KB, the coupling constant corresponding to the product

of spins SB,

d〈SA〉
dKB

≥ 0. (3.19)

This implies the monotonicity of any average with respect to all coupling constants and, as

a consequence, the existence of two extremal Gibbs states describing (generally different)

thermodynamical limit(s) for the Ising model on an infinite hypergraphH = (V,B), with free

and wired boundary conditions, respectively. Namely, one considers an increasing sequence

Vt, t ∈ N, of sets of vertices, Vt ( Vt+1 ⊂ V which converges weakly to V = ∪t∈NVt, and the

sequence of sub-hypergraphsHt = (Vt,Bt) induced by the sets Vt. For eachHt, consider also

the hypergraph H′t = (V ′t,B′t), obtained from H by contracting all vertices outside Vt into

one. Denote the vertex-edge incidence matrices of Ht and H′t as Θf
t and Θw

t , respectively.

Here “f” and “w” stand for “free” and “wired” boundary conditions in the Ising models

(3.13) defined with the help of these matrices. Clearly, Ht can be obtained from Ht+1 by

reducing some couplings to zero, while H′t can be obtained from H′t+1 by increasing some

couplings to infinity. This implies that for any set of vertices A ⊂ V, and t large enough

so that A ⊂ Vt, the averages 〈SA〉ft ≤ 〈SA〉wt are, respectively, non-decreasing and non-

increasing with t. They are also bounded, which proves the existence of the corresponding

pointwise limits, 〈SA〉f ≤ 〈SA〉w at any K and h.
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The two limits are known to coincide [41] for degree-limited graphs embeddable

in D-dimensional space, e.g., the hypercubic lattice ZD. Indeed, the increasing sequence

of subgraphs Gt = (Vt, Et) can be chosen so that the boundary grows sublinearly with the

total number of spins |Vt|. Such a property is violated in the case of a non-amenable graph

G, which has a non-zero edge expansion (Cheeger) constant, ιE(G) > 0, defined as

ιE(G) ≡ sup
W⊂V:|W|<∞

|∂EW|
|W|

, (3.20)

where ∂E(W) is the set of edges connectingW with its complement, V\W. The dependence

of the critical temperatures (as seen by the magnetization) on the boundary conditions,

Tw
c > T f

c , where the superscripts stand for “wired” and “free” boundary conditions, respec-

tively, is called the “multiplicity” of critical points[57, 55, 56]. Examples are the infinite

d-regular trees Td (in this case T f
c = 0, Tw

c = (d− 1)−1, see, e.g., Ref. [45]), and the regular

{f, d} tilings H(f, d) of the infinite hyperbolic plane, df/(f +d) > 2, where in each vertex d

regular f -gons meet. In the latter case multiplicity of the critical points have been demon-

strated for self-dual graphs, d = f , and for graphs with large enough curvature [57, 55, 56].

In Sec. 3.2.3.3 we prove the multiplicity of critical points for all hyperbolic tilings H(f, d)

with df/(d+ f) > 2.

Another important result for the Ising model (3.13) is the duality transformation[64,

58]. In particular, in the absence of bond disorder, e = 0, and at h = 0, one has

Z0(Θ;K) = Z0(Θ∗;K∗) 2r−n
∗
g (sinhK coshK)n/2 , (3.21)

where K∗ is the Kramers-Wannier dual of K, namely tanhK∗ = e−2K , the degeneracy

n∗g = r∗ − rank Θ∗ (2n
∗
g is the number of distinct ground-state spin configurations in the

dual representation), and Θ∗ is a binary r∗ × n matrix exactly dual to Θ (binary rank is

used),

Θ∗ΘT = 0, rank Θ + rank Θ∗ = n. (3.22)

Notice that in Eq. (3.21), and elsewhere in this work, we simplify the notations by

suppressing the argument corresponding to a zero magnetic field, h = 0.
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Exact duality also works in the presence of sign bond disorder, except the corre-

sponding bonds (“electric charges”) are mapped by duality to extra factors in front of the

exponent, “magnetic charges”. The resulting expression is not positive-definite and thus

cannot be interpreted as a probability measure; instead it is proportional to the average of

a product of the corresponding bonds. The duality in this case reads[58]

Ze(Θ;K)

Z0(Θ;K)
=

〈∏
b∈B

Rebb

〉
Θ∗;K∗

, (3.23)

where the average on the right is computed in the dual model with all bonds ferromagnetic,

cf. Eq. (3.16).

There is a natural notion of equivalence between defects e that produce identical

averages in Eq. (3.23). For the electric charges in the l.h.s., equivalent are any two defects

which differ by a linear combination of rows of Θ, e ' e′ = e + αΘ, where α is a length-

r binary vector. Such defects are related by Nishimori’s spin-glass gauge symmetry [36]

generated by local spin flips αv ∈ F2, v ∈ V, and simultaneous update of the components

of e on the adjacent bonds,

Sv → (−1)αvSv, eb → e′b ≡ eb +
∑

v
αvΘvb. (3.24)

For such a defect e, it is convenient to introduce an invariant distance de, the minimum

number of flipped bonds among all defects in the same equivalence class,

de ≡ de(Θ) = min
α

wgt(e +αΘ), (3.25)

where wgt(e) is the Hamming weight. An identical equivalence relation for the magnetic

charges which define the product of spins in the r.h.s. of Eq. (3.23) can be interpreted as a

result of introducing a product of (dual) bonds that form a cycle, i.e., does not change the

spins that actually enter the average.

For a finite system and a finite K > 0, both sides of Eq. (3.23) are strictly positive.

The logarithm of the l.h.s. is proportional to the free energy increment due to the addition

of the defect,

δe ≡ δe(Θ;K) ≡ lnZ0(Θ;K)− lnZe(Θ;K); (3.26)
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in turn, it is proportional to dimensionless defect tension

τe ≡ τe(Θ;K) ≡ δe(Θ;K)/de. (3.27)

Respectively, the scaling of the spin average in the r.h.s. of Eq. (3.23) with the minimum

number of bonds in the product is called the area-law exponent,

αe ≡ αe(Θ∗;K∗) = −d−1
e ln

〈∏
b∈B

Rebb

〉
Θ∗;K∗

. (3.28)

Second GKS inequality (3.18) implies subadditivity,

de1+e2αe1+e2 ≤ de1αe1 + de2αe2 . (3.29)

Thus electric-magnetic duality (3.23) also implies an exact relation between the defect

tension and area-law exponent in a pair of dual models,

τe(Θ;K) = αe(Θ∗;K∗). (3.30)

Combined with Eq. (3.29), this implies subadditivity for defect free energy cost

δe1+e2 ≤ δe1 + δe2 . (3.31)

In the special case of a model with two-body couplings defined on a graph G = (V, E), a

correlation decay exponent can be defined in terms of pair correlations,

α ≡ α(G;K) = inf
i,j∈V

[
− ln〈SiSj〉

dij

]
, (3.32)

where dij is the graph distance between i and j. Subadditivity (3.29) implies that the value

of α corresponds to that for pairs with large dij , although the decay rate is not necessarily

uniform for all pairs. In addition, on an infinite graph, we will also use

ᾱ ≡ ᾱ(G;K) = lim sup
dij→∞

[
− ln〈SiSj〉

dij

]
. (3.33)

The limit here exists since the expression in the square brackets is bounded by |ln tanhK|.

In particular, finite magnetization on a transitive graph, 〈Si〉 = m > 0, implies by the

29



second GKS inequality (3.18), 〈SiSj〉 ≥ m2, thus ᾱ = 0, which is a stronger statement than

just α = 0.

We are interested in the Ising models (3.13) with few-body couplings. More specif-

ically, we consider weight-limited Ising models with vertex and bond degrees bounded by

some fixed ` and m, respectively, so that dv ≤ m, v ∈ V, and db ≤ `, b ∈ B. With fixed `

and m, we call such a model (`,m)-sparse. This refers to the sparsity of the corresponding

coupling matrix Θ: ` and m, respectively, are the maximum weights of a column and of a

row of Θ.

Further, we would like to consider models whose duals are in the same class of

weight-limited Ising models, with some maximum vertex, `∗, and bond, m∗, degrees. How-

ever, such a condition would be very restrictive if one insists on the exact duality (3.22). For

example, in the case of the square-lattice Ising model with periodic boundary conditions

on an L × L square (` = 2 and m = 4), the dual model can be chosen to have the same

vertex and bond degrees, `∗ = 2 and m∗ = 4, except for k = 2 additional summations over

periodic/antiperiodic boundary conditions in each direction. These summations can be in-

troduced as additional spins entering dv ≥ L bonds, where the lower bound is the length of

the shortest domain wall on the L × L square-lattice tiling of a torus. The two additional

summations give no contribution to the asymptotic free energy density at L→∞, both in

the low- and high-temperature phases, and are often ignored.

Such a weak duality with additional defects for models on locally planar graphs

can be generalized by considering a pair of weight-limited binary matrices with n columns

each, G and H, such that their rows be mutually orthogonal, GHT = 0. Since we do not

require exact duality (3.22), there are exactly

k ≡ n− rankG− rankH (3.34)

distinct defect vectors ci ∈ Fn2 , i ∈ {1, . . . , k}, which are orthogonal to rows of H and whose

non-trivial linear combinations are linearly-independent from rows of G.

Just as for the spin glasses on locally planar graphs, the matrix H can be used
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to define frustration, s ≡ eHT , a gauge-invariant characteristic of bond disorder. As

common in spin-glass theory[36], we will consider independent identically-distributed (i.i.d.)

components of the quenched disorder vector e, such that eb = 1 with probability p. The

corresponding averages are denoted with square brackets, [ · ]p.

In theory of quantum error correcting codes[65, 66, 3, 67], a pair of binary matrices

with orthogonal rows, GHT = 0, can be used to define a Calderbank-Shor-Steane[4, 68]

(CSS) stabilizer code Q(G,H) which encodes k qubits in n, see Eq. (3.34). Such a quantum

code has a convenient representation in terms of classical binary codes. Given a matrix G

with n columns, one defines the classical code CG ⊆ Fn2 , a linear space of dimension rankG

generated by the rows of G. One also defines the corresponding dual code C⊥G of all vectors

in Fn2 orthogonal to rows of G; such a code is generated by the corresponding dual matrix

(3.22), C⊥G ≡ CG∗ . By orthogonality, we necessarily have CH ⊆ C⊥G and CG ⊆ C⊥H , where

equality is achieved when the two matrices are exact dual of each other, in which case k = 0.

The defect vectors c are non-zero CSS codewords of G type, c ∈ C⊥H \ CG; there are exactly

2k − 1 inequivalent (mutually non-degenerate[66]) vectors of this type. Similarly, there are

also 2k − 1 inequivalent H-type vectors b in C⊥G \ CH , where equivalence is defined in terms

of rows of H, b′ ' b iff b′ = b + αTH. For any quantum code, important parameters are

its rate, R ≡ k/n, and the distance, d ≡ min(dG, dH),

dG ≡ min
c∈C⊥H\CG

wgt(c), dH ≡ min
b∈C⊥G\CH

wgt(b). (3.35)

As yet another interpretation of the algebraic structure in the pair of weakly-dual

Ising models with vertex-bond incidence matrices G and H of dimensions r× n and r′ × n,

respectively, consider a two-chain complex Σ ≡ Σ(G,H),

Σ : C2 ≡ Fr
′

2
∂2→ C1 ≡ Fn2

∂1→ C0 ≡ Fr2, (3.36)

where the modules Cj , j ∈ {0, 1, 2} are the linear spaces of binary vectors with dimensions

r, n, and r′, respectively, and the boundary operators ∂1 and ∂2 are two linear maps defined

by the matrices G and HT . The required composition property, ∂1 ◦ ∂2 = 0, is guaranteed
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by the orthogonality between the rows of G and H. The number of independent defect

vectors (3.34) is exactly the rank of the first homology group H1(Σ).

3.2.3 Results

3.2.3.1 Properties of specific homological difference

We first quantify the effect of homological defects on the properties of general Ising models.

To this end, given a pair of binary matrices G and H with n columns each and mutually

orthogonal rows, GHT = 0, consider the specific homological difference [32] (per bond),

∆fe ≡ ∆fe(G,H;K)

=
1

n
{lnZe(H∗;K)− lnZe(G;K)} , (3.37)

where, to fix the normalization, the dual matrix H∗ [see Eq. (3.22)] is constructed from G

by adding exactly k row vectors1, linearly-independent inequivalent codewords c ∈ C⊥H \CG.

This quantity satisfies the inequalities[32]

0 ≤ ∆f0(G,H;K) ≤ ∆fe(G,H;K),

∆f0(G,H;K) ≤ R ln 2,

(3.38)

where R ≡ k/n, and k is the homology rank given by Eq. (3.34). The lower and the

upper bounds are saturated, respectively, in the limits of zero and infinite temperatures. In

addition, in the absence of disorder, the specific homological difference is a non-increasing

function of K (and non-decreasing function of T = J/K),

d

dK
∆f0(G,H;K) ≤ 0. (3.39)

Our starting point is the following Theorem (related to Theorem 2 in Ref. [32]),

proved in Appendix A.1:

1Notice that any other construction of the dual matrix would at most change the partition function
multiplicatively by a power of two.
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Theorem 3.1 Consider a sequence of pairs of weakly dual Ising models defined by pairs of

finite binary matrices with mutually orthogonal rows, GtH
T
t = 0, t ∈ N, where row weights

of each Ht do not exceed a fixed m. In addition, assume that the sequence of the CSS

distances dGt is increasing. Then the sequence ∆ft ≡ [∆fe(Gt, Ht;K)]p, t ∈ N, converges

to zero in the region

(m− 1)[e−2K(1− p) + e2Kp] < 1. (3.40)

Remarks: 3.1-1. The bound in Theorem 3.1 guarantees the existence of a homological

region where ∆ft converges to zero. Generally, such a region may be wider than what is

granted by the sufficient condition (3.40). We will denote Kh(G,H; p) the smallest K > 0

such that the series ∆ft converges to zero at any K ′ > K. The corresponding temperature,

Th(G,H; p) ≡ J/Kh(G,H; p), is the upper boundary for the homological region at this p.

Eq. (3.40) implies, in particular, that Kh(G,H; 0) ≥ ln(m− 1)/2.

3.1-2. In the homological region, the sequence of the average free energy densities [fe(Gt,K)]p

converges iff the sequence [fe(H∗t ,K)]p converges, and the corresponding limits coincide.

3.1-3. In analogy with Eq. (3.27), we introduce the defect tension in the presence of disorder,

τc,e ≡ τc,e(G;K) ≡ 1

dc
{Fe+c(G;K)− Fe(G;K)} , (3.41)

where dc ≥ dG is the minimum weight of the codeword equivalent to c ∈ C⊥H \ CG. While

the tension (3.41) is not necessarily positive, it satisfies the inequalities

|τc,e| ≤ τc,0 ≤ 2K. (3.42)

We also define the weighted average defect tension,

τ̄p ≡
∑

c 6'0 dc[τc,e]p∑
c 6'0 dc

, (3.43)

where the average is over disorder and the 2k − 1 non-trivial defect classes. This quantity

satisfies the following bound in terms of the average homological difference,

ζ τ̄p ≥ R ln 2− [∆fe]p, (3.44)
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where the dimensionless constant ζ ≤ 1/2, see Eq. (A.3) in the Appendix. In the homological

phase this gives τ̄p ≥ 2R ln 2. (A related bound was previously obtained for the boundary

of decodable phase in Ref. [31].)

In the absence of disorder, e = 0, the specific homological difference is self-dual[32],

up to an exchange of the matrices G and H, and an additive constant,

∆f0(G,H;K) = R ln 2−∆f0(H,G;K∗). (3.45)

Comparing with the general inequalities (3.38), one sees that a point close to the lower

bound is mapped to a point close to the corresponding upper bound. This implies a version

of Theorem 3.1 applicable for high temperatures:

Theorem 3.2 Consider a sequence of pairs of weakly dual Ising models defined by pairs

of finite binary matrices with mutually orthogonal rows, GtH
T
t = 0, t ∈ N, where row

weights of each Gt do not exceed a fixed m, CSS distances dHt are increasing with t, and

the sequence of CSS rates Rt ≡ kt/nt converges, limtRt = R. Then, for any K ≥ 0 such

that (m− 1) tanhK < 1, the sequence ∆ft ≡ [∆fe(Gt, Ht;K)]p, t ∈ N, converges to R ln 2.

Remarks: 3.2-1. Since duality is used in the proof, we had to switch the conditions on the

matrices Gt and Ht. Similarly, the bound for tanhK is the Kramers-Wannier dual of that

in Eq. (3.40) at p = 0.

3.2-2. We will call the temperature region where the sequence ∆ft in Theorem 3.2 converges

to R ln 2 the dual homological region. Given that the homological region in the absence of

disorder extends throughout the interval K ≥ Kh(G,H), the corresponding interval for the

dual homological region is K ≤ K∗h(H,G), where K∗ denotes the Kramers-Wannier dual,

see Eq. (3.21). Respectively, T ∗h (H,G) ≡ J/K∗h(H,G) is the low temperature boundary of

the dual homological region at p = 0.

3.2-3. In the dual homological region, the sequence of the free energy densities f0(H∗t ,K)

converges iff the sequence f0(Gt,K) converges, and the corresponding limits fH∗(K) and

fG(K) satisfy

fG(K) = fH∗(K) +R ln 2. (3.46)
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Notice that when both sets of matrices Ht and Gt, t ∈ N, have bounded row

weights, the same sequence ∆f0(Gt, Ht;K) converges to zero in the homological region,

K ≥ Kh(G,H), and to R ln 2 in the dual homological region, K ≤ K∗h(H,G). Since the

magnitude of the derivative of the free energy density with respect to K (proportional to

the energy per bond) is bounded, for any R > 0 this implies the existence of a minimum

gap between the boundaries of the homological and the dual homological regions. We have

the inequality

Kh(G,H)−K∗h(H,G) ≥ R ln 2. (3.47)

3.2.3.2 Free energy analyticity and convergence

The end points, Th(G,H) and T ∗h (H,G) of the two flat regions in the temperature depen-

dence of the homological difference ∆f0 are clearly the points of singularity. What is the

relation between these points and the singular points of the limiting free energy density in

individual models, which are usually associated with phase transitions?

To establish such a relation, let us analyze the convergence of free energy density

and the analyticity of the corresponding limit as a function of parameters. To this end,

consider the high-temperature series (HTS) expansion of the free energy density (3.14),

fe(Θ;K,h) ≡
∞∑
s=1

κ
(s)
e (Θ; J, h′)

βs

s!
, (3.48)

where both parameters are scaled with the inverse temperature, K ≡ βJ and h ≡ βh′. The

coefficient in front of βs is proportional to an order-s cumulant of energy; it is a homogeneous

polynomial of the variables h′ and J of degree s. A general bound on high-order cumulants

from Ref. [69] gives the following

Statement 3.3 Consider any model in the form (3.13), with an (`,m)-sparse r×n coupling

matrix Θ. The coefficients of the HTS expansion of the free energy density satisfy

|κ(s)
e (Θ; J, h′)| ≤ 2s−1ss−2C (∆ + 1)s−1As, (3.49)
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where A ≡ max(|J |, |h′|) and (a) with J and h′ both non-zero, ∆ = `m and C = r/n + 1,

while (b) with h′ = 0, ∆ = (`− 1)m and C = 1.

Such a bound implies the absolute convergence of the HTS in a finite circle in the

complex plane of β and, thus, the analyticity of fe(Θ;K,h) and all of its derivatives as a

function of both variables in a finite region with |K| and |h| small enough, in any finite

(`,m)-sparse Ising model, at any given configuration of flipped bonds e. The same is true

for the average free energy [fe(Θ; J, h′)]p.

In this region, at p = 0, convergence and analyticity of the limiting free energy

density for models defined by a sequence of binary matrices Θt, t ∈ N, is equivalent to

existence of the (pointwise) limit limt κ
(s)
0 (Gt; J, h

′) for the individual coefficients (remember,

each of them is a homogeneous two-variate polynomial of degree s). With the help of the

cluster theorem for the HTS coefficients, the existence of the limit can be guaranteed by the

Benjamini-Schramm convergence[70] of the corresponding Tanner graphs, see Refs. [71, 72]

for the corresponding discussion for general models with up to two-body couplings. For our

present purposes, the following subsequence construction at h = 0 is sufficient:

Corollary 3.4 Any infinite sequence of (`,m)-sparse Ising models, specified in terms of

the matrices Θj, j ∈ N, has an infinite subsequence Θj(t), t ∈ N, where j : N→ N is strictly

increasing, such that (a) for each s, the sequence of the coefficients κ
(s)
0 (Θt; J, 0) converges

with t, and (b) the sequence of free energy densities f(Θj(t);K) has a limit, ϕΘ(K), which

is an analytic function of K in the interior of the circle |K| ≤ {2e [(`− 1)m+ 1]}−1. Here

e is the base of natural logarithm.

Remarks: 3.4-1. Similar analyticity bounds apply to a very general class of (`,m)-sparse

models with up to `-body interactions, where each variable is included in up to m inter-

action terms, and magnitudes of different interaction terms are uniformly bounded: the

dependency graph used in the proof can be used in application to all such models. Ex-

amples include a variety of discrete models, e.g., Potts and clock models with few-body

couplings, as well as compact continuous models with various symmetry groups, Abelian
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and non-Abelian, where interaction terms are constructed as traces of products of unitary

matrices. This is a generalization of the “right” convergence established for models with

two-body couplings (` = 2) in Refs. [71, 72].

3.4-2. The subsequence construction is not necessary in the special case where the Tanner

graphs defined by the bipartite matrices Θt are transitive, with weak infinite-graph limit Θ

and a center 0 ∈ V(Θ), such that a ball of radius ρt in Θt is isomorphic to the ball of the

same radius centered around 0 in Θ; here the sequence of the radii is increasing, ρt+1 > ρt,

t ∈ N. In this case the cluster theorem[73] guarantees that the coefficients κs(Θt) do not

depend on t for ρt > s.

To make precise statements applicable outside of the convergence radius of the

high-temperature series, we need to ensure that a sequence of free energy densities converges.

