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Sheet beam model for intense space-charge: with application to Debye screening and
‘the distribution of particle oscillation frequencies in a thermal equilibrium beam

Steven M. Lund* and Alex Friedman'
Lawrence Livermove National Laboratery, Livermore, CA 94550, USA

Guillaume Bazouin?
Lawrence Berkeley National Laboratory, Berkeley, CA 84720, USA
{Dated: 10 January 2011, Submitted to Physical Review Special Topics — Accelerators and Beams, Accepted 25 March 2011)

A one-dimensionsl Vlasov-Poisson model for sheet. beams is reviewed and extended to provide a
simple framework for analysis of space-charge effects. Centroid and rms envelope equations including
image charge effects are derived and reasonable parameter equivalences with commonly employed
9D transverse models of unbunched beams are established. This sheet beam model is then applied
to analyze several problems of fundamental interest. A sheet beam thermal equilibrium distribution
in a continuous focusing channel is constructed and shown to have analogous properties to two-
and three-dimensional thermal equilibrium models in terms of the equilibrium structure and Deybe
screening properties. The simpler formulation for sheet beams is exploited to explicitly calculate
the distribution of particle oscillation frequencies within o thermal equilibrium beam. It is gshown
that as space-charge intensity increases, the frequency distribution becomes broad, suggesting that
beams with strong space-charge can have improved stability.

PACS numbers: 29.27.Bd,41.75.-,52.59.58a

I. INTRODUCTION

Analysis of self-consistent space-charge effects in beams is notoriously difficult due to the nonlinear structure of the
Vlasov-Poisson models for realistic, smooth distribution functions. Even the equilibrium structure is generally highly
nonlinear which complicates the analysis of the stability and evolution of collective wave perturbations evolving on
the equilibrium. Due to this situation, large-scale numerical simulations play a central role in the analysis of charged
particle beams. Nevertheless, even when only tractable in idealized limits, problems amenable to analytic analysis
increase our understanding of equilibrium and stability properties which in turn helps in interpreting and guiding
experiments and/or numerical simulations of more realistic syster models.

One dimensional {1D) sheet beam models have been applied in the analysis of microwave devices and free-electron
lasers[1-5]. 1D sheet beam models have also been exploited as a gimplified framework to gain insight on higher
dimensional models of beams in particle accelerators — particularly on difficult space-charge effects. F. Sacherer
applied a self-consistent, 1D Kapchinskij-Vladimirskij (KV) maodel for a uniform density beam to analyze equilibrium
and stability properties and applied his results to model space-charge induced effects on resonances in rings[6]. Various
studies have applied and extended Sacherer’s pioneering work in interpreting space-charge resonance effects in rings{7-
9. O. Anderson showed that in a cold, laminar beam limit that all initial density perturbations on a uniform density
sheet beam are transferred to velocity space in a quarter plasma oscillation period[10] and also estimated emittance
growth rates due to centroid displacements using a sheet-beam model[11]. Analytic descriptions of collective modes
in sheet beams have been derived for a continuously focused waterbag (i.e., uniform phase-space) distribution by E.
Startsev and R. Davidson[12] and by H. Okamoto and K. Yokoya for approximate waterbag distributions in both
continuous and periodic focusing[7, 13]. Davidson et al. also analyzed a waterbag distribution in periodic focusing
channels in terms of the evolution of the phase-space boundary([14].

In spite of this success in sheet beam modeling, an issue of concern stems from the Coulomb force being radically
different in physical 3D (inverse distance-squared), 2D transverse cylindrical (inverse radial distance), and 1D slab
(constant; long range) geometries suggesting the possibility of nonphysical collective interactions in the lower dimen-
sional models. However, it is well known that in 2D beam and plasia systems Debye screening leads to closely similar
characteristic transverse collective effects relative to 3D models in spite of the very different Coulomb interaction in
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2D and 3D. Here, we first develop a sheet beam equilibrium for a continuously focused sheet beam and show that
it has surprisingly similar features to higher dimensional thermal equilibrium models. Then the sheet beam thermal
equilibrium is applied to show that the same characteristic Debye screening is produced in the 1D model as in 3D,
thereby supporting the viability of the 1D model because equivalent Debye screening in 1D should lead to similar
collective interactions to those in the physical 3D model. The simplicity of the sheet beam thermal equilibrium
model is also exploited to explicitly calculate the the distribution of particle oscillation frequencies within the equi-
librium beam. The influence of space-charge in broadening of the frequency distribution is parametrically quantified.
Large frequency spreads characterized help explain the surprising degree of stability observed in the transport of high
intensity beams in both laboratory experiments and simulations.