The question of convergence for a general sequence of Ising models being far outside the

scope of this work, we will assume the use of yet another subsequence construction to

guarantee the existence of the thermodynamical limit for the free energy density. This is

based on the following Lemma proved in Appendix A.6.

Lemma 3.5 Consider a sequence of rt × nt binary matrices Θt, where 0 < rt ≤ nt, and

t ∈ N. For any M > 0, define a closed interval IM ≡ [0,M ]. (a) There exists a subsequence

Θt(i), i ∈ N, where the function t : N → N is strictly increasing, t(i + 1) > t(i) for all

i ∈ N, such that the sequence of Ising free energy densities converges for any K ∈ IM ,

fi(K) ≡ f0(Θt(i);K) → f(K). (b) The limit f(K) is a continuous non-increasing concave

function with left and right derivatives uniformly bounded,

− 1 ≤ f ′+(K) ≤ f ′−(K) ≤ 0, (3.50)

for all K ∈ IM .

Let us now assume that we have a sequence of pairs of weakly-dual weight-limited

Ising models which (a) satisfy the conditions of Theorems 3.1 and 3.2 with the asymptotic

rate R, (b) such that the coefficients of the corresponding HTSs converge, so that the se-

quences of free energy densities f(Gt;K) and f(Ht;K) both converge to analytic functions,
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ϕG(K) and ϕH(K) respectively, at |K| sufficiently small (Corollary 3.4), and, in addition,

(c) the sequences of free energy densities both converge on an interval of real axis IM , with

M > ln(m− 1)/2.

The interval in (c) is such that Theorems 3.1 and 3.2 can be used to extend the

convergence to the entire real axis; we denote the corresponding limits fG(K) and fH(K).

The continuity of the functions fG(K) and fH(K) (and the corresponding duals), along

with the inequality (3.39) which also survives the limit, guarantee that in the range of

temperatures between the homological and the dual homological regions, Th(G,H) < T <

T ∗h (H,G), the specific homological difference ∆f(K) ≡ fG(K)− fH∗(K) satisfies the strict

inequality

0 < ∆f(K) < R ln 2. (3.51)

Notice that the existence of the limit on the real axis does not guarantee analyticity

which is only guaranteed by condition (b) in a finite vicinity of K = 0. Hereafter, we will

assume that fG(K) is analytic on the interval 0 ≤ K < Kc(G). That is, for any ε > 0, there

exists a simply-connected open complex region Ωε ∈ C which includes the union of the circle

of convergence of HTS for ϕG(K) from Corollary 3.4 and the interval IM , M = Kc(G)− ε,

such that the sum of HTS series ϕG(K) can be analytically continued to Ωε, and the result

coincides with the limit fG(K) on the real axis, K ∈ IM . Further, we will assume that

Kc(G) is the largest value at which this is possible. Such a threshold may arise either (i)

because Kc(G) is a singular point of ϕG(K), e.g., the intersection of the natural boundary

of ϕG(K) with the real axis, or (ii) the limit on the real axis, fG(K), starts to deviate from

the result of the analytic continuation. In either case, this guarantees that the limit on the

real axis, fG(K), has a singular point of some sort at Kc(G).

According to this definition, Tc(G) = J/Kc(G) is the highest-temperature point of

non-analyticity of the limiting free energy density fG(K); fG(J/T ) is analytic for T > Tc(G).

By duality and Theorem 3.1, fG(K) is also analytic at low temperatures. We denote

T ′c(G) ≤ Tc(G) the lowest-temperature singular point of fG(J/T ).
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We make similar assumptions about the properties of the limiting free energy

density fH(K), and use similar definitions of the critical temperatures T ′c(H) ≤ Tc(H) for

fH(J/T ). We will also use the dual functions, fG∗(K) and fH∗(K), which coincide with

fG(K∗) and fH(K∗) up to an addition of analytic functions of K, see Eq. (3.21). The

corresponding lowest- and highest-temperature singular points are exchanged by duality,

e.g., T ′c(H
∗) = T ∗c (H), T ′c(H) = T ∗c (H∗). Convergence of ∆f(Gt, Ht;K) to zero implies

that fG(K) = fH∗(K) for K > Kh(G,H), thus fG(K) is an analytic function in a complex

vicinity of any K > max (K∗c (H),Kh(G,H)). Equivalently,

T ′c(G) ≥ min
(
T ∗c (H) = T ′c(H

∗), Th(G,H)
)
. (3.52)

Once we are assured of convergence of the homological difference, the first obser-

vation is that the limit, ∆f(K), is necessarily a strictly convex function at Th(G,H), and

a strictly concave function at T ∗h (H,G), the singular points which are also the boundaries

of the region separating the dual homological region at small K and the homological region

at large K. On the other hand, both fG(K) and fH∗(K) are concave functions. Therefore,

the convexity at Th(G,H) must originate from fH∗(G,H).

Unfortunately, this does not guarantee that Th(G,H) be a singular point of fH∗(K).

A higher-order phase transition, with a continuous specific heat but discontinuity or diver-

gence in its first or higher derivative, cannot be eliminated on the basis of the general ther-

modynamical considerations alone. Therefore, we formulate Theorem 3.6 below (proved in

Appendix A.7) with a list of independently-sufficient conditions.

Theorem 3.6 Let us assume that any one of the following Conditions is true:

1. The transition at T ′c(G) is discontinuous or has a divergent specific heat;

2. The derivative of ∆f(K) = fG(K)− fH∗(K) is discontinuous at Kh ≡ Kh(G,H), or

the derivative of ∆f(K) is continuous at Kh, but its second derivative diverges at Kh;

3. Summation over homological defects does not increase the critical temperature, Tc(G
∗) ≤

Tc(H).

39



Then the Kramers-Wannier dual of the critical temperatures Tc(H) satisfies

T ∗c (H) ≤ Th(G,H). (3.53)

Remarks: 3.6-1. We are making the same assumptions about the properties of fH(K),

which gives T ∗c (G) ≤ Th(H,G). Combining with Eq. (3.47), we have

Kc(H
∗)−Kc(G) ≥ R ln 2. (3.54)

This implies a strict inequality, Tc(G) > Tc(H
∗), when the homological rank scales ex-

tensively, R > 0, which is superficially similar to the multiplicity of critical points on

nonamenable infinite graphs[57, 55, 56], see Sec. 3.2.2. The difference is that our critical

temperatures correspond to points of non-analyticity of the limiting free energy density in

zero magnetic field; we do not have a direct connection to magnetic transitions.

3.6-2. It is known that stabilizer codes with generators local in ZD and divergent distances

have asymptotically zero rates[74, 75]. This is perfectly consistent with the known fact that

weight-limited models local in ZD have well-defined thermodynamical limits, independent

of the boundary conditions[41]. For example, inequality (3.54) with R = 0 is saturated in

the case of planar self-dual Ising models, where the transition is in the self-duality point,

which is the only non-analyticity point of the free energy density.

3.6-3. Most important application of Theorem 3.6 and Eq. (3.54) are few-body Ising models

that correspond to finite-rate quantum LDPC codes with distances scaling as a power of

the code length n, d ≥ Anα with A,α > 0. Examples are quantum hypergraph-product

(QHP) and related codes[76, 77], and higher-dimensional hyperbolic codes[78]. Because of

higher-order couplings, generic mean-field theory gives a discontinuous transition, which is

the case of Condition 1 in Theorem 3.6. The discontinuous nature of the transition has

been verified numerically for one class of QHP codes[32].

3.6-4. Ising models on expander graphs are known to have mean-field criticality[79, 55]. A

combination of an analytic fH∗(K) and a finite specific heat jump in fG(K) at Kh(G,H)
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is not eliminated by the Conditions 1 or 2. We discuss the important case of Ising models

on hyperbolic graphs in the next subsection.

3.6-5. GKS inequalities imply that any spin average satisfies 〈SA〉G;K ≥ 〈SA〉H∗;K . Physi-

cally, this ought to be sufficient to guarantee Condition 3, but we are not aware of a general

proof.

3.2.3.3 Application to models on hyperbolic graphs

3.2.3.3.1 Bounds for infinite-graph transition temperatures

While the inequalities (3.47) are (3.54) are certainly important results, they address un-

conventionally defined critical points. Both the homological critical point, Th(G,H), and

the end points of the interval of possible non-analyticity, T ′c(G) ≤ Tc(G), are defined for

sequences of Ising models without boundaries. They are not immediately related to the crit-

ical temperatures T f
c ≤ Tw

c defined on related infinite systems in terms of extremal Gibbs

states with free/wired boundary conditions.

To bound these critical temperatures, consider a sequence of pairs of weakly dual

Ising models which satisfy the conditions of Theorems 3.1 and 3.2 with the asymptotic rate

R > 0, with an additional assumption that matrices Gt and Ht are incidence matrices of

graphs, that is, they have uniform column weights ` = `∗ = 2. In addition we assume that

the graph sequences converge weakly to a pair of infinite transitive graphs, which we denote

G = (V, E) and H = (F , E), where F is the set of faces in G. Weak convergence is defined

as follows: for some chosen vertex 0 ∈ V, there is an increasing sequence ρt ∈ N such that

a ball B(0, ρt) ⊂ G of radius ρt centered at 0, is isomorphic to a ball in Gt.

These conditions necessarily imply that matrices Gt and Ht describe mutually-dual

locally-planar graphs, and also that the graphs G and H are mutually dual.

Examples of such a sequence are given by sequences of finite hyperbolic graphs

constructed[80, 19] as finite quotients of the regular {f, d} tilings of the infinite hyperbolic

plane, H(f, d), with df/(d + f) > 2. A graph in such a sequence gives a tiling of certain
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surface, with d regular f -gons meeting in each vertex. Hyperbolic graphs have been ex-

tensively discussed in relation to quantum error correcting codes[81, 82, 83, 84, 85, 86, 39].

Given such a finite locally-planar transitive graph with n edges, the quantum CSS code is

a surface code[87, 6]; it is constructed from the vertex-edge and plaquette-edge incidence

matrices, G and H respectively. Here H is also a vertex-edge incidence matrix of a dual

graph, which corresponds to the dual tiling {d, f} of the same surface. Such a code has the

minimal distance scaling logarithmically with n, and it encodes k = 2g = 2 + nR qubits

into n, where g is the genus of the surface and R = 1− 2/d− 2/f is the asymptotic rate.

An extremal Gibbs ensemble on any infinite locally planar transitive graph can be

characterized by the average magnetization m, the asymptotic correlation decay exponents

α [Eq. (3.32)] and ᾱ ≥ α [Eq. (3.33)], and similarly defined asymptotic domain wall tensions

τ ≡ τ(G;K) = inf
{i,j}⊂F

τe(i,j), τ̄ ≡ τ̄(G;K) = lim sup
dij→∞

τe(i,j), (3.55)

where e(i, j) is a defect that connects a pair of frustrated plaquettes i and j. Generally,

ᾱ = α = 0 whenever spontaneous magnetization m is non-zero. A non-zero magnetization

on a locally planar transitive graph also implies τ > 0. [This is a generalization of the result

from Ref. [44], see Appendix A.8.] Respectively, electro-magnetic duality (3.30) implies

Statement 3.7 Let G and H be a pair of infinite mutually dual locally-planar transitive

graphs. Denote T f
c (G) and Tw

c (H) the critical temperatures of the extremal Gibbs ensembles

for Ising models on G and H with free and wired boundary conditions, respectively. Then

these temperature are Kramers-Wannier duals of each other,

T f
c (G) = [Tw

c (H)]∗. (3.56)

For each model, in the ordered phase, T < Tc, ᾱ = 0 and τ > 0, while in the disordered

phase, T > Tc, α > 0 and τ̄ = 0.

We can now prove the following:

42



Theorem 3.8 For any regular {f, d} tiling of an infinite hyperbolic plane, fd/(f + d) > 2,

the critical temperatures of the Ising model with free and wired boundary conditions, T f
c =

1/K f
c and Tw

c = 1/Kw
c , satisfy

K f
c −Kw

c ≥ R ln 2, R = 1− 2/f − 2/d. (3.57)

Proof. For any regular {f, d} tiling G ≡ H(f, d) of the hyperbolic plane, consider a sequence

of finite mutually dual locally planar transitive graphs Gt and Ht, where the sequence Gt

weakly converges to G. The corresponding sequence of incidence matrices satisfies the

conditions of Theorems 3.1 and 3.2 with the asymptotic rate R > 0. Transitivity implies

that the free energy density converges in a finite circle around K = 0, see Remark 3.4-2.

While we are not sure of convergence for larger K, Lemma 3.5 guarantees the existence

of a subsequence of graphs, and corresponding pairs of incidence matrices Gt, Ht, t ∈ N,

such that the sequences of free energy densities f(Gt;K) and f(Ht;K) converge. For

such a sequence, the specific homological difference ∆f(Gt, Ht;K) also converges, which

guarantees ∆f < R ln 2 outside of the dual homological phase, K > K∗h(H,G). Such an

inequality implies the existence of an ε > 0 such that ∆f(Gt, Ht;K) < R ln 2 − ε/2 at all

sufficiently large t. In turn, Eq. (3.44) implies that the average defect tension is bounded

away from zero, τ̄0(Gt) ≥ ε.

While defects that contribute to the average τ̄0(Gt) have large weights, we notice

that the free energy increment (3.26) associated with an arbitrary defect is subadditive, see

Eq. (3.31). Thus, a large-weight defect can be separated into smaller pieces; subadditivity

(3.31) ensures that max(τe1 , τe2) ≥ τe1+e2 as long as de1+e2 = de1 + de2 . Thus, if we start

with a homological defect with the tension τc ≥ ε > 0, at each division we can select a

piece with the tension not smaller than ε. Moreover, since homological defects are cycles

on the dual graph, we can first separate c into simple cycles of weight not smaller than the

corresponding CSS distance which increases with t, and then cut such a cycle into pieces to

obtain a defect compatible with the definition (3.55).

Further, GKS inequalities imply that tension τe is monotonously non-decreasing
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when individual bonds’ coupling is increased. Thus, for the same defect e = e(i, j) con-

necting frustrated plaquettes i and j on Gt and on the corresponding planar subgraph with

wired boundary conditions, τe(i,j)(G
w
t ;K) ≥ τe(i,j)(Gt;K) ≥ ε. Subadditivity construction

in the previous paragraph guarantees the existence of such pairs for any t, and that pairs

separated by arbitrarily large dual-graph distances dij can be chosen with t sufficiently large.

Definition (3.55) then gives τ̄ ≥ ε > 0 for the Ising model with wired boundary conditions

on the infinite graph G, at temperatures below the dual homological point, K > K∗h(H,G).

Necessarily, Kw
c (G) ≤ K∗h(H,G).

Duality (3.56) also ensures that K f
c(H) ≥ Kh(G,H); inequality (3.47) gives Eq.

(3.57).

Remarks: 3.8-1. An interesting fact about systems with finite rates R > 0 is that

electro-magnetic duality (3.30) does not guarantee that area-law exponent αm(G;K) be zero

at low temperatures. While “area” is the defect distance dm, the smallest number of bonds

in an equivalent defect, the “perimeter” is the number of spins involved in the product, the

syndrome weight wgt s, where s = mGT . Standard area/perimeter law argument assumes

that perimeter can be parametrically smaller than the area; this is not necessarily true for

systems with non-amenable Tanner graphs.

3.8-2. Even in the case of a pair of locally planar graphs, a linear domain wall e connecting

a pair of frustrated plaquettes may have a large perimeter in the dual model, because of the

additional spins corresponding to the homological defects. Any such defect that crosses the

domain wall (changes the sign of the corresponding spin average) increases the perimeter

in the dual model. Such additional defects are absent with free boundary conditions as

considered in Theorem 3.8.

3.2.3.3.2 Numerical results

In addition to analytical bounds presented above, we also analyzed numerically Ising models

on several finite transitive hyperbolic graphs constructed[80, 19] as finite quotients of the

regular {5, 5} tilings of the infinite hyperbolic plane. We used canonical ensemble simula-
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tions with both local Metropolis updates[88] and Wolff cluster algorithm[89], to compute

the average magnetization m = 〈M〉/N , susceptibility χ = (〈M2〉 − 〈M〉2)/NT , average

energy per bond ε ≡ 〈E〉/n, specific heat C = (〈E2〉 − 〈E〉2)/nT 2, and the fourth Binder

cumulant[90] U4 = 1 − 〈S4〉/(3〈S2〉2). Here M = |
∑

i Si| is the (magnitude of the) total

magnetization, E = −
∑
〈ij〉 SiSj is the total energy, N and n respectively denote the num-

ber of spins and bonds, and 〈·〉 denotes the ensemble average. For Metropolis simulations,

each run consisted of 128 cooling-heating cycles, with 1024 full graph sweeps at each tem-

perature, with additional averaging over 64 independent runs of the program. The number

of sweeps at each temperature was sufficient to make any hysteresis unnoticeable. For Wolff

algorithm simulations, each run consisted of 16 cooling-heating cycles, with 4096 cluster

updates at each temperature, and additional averaging over 64 independent runs of the

program. The resulting averages are shown in Figs. 3.5 to 3.8, where lines (dots) show the

data obtained with cluster (local Metropolis) updates, respectively. The results obtained

using the two methods are very close.

The parameters of the graphs used in the simulations are listed in Tab. 3.1. The

first three graphs we obtained from N. P. Breuckmann[39]. We generated the remaining

graphs with a custom gap[91] program, which constructs coset tables of freely presented

groups obtained from the infinite von Dyck group D(5, 5, 2) = 〈a, b|a5, b5, (ab)2〉 [here a and

b are group generators, while the remaining arguments are relators which corresponds to

imposed conditions, a5 = b5 = (ab)2 = 1] by adding one or more relator obtained as a

pseudo random string of generators, until a finite group is obtained. Given such a finite

group D, the vertices, edges, and faces are enumerated by the right cosets with respect

to the subgroups 〈a〉, 〈ab〉, and 〈b〉, respectively. The vertex-edge and face-edge incidence

matrices G and H are obtained from the coset tables. Namely, non-zero matrix elements are

in positions where the corresponding pair of cosets share an element. Finally, the distance

d of the CSS code Q(G,H) was computed using the random window algorithm, which has
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Figure 3.5: (Color online) Average magnetization (top) and Binder’s fourth cumulant (bot-
tom) as a function of temperature, for transitive graphs listed in Tab. 3.1 with minimal
distances as indicated. Dashed lines show the data for the larger d = 10 graph. Lines show
the data obtained using cluster updates; points show the data from simulations using local
Metropolis updates. Vertical line shows the critical temperature Tc(C) extrapolated from
the positions of the specific heat maxima, see Fig. 3.9. While both sets of data do cross
near Tc(C), there is significant drift with increased graph size. In addition, the curves are
near parallel which makes reliable extraction of the critical temperature difficult.
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up of the plots near Tc(C).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.5  2  2.5  3  3.5  4  4.5  5

T c
(C

)

d=5

d=6
d=8

d=10
d=11

d=12

Sp
ec

ifi
c 

H
ea

t 
C

T

 0.7

 0.8

 3.7  3.8

d=10

d=11

d=12

T
 0.7

 0.8

 3.7  3.8

d=10

d=11

d=12

T
 0.7

 0.8

 3.7  3.8

d=10

d=11

d=12

T
 0.7

 0.8

 3.7  3.8

d=10

d=11

d=12

T
 0.7

 0.8

 3.7  3.8

d=10

d=11

d=12

T

Figure 3.7: (Color online). As in Fig. 3.5 but for the specific heat. Inset: fitting for maxima.
Data points in the inset are from the Wolff cluster calculations, while the lines are obtained
using non-linear fits with general quartic polynomials of the form y = ym + a2(x− xm)2 +
. . .+a4(x−xm)4, which give the coordinates of the maximum (xm, ym) nearly independent
from the rest of the coefficients.
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Figure 3.8: (Color online). As in Fig. 3.5 but for the susceptibility χ(T ), plotted in semi
logarithmic scale. The vertical line shows the critical temperature extrapolated from the
susceptibility maxima, see Fig. 3.9.

the advantage of being extremely fast when distance is small[92, 93]. With the exception

of the graph with n = 7440, the graphs used have the smallest size for the given distance.

vertices r edges n homology rank k CSS distance d

32 80 18 5
60 150 32 6
360 900 182 8
1920 4800 962 10
2976 7440 1490 10
8640 21600 4322 11
12180 30450 6092 12

Table 3.1: Parameters of the graphs used in the simulations.

The obtained plots of magnetization and Binder’s fourth cumulant are shown in

Fig. 3.5; the corresponding curves on largest graphs are nearly indistinguishable, consistent

with convergence at large n. We note that the crossing point in the Binder’s fourth cumulant

show a significant drift with the system size, see lower plot on Fig. 3.5. This is not surprising,

given that the original scaling analysis[90] only applies to locally flat systems, whereas the

hyperbolic graphs have a uniform negative curvature. On both plots, the curves for larger

system sizes are near parallel to each other, which makes the identification of the phase

transition point from the corresponding crossing points difficult.
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Fig. 3.6 shows energy per bond as a function of temperature. To illustrate the

properties of the specific homological difference, see Theorems 3.1 and 3.2, we also plot the

energy per bond of the exact dual models obtained from the same data using ε∗(K∗) =

− sinh(2K) ε(K) − cosh(2K), derived from Eq. (3.21). The plot shows that as the size

of the graph increases, the difference between the energies ε∗(T ) and ε(T ) decreases with

increasing graph size both above Tc(C) and below the corresponding Kramers-Wannier

dual, T ∗c (C), while a finite difference remains for the intermediate temperatures. This is

consistent with the identification T ∗h = Tc(C). The area between the 2 curves converges to

ln 2/5 asymptotically, which supports the result in Theorem 2.

The plots for specific heat C(T ) (Fig. 3.7) and magnetic susceptibility χ(T ) (Fig. 3.8)

show well developed maxima which become sharper and higher with increasing system sises.

Notice that a unique point of divergence of the specific heat necessarily coincides with the

dual homological temperature T ∗h .

We obtained the positions of the specific heat and magnetic susceptibility maxima

by fitting the data in the vicinity of the corresponding maxima with quartic polynomials

as explained in the caption of Fig. 3.7. The resulting positions of the maxima are plotted

in Fig. 3.9 as a function of x = 1/n1/2. The error bars of the positions of the maxima

have errors in the third digit; the observed minor scattering of the data is a feature of the

corresponding graphs.

While the size dependence is not monotonic in the case of susceptibility maxima,

the data points for larger graphs show approximately linear dependence on x. Linear

extrapolation to infinite size (x = 0) gives Tc ≈ 3.872 ± 0.003 for both sets of data. This

value is consistent with the lower bound (3.54) for the infinite graph with wired boundary

conditions, which gives in the present case Tc ≥ 2.668. In comparison, the transition for a

square-lattice Ising model is in the self-dual point, Ts.d. = 2/ ln(1 +
√

2) ≈ 2.269.

We note that even though we expect Ising model on hyperbolic graphs to have

mean field criticality, conventional finite size scaling theory does not apply here. In partic-
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Figure 3.9: (Color online). Extrapolation of the specific heat and susceptibility maxima
to infinite system size. Red squares (blue circles) show the positions of the specific heat
(susceptibility) maxima extracted from the data on Figs. 3.7 and 3.8, respectively for graphs
of different size, plotted as a function of 1/n1/2, where n is the number of edges in the
corresponding graphs, see Tab. 3.1. Solid (dashed) lines are obtained as linear (quadratic)
fits to the data, where only the four leftmost points were used for the linear fits. This results
in the extrapolated critical temperature values as indicated.

ular, this is seen from the absence of the well defined crossing point in the data for Binder’s

fourth cumulant, see the lower plot on Fig. 3.5. Therefore, we had to experiment on how to

extrapolate the positions of the maxima to estimate the critical temperature. The scaling

with x = 1/n1/2 was chosen since it gives near identical estimates for the critical temper-

atures from the maxima of C(T ) and χ(T ), cut off at different maximum sizes (we tried

dmax = 8 and above).

This kind of scaling of the critical region size with the system size n can be obtained

from the mean-field critical exponent for the correlation length νMF = 1/2 and the value of

the critical dimension Dc = 4. Namely, in dimension D > Dc, above the critical dimension,

the system size L no longer serves as the cut-off parameter; it is replaced with the system

volume n. With the crossover at the critical dimension, we write n1/Dc ∼ L ∼ ∆T−ν , which

gives for the width of the critical region ∆T ∼ n1/(DcνMF), with the exponent 1/(DcνMF) =

1/2. In the case of percolation where the critical dimension is six, the same argument gives

the exponent of 1/3, which recovers the correct scaling for percolation on large random

graphs and transitive hyperbolic graphs[94, 95, 96, 97].

50



We also note that the data shows good convergence with increased system size,

without the need for the subsequence construction described in Sec. 3.2.3.2.

3.2.4 Discussion

3.2.4.1 Summary of the results

We considered pairs of weakly dual Ising models with few-body couplings, defined via

sequences of degree-limited bipartite coupling graphs, with the focus on the case where the

rank k of the first homology group of the corresponding two-chain complex scales extensively

with the system size. This construction is needed to avoid introducing the boundaries,

which are known to affect the position of the critical point in non-amenable graphs, and

also to connect to applications, e.g., in quantum information theory, where results for large

but finite systems are of interest. Here, extensive scaling of k corresponds to quantum

error correcting codes with finite rates R > 0. Important examples include two-body Ising

models on families of finite transitive hyperbolic graphs which weakly converge to regular

{f, d}-tilings of the hyperbolic plane with df/(d+ f) > 2; the corresponding limiting rates

R = 1− 2/d− 2/f are non-zero.

Our main technical result is Theorem 3.1, which guarantees the existence of a

low-temperature, low-disorder region where homological defects are frozen out—in the ther-

modynamical limit they have no effect on the free energy density. Duality guarantees the

existence of a high-temperature phase where extensive homological defects have near zero

free energy cost, see Theorem 3.2. At all temperatures below this phase, the average defect

tension is non-zero, see Eq. (3.44).

With the help of duality and a known bound on high-order cumulants, we estab-

lished the absolute convergence of both the high- and low-temperature series expansions of

the free energy density in finite regions which include vicinities of the real temperature axis

around the zero and infinite temperatures, respectively. We used a subsequence construc-

tion to ensure the convergence of free energy density at all temperatures, and defined the
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critical temperatures as the real-axis points of non-analyticity of the limiting free energy

density. For these critical temperatures, we derived several inequalities, in particular, an

analog of multiplicity of the critical points, which guarantees that with R > 0, critical point

of the free energy density is affected by the summation over the topological defects.

As an application of obtained bounds, we proved the multiplicity of phase transi-

tions on all regular tilings H(f, d) of the infinite hyperbolic plane, df/(d+ f) > 2.

We also simulated the phase transition on a sequence of self-dual {5, 5} transi-

tive hyperbolic graphs without boundaries, with up to nmax = 30450 bonds numerically.

Our data shows good convergence with increasing system sizes, with a single specific heat

maximum which sharpens with the increasing system size. If the corresponding position

Tc(C) ≈ 3.872±0.003 is the only singularity of the free energy, then necessarily it coincides

with the dual homological point, T ∗h = Tc(C).

3.2.4.2 Open questions

1. The rightmost point of the homological region established in Theorem 3.1 on the p-T

plane has the same value pmax as can be also obtained using the energy-based arguments[98],

which apply at T = 0. Either of these results also implies[36, 31] that the portion of the

Nishimori line at p < pmax is in the homological region. It should be possible to establish

the existence of a homological region in the intermediate temperature points, but we could

not find the corresponding arguments.

2. The proof of Statement 3.3 is based on overly generic bounds[69] for cumulants of a

sum of random variables with a given dependency graph. In the case of the Ising model,

it should be possible to construct a stronger lower bound for absolute convergence of the

HTS. We expect that the same bound as in Theorem 3.2 should apply. Such a bound would

be consistent with that from high-temperature series expansions for spin correlations[99],

and it would also be consistent with the analysis of the higher-order derivatives of free

energy[100], as well as the naive expectation that Tc(G) = T ∗h (H,G).

3. In addition to the case in Remark 3.4-2, the infinite subsequence construction of Corollary
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3.4 is also not needed when the sequence of Tanner graphs has a well defined distributional

limit (Benjamini-Schramm or “left” convergence[70, 71, 72]). Important examples are given

by the Tanner graphs of hypergraph-product and related codes[76, 77] based on specific

families of sparse random matrices. For such sequences, it would be nice to establish the

conditions for convergence of the free energy density or spin averages for all K > 0, to

supercede the subsequence construction of Lemma 3.5.

3.3 Combinatorial solution for Ising models on hyperbolic

plane

First introduced by Kac and Ward [101], the combinatorial method for solving Ising models

on a planar graph is well known [102]. We generalized this method to RBIM on hyper-

bolic lattices with open boundary condition to find the partition functions and correlation

functions.

Given a finite planar graph G with set of vertices V (G) and edges E(G), the

partition function of a spin glass Ising model without external field on this graph is defined

as

Z ≡
∑

{Sv=±1}

∏
e∈E

eβJeSe1Se2 (3.58)

where β is the inverse temperature, e1 and e2 denote the two vertices of the edge e, Je is

-1 for flipped bonds and 1 for other bonds. The spin correlation of two spins A and B is

defined as

〈SASB〉 ≡
ZAB
Z

(3.59)

where ZAB is defined to be

ZAB ≡
∑

{Sv=±1}

SASB
∏
e∈E

eβJeSe1Se2 (3.60)

To calculate the partition function and the correlation function on the hyperbolic

graphs, we start with finding the coordinates of the vertices on the Poincare disk model and
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the direction of each oriented edge e(u, v). Denote o(e) = u and t(e) = v to be the origin

and the terminal vertex of e respectively. A 2|E| by 2|E| matrix T , where columns or rows

correspond to oriented edges, is defined as

T (e, e′) =


tanh(β), case 1

i tanh(β), case 2

−i tanh(β), case 3

0, otherwise

(3.61)

where in cases 1,2,3, they all require that t(e) = o(e′) and e 6= ē′, where ē′ is the reverse of

e′. The differences are: Case 1: e and e′ are on different sides of the horizontal line that

passes through their common vertex, Case 2: e and e′ are on the same side and it makes a

counter-clockwise rotation, Case 3: e and e′ are on the same side and it makes a clockwise

rotation. They are illustrated in Fig. 3.10. In the case one of the edges or both of them

are horizontal, we may assume that the horizontal line is rotated counter-clockwise by an

infinitesimal angle, so that it belongs to one of the 3 cases.

Notice that this is different from the convention that the elements T (e, e′) =

e
i
2
w(e,e′) tanh(β), where w(e, e′) is the counterclockwise rotation angle between the two

vectors [102]. But it retains the feature that any closed loop without self-intersection gives

a product of -1, which is the reason this method works. In numeric calculations, as the

number of edges in the loops becomes large, the errors in calculating the angles may ac-

cumulate, which may affect the accuracy of the result. Our convention has the advantage

that there is no need to calculate the angles, which may help increasing the accuracy of the

numerical calculation.

Define matrix

Te ≡ IeTIe (3.62)

where Ie is a diagonal matrix that has element i for the edges of both orientations that

correspond to the flipped bonds (Je = −1) and element 1 elsewhere on the diagonal.

Finally, the matrix Ke is defined as

Ke ≡ UJ(I − Te) (3.63)
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Figure 3.10: Different cases for the elements in the matrix T .
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where I is the identity matrix, J(e, e′) = δ(ē, e′), U is diagonal and U(e, e) = −1 if e has

an angle ∈ (0, π] with respect to horizontal +x direction and 1 otherwise. It turns out that

Ke is an anti-symmetric matrix, and the Pfaffian of Ke is related to the partition function

as the following:

Z = (2|V | cosh|E|(β))(±Pf(Ke)) (3.64)

where the sign before Pf(Ke) is chosen to guarantee that Z is positive.

To find the correlation function of two spins SA and SB, first we need to find a

path connecting them, all paths are equivalent in the result. The correlation function is

given by

〈SASB〉 = (−1)x
Pf(Kem)

Pf(Ke)
(3.65)

where Kem ≡ UJ(I − Tem), Tem ≡ IeImTImIe, Im is a diagonal matrix depending on the

path:

Im(e, e) =

{
tanh−1 β if e or ē is on the path

0 otherwise
(3.66)

and x is the number of flipped bonds on that path.

It has been shown that the complexity of computing the Pfaffian of an n×n matrix

scales with n3/3 [103]. While the Monte Carlo simulations of RBIMs suffer from the rugged

energy landscapes, where the configuration can be trapped in many local minima for a long

time, the combinatorial solution is an alternative method which gives the free energy and

correlation function directly.

In the case of hyperbolic lattices on a closed surface, this method requires summa-

tion over all the spin structures [102], which are the non-trivial cycles in this case. Since the

spin structures grows exponentially with the size of the lattice, it is impractical to perform

the calculation on large hyperbolic graphs, thus other approaches are needed.
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Chapter 4

Qudit Quantum Error Correcting

Codes and the Potts Model

4.1 Introduction

4.1.1 Classical q-ary code

A q-ary classical error correcting code (n,K, d)q is a collection of K strings of length n,

using an alphabet with q symbols. Each string (called a codeword) represents a different

message. Any two different codewords must have at least d symbols different, where d is

the distance of the code. Such a code can detect up to d − 1 errors in any message, and

correct up to b(d− 1)/2c errors.

4.1.2 Linear codes over Fq

In a linear code, a linear combination of any codewords is also a codeword. Such property

requires that the alphabet forms an algebraic structure closed under addition and multipli-

cation. When q is a power of a prime, the elements can form a Galois field Fq, where there

is an identity element “1” and each element a has a unique multiplicative inverse a−1 such

that a ∗ a−1 = 1. The vector space of a length-n linear code is a subset of Fnq . A generator
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matrix G is a matrix whose rows are the basis of the code. The number of codewords that

G can encode is qk, where k = rank(G). The distance of the code, d, is the minimum

Hamming weight of the codewords. Such a code is called a [n, k, d]q linear code. A parity

check matrix H is the exact dual of the generator matrix G,

GHT = 0, rank(G) + rank(H) = n.

In the presence of errors, the received vector x may be different from its original value. By

multiplying the check matrix, the result is called a syndrome, s = HxT . A codeword or a

non-detectable error will result in a zero syndrome, while other errors result in a non-zero

syndrome.

4.1.3 Linear codes over Zq

For a composite q, here we consider codes over commutative ring Zq, where addition and

multiplication are defined mod q. Such a code (denoted by C) is a subset of Znq . The

dimension of C is the number of rows in the minimal generating set forming the generator

matrix G (the number of rows after removing the rows in G that can be written as linear

combinations of the other rows, where the rows left are not necessarily linear independent).

Then, any linear combination of rows of G is a codeword in C. The distance of the code is

the minimum weight of a non-zero codeword.

A check matrix H of a linear code C is a generator matrix of the dual code

C⊥ = {x ∈ Znq | 〈x, c〉 = 0 ∀ c ∈ C}, where 〈, 〉 is the inner product of the two vectors in Zq.

4.1.4 Smith normal form

The Smith normal form of a matrix is a unique diagonal matrix which can be obtained

by multiplying invertible matrices on the left and right of the original matrix [104]. In

most cases the entries of the matrices are defined in a principal ideal domain (PID), but

the concept can be generalized to any principal ideal ring (PIR) [105, Theorem 15.9]. For

example, a code C over Zq is a free module over a PIR, so the generator matrix G has a
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Smith normal form G = V DU , where detV = ±1 and detU = ±1 and D has the form:

D =



d1 0 . . . 0 . . . 0
0 d2 . . . 0 . . . 0
...

...
. . .

...
. . .

...
0 0 . . . dk . . . 0
0 0 . . . 0 . . . 0
...

...
. . .

...
. . .

...
0 0 . . . 0 . . . 0


where di are integers called the invariants and 0 < d1 ≤ d2 ≤ · · · ≤ dk < q, each di is a

factor of di+1, and dk divides q. The number of codewords K = q
d1
· qd2 · · · · ·

q
dk

.

4.1.5 Dual matrix over Zq

The dual matrix G̃ of a matrix G is a matrix such that any vector v that satisfies GvT = 0

is a linear combination of the rows of G̃. If we write the generator matrix G in Smith normal

form G = V DU , we find the dual of D to be

D̃ =



0 . . . 0 q
dl+1

0 . . . 0 0 . . . 0

0 . . . 0 0 q
dl+2

. . . 0 0 . . . 0
...

. . .
...

0 . . . 0 0 . . . . . . q
dk

0 . . . 0

0 . . . 0 0 . . . . . . 0 1 . . . 0
...

. . .
...

0 . . . 0 0 . . . . . . 0 0 . . . 1
0 . . . . . . . . . . . . . . . . . . . . . . . . 0
...

...
0 . . . . . . . . . . . . . . . . . . . . . . . . 0


assuming d1, . . . , dl = 1 and dl+1, . . . , dk 6= 1.

Since DD̃T = 0 and U is invertible, we find that the dual matrix of G has the

form G̃ = MD̃(U−1)T , where M is an arbitrary matrix that is invertible over Zq.

4.1.6 q-ary LDPC codes

In classical binary error correcting codes, low-density parity-check (LDPC) codes are known

for their reliability and high performance [106]. They are defined as to have a sparse check
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matrix. A number of ensembles of random LDPC codes have been proposed [107], where

the row weight and/or column weight are upper bounded. An (l,m)-regular LDPC code

has a check matrix with column weight l and row weight m.

Similarly, a LDPC code can be defined over Zq. The code dimension depends on

its Smith normal form. We performed numeric experiments of finding the Smith normal

form of random (l,m)-regular matrices of dimension r by n, where r/n < 1. Numerical

results show that with high likelihood their Smith normal form invariants are all 1 for a

large n.

4.1.7 Distance distributions of q-ary LDPC codes

The following result on the code distance function N(l) of an (n, j, k) ensemble of (0, 1)

check matrices over Zq is given by Gallager:

Theorem 4.1 (Theorem 5.1 of Ref.[106]) Define the ensemble of (n, j, k) codes as the

ensemble resulting from random permutations of the columns of each of the bottom j − 1

submatrices of a (n, j, k) parity-check matrix with equal probability assigned to each permu-

tation.

For each code in an (n, j, k) ensemble with alphabet size q, the number N1(l) of

sequences of weight l that satisfies any one of the j blocks of n/k checks is bounded by

N1

[n
k
µ′q(s)

]
≤ exp

n

k
[µq(s)− sµ′q(s) + (k − 1) ln q]

where s is an arbitrary parameter and µq(s) is defined by

µq(s) = ln q−k
{

[1 + (q − 1)es]k + (q − 1)(1− es)k
}

µ′q(s) =
dµq(s)

ds

where an (n, j, k) parity-check matrix is a matrix of n columns that has j ones in each

column, k ones in each row, and zeros elsewhere.

Following this result, it can be shown that the minimum distance typical of most

codes in the ensemble increases linearly with n. See [106, p.51,17-18] for details.
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For LDPC codes over Fq, consider an ensemble of matrices in the following, which

is the q-ary generalization of ensemble C in Ref [107],

Definition 4.2 Ensemble: Matrix H is chosen with uniform probability from the ensemble

of m× n Fq-matrices with column Hamming weights equal l.

Let ∆l,α
n stand for the ensemble of such matrices, where α ≡ m/n, and let ∆l,α

n,θ represent

the ensemble of matrices that is orthogonal to a codeword of weight w, where θ ≡ w/n. Let

pl,αn,θ ≡
|∆l,α

n,θ|

|∆l,α
n |

Theorem 4.3 The distance distribution of the ensemble of matrices (Definition 4.2) is

given by

lim
n→∞

1

n
ln pl,αn,θ = −α ln q + max

η∈[0,1− 1
q

]

{
αHq(η) ln q + θl ln

(
1− q

q − 1
η

)}
and the maximum is at the only solution for η of(

1− 1

q
− η
)(

ln
1− η
η

+ ln(q − 1)

)
=
θl

α

where Hq(x) is the q-ary entropy function,

Hq(x) ≡ x logq(q − 1)− x logq x− (1− x) logq(1− x).

The proof is given in Appendix B.1.

4.2 q-ary quantum codes and the Potts gauge glass model

4.2.1 Qudit and error correction

A qudit is an isolated quantum system that has q different states available, described

as vectors in a q-dimensional Hilbert space Hq. Denote the orthonormal basis states as

|0〉 , |1〉 , |2〉 , . . .
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, |q − 1〉. The generalization of X and Z Pauli operators for such a system can be defined

as:

Z |j〉 = e
i 2πj
q |j〉 , X |j〉 = |j + 1 (mod q)〉 , j = 0, 1, . . . , q − 1 (4.1)

which are given the names “clock” and “shift” operators.

To simplify the notation, we will omit the “mod q” in the following, since all

arithmetic on the quantum states or on the spin values of the corresponding statistical

mechanical models are over Zq.

Qudits can be used as the basic unit of quantum computations just like qubits,

except that they have q quantum states instead of 2.

Due to random noise and interactions with the environment, the quantum state of

a single qudit may change randomly, and the information will be lost. Qudit error correction

is to encode a small number of logical qudits into a large number of physical qudits, and

to use quantum circuits to attempt to return the quantum state of the system, which went

through a noisy channel, back to the original logical state, thus correcting the error. If the

system is in a different logical quantum state afterwards, a logical error happens and the

error correction fails.

4.2.2 Stabilizer codes and CSS codes on qudits

The space of n qudit quantum states is the product of their Hilbert spaces, H⊗nq . The

n-qudit Pauli operators are tensor products of single-qudit clock Zi and shift Xi operators

in different powers, i ∈ {1, 2, . . . , n}; they form an n-qudit Pauli group Pn. Let Vs be a

subspace of H⊗nq . If P is a subgroup of Pn such that every element of Vs is unchanged

under the action of any element in P, P is called a stabilizer of Vs.

In the stabilizer group, the operators must commute with each other so that the

measurements don’t change the state of codewords, which are the common eigenstates of

all of the operators.
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An error of stabilizer codes is a Pauli operator

E ≡ ωmXe1
1 X

e2
2 . . . Xen

n Z
en+1

1 . . . Ze2n2n

where ω ≡ i2π
q . It can be mapped to a length 2n vector e = (e1, e2 . . . e2n) up to a phase.

An error is detectable iff it anticommutes with any of the stabilizer generators.

An error that is in the stabilizer group is not detectable and doesn’t need to be corrected,

since it doesn’t change the logical quantum state. Errors that are different by a stabilizer

operator are called degenerate, since they act identically on the code.

An operator that commutes with the stabilizer generators and changes the logical

quantum state is a codeword, represented by a length 2n vector c.

An n-qudit quantum stabilizer code Q ((n,K, d))q is a K-dimensional subspace of

H⊗nq , a common +1 eigenspace of all operators in the code’s stabilizer, an Abelian group

S ⊂Pn such that ωj /∈ S for j ∈ {1, . . . , q− 1}. When q is prime, it is an [[n, k, d]]q code

where k is the number of logical qudits it encodes, K = qk. For general q,

K =
qn

|S |
(4.2)

where |S | is the size of the stabilizer group S [108].

The distance of the code, d, is the minimum of the weights of the undetectable

errors outside of the stabilizer group. Any non-trivial error of weight up to d − 1 can be

detected, and those that have weights up to b(d− 1)/2c can be corrected.

The generator matrix G consists of rows that correspond to stabilizer generators.

For any operator on an n-qudit system O(a, b) ≡ Xa1
1 Xa2

2 . . . Xan
n Zb11 Z

b2
2 . . . Zbnn , we see that

O(a, b)O(c,d) = ωb·c−a·dO(c,d)O(a, b). So two operators O(a, b) and O(c,d) commute

iff b · c− a · d = 0. We may separate the parts of Pauli X and Z operators in G and write

G = (GX ,GZ)

where the commutativity condition requires that GXGTZ − GZGTX = 0.

Degenerate errors are those that are different by a linear combination of rows of

G, e′ = e+αG, where α is an arbitrary vector.
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Vectors of codewords are those that satisfy the commutativity requirement with

all the rows in the generator matrix, but cannot be written as a linear combination of rows

of the generator matrix. Two codewords are equivalent if they differ by a linear combination

of the rows of the generator matrix.