The organization of this paper is the following. In Sec. II we review and extend a 1D sheet heam model which can be
exploited to more simply analyze a wide variety of beam transport problems with intense space-charge. A Vlasov model
and both equilibrium and concavity-based distribution stability in continuous focusing are briefly reviewed (Sec. IL A},
centroid and envelope equations are derived and rms equivalency is discussed (Sec. IIB), and simple parametric
equivalences to higher-dimensional beam models are established (Sec. II C). The sheet beam model is then applied to
analyze a thermal equilibrium beam in & continuous focusing channel in Sec. IIL. The equilibrium density/potential and
distribution structure are parametrically illustrated as space-charge intensity is varied (Sec. IILA). Debye screening
of a test charge inserted in the equilibrium beam is studied (Sec. [1IB). The simple structure of the equilibrium is
exploited to explicitly calculate the distribution of particle oscillation frequencies within the sheet beam including
linear applied focusing and nonlinear defocusing space-charge forces (Sec. ITIC). Concluding discussions in Sec. IV
frame the context and usefulness of results analyzed.

II. SHEET BEAM MODEL

We employ a sheet beam model in a rectangular x, y, # coordinate system to represent an axially thin, transverse
glice of an unbunched (8/82 = 0} charged particle beam composed of a single species of particles of charge ¢ and
rest mass m. The slice propagates with velocity Gsc = const and relativistic gamma factor 7, = /1 — ,BE = const
along the axial (z) direction. Here, ¢ is the speed of light in vacuo. The independent time-like coordinate is s, which
represents the axial coordinate of a reference particle of the beam along the design orbit in the machine. The beam is
modeled by a superposition of charge sheets which are distributed in  and uniform in y and z. The beam phase-space
is described by spatial coordinate  and the angle 2’ that the sheet particles make with the longitudinal axis of the
machine. Primes denote derivatives with respect to s, and in the paraxial approximation &' ~ v,/(8yc) where v, is
the z-velocity of the sheet. Any 3’ dependence is dynamically irrelevant and is suppressed for notational clarity. The
sheet particles evolve according to the single-particle Hamiltonian

_lp 1 2 q¢
H= 5% + ghe + p—rd (1)
with equations of motion
d,_oH_
PR A 9
dy_ OH_ . a % @
ds” Ox myfEc? bz’

Here, #(s) is the focusing function of the lattice, which is taken to be a prescribed function of s, and ¢ is the
electrostatic potential given by the transverse 1D Poisson equation

b= —n ®

where n(z, s} is the number density of beam particles. The Poisson equation is solved subject to appropriate boundary
conditions. SI units are employed and ¢ is the permittivity of free-space.

In contrast to higher dimensional cases, the 1D Poisson equation (3) for a sheet beam can be fully solved analytically.
The one-dimensional beam density n can be thought of as a superposition of sheet charges. Taking in free-space,
gn = L0(xz — x,) where X; = const is a surface charge density, = =, is the z-coordinate of the sheet charge, and
0(x) a Dirac-delta function yields —9¢/6z = sgn(x — ,)Z./(2€0) where sgn(zx) = x1 denotes the sign of z. Note
that in contrast to the field produced by point charges in 2D and 3D systems, the 1D field is long-range and does not



fall off with distance from the cha.rge source. 'Usmg this pomt source result, the ‘direct field in free-space is obta,med
by linear superposition of sheet cha.rges to the left and right of z giving