A subclass of the stabilizer codes, the qudit CSS codes, have the property that

the stabilizer operators only contain powers of Pauli X operators or powers of Pauli Z

operators, in which case we can treat X and Z errors separately. Thus in CSS codes, we

use a length n vector to represent an error e or a codeword c, and the generator matrix G

has the form

G = diag(GX , GZ)

Since the stabilizer generators consist of only X or Z operators, the commutativity require-

ment can be simplified, namely, OX(a) and OZ(b) commute iff a · b = 0. So the generator

matrices satisfy GXG
T
Z = 0.

In the following sections, we only consider CSS codes, so X errors and Z errors

can be treated separately, and we use G to represent GX or GZ since they work in the

same fashion. We specifically concentrate on the cases where matrices GX and GZ have

all Smith normal form invariants equal to one. The advantage is that in this case the code

contains an integer number k of logical qudits. Indeed, with all SNF invariants equal to

one, the matrices GX and GZ have well defined ranks equal to the numbers of non-zero

invariants. Denoting the ranks as rX and rZ , respectively, Eq.(4.2) gives K = qn−rX−rZ ,

thus k = n− rX − rZ .

4.2.3 Families of quantum LDPC codes over Zq

Quantum LDPC codes for qubits have also been studied extensively, since the low weight of

the stabilizer generators are important for low complexity and high performance of quantum

error correction [109]. Here we study q-ary generalizations of such codes. Some examples

include:
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• Quantum codes on a quotient of G(4) graph, which is a square lattice on a plane with

periodic boundary condition, known as the toric code [87]. The dimension of the code

is k = 2, n = L2, d = L, where L is the side length of the square lattice.

• Quantum codes on a quotient of G(5) graph, which is a graph of pentagon tiling that

has 5 pentagons around each vertex with proper boundary conditions. In general,

we denote G(m) as a regular graph of m-side polygon tiling that has m polygons

around each vertex. For m ≥ 5, the graph G(m) is on a hyperbolic plane. Codes with

dimension k = (1− 4/m)n+ 2 exist on such quotient graphs [81].

• Quantum hypergraph-product (QHP) codes [76], which is a CSS code generated by

generator matrices Gx = (I ⊗H2, H1 ⊗ I) and Gz = (HT
1 ⊗ I,−I ⊗HT

2 ), where H1

and H2 are sparse check matrices over Zq.

• Higher-dimensional quantum hypergraph-product codes [110], a generalization of the

QHP codes and all families of toric codes on m-dimensional hypercubic lattices.

4.2.3.1 Qudit toric and surface code

Similar to the construction of binary toric code, we can construct a q-ary toric code. The

qudits are placed on the edges, and the stabilizer operators are located on each vertex and

plaquette,

Av(a) =
∏

i∈{v+}

Xa
i

∏
i∈{v−}

X−ai (4.3)

Bp(b) =
∏

i∈{p+}

Zbi
∏

i∈{p−}

Z−bi (4.4)

for some non-zero a and b in Zq, where v runs through all vertices and p runs through all

plaquettes, {v+} includes the qudits to the right or up of vertex v, {v−} includes those to

the left or down of v; {p+} includes the qudits to the right or below plaquette p, and {p−}

includes those to the left or above p.
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Figure 4.1: Example of surface code construction on any orientable surface.

This construction of stabilizer operators can be generalized to any graph on an

orientable surface by assigning an arbitrary orientation on each edge, where {v+} includes

the subset of the neighboring qudits such that the direction of it in relative to v is parallel

with the orientation of the edge, and {v−} includes those that are anti-parallel; {p+}

includes the qudits that are on the edges whose orientation is parallel to the counter-

clockwise direction in relative to p, and {p−} includes those that are anti-parallel, as shown

in Fig. 4.1. That is because any plaquette and any vertex have zero or two overlapping

edges. If there are two, the direction relative to the plaquette and the direction relative to

the vertex must be the same on one edge and different on the other. So on one edge, they

are both parallel or anti-parallel to the orientation of the graph, while on the other edge,

one is parallel and the other is anti-parallel. So that a · b = ab + (−ab) = 0, Av and Bp

commute.
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In the case q is prime, the dimension of a quantum code on such a graph is k = 2g,

where g is the genus of the surface. The X and Z distances of the code are the minimum

length of a non-trivial cycle on the graph and on the dual graph, respectively [111].

The same applies if we take the stabilizer group with all vertex and plaquette

generators with a = b = 1. In this case it is easy to check that all non-zero Smith normal

form invariants of the stabilizer generator matrices GX and GZ are equal to one, so that

both the dimension k and the distances (dX , dZ) of the code over Zq coincides with those

of the conventionally defined qubit code.

4.2.3.2 Qudit hypergraph-product codes

In the binary case, a finite rate hypergraph-product code can be constructed with generator

matrices Gx = (I⊗H2, H1⊗ I) and Gz = (HT
1 ⊗ I, I⊗HT

2 ), where H1 is an r1 by n1 binary

matrix and H2 is an r2 by n2 matrix. Denote the distances of the binary codes with parity

check matrices H1 and H2 as d1 and d2, and of the binary codes with the same parity check

matrices transposed as d̃1 and d̃2, respectively. The distance of this CSS code is bounded

as following [76]:

• The upper bound of the distance of the code is d ≤ d1 when k2 6= 0 and d ≤ d2 when

k1 6= 0; similarly, d ≤ d̃1 when k̃2 6= 0 and d ≤ d̃2 when k̃1 6= 0.

• The lower bound is d ≥ min(d1, d2) and d ≥ min(d̃1, d̃2).

When H2 = HT
1 , this code has parameters n = n2

1 + (n1 − k1)2, k = k2
1, d = d1.

In the q-ary case, we can use a similar construction Gx = (I ⊗ H2, H1 ⊗ I) and

Gz = (HT
1 ⊗ I,−I ⊗HT

2 ). We can prove the lower bound:

Theorem 4.4 Given that the distances of the codes C⊥H1
and C⊥H2

are d1 and d2 respectively

and the corresponding codes with transposed matrices are d̃1 and d̃2 respectively, the lower

bound of the distance d of the code C is d ≥ min(d1, d2) and d ≥ min(d̃1, d̃2).
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Moreover, as mentioned in Sec.4.1.6, sparse rectangular matrices with random 0,1

entries with high likelihood have all non-zero Smith normal form invariants equal to one.

It is easy to check that the same will be true for the generators of the qudit hypergraph-

product codes. In this case, also the upper bound on the distance can be proved. Details

can be found in Appendix B.7. From above we can construct a code with parameters

n = n2
1 + (n1− k1)2, k = k2

1, d = d1. Since there exist classical LDPC codes with k ∝ n and

d ∝ n (Theorem 4.1 and 4.3), we can construct a quantum code with dimension k ∝ n and

distance d ∝
√
n.

4.2.3.3 Qudit higher-dimensional QHP codes

The QHP codes can be generalized to higher dimensions, which form a m dimensional chain

complex, as shown in Ref. [110]. The distance of such a code has the following lower bound,

Theorem 4.5 (Theorem 1 from Ref. [110]) Consider m-complex A:

A : {0} ∂0←− A0
A1←−− A1 . . .

Am←−− Am
∂m+1←−−− {0},

and assume that homological groups Hj(A) have distances dj, 0 ≤ j ≤ m. Given an r × c

binary matrix P of rank u, construct matrices Cj with:

Cj+1 =

 Aj+1 ⊗ Er (−1)jEnj ⊗ P

Aj ⊗ Ec


Denote δ the minimum distance of a binary code with the parity check matrix P ; by our

convention, δ = ∞ if u = c. The minimum distance d′j ≡ dj(C) of the homology group

H(Cj , Cj+1), 0 ≤ j ≤ m+ 1, satisfies the following lower bounds:

1. if r > u, d′j ≥ min(dj , dj−1δ), otherwise,

2. if r = u, d′j ≥ dj−1δ.

We formulate this theorem in application to chain complexes over Zq without a proof. The

proof for the binary case was given in Ref. [110], and in the case of Fq, with q a power
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of a prime in Ref. [112]. Again, most interesting case from the practical point of view

corresponds to torsion-free complexes such that all matrices have Smith normal forms with

non-zero invariants equal to one.

4.2.4 Distances verification complexity

The following result is an improvement of the results in Ref. [93].

Theorem 4.6 A codeword of weight δn in any q-ary (l,m)-limited quantum or classical

LDPC code can be found with complexity 2Fn, where

F = δ log2(γm(m− 1)),

γm ∈ (1, γ∞) grows monotonically with m and is upper bounded as the following:

If all entries of the parity check matrix are coprime with q, γm is upper bounded by

γm ≤ min

[
q − 2

(m− 1)((q − 1)
1

m−1 − 1)
,

1

q
1
q−1 − 1

]
(4.5)

More generally, with some entries in the parity check matrix that are not coprime with q,

γm is upper bounded by

γm ≤
q − 2

(m− 1)((3− 4
q )

1
m−1 − 1)

.

The upper bound of γm is improved from the value in the original paper for codes on Fq,

and an upper bound for Zq is also given. Details can be found in Appendix B.5.

4.2.5 Minimum energy decoding on LDPC codes

Minimum energy decoding is to find the codeword correcting the most likely error for a

given syndrome, ignoring any degenerate errors. This corresponds to maximum likelihood

decoding at zero temperature (β = +∞), where only the codewords that have minimum

Hamming distance to the error are important. Without the summation of probabilities

of all possible errors for each codeword, the minimum energy decoding is less complicated
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than maximum likelihood decoding, but usually it has a lower error threshold since it is

sub-optimal decoding.

For a regular quantum CSS LDPC code with row weight m, we discovered the

lower bound of the decodable threshold of error probabilities on physical qudits as a function

of q and m, based on irreducible cluster method [98]:

Theorem 4.7 Any sequence of q-ary CSS codes whose distances scale with n at least log-

arithmically (d ≥ D lnn, D > 0) with generator weights not exceeding mX , mZ can be

decoded with vanishing error probabilities if channel probabilities (pX , pZ) for independent

X/Z errors satisfy

(mX − 1)ΥCSS(pZ) ≤ e−1/D

(mZ − 1)ΥCSS(pX) ≤ e−1/D
(4.6)

where ΥCSS(p) ≡
(√

1− p+
√
p(q − 1)

)2
− 1.

The proof is given in Appendix B.4.

Notice that ΥCSS(p) ∝ √p, lim p → 0, so the inequality must have positive

solutions, showing that there is a positive minimum energy decoding threshold for p.

As an example, for the {5,5} hyperbolic quotient graphs listed in Table 3.1, a linear

fit of d vs lnn shows that d = 0.854 lnn. Eq. (4.6) gives the minimum energy decoding

threshold

pME{5,5} ≥
2.078

q
− 2.155

q2
−
√

4.644− 8.954q + 4.310q2

q2
.

4.2.6 Maximum likelihood decoding

Maximum likelihood (ML) decoding requires us to find the most probable codeword from

the K codewords by comparing the probabilities of inequivalent errors. Given an error e

corresponding to the syndrome s, we need to choose the largest of the probabilities Pe+c(s)

for each inequivalent codeword, where Pe(s) is given by the sum of probabilities of all errors

equivalent to e that will result in the syndrome s for each codeword, Pe+c(s). Since X and

Z error corrections are independent in CSS codes, let us take X errors as an example.
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We only consider i.i.d errors where any operator Xj acts on any qudit with the

same probability p
q−1 for any j ∈ {1, . . . , q − 1}. The probability of an X error described

by a length n q-ary vector e is

P (e) =

Nb∏
i=1

(
p

q − 1
)δ(ei,0)(1− p)1−δ(ei,0) = (

p

q − 1
)wgt(e)(1− p)Nb−wgt(e) (4.7)

where Nb = n is the number of physical qudits and wgt(e) is the Hamming weight of the

error.

Degenerate errors are the errors that are equivalent in the code, the difference

between them is a linear combination of the rows of the generator matrix. Consider all the

degenerate errors that have the same effect as e, the probability of that is given by

P0(e) ≡
∑
e′'e

P (e′) =
1

qNs−r
∏r
i=1 di

∑
σ∈{0,...,q−1}Ns

(
p

q − 1
)wgt(e−σG)(1− p)Nb−wgt(e−σG)

(4.8)

where Ns is the number of stabilizer generators, di are the invariants of G in Smith normal

form, r is the number of the invariants, G is the generator matrix which has dimensions

Ns ×Nb.

Expanding the weight wgt(e− σG) =
∑

b(1− δ(eb −
∑

s σsGsb, 0)), where δ(x, y)

denotes the discrete Kronecker delta function which is equal to one whenever x = y and

zero otherwise. We have

P0(e) =
1

qNs−r
∏r
i=1 di

(1− p)Nb
∑
σ

∏
b

(
p

(1− p)(q − 1)

)1−δ(eb−
∑
s σsGsb,0)

(4.9)

If we substitute (1−p)(q−1)
p with eKp , we can simplify the expression as

P0(e) =
1

qNs−r
∏r
i=1 di

∑
σ

∏
b

eKpδ(eb−
∑
s σsGsb,0)

eKp + q − 1
(4.10)

The sum can be interpreted as the partition function of the Potts model with disorder, at

the inverse Potts temperature Kp. In fact, here Kp is related to the error probability p;

this is an analog of the Nishimori line for the q-state Potts model, which we define in the

following section.
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4.2.7 Potts gauge glass model

To study the qudit code, we may relate it with another physics model. Because of Eq.(4.9),

A natural choice is the Potts model [34]. Potts model is a generalization of the Ising model.

It is defined on a set of spins, where each spin can take any number from {0, 1, 2, . . . , q−1}.

The standard Potts model has the Hamiltonian

H = −
∑
〈i,j〉

Jδ(si, sj)−
∑
i

hδ(si, 0) (4.11)

where J is the interaction energy on each bond, h is the external field, the first summation

runs over all the nearest neighbor site pairs and the second summation runs over all the

sites, and δ() is the Kronecker delta function.

It is well known that the qubit error correcting codes can be mapped to the ±J

Ising spin glass model [6], where the external field is absent, h = 0, and the interaction

energy takes the value −J or J with probability p and 1 − p respectively. Because of the

symmetry in the system, a gauge transformation can be applied on spins and interactions

to solve for important physical quantities of the system. For example, the internal energy

can be solved exactly on the Nishimori line [36], which is defined as e2J/kBTp = p
1−p .

In the case of qudit code with i.i.d. X or Z errors, the corresponding model is the

Potts gauge glass model [113], where the external field is absent and the interaction energy

takes the values −Jδ(si, sj + eij), where eij = 0 with probability 1− p and eij = 1, .., q − 1

each with probability p/(q − 1).

The standard Potts model can be generalized to include multi-spin couplings with

interaction energy −Jδ(
∑

i σiΘib, 0) (all arithmetic are in mod q), where Θib is the incidence

matrix whose rows correspond to spins, and columns to bonds. When each column of Θ

has exactly two non-zero entries equal 1 and −1, it can be interpreted as a vertex-edge

incidence matrix of a directed graph, in which case Eq. (4.10) is recovered. More generally,

each bond may include multi-spin interactions, in which case the model is defined on a

hypergraph. Introducing flipped bonds results in a Potts gauge glass model, which has the
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partition function

ZPotts =
∑
{σi}

exp

(∑
b

βJδ(
∑
i

σiΘib − eb, 0)

)
(4.12)

where

eb

 = 0, with probability (1− p)

= j ∈ {1, . . . , q − 1}, each with probability p/(q − 1)
.

The Nishimori line of Potts gauge glass model is given by [114]

βp ≡
1

J
ln

[
(1− p)(q − 1)

p

]
Using gauge transformation, the internal energy on the Nishimori line can be solved exactly

E = NBJ
q −

NBJe
βpJ

eβpJ+q−1
, and the specific heat is upper bounded: C ≤ kBNB(βpJ)2eβpJ (q−1)

(eβpJ+q−1)2
.

The probability of degenerate errors P0(e) can be mapped onto the partition func-

tion of Potts gauge glass model up to a multiplicative factor,

Z0(e, β) =
1

qNs−r
∏r
i=1 di

∑
σ

∏
b

eβJδ(
∑
s σsGsb−eb,0)

eβJ + q − 1
(4.13)

so the probability of errors P0(e) coincides with the partition function on the Nishimori line

P0(e) = Z0(e, βp) (4.14)

where βp = Kp/J .

We define Zc(e, β) ≡ Z0(e+c, β), where c is a codeword. The maximum of Zc(e, β)

over all codewords c for a given syndrome is Zmax(s, β) ≡ Zcmax(e, β); it depends only on

the syndrome but not on the chosen representative error e. We also denote Ztot(e, β) ≡∑
c Zc(e, β) the sum of the partition functions over all inequivalent codewords; this quantity

also depends only on the syndrome s and can be interpreted as the probability of all the

errors that give the same syndrome as e.

4.2.8 Finite-T decoding threshold and homological difference conver-

gence

The overall probability of successful ML decoding can be written as [Zmax/Ztot]e, where

[·]e denotes the averaging over binary error vectors with probability (4.7). For a decodable
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region on the p − T diagram, the successful decoding probability must converge to 1 as

d→∞.

Theorem 4.8 Consider a sequence of quantum CSS codes Q(Gt, Ht), t ∈ N, of increasing

lengths nt, where row weights of each Gt and Ht do not exceed a fixed m, and the code

distances dt ≥ D lnnt, with some D > 0. Then the sequence ∆Ft ≡ [∆Fe(Gt, Ht;K)]p,

t ∈ N, converges to zero in the region

(m− 1)
(
(1− p)(q − 1)e−K + peK + (q − 2)p

)
< e−1/D (4.15)

This is the q-ary generalization of Theorem 2 of [32].

Notice that this lower bound on error rate threshold p is the same as the one with

minimum energy decoding (Eq 4.6).

The corresponding Potts model has converging free energy density homological

difference in a larger region [8]:

Theorem 4.9 Consider a sequence of pairs of weakly dual Potts models defined by pairs of

finite q-ary matrices with mutually orthogonal rows, GtH
T
t = 0, t ∈ N, where row weights of

each Ht do not exceed a fixed m. In addition, assume that the sequence of the CSS distances

dGt is increasing. Then the sequence ∆ft ≡ [∆fe(Gt, Ht;K)]p, t ∈ N, converges to zero in

the region

(m− 1)
(
(1− p)(q − 1)e−K + peK + (q − 2)p

)
< 1. (4.16)

The proofs are given in Appendix B.6.

4.2.9 Duality of Potts gauge glass model

In 2-D Ising model, a high temperature system is related to a low temperature system

on the dual graph via Kramers–Wannier duality [64], from which we can find the critical

temperature Tc on an infinite square lattice which is self-dual. The critical temperature of

Ising model on a square lattice is given by sinh
(

2J
kTc

)
= 1. Similar duality relationship can
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be found in standard Potts model. Here we generalize the duality transform to Potts gauge

glass model, following the formalization in [31].

We introduce the magnetic disorder m, which enters the partition function of

Potts gauge glass model as

Ze,m(Θ,K) ≡ 1

qNs−r(
∏r
i=1 di)(e

K + q − 1)Nb

∑
si

∏
b

ω
∑
i siΘibmbeKδ(

∑
i siΘib−eb,0) (4.17)

where K = J/kBT , e is the electric charge error and m is the magnetic charge error.

Applying discrete Fourier transform, we find the duality relationship to be(∏r
i=1 di
qr

) 1
2

(√
eK − 1

eK

)Nb
Ze,m(Θ,K) =

(∏r∗

i=1 d
∗
i

qr∗

) 1
2
(√

eK∗ − 1

eK∗

)Nb
ωe·mZe∗,m∗(Θ∗,K∗)

(4.18)

where m∗ ≡ e, e∗ ≡ −m, K∗ ≡ ln(1 + q
eK−1

), and Θ∗ is the exact dual of Θ (details in

Appendix B.2).

In the case of K∗ = K, we find the self-dual inverse temperature to be Ks.d =

ln(
√
q + 1), which asymptotically approaches ln q

2 in the limit of large q.

4.2.10 Spin correlations and Griffiths inequalities

Here we introduce the spin correlations similar to Eq.(3.15) and Eq.(3.16)

〈SA〉e ≡
∑
{si}

SA Probe({S}; Θ;K) (4.19)

SA =
∏
v

ω
∑
b svΘvbmb (4.20)

where the probability of a certain configuration Probe({S}; Θ;K) is defined according to

the partition function (4.13)

Probe({S}; Θ;K) =

∏
b e
Kδ(

∑
i siΘib−eb,0)∑

{si}
∏
b e
Kδ(

∑
i siΘib−eb,0)

(4.21)

Similar to Eq.(3.23), the duality relationship (4.18) in this case reads

Ze,0(Θ,K)

Z0,0(Θ,K)
=

〈∏
b

Rebb

〉
0,Θ∗;K∗

(4.22)
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where we define

Rb ≡ ω
∑
v svΘvb

From the partition function (4.17), by changing the order of the summation si →

−si, it is easy to see that

Ze,m = Z−e,−m (4.23)

and when there is no flipped bond: e = 0, we have

Z0,m = Z0,−m

Noticing that the rhs is the complex conjugate of the lhs, which implies that in the clean

model where there is no flipped bonds, the correlation must be real: 〈SA〉0 ∈ R, and we may

replace the complex function with only the real part, i.e. replacing SA = ω
∑
v

∑
b svΘvbmb

with S′A = cos(2π
q

∑
v

∑
b svΘvbmb).

The correlation of spins in the clean model satisfies the Griffiths–Kelly–Sherman

(GKS) inequalities [62, 63, 115, 116]:

〈SA〉0 ≥ 0, (4.24)

〈SASB〉0 ≥ 〈SA〉0〈SB〉0, (4.25)

The derivative of 〈SA〉 with respect to KB gives

d〈SA〉
dKB

= 〈SAδB〉 − 〈SA〉〈δB〉 (4.26)

where we denote δB ≡ δ(
∑

v svΘvb − eb, 0). Here we may expand the Kronecker delta as

a summation of cosine functions, δ(x, 0) = 1
q

∑q−1
j=0 cos(2π

q jx). In the case e = 0, with this

substitution, we can write δB as a summation of S′B = cos(2π
q

∑
v svΘvbmb).

Then from the GKS inequality (4.25), we find that this quantity is non-negative

in the clean model

d〈SA〉0
dKB

≥ 0 (4.27)
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Next we may introduce the invariant distance for a defect e,

de ≡ de(Θ) = min
α

wgt(e+αΘ) (4.28)

The free energy increment due to the addition of the defect can be found by taking

the logarithm of the lhs of (4.22),

δe ≡ δe(Θ;K) ≡ lnZ0(Θ;K)− lnZe(Θ;K) (4.29)

and the defect tension is defined to be

τe ≡ τe(Θ;K) ≡ δe(Θ;K)/de (4.30)

Respectively, if we assume that the rhs of Eq.(4.22) scales exponentially with the

defect weight (this is generally expected at large temperatures), we can define the area-law

exponent

αe ≡ αe(Θ∗;K∗) = −d−1
e ln

〈∏
b

Rebb

〉
0,Θ∗;K∗

(4.31)

The second GKS inequality (4.25) implies subadditivity,

de1+e2αe1+e2 ≤ de1αe1 + de2αe2 (4.32)

The duality (4.25) also implies the relation between the defect tension and area-law

exponent,

τe(Θ;K) = αe(Θ
∗;K∗) (4.33)

Together with (4.32), we get subadditivity for defect free energy cost

δe1+e2 ≤ δe1 + δe2 (4.34)

4.3 Other results

Most of the results of binary QECCs can be generalized to q-ary codes straightforwardly,

but some of them require special treatment. The results are followed by the proof when nec-

essary, and the rest of the results are restated without repeating the proof. The definitions

can be found in the corresponding publications.
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4.3.1 Results on q-ary CSS codes in general

This section presents generalizations of some results from Ref.[31].

First we generalize the definition of fixed-defect phase and defect-free phase:

Definition 4.10 (Generalization of Definition 1 from Ref. [31]) A fixed-defect phase

of the Potts gauge glass model 4.13 corresponding to an infinite family of q-ary CSS codes

has

[Z0(e, β)/Ztot(se, β)]→ 1, n→∞. (4.35)

Definition 4.11 (Generalization of Definition 1 from Ref. [31]) A defect-free phase

of the Potts gauge glass model 4.13 corresponding to an infinite family of q-ary CSS codes

has

[Zmax(se, β)/Ztot(se, β)]→ 1, n→∞. (4.36)

The following theorems hold,

Theorem 4.12 (Generalization of Theorem 1 from Ref. [31]) For an infinite fam-

ily of q-ary quantum stabilizer codes successful decoding with probability one implies that on

the Nishimori line the corresponding Potts glass model is in the defect-free phase, i.e., in

any likely configuration e of flipped bonds the largest Zc(e;βp) corresponds to cmax(e) = 0.

Theorem 4.13 (Generalization of Theorem 2 from Ref. [31]) For an infinite fam-

ily of Potts glass models (4.13), in a fixed-defect phase the averaged over the disorder free

energy increment for an additional defect corresponding to a non-trivial codeword c 6' 0

diverges at large n, [∆Fmax
c (se;β)]→∞.

Theorem 4.14 (Generalization of Theorem 3 from Ref. [31]) Define the defect ten-

sion of a codeword c to be τc ≡ [∆Fmax
c (se)]
dc

, where ∆Fmax
c (se) ≡ log Zmax(s)

Zcmax(e)+c(e) . For

Potts glass models (4.13) corresponding to an infinite family of q-ary quantum codes with

asymptotic rate R = logq K/n, in a fixed-defect phase, the defect tension averaged over all

non-trivial defect classes at large n, τ ≡ (K−1)−1
∑
c6'0 τc, satisfy the inequality τ ≥ R ln q

2 .
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Theorem 4.15 (Generalization of Theorem 4 from Ref. [31]) Defect-free phase can-

not exist at any β for p exceeding that at the decoding transition, p > pc.

Proof. The proof goes similar to the one in the reference, except that now it is possible

that the correlation functions are complex numbers, so we must prove that the averaged

values are real numbers first.

Consider spin correlation functions defined as the following:

Qmtot(e, β) ≡ Ze,m(G̃∗, β)

Ze,0(G̃∗, β)
(4.37)

We find that the following equality holds for any m:

[Qmtot(e, β)] = [Qmtot(e, β)Q−mtot (e, βp)] (4.38)

where [f(e)] ≡
∑
e P (e)f(e) is the expectation of f(e) over probability distribution P (e).

And the inequality

[Qmtot(e, β)]2 ≤ [Qmtot(e, βp)] (4.39)

is true for any m (proved in Appendix B.3).

Since there may be additional linear-independent rows in G̃∗, we can expand the

partition function in terms of codewords c:

Ze,m(G̃∗, β) =
∑
c

ωc·mZe+c,m(G, β) (4.40)

and so we have

Qmtot(e, β) =
∑
c

ωc·m
Zc(e, β)Qmc (e, β)

Ztot(se, β)
(4.41)

Applying this to the inequality of correlation functions and summing over all the

magnetic charges that equals to a dual codeword m = c̃, we find that

∑
m=c̃

[Qmtot(e, β)]2 ≤ K
[
Zc(e, βp)

Ztot(se, βp)

]
(4.42)

This shows that the boundary of the decodable phase for q-ary code is either

vertical or re-entrant as a function of temperature below the Nishimori line.
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4.3.2 Free energy analyticity bounds of Potts models with extensive ho-

mology rank

The following results includes the generalization of the theorems in Ref [8]. The coefficient

1
2 on inverse temperature K is due to the difference between the interaction energy of Ising

models and Potts models, where the former is −J for low energy spin alignment and J for

high energy spin alignment and the latter is −J for low energy alignment and 0 for high

energy alignment.

Theorem 4.16 Consider a sequence of pairs of weakly dual Potts models defined by pairs of

finite q-ary matrices with mutually orthogonal rows, GtH
T
t = 0,t ∈ N, where row weights of

each Gt do not exceed a fixed m, CSS distances dHt are increasing with t, and the sequence

of CSS rates Rt ≡ logqKt/nt converges, limtRt = R. Then, for any K ≥ 0 such that

(m− 1) tanh K
2 < 1, the sequence ∆ft ≡ [∆fe(Gt, Ht;K)]p, t ∈ N, converges to R ln q.

Theorem 4.17 Let us assume that any one of the following Conditions is true:

1. The transition at T ′c(G) is discontinuous or has a divergent specific heat;

2. The derivative of ∆f(K) = fG(K)− fH∗(K) is discontinuous at Kh ≡ Kh(G,H), or

the derivative of ∆f(K) is continuous at Kh, but its second derivative diverges at Kh;

3. Summation over homological defects does not increase the critical temperature, Tc(G
∗) ≤

Tc(H).

Then the Kramers-Wannier dual of the critical temperatures Tc(H) satisfies

T ∗c (H) ≤ Th(G,H)

Theorem 4.18 For any regular {f, d} tiling of an infinite hyperbolic plane, fd/(f+d) > 2,

the critical temperatures of the Potts model with free and wired boundary conditions, T fc =

1/Kf
c and Twc = 1/Kw

c , satisfy

Kf
c −Kw

c ≥ 2R ln q, R = 1− 2/f − 2/d. (4.43)
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The subadditivity for defect free energy cost is given in Section 4.2.10.

4.3.3 Summary phase diagrams and bounds

We summarize the results on a p − T diagram in Fig. 4.2, and show the plot of the

corresponding bounds for Potts models with q = 2 and q = 3 on the {5, 5} graphs in the

thermodynamic limit in Fig. 4.3. The plot is obtained by setting m = 5, D = 0.854 and

R = 1/5 in equations (4.6), (4.15) and (4.43).

Figure 4.2: (Color online) A schematic summary phase diagram, which shows the minimum
energy decoding bound (Theorem 4.7), the Peierls’ style bound (Theorem 4.8) and the
upper bound from extensive homology rank (Theorem 4.18).

4.4 Potts clock model formalization of multivariate proba-

bility distribution

The following formalization of multivariate probability distribution is a q-ary generalization

of “multivariate Bernoulli distribution” [117].
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Figure 4.3: (Color online) A plot of the bounds indicated in Fig.4.2 for the Potts models
with q = 2 (Green) and q = 3 (Blue) on the {5, 5} graphs in the thermodynamic limit.
The minimum energy decoding bound is given in Eq. (4.6), the Peierls’ style bound in Eq.
(4.15), and the extensive homology rank bound in Eq. (4.43). TBP is too large to fit in, it
is omitted in this plot.
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4.4.1 Single variable distribution

4.4.1.1 Complex coefficients

Given any discrete probability distribution p(x) = p
δ(x,0)
0 p

δ(x,1)
1 . . . p

δ(x,q−1)
q−1 , we may rewrite

the Kronecker delta function as the summation of powers of the root of unity δ(x, a) =

1
q

∑q−1
j=0 ω

j(x−a), where ω ≡ ei
2π
q .

We may rewrite p(x) in an exponential form:

p(x) = exp

1

q
(ln(p0)

q−1∑
j=0

ωjx + ln(p1)

q−1∑
j=0

ωj(x−1) + · · ·+ ln(pq−1)

q−1∑
j=0

ωj(x−(q−1)))


Regroup the terms and it becomes:

p(x) = exp[K0 +K1ω
x +K2ω

2x + . . . ]

where the constants ω−ja in ωj(x−a) are absorbed in the coefficients Km.

The expression can be transformed between exponential and polynomial form:

For each term in the exponential function,

eKω
x

=

∞∑
m=0

(Kωx)m

m!

=
∑

m=0 mod q

Km

m!
+

∑
m=1 mod q

Km

m!
ωx + . . .

= f0(K) + f1(K)ωx + · · ·+ fq−1(K)ωx−(q−1)

The exponential can then be expanded,

p(x) = exp[K0 +K1ω
x +K2ω

2x + . . . ]

= eK0

(
f0(K1) + f1(K1)ωx + · · ·+ fq−1(K1)ω(q−1)x

) (
f0(K2) + f1(K2)ω2x + . . .

+fq−1(K1)ω2(q−1)x)
)
. . .
(
f0(Kq−1) + f1(Kq−1)ω(q−1)x + · · ·+ fq−1(K1)ω(q−1)2x)

)
= K̃0 + K̃1ω

x + · · ·+ K̃q−1ω
(q−1)x

and the result is in a polynomial form.
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The inverse transform is given by

p(x) = K̃0 + K̃1ω
x + · · ·+ K̃q−1ω

(q−1)x

= (K̃0 + · · ·+ K̃q−1)
1+ωx+···+ω(q−1)x

q (K̃0 + K̃1ω + · · ·+ K̃q−1ω
q−1)

1+ωx−1+···+ω(q−1)(x−1)

q

. . . (K̃0 + K̃1ω
q−1 + · · ·+ K̃q−1ω

(q−1)2)
1+ωx−(q−1)+···+ω(q−1)(x−(q−1))

q

= exp

[
1

q

(
lnS0(1 + ωx + · · ·+ ω(q−1)x) + lnS1(1 + ωx−1 + · · ·+ ω(q−1)(x−1)) + . . .

)]
= exp

[
K0 +K1ω

x + · · ·+Kq−1ω
(q−1)x

]
4.4.1.2 Real coefficients

Instead of complex numbers, we may only take the real part and rewrite the Kronecker

delta function as a series of cosine functions, δ(x, a) = 1
q

∑q−1
j=0 cos(2π

q j(x− a)).

p(x) = exp

[
1

q
(ln p0(1 + cos(

2π

q
x) + cos(

2π

q
2x) + · · ·+ cos(

2π

q
(q − 1)x))+

ln p1(1 + cos(
2π

q
(x− 1)) + cos(

2π

q
2(x− 1))) + · · ·+ cos(

2π

q
(q − 1)(x− 1)) + . . . )

]
= exp

[
1

q

(
(ln p0 + ln p1 + . . . ) + cos(

2π

q
x)(ln p0 + cos

2π

q
ln p1 + . . . )+

sin(
2π

q
x)(sin

2π

q
ln p1 + . . . ) + . . .

)]
= exp

(
K0 +K1 cos(

2π

q
x− α1) +K2 cos(

2π

q
2x− α2) + · · ·+

Kq−1 cos(
2π

q
(q − 1)x− αq−1)

)
Here we won’t be able to absorb the constants aj into the coefficients Kj like in the case of

complex numbers, so we have to include the sine functions:

p(x) = exp

[
K0 +K ′1 cos(

2π

q
x) +K ′′1 sin(

2π

q
x) +K ′2 cos(

2π

q
2x) +K ′′2 sin(

2π

q
2x) + . . .

+K ′q−1 cos(
2π

q
(q − 1)x) +K ′′q−1 sin(

2π

q
(q − 1)x)

]
To expand the exponential function, although cosn(x) is not equivalent to cos(nx),
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we can still expand it as a summation of cosine functions. Notice that

cos(ax) cos(bx) =
1

2
(cos((a+ b)x) + cos((a− b)x))

we can always expand cosn(x) as a summation
∑n

j=0Cj cos(jx), where Cj are constants.

As for the power of sine functions, notice that

sin2(x) =
1

2
(1− cos(2x))

sin(x) cos(ax) =
1

2
(sin((a+ 1)x)− sin((a− 1)x))

An even power of sine functions can be expanded to a summation of cosine functions, and

an odd power of sine functions becomes a summation of sine functions.

For each term of the exponential,

e
K cos( 2π

q
x)

=
∞∑
m=0

(K cos(2π
q x))m

m!

= fc,0(K) + fc,1(K) cos(
2π

q
x) + · · ·+ fc,q−1(K) cos(

2π

q
(q − 1)x)

e
K sin( 2π

q
x)

=
∞∑
m=0

(K sin(2π
q x))m

m!

= fs,0(K) + fss,1(K) sin(
2π

q
x) + · · ·+ fss,q−1(K) sin(

2π

q
(q − 1)x)

+ fsc,1(K) cos(
2π

q
x) + · · ·+ fsc,q−1(K) cos(

2π

q
(q − 1)x)

After the multiplication, we can use the trigonometric identities again to convert

each term into summation of sine or cosine functions. Eventually we can get

p(x) = exp

[
K0 +K ′1 cos(

2π

q
x) +K ′′1 sin(

2π

q
x) +K ′2 cos(

2π

q
2x) +K ′′2 sin(

2π

q
2x) + . . .

+K ′q−1 cos(
2π

q
(q − 1)x) +K ′′q−1 sin(

2π

q
(q − 1)x)

]
= K̃0 + K̃ ′1 cos(

2π

q
x) + K̃ ′′1 sin(

2π

q
x) + K̃ ′2 cos(

2π

q
2x) + K̃ ′′2 sin(

2π

q
2x) + . . .

+ K̃ ′q−1 cos(
2π

q
(q − 1)x) + K̃ ′′q−1 sin(

2π

q
(q − 1)x)
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The inverse transform is similar to the case of complex numbers. First, we let x go

through 1, . . . , q − 1 and write the polynomial as a product of constants raised to a power

of delta function. Then we may expand the delta function as a series of cosine functions.

Finally, convert it into exponential form, we are back to

p(x) = K̃0 + K̃ ′1 cos(
2π

q
x) + K̃ ′′1 sin(

2π

q
x) + K̃ ′2 cos(

2π

q
2x) + K̃ ′′2 sin(

2π

q
2x) + . . .

+ K̃ ′q−1 cos(
2π

q
(q − 1)x) + K̃ ′′q−1 sin(

2π

q
(q − 1)x)

= exp

(
K0 +K1 cos(

2π

q
x− α1) +K2 cos(

2π

q
2x− α2) + . . .

+Kq−1 cos(
2π

q
(q − 1)x− αq−1)

)

4.4.2 Two variables distribution

Given a two variables distribution, first rewrite the distribution as

p2(x) = p
1
q2

[1+cos( 2π
q
x1)+... ][1+cos( 2π

q
x2)+... ]

0,0 p
1
q2

[1+cos( 2π
q
x1)+... ][1+cos( 2π

q
(x2−1))+... ]

0,1 . . .

Notice that cos(2π
q ax1) cos(2π

q bx2) = 1
2(cos(2π

q ax1 + bx2) + cos(2π
q ax1 − bx2)), we

may rewrite the distribution as

p2(x) = C exp

q2−1∑
b=1

Kb cos

(
2π

q
[xΘ]b − αb

)
where C is a constant and Θ is a matrix with columns consisting of all possible

non-zero length 2 q-ary vectors,

Θ ≡

0 . . . 0 1 1 . . . 1 . . . q − 1

1 . . . q − 1 0 1 . . . q − 1 . . . q − 1


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4.4.3 Multiple variables distribution and Potts clock model

The case of multiple variables distribution goes similarly as the 2 variables case. For an

s-variables distribution,

ps(x) =
∑

v∈{0,...,q−1}s
p

1
qs

[1+cos( 2π
q

(x1−v1))+... ][1+cos( 2π
q

(x2−v2))+... ]...[1+cos( 2π
q

(xs−vs))+... ]
v

By converting the products of cosine functions into summations, again we may rewrite the

distribution as

ps(x) = C exp

[
qs−1∑
b=1

Kb cos

(
2π

q
[xΘ]b − αb

)]
where C is a constant and Θ is a matrix with columns consisting of all non-zero length s

q-ary vectors.

This resembles the probability distribution of Potts clock models with multi-spin

interactions, where there is an interaction for any subset of the set of spins, thus for m spins

there are qs interaction terms. Each non-zero coefficient, Kb, can be viewed as a particular

form of correlation; in many cases high-order correlations may be ignored, thus the number

of non-zero coefficients Kb is going to be much smaller.

4.4.4 Standard Potts model

Standard Potts model considers single site and pairwise interactions, the probability distri-

bution can be written as functions of δ(xi − a, 0) and δ(xi − xj , 0), which can be expanded

into cosine functions, and we may write it in exponential form with linear combinations

inside cosine functions, thus converting it into the generalized Potts clock model.

4.4.5 Duality transform

Define a partition function of a Potts clock model on a hypergraph specified with a q-ary

incidence matrix Θ with s spins and n interactions that has the symmetry p(x) = p(−x),
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such that

Z(Θ) =
∑

x∈{1,...,q−1}s
p(x,Θ) = C

∑
x

exp

[
n∑
b=1

Kb cos

(
2π

q
[xΘ]b

)]

For each term g(x) = e
K cos( 2π

q
x)

, we may expand it as

g(x) = e
K cos( 2π

q
x)

= f0(K) + f1(K) cos(
2π

q
x) + · · ·+ fq−1(K) cos(

2π

q
(q − 1)x)

The discrete Fourier transform of g(x) gives

g∗(y) =
1
√
q

(
f0(K)δ(y, 0) +

f1(K)

2
(δ(y, 1) + δ(y, q − 1)) + . . .

+
fq−1(K)

2
(δ(y, q − 1) + δ(y, 1))

)
=

1
√
q

(
f0(K)δ(y, 0) +

f1(K) + fq−1(K)

2
δ(y, 1) + · · ·+ fq−1(K) + f1(K)

2
δ(y, q − 1)

)
We may expand each of the Kronecker delta as a summation of cosine functions, then use the

polynomial-exponential conversion to get the exponential form. Notice that f∗(y) = f∗(−y),

the exponent of the resulting cosine functions must have constants all 0,

g∗(y) = K∗0 +K∗1 cos(
2π

q
y) +K∗2 cos(

2π

q
2y) + · · ·+K∗q−1 cos(

2π

q
(q − 1)y)

= exp

[
K̃∗0 + K̃∗1 cos(

2π

q
y) + K̃∗2 cos(

2π

q
2y) + · · ·+ K̃∗q−1 cos(

2π

q
(q − 1)y)

]
The inverse transform gives

g(x) =
1
√
q

∑
y

ω−xy exp

[
K̃∗0 + K̃∗1 cos(

2π

q
y) + K̃∗2 cos(

2π

q
2y) + · · ·+ K̃∗q−1 cos(

2π

q
(q − 1)y)

]
Apply the inverse transform to each term in the partition function,

Z(Θ) =
C

q
n
2

∑
x∈{1,...,q−1}s

n∏
b=1

 q−1∑
yb=1

ω
− 2π

q
(xΘ)bybe

K̃∗b,0+K̃∗b,1 cos( 2π
q
yb)+···+K̃∗b,q−1 cos( 2π

q
(q−1)yb)


=
Ce

∑n
b=1 K̃

∗
b,0

q
n
2

∑
x ∈ {1, . . . , q − 1}s

y ∈ {1, . . . , q − 1}n

ω
− 2π

q
xΘyT

n∏
b=1

(
e
K̃∗b,1 cos( 2π

q
yb)+···+K̃∗b,q−1 cos( 2π

q
(q−1)yb)

)
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Notice that the summation over x implies that ΘyT = 0. Thus, the only none-zero terms

have y = σΘ̃ for some arbitrary vector σ, where Θ̃ is the exact dual matrix. Let d∗i be the

non-zero invariants of the Smith normal form of Θ̃, r∗ be the number of d∗i , and s∗ be the

number of rows in Θ̃. Denote C∗ ≡ Ce
∑n
b=1 K̃

∗
b,0 ,

Z(Θ) = C∗qs−
n
2

∑
y∈{σΘ̃}

e
∑n
b=1

(
K̃∗b,1 cos( 2π

q
yb)+···+K̃∗b,q−1 cos( 2π

q
(q−1)yb)

)

=
C∗qs−

n
2
−s∗+r∗∏r∗

i=1 d
∗
i

∑
σ∈{1,...,q−1}s∗

e
∑n
b=1

(
K̃∗b,1 cos( 2π

q
(σΘ̃)b)+···+K̃∗b,q−1 cos( 2π

q
(q−1)(σΘ̃)b)

)

To simplify the notation, let us define a new matrix Θ ≡ (Θ̃|2Θ̃| . . . |(q − 1)Θ̃).

Thus the summation in the exponent becomes
∑(q−1)n

b=1 K̃∗b cos(2π
q (σΘ)b). The identical

columns in the expanded matrix can be combined by summing up their coefficients K̃∗b , so

we may replace Θ with a smaller matrix Θ∗ that has the number of columns n∗ ≤ (q− 1)n,

Z(Θ) =
C∗qs−

n
2
−s∗+r∗∏r∗

i=1 d
∗
i

∑
σ∈{1,...,q−1}s∗

e
∑n∗
b=1 K̃

∗
b cos( 2π

q
(σΘ∗)b)

If for all subsets of spins there is a non-zero interaction, so that Θ consists of all

q-ary vectors, then identity matrix is a submatrix of Θ, thus the invariants of Smith normal

form of Θ and Θ∗ must all be 1.