-——m Se [f d# n{%) — fdmn(x)}

Ve aN (4)
. @ 26
Here, :
‘px
N, = f Gn@) - 5)

is the density integrated to the left of z (s dependence of n is- suppressed for notational. snmphclty) We denote the
integrated density (number -of particles per umt surface area of the beam) by

- N= lim Ny = const, - ‘ . B ()]
OO
which is constant since particles are nelther created or destroyed. For future apphcatlons note that
ON, ‘ . BT
n= ' : 7
8z )

Witheut loss of generality, a potential reference of ¢lx =0)=0can be taken Whlle integrating Eq. (4} with respect
to & to express the direct field potential in free-space as

o--tfame o e e

For the specml case of a sheet beam w1th a symmetric density profile about # = 0 satlsfymg n(z) = n(—x), Ny =
N2+ [;dE n(E) and the free-spa.ce field and potentlal solutions in Eqs. (4) and (8) reduce to '

Eof dE n(E), -

¢=a/0d:if0d:i':n(e::)'.:-

For the case of a sheet beam focused between conducting aperture plates (see Fig. 1) at © = zy and @ = Tpe
which are held at potentla,ls ¢ = ¢ and ¢ = ¢, respectively, the Poisson equa.tlon (3) can be integrated from the left
boundary at & = @ with 3‘2|w_z , undetermined and ¢(m = mp;) = . Then BEI,,._%, can be ca.lculated by requiring
$(x = zy) = ¢y which gives

(9)

o _ v — &y 4 “r dmN qu _‘
aﬂﬂ mpr - Tyl ED(:Epr - ﬂ':p!) mpg ) o )
' (10}
. - .
¢=¢;+(¢r—¢;+1f dwNm_)u—- d:rN(m)
— Tpl ‘ €0 Tl

In the finite geometry solution above, the free-space forms of Ny and N' defiried in Egs. (5) and (6) are replaced by
N, f dZ n(&) and N = Ny, = f ”"’"dw n(%) . Provided that no particles are lost to the plates during the beam

evolutlon, N = const. Comparing the free-spa.ce solution (4) and the finite geometry 801111]1011 (10) for —0¢/ Oz, we
can resolve the field of the finite geometry system as

86 _ 99| _24| O (11)
o dz|, Ozj, o=z’
where

_ 98| _ Nz 9N
oz|, € 2e0’
6(25 ¢r _¢’I _ ’ } -
Ox|,— o —mp = const, _ - _(12)
B¢ q_ “or aN
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are identified as the (d) direct or free-space, (a} applied, and (i) iriduced image charge contributions to the solution.
The applied field —8¢/dx|, is spatially uniform in = and can be interpreted for ¢; # ¢, (i.e., when nonzero) as a
dispersionless bending or deflection field. The net image field —8¢/8z|; is spatially uniform snd can be shown to be
zero when the density profile of the beam is symmetric about the geometric center of the aperture. In spite of the
long-range 1D field structure, the image field becomes weak when the statistical center of the beam remaing near (in a
fractional sense} to the geometric center between the plates at z = (zp; + % )/2. These points are illustrated clearly
in the centroid equation of motion derived for a uniform density beam in Sec. IIB.

a) Geometry

Continuum of
‘ Shee_t Particles

Plate

8]

L2=0=90
* (b) Density and Field S |
¢ =g : _ - ¢ = ¢y
-
Bending Force: '
o _%‘ — const . Applied Focus Force
*la ! X K

-

Plate Plate

53

T =Ty z=0 o T = Ty

FIG. 1: (Color) Schematic of 1D sheet beam (a) geometry with biased conducting plﬁtes. and (b} density projéction and fields.