4.5 First order transition on non-amenable graphs

The order of phase transition of Potts model in Euclidean space depends on the parameter q

and also the dimension [34]. For example, when q ≤ 4 the 2D Potts model has a second order

phase transition, while for q > 4 the transition is first order. The Monte Carlo simulation

of the first order transition is challenging because of the free energy barrier between the

two phases that it has to cross. With single-site algorithm like Metropolis or heat-bath

algorithm, the relaxation time is very long on large graphs, which results in hysteresis.

The cluster algorithms, e.g. Swendsen–Wang algorithm[118] and Wolff algorithm[89], are

helpful in reducing the relaxation time, even though the correlation length is finite in first
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order transitions so that the acceleration is not as great as in second order transitions,

they can accelerate the simulation substantially comparing to single site flip algorithms

like Metropolis or heat bath algorithm. The simulations can reach thermal equilibrium in

practical time with the help of cluster algorithms.

On the contrary, in the case of first order transition of Potts model on hyperbolic

lattices, the hysteresis remains even with cluster algorithm. One possible reason is the

interface tension. In a first-order phase transition in equilibrium, the phase that has the

minimum free energy density changes from one to another at the transition point. But for

the transition to happen, a bubble of the stable phase must grow large enough to take over

the metastable phase. During the growth of the bubble, the free energy would be decreased

by an amount proportional to the volume of the bubble, but there is also an increase of

interface tension by an amount proportional to the size of the interface.

Consider the free energy of a first order transition between two phases given by

F = f1(β)V1 + f2(β)(V − V1) + σ(β)A,

where f1 and f2 are the free energy density of the first and second phase respectively, V1

is the volume of the first phase, σ is the interfacial tension, A is the area of the interface.

In d-dimensional Euclidean space, for a bubble of radius r, its volume grows as rd, while

the size of the interface grows as rd−1. So, at any temperature, eventually the free energy

would be lower with a stable phase bubble if the bubble grows to a size large enough. As a

result, no matter how large the system is, a large enough critical bubble would eventually

form, driving the system of any size to the equilibrium phase at any T < Tc, no matter how

close to the phase transition.

In contrast, in a hyperbolic space, the volume and the interface both grow ex-

ponentially with r, and they are proportional to each other by a constant. If the ratio

between interfacial tension and free energy density difference, σ/|f1 − f2|, is larger than

the ratio between volume and interface area, then a bubble of the “true stable” phase with

smaller free energy surrounded by “metastable” phase would only increase the total free
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energy regardless of how large the bubble is. Thus, there is a possibility that in hyperbolic

space, in a range of the physical quantity that drives the first-order phase transition (e.g.

temperature), the actual phase could be the stable or the metastable phase depending on

the history, since the mechanism that drives the system from one phase to the other may

no longer work, and instead of a single phase transition point, there could be two points

marking the ends of the range of the physical quantity.

In application to numerical simulations on expander graphs like finite hyperbolic

graphs, as the size of the system grows, in certain temperature range, the probability of

switching to the phase with a lower-free energy may grow exponentially with the system

size. When this is the case, it may be extremely difficult to locate the true thermodynamical

phase transition temperature.

While the discussed algorithms may fail to find the transition point separating

the stable phases in equilibrium, other methods may be helpful in solving the problem,

such as Wang-Landau algorithm [119], which is a non-Markovian stochastic process that

go through the free energy barriers and sample density of states directly. More research

is needed to construct efficient simulation algorithms capable of dealing with this super-

stability of overheated/overcooled phases in hyperbolic space.
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Chapter 5

Conclusions And Outlook

In this dissertation, we have studied the quantum error correcting codes on closed

hyperbolic surfaces and their corresponding Ising models, and we explored the generalization

of binary quantum stabilizer codes to q-ary codes and their corresponding Potts models.

Chapter 3 started with the construction and the properties of hyperbolic tessella-

tions, and also the construction of the quotient graphs. Next, we studied the quantum error

correcting codes on such hyperbolic quotient graphs and their corresponding weakly-dual

Ising models. The extensive homology rank of the graphs results in a non-zero homological

difference of the free energy in a range of temperatures. We gave several bounds of the

threshold, and we performed numerical simulations to support our results. Several open

questions were listed in Section 3.2.4.2. Another possible future research direction is to

find the p− T phase diagram for the RBIMs on hyperbolic quotient graphs, possibly with

Monte–Carlo simulation. The combinatorial method is a good option for calculating the free

energy and spin correlation of RBIMs on finite subgraphs of hyperbolic graphs with open

or wired boundary conditions, but it is unknown whether there is an efficient algorithm for

calculating these quantities for spin models on the quotient graphs.

In Chapter 4 we discussed the construction and parameters of qudit quantum error

correcting codes. We provided several examples of qudit LDPC codes and bounds on their

parameters. An improvement of the upper bound of distances verification complexity index
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is also given. We showed the mapping of the probability distributions to the partition func-

tions of Potts gauge glass models, and many of the results on qubit codes were generalized

to qudit codes. Further study of the generalized Potts clock model formalization of mul-

tivariate probability distribution may lead to some insight into the decoding properties of

q-ary LDPC codes with correlated errors, including the correlations that necessarily occur

in any circuit used for measurements. Another possible future research direction is numeri-

cal simulation of Potts models on the graphs or hypergraphs with extensive homology rank,

but the first order phase transition is an obstacle, since the hysteresis makes it difficult to

locate the phase transition point.
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Appendix A

Appendix of Chapter 3

A.1 Proof of Theorem 3.1

Theorem 3.1 Consider a sequence of pairs of weakly dual Ising models defined by pairs of

finite binary matrices with mutually orthogonal rows, GtH
T
t = 0, t ∈ N, where row weights

of each Ht do not exceed a fixed m. In addition, assume that the sequence of the CSS

distances dGt is increasing. Then the sequence ∆ft ≡ [∆fe(Gt, Ht;K)]p, t ∈ N, converges

to zero in the region

(m− 1)[e−2K(1− p) + e2Kp] < 1. (3.40)

The statement of the theorem immediately follows from the following technical

Lemma, see the proof in Ref. [32]

Lemma A.1 Consider a pair of Ising models defined in terms of weight-limited matrices G

and H with orthogonal rows, such that the matrix H has a maximum row weight m. Let dG

denote the CSS distance (3.35), the minimum weight of a frustration-free homologically non-

trivial defect c ∈ C⊥H \ CG. Denote S ≡ e−2K(1− p) + e2Kp, and assume that (m− 1)S < 1.

Then, the average homological difference (3.37) satisfies

[∆f(G,H;K)]p ≤
(m− 1)dGSdG+1

1− (m− 1)S
. (A.1)
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A.2 Proof of inequalities in Sec. 3.2.3.1

(i) The proof of the monotonicity of the homological difference (in the absence of flipped

bonds),

d

dK
∆f0(G,H;K) ≤ 0, (3.39),

is similar to the proof[120] of the monotonicity of the tension. We combine the logarithms

in Eq. (3.37), decompose Ze(H∗;K) as a sum of Zc(G;K) over non-equivalent codewords

c, and write

d

dK

Zc(G;K)

Z0(G;K)
=
Zc(G;K)

Z0(G;K)

∑
b∈B

(〈Rb〉c − 〈Rb〉0) ≤ 0.

The desired inequality (3.39) follows from the monotonicity of the logarithm.

(ii) The first inequality in

|τc,e| ≤ τc,0 ≤ 2K (3.42)

follows from the second GKS inequality[62, 63] applied in the dual system [where, according

to electric-magnetic duality, the defect becomes an average of the corresponding product

of spins, see Eq. (3.23)]. Depending on the sign of τc,e, duality gives 〈Rc+e〉 ≥ 〈Re〉〈Rc〉

or 〈Re〉 ≥ 〈Rc〉〈Re+c〉, where Re is the product of bonds corresponding to non-zero bits in

the binary vector e. The second inequality, in a more general form, τe ≡ τe,0 ≤ 2K, follows

from the Gibbs inequality

Fe(G;K)− F0(G;K) ≤ 2K
∑
b:eb 6=0

〈Rb〉G;K ≤ 2K wgt(e),

if we take a minimal-weight vector equivalent to e, in which case wgt(e) = de.

(iii) To prove the lower bound on the average tension,

ζτ̄p ≥ R ln 2− [∆fe]p, (3.44)

we first define the constant ζ as the average minimum weight of all 2k codewords divided

by the code length n,

ζ = (2kn)−1
∑
c

dc. (A.2)
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An upper bound on ζ can be obtained if we take the codewords c as linear combinations

of k inequivalent codewords ci, i ∈ {1, . . . , k} (it is likely that smaller-weight equivalent

codewords can be found). In this case the codewords form a binary code, and the average

weight is exactly a half of the length n′ of the code[121], where n′ =
∣∣∪ki=1I(ci)

∣∣ is the weight

of the union of the supports of the basis codewords. Clearly, n′ ≤ n, which gives ζ ≤ 1/2.

Combining with a lower bound on the weight of non-trivial codewords, dc ≥ dG , c 6' 0, we

obtain

1− 2−k

n
dG ≤ ζ ≤

1

2
. (A.3)

We now proceed with deriving the inequality (3.44). Start by expanding Ze(H∗;K) =∑
c Ze+c(G;K), where the summation is over all 2k mutually inequivalent codewords c.

Each of the terms with c 6' 0 can be written in terms of the corresponding tension (3.41),

Ze+c(G;K) = e−τc,e(G;K)dcZe(G;K).

Convexity of the exponent gives

Ze(H∗;K)

Ze(G;K)
= 1 +

∑
c 6'0

exp(−τc,edc)

≥ 2k exp

(
−2−k

∑
c

τc,edc

)
,

where for the trivial codeword c ' 0 we set τ0,ed0 = 0. Taking the logarithm and rewriting

the sum over codewords in terms of the weighted average, with the help of Eq. (A.2) we

obtain

∆Fe(G,H;K) ≥ k ln 2− ζn
∑

c 6'0 τc,edc∑
c 6'0 dc

.

Eq. (3.44) trivially follows after averaging over disorder and dividing by n.

(iv) The inequality

Kh(G,H)−K∗h(H,G) ≥ R ln 2 (3.47)

is based on the standard inequality for the derivative of the free energy density, which is

just the average energy per bond. For the case of homological difference we obtain, instead,

d

dK
∆f(G,H;K) =

1

n

∑
b∈B

(〈Rb〉H∗;K − 〈Rb〉G;K) . (A.4)
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The second term can be obtained from the first by freezing the spins corresponding to

homologically non-trivial defects; with the help of GKS inequalities we obtain

1 ≥ 〈Rb〉G;K ≥ 〈Rb〉H∗;K ≥ 0,

which guarantees the derivative (A.4) to be between −1 and 0. Integration gives the in-

equality

∆ft(K2)−∆ft(K1) ≤ K1 −K2,

where ∆ft(K) = ∆f(Gt, Ht;K). We now take K1 = Kh(G,H) and K2 = K∗h(H,G), so

that in the limit of the sequence, limt ∆ft(K1) = 0 and limt ∆ft(K2) = R ln 2. Eq. (3.47)

trivially follows.

A.3 Proof of Theorem 3.2

Theorem 3.2 Consider a sequence of pairs of weakly dual Ising models defined by pairs

of finite binary matrices with mutually orthogonal rows, GtH
T
t = 0, t ∈ N, where row

weights of each Gt do not exceed a fixed m, CSS distances dHt are increasing with t, and

the sequence of CSS rates Rt ≡ kt/nt converges, limtRt = R. Then, for any K ≥ 0 such

that (m− 1) tanhK < 1, the sequence ∆ft ≡ [∆fe(Gt, Ht;K)]p, t ∈ N, converges to R ln 2.

Proof. The proof is based on the special case of Theorem 3.1 in the absence of

disorder, p = 0, and the duality relation (3.45), applied for each pair of matrices, Gt and

Ht, with Rt = kt/nt, and K replaced with its Kramers-Wannier dual, K∗. The condition

on K in Theorem 3.1 (with Gt and Ht interchanged) becomes simply (m− 1) tanhK < 1.

Convergence of sequences ∆f0(Ht, Gt;K
∗) to 0 and Rt to R implies that of the sequence

∆f0(Gt, Ht;K) to R ln 2.
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A.4 Proof of Statement 3.3

The proof is based on Theorem 9.1.7 from Ref. [69], which bounds cumulants of a random

variable X,

κr(X) ≡ dr

dtr
lnE

(
etX
)∣∣∣∣
t=0

, r ∈ {0, 1, . . .}, (A.5)

where X =
∑

α∈S Yα is a sum of random variables with a given dependency graph:

Definition A.2 A graph D with vertex set S is called a dependency graph for the set of

random variables {Yα, α ∈ S} if for any two disjoint subsets S1 and S2 of S, such that there

are no edges in D connecting an element of S1 and an element of S2, the sets of random

variables {Yα}α∈S1 and {Yα}α∈S2 are independent.

The corresponding bound reads as follows:

Lemma A.3 (Theorem 9.1.7 from Ref. [69]) Let {Yα}α∈S be a family of random vari-

ables with dependency graph D. Denote N = |S| the number of vertices of D and ∆ the

maximal degree of D. Assume that the variables Yα are uniformly bounded by a constant A.

Then, for the sum X =
∑

α∈S Yα, and for any s ∈ {0, 1, . . .}, one has

|κs(X)| ≤ 2s−1ss−2N(∆ + 1)s−1As. (A.6)

Statement 3.3 Consider any model in the form (3.13), with an (`,m)-sparse r×n coupling

matrix Θ. The coefficients of the HTS expansion of the free energy density satisfy

|κ(s)
e (Θ; J, h′)| ≤ 2s−1ss−2C (∆ + 1)s−1As, (3.49)

where A ≡ max(|J |, |h′|) and (a) with J and h′ both non-zero, ∆ = `m and C = r/n + 1,

while (b) with h′ = 0, ∆ = (`− 1)m and C = 1.

Proof of Statement 3.3. The s-th coefficient of the HTS for the free energy

F (Θ;K,h) is the scaled cumulant −κs(X)/s!, where X = J
∑

b∈B Rb + h′
∑

v∈V Sv. Define

the set of random variables Yα as the union of the set of (scaled) spins hSv and bonds KRb,
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then |Yα| ≤ A ≡ max(|h′|, |J |). The corresponding dependency graph D can be obtained

from the bipartite graph defined by the matrix Θ by connecting any pair of nodes for bonds

which share the same spin. In the original bipartite graph, each spin node has up to `

neighboring bond nodes, and each bond node has up to m neighboring spin nodes. In the

modified graph, each bond node also connects with up to (`−1)m bond nodes with common

spins, which gives the total maximum degree of ∆ = `m. We also have N = |V|+|E| = r+n,

dividing by n as appropriate for the free energy density we obtain the bound in part (a).

With h = 0, we can drop the spin nodes from the dependency graph. In this case the

maximum degree is ∆′ = (` − 1)m, which gives the result in part (b). Notice that in this

case N = n, and the factor C = (r/n+ 1) is replaced with C ′ = 1.

A.5 Proof of Corollary 3.4.

Corollary A.4 Any infinite sequence of (`,m)-sparse Ising models, specified in terms of

the matrices Θj, j ∈ N, has an infinite subsequence Θj(t), t ∈ N, where j : N→ N is strictly

increasing, such that (a) for each s, the sequence of the coefficients κ
(s)
0 (Θt; J, 0) converges

with t, and (b) the sequence of free energy densities f(Θj(t);K) has a limit, ϕΘ(K), which

is an analytic function of K in the interior of the circle |K| ≤ {2e [(`− 1)m+ 1]}−1. Here

e is the base of natural logarithm.

Proof. The result in Statement 3.3(b) gives a uniform in t bound on the coeffi-

cients of the HTS,

|κs(Θj)|
s!

≤ 2s−1ss−2(∆ + 1)s−1Js

(2πs)1/2(s/e)s

=
1√

8π(∆ + 1)

[2eJ (∆ + 1)]s

s5/2
, (A.7)

where ∆ ≡ (` − 1)m and we used the lower bound by Stirling, r! ≥ (2πr)1/2(r/e)r. The

bound (A.7) is uniform in the sequence index j ∈ N. Thus one can select an infinite

subsequence of Θj , Θj′(t), t ∈ N, where the function j′ : N→ N is strictly increasing, so that

the coefficients κm(Θj′(t)) for m = 1 converge with t. Selecting an infinite subsequence of the
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one obtained previously to ensure the convergence of the coefficients κm for m = 2, 3, . . ., at

each step we obtain an infinite subsequence such that all coefficients κs with s ≤ m converge

with t. The statement in part (a) is obtained in the limit of m→∞. The uniform bound

(A.7) also applies to the cumulants after we take the limit of the obtained subsequence,

which implies absolute convergence (and thus analyticity of the limit) of the HTS for free

energy density in the circle |K| ≡ |β|J ≤ {2e[(`−1)m+1]}−1, which is exactly the statement

in part (b).

A.6 Proof of Lemma 3.5

Lemma A.5 Consider a sequence of rt × nt binary matrices Θt, where 0 < rt ≤ nt, and

t ∈ N. For any M > 0, define a closed interval IM ≡ [0,M ]. (a) There exists a subsequence

Θt(i), i ∈ N, where the function t : N → N is strictly increasing, t(i + 1) > t(i) for all

i ∈ N, such that the sequence of Ising free energy densities converges for any K ∈ IM ,

fi(K) ≡ f0(Θt(i);K) → f(K). (b) The limit f(K) is a continuous non-increasing concave

function with left and right derivatives uniformly bounded,

− 1 ≤ f ′+(K) ≤ f ′−(K) ≤ 0, (3.50)

for all K ∈ IM .

Proof. For any t, the free energy density ft(K) = −n−1
t lnZ0(Gt,K) is bounded

from both sides,

−M ≤ rt ln 2/nt −K ≤ ft(K) ≤ rt ln 2/nt +K ≤ ln 2 +M.

Therefore, we can use a subsequence construction to ensure convergence in any point K ∈

IM . Since the set of rational numbers Q is countable, we can repeat this construction

sequentially on all rational points in IM . The resulting infinite sequence fi(K) converges

in any rational point K ∈ IM ∩ Q. Further, the derivative of fi(K) is uniformly bounded,

−1 ≤ f ′i(K) ≤ 0. Since the sequence converges on a dense subset of IM , this guarantees
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the existence and the continuity of the limit in the entire interval. Finally, each of fi(K)

is concave and non-increasing; these properties survive the limit, although the resulting

function may not necessarily be strictly concave. Concavity guarantees the existence of

one-sided derivatives. The lower and upper bounds on these derivatives are inherited from

those for f ′i(K).

A.7 Proof of Theorem 3.6

Theorem 3.6 Let us assume that any one of the following Conditions is true:

1. The transition at T ′c(G) is discontinuous or has a divergent specific heat;

2. The derivative of ∆f(K) = fG(K)− fH∗(K) is discontinuous at Kh ≡ Kh(G,H), or

the derivative of ∆f(K) is continuous at Kh, but its second derivative diverges at Kh;

3. Summation over homological defects does not increase the critical temperature, Tc(G
∗) ≤

Tc(H).

Then the Kramers-Wannier dual of the critical temperatures Tc(H) satisfies

T ∗c (H) ≤ Th(G,H). (3.53)

Proof. There are three mutually exclusive possibilities: (a) T ′c(G) < Th(G,H),

(b) T ′c(G) > Th(G,H), and (c) T ′c(G) = Th(G,H). In the case (a), T ∗c (H) = T ′c(G), since the

functions fG(K) and fH∗(K) coincide in the homological region, i.e., for K > Kh(G,H);

Eq. (3.53) is satisfied. In the case (b), T ∗c (H) = Th(G,H), in order to recover the non-

analyticity point for the homological difference; Eq. (3.53) is saturated. The goal of the

Conditions is to deal with the case (c) which implies T ∗c (H) ≥ Th(G,H); a strict inequality

would violate Eq. (3.53). In the following we assume (c).

Condition 1 implies that the (negative) curvature of fG(K) must diverge at Kh =

K ′c(G), which must be compensated by a divergent curvature of fH∗(K) in order to make

∆f(K) strictly convex in this point. In this case T ∗c (H) = T ′c(G); Eq. (3.53) is saturated.
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Condition 2 does the same, since divergent positive curvature of ∆f(K) at Kh can

only come from fH∗(K).

Condition 3 is equivalent by duality to T ′c(G) ≥ T ∗c (H), which again gives Eq. (3.53)

since we assumed (c).

A.8 Proof of the lower bound for tension

On an infinite locally planar transitive graph G, we would like to prove the following bound

for the asymptotic defect tension (3.55),

dτ(K)

dK
≥ 2[m(K)]2, (A.8)

the same inequality as has been previously proved on ZD in Ref. [44]. This inequality is a

trivial consequence of the following Lemma, which gives a version of Eq. (7) from Ref. [44]

suitable to constructing a bound for the defect tension defined by Eq. (3.27).

Lemma A.6 Let G = (V, E) be a finite transitive graph, and G the corresponding vertex-

edge incidence matrix with n = |E| columns. Take a binary vector e ∈ Fn2 selecting a set

of edges Ee ⊂ E of size |Ee| = wgt(e), and a set of vertices A ⊂ V of twice the size,

|A| = 2 wgt(e), such that the graph contains edge-disjoint paths connecting each edge to

exactly two vertices in A. Then for the Ising model defined on the same graph, at any

K,h ≥ 0, the free energy increment δe(K) ≡ Fe(G;K,h)− F0(G;K,h) associated with the

defect e satisfies

dδe(K)

dK
≥ 〈Si〉0

∑
v∈A
〈Sv〉e, (A.9)

where the average 〈Sv〉e is calculated in the presence of the defect e; by transitivity 〈Si〉0 is

independent of i ∈ V.

Proof. The proof is based on two inequalities,

〈SASB〉0 ± 〈SASB〉e ≥ |〈SA〉0〈SB〉e ± 〈SA〉e〈SB〉0| , (A.10)
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where A ⊂ V and B ⊂ V are sets of vertices. The inequality with the lower (negative) signs

is the Lebowitz comparison inequality[42], while the inequality with the upper signs can be

proved using the same technique. In the case of an Ising model on a graph G = (V, E), we

have

dδe(K)

dK
=

∑
ij=b∈E

[〈SiSj〉0 − (−1)eb〈SiSj〉e] .