For future applications, employing Egs. (2) and the field resolution in Eq. (11), the equation of motion of a general

particle can be expressed as
g0 (88 |
x +ml: = R (Bm ; ) B (13)

¢
+a

_Bm
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with the direct, applied, and image field components specified in Eq. (12). For the case of a sheet beam in free-space,
the applied and image components are set to zero. : o ' ' ‘ '

A. Vlasov-Poisson system and éontinuous focusing equilibria

Tn the continuum approximation, particle collisions are neglected émd_ the beam evolution is modeled by a single '
particle distribution function: f(z, 2, s) which evolves according to the Vlasov equation S

8 OHH® OH 0. Py ‘
{£+5}73—m—§;@}f(m,m,s)—0. I (14)

Within the context of the Vlasov model, the number density » in Poisson’s equation (8) is smooth and with normal- -
ization choices taken is related to f by ¢ ‘ . . ‘

”=f da’ f | S (15)
The Vlasov equation (14} with the Hamiltonian in Eq. (1) and electric field solution —8¢/0x (including self direct and
image terms as well as possibly an applied bending terms when ¢; # @) specified by Egs. (10) and (15) determine the
evolution of the distribution f(z,2’,s) in s from a positive initial function specified at the initial coordinate s = s;
[ie. f(z;2',s = s;} > 0]. The simplicity of this 1D Vlasov model together with the fully analytic field solution not
only enables considerable progress in analytical analysis of beam physics problems, but it can also be exploited as a
simple test bed to develop numerical simulation methods — particularly for direct Vlasov simulations[15}.~
The focusing function k{s) can be related to applied linear electric or magnetic focusing field components using
standard formulas from higher dimensional models (sce Refs. [16-19] and the parametric equivalence discussion in
Sec. IIC). Electric (including continuous focusing) optics cannot be fully consistent with the ‘1D model geometry
assumed and vacuum transport. Nevertheless, they can be applied as additional, idealized imposed -forces - with
consistent coupling strength from the higher dimensional models. For the special case of a periodic lattice, the
function x(s) is periodic with lattice period Ly, ie., #(s+ Lp) = x(s). In this casc, it is convenient to measure the
strength of « with the single particle phase advance per lattice period oo, which can be calculated asf20] '

cos o = %Tr M(s; +L’;|S?)'t | S (16)
Here, | - _ .
c i) S(s|s; . _ o -'
M(sls;) = ( C'(zl‘ls&z) S'((.l|s.,)) ) . _ | 7).

denotes the 2 x 2 transfer matrix from axial coordinate s; to s, and the C {si]s) and S (s,-,|s). are cosine-like and sine-like
principal orbit functions satisfying ‘ ‘ '

F"(sls:) + o{s)F(slss) =0, oy

with F representing C or S and the equation is solved subject to the initial conditions Cl(sds) = 1., C'(s4]8;) = 0,

and S{a;s;) =0, $'(ss]s;) = 1. For periodic lattices, the focusing function « is generally chosen sulficiently weak with
(1/2)ITr M(2; + Ly|2;)| < 1 for the single-particle orbits to be stable. :

Analogously to higher dimensional cases[16, 18, 19, 21], the continuous focusing model with

= kfm = const, . (19)

is an idealization which can be applied to further simplify the sheet-beam model. In this case the particle phase
advance oo and lattice period L, are arbitrary and all particle orbits moving in the presence of the applied focusing
field are stable. ‘ . ' ? K —_—

Any positive-definite distribution function £({C;}) formed from a set of constants of the motion {C;} of the single-
particle equations of motion (13) produces a valid “equilibrium” solution to the Vlasov equation. Self-consistency
requires that f({C;}) generates the electric field —8¢/dx required for validity of the {C:}. Generally, this is a highly
nontrivial constraint. However, for continuous focusing with ¢; = ¢, (i.e., no bending), any choice of function f (H)
with f(H) > O generates a stationary (8/8s = 0) equilibrium-beam because H is a single-particle constant of the
motion in this situation. o : '
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Global conservation constraints of the 1D Vlasov-Poisson systerﬂ can be applied as in higher dimensional models to
bound perturbations[22-25]): For systems where particles are not lost, the generalized entropy constraint associated
with the Vlasov equation .

bg'= /mwd.;n /m dx’ G(f) = const‘.' _ (20)

apphes for any choice of differentiable function G(f) satistying G'( f — 0) = 0 provided that f(z’ — +oo) = 0 and
Fle = xpy, #5r) = 0. A special case of Eq. (20) with G(f) = gf is charge conservation, i.e, gN = ¢ m"’d,’:r: f_ de’ f =
const. For the special case of continuous focusing with & = k2 G0 = const and ¢; and ¢, constants (1 e., a continuous
bend}, the sum of the kmetm, applied potential, and electric ﬁeld energies are constant, which can be expressed as

U =f da:/ o' (1o 4 Lz a2y +E—°fm”d o/’
A - 2 P 2qmyigic S, dx
(2 T (21)
€) O C
+ mRBecE |:¢r s, - Q1o By, = congt.