Applying Eq. (A.10) for each term separately, with the help of transitivity, 〈Si〉0 ≡ m0 ≥ 0,

i ∈ V, one gets

dδe(K)

dK
≥ m0

∑
b=ij∈E

|m′i − (−1)ebm′j |, (A.11)

where m′i ≡ 〈Si〉e. The statement of the Lemma is obtained by noticing that for a path

connecting 1 and f ,

|m′1 −m′2|+ |m′2 −m′3|+ . . .+ |m′f−1 −m′f | ≥ m′f −m′1,

which allows to trade wgt(e) terms with + signs in the r.h.s. of Eq. (A.11) for the sum of

magnetizations m′v on the 2 wgt(e) vertices from A.
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Appendix B

Appendix of Chapter 4

B.1 Proof of Theorem 4.3

Theorem 4.3 The distance distribution of the ensemble of matrices (Definition 4.2) is

given by

lim
n→∞

1

n
ln pl,αn,θ = −α ln q + max

η∈[0,1− 1
q

]

{
αHq(η) ln q + θl ln

(
1− q

q − 1
η

)}
and the maximum is at the only solution for η of(

1− 1

q
− η
)(

ln
1− η
η

+ ln(q − 1)

)
=
θl

α

where Hq(x) is the q-ary entropy function,

Hq(x) ≡ x logq(q − 1)− x logq x− (1− x) logq(1− x).

Proof. For any codeword of weight w, because of symmetry we can move all the

non-zero elements to the first w positions, and only consider these w columns in the matrix.

We collect all the vectors that is orthogonal to it. Then we write the generating function

g(x) where each term represents one vector in the set. Thus gm(x) will generate all matrices

of m rows that consist of those vectors. The coefficient of the term zl1z
l
2 . . . z

l
w is the number

of matrices that has column weight l.
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The number of vectors that is orthogonal to a given vector of full row weight w in

Fq is listed below, the proof is given in Appendix B.5:

weight 1: 0

weight 2: (q − 1)

weight 3: (q − 1)2 − (q − 1)

...

weight u: ((q − 1)u−1 + (−1)u)(1− 1
q )

The generating function is given by

g(x) =
∑
{zu}

(
(q − 1)u−1 + (−1)u

)(
1− 1

q

)
(zi1zi2 . . . ziu)

=
∑
{zu}

1

q
(q − 1)u(zi1zi2 . . . ziu) +

∑
{zu}

q − 1

q
(−1)u(zi1zi2 . . . ziu)

=
1

q

∏
(1 + (q − 1)zi) +

q − 1

q

∏
(1 + (−1)zi)

Raise g(x) to mth power,

gm(x) =
1

qm

m∑
j=0

(
m

j

)(∏
i

(1 + (q − 1)zi)

)m−j (
(q − 1)

∏
i

(1− zi)

)j

=
1

qm

m∑
j=0

(
m

j

)
(q − 1)j

∏
i

(1 + (q − 1)zi)
m−j(1− zi)j

=
1

qm

m∑
j=0

(
m

j

)
(q − 1)j

∏
i

(
m∑
l=0

Km
l (j)zli

)

where Km
l (x) =

∑l
i=0(−1)i(q − 1)l−i

(
x
i

)(
m−x
l−i
)

is the q-ary Kravchuk polynomial.

The coefficient of zl1z
l
2 . . . z

l
w is

1

qm

m∑
j=0

(
m

j

)
(q − 1)j(Km

l (j))w

The total number of matrices orthogonal to the codeword is

|∆l,α
n,θ| =

1

qm

 m∑
j=0

(
m

j

)
(q − 1)j(Km

l (j))w

((m
l

)
(q − 1)l

)n−w
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while the total number of matrices is

|∆l,α
n | =

((
m

l

)
(q − 1)l

)n
Next, we need to estimate pl,αn,θ as n→∞

pl,αn,θ =
|∆l,α

n,θ|

|∆l,α
n |

=

1
qm

(∑m
j=0

(
m
j

)
(q − 1)j(Km

l (j))w
)

(
(q − 1)l

(
m
l

))w
=

1

qm

m∑
j=0

(
m

j

)
(q − 1)j

(
Km
l (j)

(q − 1)l
(
m
l

))w
Asymptotic form of Km

l (x) is given by

Km
l (x) =

l∑
i=0

(−1)i(q − 1)l−i
(
x

i

)(
m− x
l − i

)

≈ (q − 1)l
l∑

i=0

(−1)i(q − 1)−i
xi

i!

(m− x)l−i

(l − i)!

= (q − 1)l
1

l!

l∑
i=0

(−1)i(q − 1)−i
(
l

i

)
xi(m− x)l−i

= (q − 1)l
1

l!
(m− x− 1

q − 1
x)l

=
1

l!
((q − 1)m− qx)l

Substitute that in pl,αn,θ,

pl,αn,θ ≈
1

qm

m∑
j=0

(
m

j

)
(q − 1)j

(
1
l!((q − 1)m− qj)l

(q − 1)l
(
m
l

) )w

≈ 1

qm

m∑
j=0

(
m

j

)
(q − 1)j

(
1− q

q − 1

j

m

)lw

≈ 1

qm
max
η

{
qmHq(η)

(
1− q

q − 1
η

)lw}
Substitute with m = αn, w = θn, we find that

lim
n→∞

1

n
ln pl,αn,θ = −α ln q + max

η∈
[
0,1− 1

q

]
{
αHq(η) ln q + θl ln

(
1− q

q − 1
η

)}
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and the maximum is at the only solution for η of

(1− 1

q
− η)

(
ln

1− η
η

+ ln(q − 1)

)
=
θl

α

B.2 Duality of Partition Function (4.18)

Define q-ary discrete Fourier transform (DFT) of fα, a function of a q-ary variable α, to

be f∗β ≡
∑q−1

α=0
ωαβ ·fα√

q , where ω ≡ e
2πi
q . The reverse transform is given by

∑
β

f∗βω
−αβ
√
q =

1
q

∑
β ω
−αβ(

∑
j ω

jβfj) = 1
q

∑
j

∑
β ω

(−α+j)βfj = 1
q

∑
j qδ(j, α)fj = fα.

For the simplicity of notation, we introduce a reduced partition function Zr, which

is the partition function (4.17) without the constant in the front:

Z =
1

qNs−r
∏r
i=1 di

(
1

eK + q − 1

)Nb
Zr,

Zr ≡
∑
{si}

∏
b

ω
∑
i siΘibmbeKδ(

∑
i siΘib−eb,0)

Take αb ≡
∑

i siΘib − eb as a variable, and apply the reverse Fourier transform to the

function fαb = eKδ(αb,0):

Zr =
∑
{si}

∏
b

ω
∑
i siΘibmb

∑
βb

f∗βω
−(
∑
i siΘib−eb)βb
√
q

= q−Nb/2
∑
{si}

∏
b

∑
βb

f∗βbω
(
∑
i siΘib(mb−βb))+ebβb

= q−Nb/2
∑
{si}

∑
{βb}

∏
b

f∗βbω
(
∑
i siΘib(mb−βb))+ebβb

= q−Nb/2
∑
{si}

∑
{βb}

(
∏
b

f∗βb)ω
∑
b(
∑
i siΘib(mb−βb))+ebβb

= q−Nb/2
∑
{βb}

(
∏
b

f∗βb)
∑
{si}

ω
∑
b(
∑
i siΘib(mb−βb))+ebβb

= q−Nb/2
∑
{βb}

(
∏
b

f∗βb)ω
∑
b ebβb

∑
{si}

∏
i

ωsi
∑
b(Θib(mb−βb))

= q−Nb/2
∑
{βb}

(
∏
b

f∗βb)ω
∑
b ebβb

∏
i

∑
si

ωsi
∑
b(Θib(mb−βb))
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All the terms that have
∑

b Θib(mb − βb) 6= 0 will be zero, so all the non zero terms must

satisfy
∑

b Θib(mb − βb) = 0. We can rewrite βb = mb −
∑

i σiΘ
∗
ib, where Θ∗ib is the exact

dual matrix of Θib, which can be found through Smith normal form. So we have

Zr = q−Nb/2
∑

{βb=mb−σiΘ∗ib}

(
∏
b

f∗βb)q
Nsω

∑
b ebβb

= qNs−Nb/2
∑

{βb=mb−σiΘ∗ib}

(
∏
b

f∗βb)ω
∑
b ebβb

For any vector σ, if vΘ∗ = 0, σΘ∗ = (σ + v)Θ∗. The total number of vectors v such that

vΘ∗ = 0 is qN
∗
s−r∗

∏r∗

i=1 d
∗
i , where d∗i are the non-zero invariants of the Smith normal form

of Θ∗ and r∗ is the number of them.

Zr =

(
qNs−

Nb
2
−N∗s+r∗ 1∏r∗

i=1 d
∗
i

)∑
{σi}

∏
b

f∗mb−σiΘ∗ib
ωeb(mb−

∑
i σiΘ

∗
ib)

=

(
qNs−

Nb
2
−N∗s+r∗ 1∏r∗

i=1 d
∗
i

)
ω
∑
b ebmb

∑
{σi}

∏
b

f∗mb−σiΘ∗ib
ω−

∑
i σiΘ

∗
ibeb

Next we evaluate f∗β explicitly. Given that fα = eKδ(α,0) = (eK − 1)δ(α, 0) + 1,

f∗β =

q−1∑
α=0

ωαβeKδ(α,0)

√
q

=


q−1+eK√

q , when β = 0

eK−1√
q , when β 6= 0

=

(
eK − 1
√
q

)[
q

eK − 1
δ(β, 0) + 1

]
=

(
eK − 1
√
q

)[
(eK

∗ − 1)δ(β, 0) + 1
]

In the last equality we define K∗, the dual of K, by the equation eK
∗ − 1 = q

eK−1
. So the

self-dual temperature is at Ksd = ln(1 +
√
q).
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Apply the duality transform to the full partition function,

Z =
1

qNs−r
∏r
i=1 di

(
1

eK + q − 1

)Nb
Zr

=
1

qNs−r
∏r
i=1 di

(
1

eK + q − 1

)Nb
(
qNs−

Nb
2
−N∗s+r∗ 1∏r∗

i=1 d
∗
i

)(
eK − 1
√
q

)Nb
ω
∑
b ebmb

∑
{σi}

∏
b

ω−
∑
i σiΘ

∗
ibebeK

∗δ(mb−σiΘ∗ib,0)

=
qN
∗
s−r∗

∏r∗

i=1 d
∗
i

qNs−r
∏r
i=1 di

(
eK
∗

+ q − 1

eK + q − 1

)Nb (
qNs−

Nb
2
−N∗s+r∗ 1∏r∗

i=1 d
∗
i

)(
eK − 1
√
q

)Nb
ω
∑
b ebmbZ∗

=
qr∏r
i=1 di

q−
Nb
2

(
eK
∗

+ q − 1

eK + q − 1

)Nb (eK − 1
√
q

)Nb
ω
∑
b ebmbZ∗

where Z∗ is the partition function of the dual model, defined as

Z∗ ≡ 1

qN∗s−r∗(
∏r∗

i=1 d
∗
i )(e

K∗ + q − 1)Nb

∑
si

∏
b

ω
∑
i siΘ

∗
ibm
∗
b eK

∗δ(
∑
i siΘ

∗
ib−e

∗
b ,0)

Apply the following identities:

eK
∗

+ q − 1 =
q

eK − 1
+ q =

qeK

eK − 1

eK + q − 1 =
qeK

∗

eK∗ − 1
√
q =

√
(eK − 1)(eK∗ − 1)

qNb =
qr∏r
i=1 di

qr
∗∏r∗

i=1 d
∗
i

One can see that

Z = (
qr∏r
i=1 di

)
1
2 (

qr
∗∏r∗

i=1 d
∗
i

)−
1
2 (

eK√
eK − 1

)Nb(

√
eK∗ − 1

eK∗
)Nbω

∑
b ebmbZ∗,

so the duality reads

(

∏r
i=1 di
qr

)
1
2 (

√
eK − 1

eK
)NbZe,m(Θ,K) = (

∏r∗

i=1 d
∗
i

qr∗
)
1
2 (

√
eK∗ − 1

eK∗
)Nbωe·mZe∗,m∗(Θ∗,K∗)

(B.1)

where m∗ ≡ e, e∗ ≡ −m, K∗ ≡ ln(1 + q
eK−1

), and Θ∗ is the exact dual of Θ.
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B.3 Proof of Correlation Function Equality (4.38) and In-

equality (4.39)

The correlation function is defined as

[Qmtot(e, β)] ≡

[
Ze,m(G̃∗, β)

Ze,0(G̃∗, β)

]
=
∑
e

(
P (e)

Ze,m(G̃∗, β)

Ze,0(G̃∗, β)

)

where

P (e) =

Nb∏
i=1

(
p

q − 1
)δ(ei,0)(1− p)1−δ(ei,0) =

∏
b

eβpJδ(eb,0)

eβpJ + q − 1

Ze,m(Θ, β) =
1

qNs−r
∏r
i=1 di

∑
σ

∏
b

ω
∑
s σsΘsbmb

eβJδ(
∑
s σsΘsb−eb,0)

eβJ + q − 1

Define the gauge transformation (G.T.) of a partition function on a graph with an incidence

matrix Θ to be:

Ze(Θ) =
∑
σ

f(σΘ, e)
G.T.→ 1

qNs

∑
α

∑
σ

f((σ+α)Θ, e+αΘ) =
1

qNs

∑
α

Ze+αΘ(Θ) (B.2)

Here we introduced an extra set of spins α that runs through all possible combinations of

length Ns q-ary vectors, just like σ. For each term inside the summation, the transformation

goes as σs → σs + αs and e → e + αΘ. Notice the identity
∑
σ f((σ + α)Θ, e + αΘ) =∑

σ f(σΘ, e+αΘ), since for any α, σ+α runs through all vectors just like σ alone, thus

we have the equality after the gauge transformation.

For a function of a summation of partition functions over e, the gauge transfor-

mation is

∑
e

F (Ze(Θ))
G.T.
=

1

qNs

∑
e

∑
α

F (Ze+αΘ(Θ)) =
1

qNs

∑
e

∑
α

F (f((σ+α)Θ, e+αΘ)) (B.3)

Notice that for any α, as e runs through all possible vectors, e + αΘ runs through all

possible vectors as well, and the summation of α gives a factor of qNs , and the equality

follows.
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Proof of Eq. (4.38). Apply the gauge transformation to the correlation functions:

[Qmtot(e, β)]
G.T.
=

1

qN∗s

∑
e

(∑
α

P (e+αG̃∗)ω
∑
s

∑
b αsG̃

∗
sbmb

Ze,m(G̃∗, β)

Ze,0(G̃∗, β)

)

=
1

qN∗s

∑
e

(
qN
∗
s−r∗

r∏
i=1

d∗iZ−e,m(G̃∗, βp)
Ze,m(G̃∗, β)

Ze,0(G̃∗, β)

)

=

∏r
i=1 d

∗
i

qr∗
∑
e

(
Ze,m(G̃∗, β)Z−e,m(G̃∗, βp)

Ze,0(G̃∗, β)

)

[Qmtot(e, β)Q−mtot (e, βp)] =

[
Ze,m(G̃∗, β)

Ze,0(G̃∗, β)

Ze,−m(G̃∗, βp)

Ze,0(G̃∗, βp)

]

=
∑
e

(
P (e)

Ze,m(G̃∗, β)

Ze,0(G̃∗, β)

Ze,−m(G̃∗, βp)

Ze,0(G̃∗, βp)

)
G.T.
=

1

qN∗s

∑
e

(∑
α

P (e+αG̃∗)
Ze,−m(G̃∗, β)

Ze,0(G̃∗, β)

Ze,m(G̃∗, βp)

Ze,0(G̃∗, βp)

)

=
1

qN∗s

∑
e

(
qN
∗
s−r∗

r∏
i=1

d∗iZ−e,0(G̃∗, βp)
Ze,m(G̃∗, β)

Ze,0(G̃∗, β)

Ze,−m(G̃∗, βp)

Ze,0(G̃∗, βp)

)

=

∏r
i=1 d

∗
i

qr∗
∑
e

(
Z−e,0(G̃∗, βp)

Ze,0(G̃∗, βp)

Ze,m(G̃∗, β)Ze,−m(G̃∗, βp)

Ze,0(G̃∗, β)

)
We can see that Ze,m(G̃∗, β) is unchanged under σ → −σ, e→ −e,m→ −m, so

we have Ze,m(G̃∗, β) = Z−e,−m(G̃∗, β). The equality [Qmtot(e, β)] = [Qmtot(e, β)Q−mtot (e, βp)]

follows.

Proof of Eq. (4.39). Another identity [f(e)] =
∑
e(P (e)f(e)) =

∑
e(P (−e)f(−e)) =∑

e(P (e)f(−e)) = [f(−e)] shows that [Qmtot(e, β)] = [Q−mtot (−e, β)] = [Q−mtot (e, β)]. And we

also have Ze,−m(Θ, β) = Ze,m(Θ, β), where f is the complex conjugate of f . Now we define

A = Qmtot(e, β), B = Qmtot(e, βp), we see that [A] = [A] = [AB] = [AB], [B] = [B] = [BB],

so they must be real.

For any real number t, the following inequality holds:

[(A+ tB)(A+ tB)] ≥ 0

so that

[AA] + [AB]t+ [AB]t+ [BB]t2 ≥ 0
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[AA] + 2[AB]t+ [BB]t2 ≥ 0

which implies

4[AB]2 − 4[AA][BB] ≤ 0

[AB]2 ≤ [AA][BB]

thus

[A]2 = [AB]2 ≤ [AA][BB] ≤ [BB] = [B]

And the inequality [Qmtot(e, β)]2 ≤ [Qmtot(e, βp)] follows.

B.4 Proof of Theorem 4.7

Theorem 4.7 Any sequence of q-ary CSS codes whose distances scale with n at least log-

arithmically (d ≥ D lnn, D > 0) with generator weights not exceeding mX , mZ can be

decoded with vanishing error probabilities if channel probabilities (pX , pZ) for independent

X/Z errors satisfy

(mX − 1)ΥCSS(pZ) ≤ e−1/D

(mZ − 1)ΥCSS(pX) ≤ e−1/D
(4.6)

where ΥCSS(p) ≡
(√

1− p+
√
p(q − 1)

)2
− 1.

Proof. This is a generalization of Theorem 2 in [98] for q-ary code.

For any random qudit error e and a codeword c, the probability distribution of an

element in the error is: 
Pc(ei = 0) = 1− p

Pc(ei = ci) = p
q−1

Pc(ei 6= 0, ei 6= ci) = q−2
q−1p

for any 1 ≤ i ≤ n.

Denote the weight of the codeword to be ω. For any error e, denote the number of

error positions corresponding to the second and third cases above to be a and b, respectively.
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To successfully decode by minimum energy decoding, it is required that Pc(e) < Pc(e+ c)

for any c, where Pc(e) and Pc(e+ c) are given by

Pc(e) = (1− p)w−a−b( p

q − 1
)a
(
q − 2

q − 1
p

)b
and

Pc(e+ c) = (
p

q − 1
)w−a−b(1− p)a

(
q − 2

q − 1
p

)b
respectively. The ratio

Pc(e)

Pc(e+ c)
=

(
p

(q − 1)(1− p)

)2a+b−w

must be less than 1 for successful decoding.

Consider p < 1 − 1
q , the decoding will fail whenever a + b

2 > w
2 . Summing the

probability over all errors that would result in decoding failure for any codeword:
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Pc,fail =
∑

{e|a+ b
2
>w

2
}

Pc(e)

≤
∑

{e|any a,b}

Pc(e)

√
Pc(e+ c)

Pc(e)

=
∑

{e|any a,b}

(
√

1− p)w−b
(√

p

q − 1

)w−b(q − 2

q − 1
p

)b

=
∑

0≤a,b≤w

(
w

b

)(
w − b
a

)(√
p(1− p)

q

)w−b(
q − 2

q − 1
p

)b

=

w∑
b=0

(
w−b∑
a=0

(
w − b
a

))(
w

b

)(√
p(1− p)

q

)w−b(
q − 2

q − 1
p

)b

=
w∑
b=0

2w−b
(
w

b

)(√
p(1− p)

q

)w−b(
q − 2

q − 1
p

)b

=

w∑
b=0

(
w

b

)(
2

√
p(1− p)

q

)w−b(
q − 2

q − 1
p

)b
=

(
q − 2

q − 1
p+ 2

√
(1− p) p

q − 1

)w
=

(
1−

(√
1− p−

√
p

q − 1

)2
)w

Thus the probability of decoding failure is upper bounded:

Pfail ≤
∑
c

Pc,fail =

∞∑
w=d

NwPc,fail

where Nw is the number of irreducible codewords with weight w. We only need to consider

irreducible codewords because for a reducible codeword c′ = c1 + c2 where c1 and c2 have

non-overlapping supports, any error that would result in decoding failure for c′ will also

result in failure for c1 or c2, so we can exclude reducible codewords in the summation so

that we don’t count the same errors multiple times.

Next, we bound the number of irreducible codewords with weight w for a LDPC

code of row weight m: Nw(m) ≤ (q−1)n((q−1)(m−1))w−1. The logic goes as the following:
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Suppose we want to construct an irreducible codeword. Starting from a zero vector,

first we assign a non-zero value to any position, there are (q−1)n choices. Then, some rows

in the generator matrix are not satisfied. The finished codeword must be orthogonal to all

the rows in the generator, so it must have at least one other non-zero element in the support

of any of the unsatisfied rows. We need to assign another non-zero value to a position in

the support of an unsatisfied row. There are m − 1 positions to choose from. The weight

of the codeword is w, so there are at most (q − 1)n((q − 1)(m− 1))w−1 choices.

Thus the upper bound of the failure probability is:

Pfail ≤
∞∑
w=d

n

m− 1

(
(q − 1)(m− 1)

(
1−

(√
1− p−

√
p

q − 1

)2
))w

=
n

m− 1

(
(m− 1)

((√
1− p+

√
p(q − 1)

)2
− 1

))d
1− (m− 1)

((√
1− p+

√
p(q − 1)

)2
− 1

)
For a code of which distance increases as limn→∞

d
ln(n) = D, the probability of

decoding failure converges to 0 if

(m− 1)

((√
1− p+

√
p(q − 1)

)2
− 1

)
< e−1/D (B.4)

In the case where limn→∞
d

ln(n) = ∞ as in toric code or hypergraph-product code, the

condition is simply

(m− 1)

((√
1− p+

√
p(q − 1)

)2
− 1

)
< 1

B.5 Proof of Theorem 4.6

Theorem 4.6 A codeword of weight δn in any q-ary (l,m)-limited quantum or classical

LDPC code can be found with complexity 2Fn, where

F = δ log2(γm(m− 1)),
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γm ∈ (1, γ∞) grows monotonically with m and is upper bounded as the following:

If all entries of the parity check matrix are coprime with q, γm is upper bounded by

γm ≤ min

[
q − 2

(m− 1)((q − 1)
1

m−1 − 1)
,

1

q
1
q−1 − 1

]
(4.5)

More generally, with some entries in the parity check matrix that are not coprime with q,

γm is upper bounded by

γm ≤
q − 2

(m− 1)((3− 4
q )

1
m−1 − 1)

.

Here we improve the upper bound on the complexity coefficient γm of distance

verification algorithm in the coprime case (explained below) by finding a better estimation

on Nv(q, b), defined in Section V of [93]. A different upper bound was found for codes in

general case.

B.5.1 Coprime case

Consider a vector b of which all elements are coprime with q. Let Nv(q) denote the number

of q-ary vectors c of length v that satisfy the restrictions

c · b = a

∀I ( {1, 2, . . . , v},
∑
i∈I

cibi 6= 0

where a is an arbitrary number in Zq. The second inequality is the irreducible property,

which can only be satisfied for v ≤ q − 1.

We prove the following upper bound

Nv(q) ≤ (q − 2)(q − 3) . . . (q − v) =
(q − 2)!

(q − v − 1)!
(B.5)

Proof. If v = 1, Nv(q) is just 1. For any other v, the first element has q − 2 choices, not 0

or a. And every time another element is selected, it will remove at least one possible value

from which the next element can be chosen.

Consider this sequence of summations: c1b1, c1b1+c2b2, c1b1+c2b2+c3b3, . . . , c1b1+

· · ·+cvbv. If any two of them are equal, the vector is reducible. So every time a new element
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is added, the list of summation of all combinations of subsets of the elements will increase

by at least one, which means the choices for the value of the next element will decrease by

at least one. And after the first v − 1 elements are determined, the last element doesn’t

have a choice, so the product has v − 1 terms. This gives the upper bound of Nv(q) above.

Next, we follow the proof in [93] except that we replace the upper bound on Nv(q)

with the one given above. We look for the root of the polynomial of variable z,

m−1∑
v=1

zvNv(q)

(
m− 1

v

)
= 1

and find better upper bounds on γm ≡ 1/((m− 1)z).

Proof of the inequality γm ≤ 1

q
1
q−1−1

.

Nv(q) = 0 for v ≥ q − 1. As m→∞ the equation becomes

q−1∑
v=1

(m− 1)v

v!
Nv(q)z

v ≥ 1

replace (m− 1)z with 1
γ∞

,
q−1∑
v=1

Nv(q)

v!
(

1

γ∞
)v ≥ 1

q−1∑
v=1

(q − 2)!

(q − v − 1)!v!
(

1

γ∞
)v ≥ 1

1

q − 1

q−1∑
v=1

(
q − 1

v

)
(

1

γ∞
)v ≥ 1

(1 +
1

γ∞
)q−1 − 1 ≥ q − 1

γ∞ ≥
1

q
1
q−1 − 1

And since γm ≤ γ∞, this also upper bounds γm.

Proof of the inequality γm ≤ q−2

(m−1)((q−1)
1

m−1−1)
.

The bound (B.5) can only be applied on γ∞, and for γm there is no simple expres-

sion for the solution. So instead we may use a different bound for Nv(q), since from (B.5)

we can easily see that Nv(q) ≤ (q − 2)v−1.
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Then we can upper bound γm as the following:

m−1∑
v=1

zvNv(q)

(
m− 1

v

)
= 1

m−1∑
v=1

zv(q − 2)v−1

(
m− 1

v

)
≥ 1

1

q − 2
((1 + (q − 2)z)m−1 − 1) ≥ 1

z ≥ (q − 1)
1

m−1 − 1

q − 2

Replacing with z = 1
γm(m−1) gives

γm ≤
q − 2

(m− 1)((q − 1)
1

m−1 − 1)

By combining the two upper bounds above, we proved that

γm ≤ min

[
q − 2

(m− 1)((q − 1)
1

m−1 − 1)
,

1

q
1
q−1 − 1

]

for q ≥ 3. (In the case q = 2, γm = 1.)

B.5.2 General case

If the non-zero elements of the rows of the stabilizer generator matrix are not necessarily

coprime with q, the bound (B.5) is no longer valid.

Counterexample: Consider the trivial upper bound Nv(q) ≤ (q − 1)v−1. Assume q = 6,

v = 2, the check is (3, 2), so we look for irreducible solutions of 3x1 + 2x2 = 1, where

3x1 6= 0 and 2x2 6= 0. Solutions are {(x1, x2)|x1 ∈ {1, 3, 5} and x2 ∈ {2, 5}}. The number

of solutions N = 6 > 5.

On the other hand, there is no solution for 3x1 + 2x2 = a, with a ∈ {2, 3, 4}. On

average, the number of solutions is 12/5, so there might be a way to use such a bound.

Unfortunately, so far we are not aware of the corresponding argument.
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That being said, a larger upper bound can still be found:

γm ≤
q − 2

(m− 1)((3− 4
q )

1
m−1 − 1)

Proof. First we find an upper bound on Nv(q) to be q
2(q − 2)v−1. For any xi that is not

coprime with q, the number of solutions of cixi = 0 (mod q) for ci equals gcd(xi, q), which

is at least two since xi and q are not coprime. Thus, the requirement cixi 6= 0 (mod q)

upper-bounds the number of choices for ci by q − gcd(xi, q) ≤ q − 2. And the solution

for the last number is at most q
2 , which is the largest possible value of gcd(xv, q) for any

2 ≤ xv ≤ q − 1.

Applying this upper bound on z:

m−1∑
v=1

zv(q − 2)v−1 q

2

(
m− 1

v

)
≥ 1

z ≥
(3− 4

q )
1

m−1 − 1

q − 2

Replacing with z = 1
γm(m−1) gives the upper bound on γm.

B.6 Proof of Theorem 4.8 and Theorem 4.9

Theorem 4.8 Consider a sequence of quantum CSS codes Q(Gt, Ht), t ∈ N, of increasing

lengths nt, where row weights of each Gt and Ht do not exceed a fixed m, and the code

distances dt ≥ D lnnt, with some D > 0. Then the sequence ∆Ft ≡ [∆Fe(Gt, Ht;K)]p,

t ∈ N, converges to zero in the region

(m− 1)
(
(1− p)(q − 1)e−K + peK + (q − 2)p

)
< e−1/D (4.15)

Theorem 4.9 Consider a sequence of pairs of weakly dual Potts models defined by pairs of

finite q-ary matrices with mutually orthogonal rows, GtH
T
t = 0, t ∈ N, where row weights of

each Ht do not exceed a fixed m. In addition, assume that the sequence of the CSS distances
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dGt is increasing. Then the sequence ∆ft ≡ [∆fe(Gt, Ht;K)]p, t ∈ N, converges to zero in

the region

(m− 1)
(
(1− p)(q − 1)e−K + peK + (q − 2)p

)
< 1. (4.16)

The proofs are similar, and follow the line of argument in the proof of Theorem 3.1.

Proof. Consider a q-ary quantum CSS LDPC code with generator matrix G for X or Z

errors. The following upper bound on the ratio r(K, e) ≡ Ztot(e)
Z0(e) − 1 =

∑
c6'0

Zc(e)
Z0(e) are

proved for any fixed error e.

For any ε ≡ c+αP , consider an irreducible vector decomposition: ε = ε1 +ε2 +...,

where the support of εi don’t overlap, and they each satisfies the parity check GεTi = 0.

Take the sum of non-trivial codewords to be ε′ 6' 0 and the sum of trivial ones to be ε′′ ' 0,

we write ε = ε′+ ε′′ where the support of ε′ and ε′′ don’t overlap. So the ratio r(K, e) can

be written as

r(K, e) ≡ Ztot(e)

Z0(e)
− 1

=
∑
ε′

∑
ε′′'0:ε′∩ε′′=∅ e

−Kwgt(e+ε′+ε′′)∑
ε′′'0 e

−Kwgt(e+ε′′)

≤
∑
ε′

∑
ε′′'0:ε′∩ε′′=∅ e

−Kwgt(e+ε′+ε′′)∑
ε′′'0:ε′∩ε′′=∅ e

−Kwgt(e+ε′′)

where in the last equation, the summation in the denominator is restricted to vectors ε′′ ' 0

that don’t overlap with ε′.

For each ε′, we can also decompose e = e′(ε′) + e′′(ε′) + e′′′(ε′). Here the support

of e′ is in the support of ε′ and their corresponding elements add up to 0 (mod q), the

support of e′′′ is also in the support of ε′ but their corresponding elements add up to

some non-zero value, which doesn’t change the weight. The support of e′′ is the part

of the support of e′ that doesn’t overlap with ε′. So the weight can be decomposed as:

wgt(e′ + e′′ + e′′′ + ε′ + ε′′) = wgt(e′ + ε′) + wgt(e′′ + ε′′), and wgt(e′ + e′′ + e′′′ + ε′′) =

wgt(e′ + e′′′) + wgt(e′′ + ε′′). Thus the inequality becomes
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r(K, e) ≤
∑
ε′

∑
ε′′'0:ε′∩ε′′=∅ e

−Kwgt(e′+e′′+e′′′+ε′+ε′′)∑
ε′′'0:ε′∩ε′′=∅ e

−Kwgt(e′+e′′+e′′′+ε′′)

=
∑
ε′

e−Kwgt(e′+ε′)
∑
ε′′'0:ε′∩ε′′=∅ e

−Kwgt(e′′+ε′′)

e−Kwgt(e′+e′′′)
∑
ε′′'0:ε′∩ε′′=∅ e

−Kwgt(e′′+ε′′)

=
∑
ε′

e−Kwgt(e′+ε′)

e−Kwgt(e′+e′′′)

=
∑
ε′

e−Kwgt(ε′)+2Kwgt(e′)+Kwgt(e′′′)

=
∑
l≥1

∑
1≤j1<j2<...jl≤t

e
∑l
i=1(−Kwgt(cji )+2Kwgt(e′ji

)+Kwgt(e′′′ji
))

= −1 +
t∏

j=1

(
1 + e−Kwgt(cj)+2Kwgt(e′j)+Kwgt(e′′′j )

)

= −1 + exp

 t∑
j=1

ln
(

1 + e−Kwgt(cj)+2Kwgt(e′j)+Kwgt(e′′′j )
)

≤ −1 + exp

 t∑
j=1

e−Kwgt(cj)+2Kwgt(e′j)+Kwgt(e′′′j )


where we have decomposed every ε′ into t irreducible codewords c1, c2, . . . , ct, ji are the

indices in the list of irreducible codewords, and ej are the restriction of e to the support of

cj . The last inequality used the trivial inequality ln(1 + x) ≤ x for any x > −1.

Denote error averaging with square brackets [f(e)] ≡
∑

e P (e)f(e), the successful

decoding probability

Psucc ≡
[
Z0(e)

Ztot(e)

]
=

[
1

1 + r(K, e)

]
≥

exp

− t∑
j=1

e−Kwgt(cj)+2Kwgt(e′j)+Kwgt(e′′′j )


≥ exp

− t∑
j=1

[
e−Kwgt(cj)+2Kwgt(e′j)+Kwgt(e′′′j )

]
= exp

− t∑
j=1

(
(1− p)e−K +

p

q − 1
eK +

q − 2

q − 1
p

)wgt(cj)


where we have used the convexity of the exponential function in the last inequality.
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Applying the upper bound on the number of irreducible codewords from Ap-

pendix B.4, we find

Psucc ≥ exp

(
−n(q − 1)

∞∑
w=d

(
(m− 1)

(
(1− p)(q − 1)e−K + peK + (q − 2)p

))w)

= exp

(
−n(q − 1)

(
(m− 1)

(
(1− p)(q − 1)e−K + peK + (q − 2)p

))d
1− (m− 1) ((1− p)(q − 1)e−K + peK + (q − 2)p)

)

For a code of which distance increases as limn→∞
d

ln(n) = D, the probability of

decoding failure converges to 0 if

(m− 1)
(
(1− p)(q − 1)e−K + peK + (q − 2)p

)
< e−1/D

In the case where limn→∞
d

ln(n) = ∞ which is true in toric code or hypergraph-product

code, the condition is simply

(m− 1)
(
(1− p)(q − 1)e−K + peK + (q − 2)p

)
< 1

The inverse temperature that maximizes Psucc is when

eK =

√
(1− p)(q − 1)

p

which is half of the inverse Nishimori temperature Kp = ln
(

(1−p)(q−1)
p

)
. And the lower

bound on the error rate threshold at this temperature becomes

(m− 1)

((√
1− p+

√
p(q − 1)

)2
− 1

)
< e−1/D

The free energy density homological difference, ∆f ≡ 1
n(lnZtot(e) − lnZ0(e)), is

given by

∆f =
1

n
ln(

Ztot(e)

Z0(e)
) = (q − 1)

(
(m− 1)

(
(1− p)(q − 1)e−K + peK + (q − 2)p

))d
1− (m− 1) ((1− p)(q − 1)e−K + peK + (q − 2)p)

which converges to 0 if

(m− 1)
(
(1− p)(q − 1)e−K + peK + (q − 2)p

)
< 1.
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B.7 Proof of Theorem 4.4 and discussion on the upper bounds

for code distance

Theorem 4.4 Given that the distances of the codes C⊥H1
and C⊥H2

are d1 and d2 respectively

and the corresponding codes with transposed matrices are d̃1 and d̃2 respectively, the lower

bound of the distance d of the code C is d ≥ min(d1, d2) and d ≥ min(d̃1, d̃2).

B.7.1 Code dimension

Given the generator matrices Gx = (I⊗H2, H1⊗ I) and Gz = (HT
1 ⊗ I,−I⊗HT

2 ) of a CSS

code C, write H1 and H2 in Smith normal form: H1 = V1P1U1, H2 = V2P2U2, where Vi and

Ui are reversible matrices with determinant ±1 and P1 and P2 are diagonal matrices with

diagonal elements {ai} and {bj}.

Let Nx be the number of different vectors v = αGx and Nz be that of αGz, where

α is an arbitrary vector in Zq. First we find out Nx

Nx =
qr1r2

|{σ : σGx = 0}|

where r1, r2 are the ranks of H1 and H2, respectively. To calculate the number of solutions,

we can expand the product

0 = σGx

= σ(I1 ⊗ V2P2U2, V1P1U1 ⊗ I2)

= σ(V1 ⊗ V2)[(I1 ⊗ P2)(V −1
1 ⊗ U2), (P1 ⊗ I2)(U1 ⊗ V −1

2 )]

To simplify the symbols, let σ̃ ≡ σ(V1 ⊗ V2). Then we may write σ̃(I1 ⊗ P2) = 0

σ̃(P1 ⊗ I2) = 0

so that

|{σ̃}| =(|{σ̃1 : σ̃1b1 = 0 and σ̃1a1 = 0}|)(|{σ̃2 : σ̃2b2 = 0 and σ̃2a1 = 0}|)

(|{σ̃3 : σ̃3b3 = 0 and σ̃3a1 = 0}|) . . .
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Since (σ̃1b1 = 0 and σ̃1a1 = 0) is equivalent to σ̃1gcd(a1, b1) = 0, we may rewrite

the number of solutions as:

|{σ̃}| =
∏

1≤i≤t1
1≤j≤t2

gcd(ai, bj) ·
∏

1≤i≤t1

ar2−t2i ·
∏

1≤j≤t2

br1−t1j · q(r1−t1)(r2−t2)

And we find the number

Nx =
qt1r2+t2r1−t1t2

D12D
r2−t2
1 Dr1−t1

2

where t1 and t2 are the ranks of P1 and P2 respectively, D1 ≡
∏
i ai, D2 ≡

∏
j bj and

D12 ≡
∏
i,j gcd(ai, bj).

Similarly,

Nz =
qt1n2+t2n1−t1t2

D12D
n2−t2
1 Dn1−t1

2

Thus the total number of codewords is

K =
qn

NxNz
= qn+2t1t2−t1(r2+n2)−t2(r1+n1)D2

12D
r2+n2−2t2
1 Dr1+n1−2t1

2

where n ≡ n1r2 + n2r1.

Let the number of solutions for H1c = 0 be K1 ≡ qn1−t1D1 and the number

of solutions for H2c = 0 be K2 ≡ qn2−t2D2, and those for HT
1 and HT

2 be K̃1 and K̃2

respectively.

To simplify the notations, let us define

k ≡ logq K

k1 ≡ logq K1 = n1 − t1 + logqD1

k2 ≡ logq K2 = n2 − t2 + logqD2

k̃1 ≡ logq K̃1 = r1 − t1 + logqD1

k̃2 ≡ logq K̃2 = r2 − t2 + logqD2

where we simply define k to be the logarithm of the number of codewords in base q, which

is not necessarily an integer. It is easy to see that

k = k1k̃2 + k2k̃1 − 2 logqD1 logqD2 + 2 logqD12
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B.7.2 Bounds on code distance

We find the lower bound of the distance as in the following statement:

Theorem B.1 Given that the distance of H1 and H2 is d1 and d2 respectively and the

distance of HT
1 and HT

2 is d̃1 and d̃2 respectively, the lower bound of the distance d of the

code C is d ≥ min(d1, d2) and d ≥ min(d̃1, d̃2).

Lemma B.2 If K1 = K2 = 1, then K = 1.

Proof of Lemma: Denote the invariants of the Smith normal form of H1 and H2 by {ai}

and {bj} respectively, D1 ≡
∏
i ai, D2 ≡

∏
j bj and D12 ≡

∏
i,j gcd(ai, bj). If K1 = K2 = 1,

D1 and D2 must be 1, so that ai = 1 and bj = 1 are true for all i, j, so D12 = 1, which

implies K = 1.

Proof. To prove the lower bound, suppose there is a vector v that satisfies Gxv
T = 0 and

wt(v) < min(d1, d2) and we prove that it can be written as a linear combination of rows of

Gz: v = αGz.

In vector v, the non-zero elements multiply certain columns in Gx, and these

columns correspond to certain columns in H1 and H2. Now drop those columns in H1 and

H2 that don’t correspond to any non-zero element of v, and define the resulting matrices

to be H ′1 and H ′2, and the number of columns to be n′1 and n′2. And also drop the elements

of v that correspond to the dropped columns in G′x = (I ⊗H ′2, H ′1 ⊗ I), which results in a

shorter vector v′.

The number of columns of H ′1 is n′1 < d1, which is the distance of H1, so it must

be a full rank matrix with all diagonal elements to be 1 in Smith normal form, otherwise we

can find a vector c′1 with wt(c′1) ≤ n′1 that satisfies H ′1c
′
1
T = 0, and by putting zeros in c′1

we find an codeword of H1 with weight less than d1, resulting in a contradiction. Similarly,

H ′2 must also be a full rank matrix with all diagonal elements to be 1.

From the lemma above, we can see that the QHP code based on matrices G′x, G′z

contains only the trivial vector 0, so K′ = 1. Thus, the matrix G′z = (H ′1
T ⊗ I,−I ⊗H ′2

T )
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also has dimension 1, which means that v′ can be written as linear combinations of rows of

G′z since G′xv
′T = 0 and G′xG

′
z
T = 0. By expanding v′ back to length n, where we fill the

columns that was dropped when we created v′ from v with zeros, we recover v and show

that it can be written as linear combinations of rows of Gz, which completes the proof.

In the above we proved d ≥ min(d1, d2). The second inequality, d ≥ min(d̃1, d̃2),

is proved in a similar way.

Let us now discuss the upper bounds on the distance. In the binary case, the

upper bound reads d ≤ min(d1, d2) if we set the distance of an empty code equal infinity.

However, the method to prove the upper bound of the distance of the code in the binary

case: “d ≤ d1 when k2 6= 0, and d ≤ d2 when k1 6= 0; similarly d ≤ d̃1 when k̃2 6= 0, and

d ≤ d̃2 when k̃1 6= 0”, is no longer valid in Zq when q is composite, as shown in the following

argument:

In the case k1 6= 0, to prove d ≤ d2, we need to find an error e with wt(e) = d2,

where Gxe
T = 0 and e can’t be written as any linear combination of rows of Gz.

Take all the vectors {e} that can be written as e = (β ⊗ cT2 , 0) where β goes

through all the vectors that has an element 1 and other elements 0, c2 goes through all the

vectors that satisfies H2c2 = 0 and wt(c2) = d2. Suppose any e can be written as αGz.

Expand α in the basis α1 ⊗α2: β ⊗ cT2 =
∑

i,j αij(α1i ⊗α2j)(H
T
1 ⊗ I)

0 =
∑

i,j αij(α1i ⊗α2j)(I ⊗HT
2 )

which leads to  β ⊗ cT2 =
∑

i,j αijα1iH
T
1 ⊗α2j

0 =
∑

i,j αijα2jH
T
2

In the case q is prime, all αij can be taken as 1, and as β goes through all the

vectors that has one position to be 1 and all the rest 0, we see that any vector that can be

written as linear combinations of rows of HT
1 and HT

1 must be full rank, which implies that

k1 must be 0. However in Zq, it is possible that the elements of cT2 have a common factor

which may also appear in αij or HT
1 , which causes this method to be inapplicable.
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Although the bounds on the code parameters defined on Zq are much more compli-

cated for general q, numeric evidence shows that a large random sparse matrix most likely

has its Smith normal form invariants all being 1, which simplifies the situation so that it is

similar to the algebra defined on fields, and the bounds are valid again.
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