This result is derived in Appendix A where it is also shown that the last term on the LHS is associated with energy
provided by an external source used to hold the plates at x.= x,1, p 8t potentials ¢ = ¢y, ¢. Also in Appendix A,
the expected result is shown that if ¢y = ¢, {possibly varying in s}, then Eq. (21) applies without the external source
term. Paralleling methods developed for 2D and 3D beams in Refs. [22, 24], Egs. (20) and (21) can be applied to
. continuously. focused sheet. beam equilibria. without bending (¢ = ¢,) to bound perturbations and show that any
equilibrium distribution f(H) that is a monotonic decreasing function of H .[i.e., df (H)/dH < 0] is stable to both
small and large amphtude perturbations. For infinite systems (free-space) the 1D ﬁeld energy term o f dz |8¢ /x|
in Eq. (21) diverges. However, analogously to tlie case in 2D, this divergence can be regularized (i.e., an approprlate
infinite constant subtracted) to allow bounding of perturbations to show that sheet-beam equilibria in free—space with
d,f(H )/dH <0 are stable.
- For future use, we denote dlstnbutmn averages in the Vlasov theory by

()=% ] prdw[-mdm’---f. . ' ' (22)

Averages of a quantity g(z, s) which is‘independent of ' ca,h be calculated using n = 9N, /8z [Eq. (7)] to obtain
BN

=% (23)

For some partmular choices of g, pa.rt1a.] integration can be explmted to further simplify Eq. (23)

B. Centroid and envelope‘eql;atibns and the rms equivalent beam

For present purposes we make no assumptions on the structure of the sheet beam distribution f and define phase-
space coordinates with respect to the center of mass (centroid) {z) by

(24)

To derive an equation of motion for the sheet-beam centroid

= {2}, (25)
the particle equation of motion (13) is averaged to obtain
. " ¥ _ - q
X'+rX= ﬁbcz [ ]

ap
_ q [d’r 2 q iz N, — qN]

(26)

+
bz
m"fb -Bb e | Zpt — Tpr €0(Tpt — Tpr) Tt 2ep
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d) = —-—%(Nm)-i- 7N =0 for

any density profile n since {N,;) = & ::"da: Nm%ﬂ = % provided pasticles are not lost from the system. The applied .
‘ a> = %2 . and (%ﬁ 15>. = %ﬁ i.' Note that the applied field

. term effectively acts as an ideal z-bend on the centroid trajectory. : '

Regardless of the actual distribution of beam space-charge, we define a statistical measure of the half-width of the
beam in x about the centroid = = X as e ' _ '

There is no direct (free-space) field contribution in Eq. (26). This follows because <%§

and image terms are independent of z-and z' giving (%ﬁ

zp = +/3(F2). R o (27

This definition is consistent with a uniform density beam with sharp edges about the centroid at * = X & xp. The
factor of /3 in Eq. (27) is a consequence of the 1D geometry and contrasts the familiar factor of 2 in the usual
9D statistical envelope edge definitions[16, 18, 19, 21]. To derive an equation of motion for this “edge” measure of
the beam half-width, we first derive an equation of motion for the transformed particle coordinate & by subtracting
Eq. (26) from Eq. (13) and applying # = z — X to show that

. 5 . : .

T omn . q 1 . . .
=T [Ny - =N }. 28

T 4 RE p— P ( =3 ) ‘ . {28)

Only the direct {free-space) field is present in this transformed equation of motion because both the applied and image
field terms subtract. Differentiating Eq. {27) twice with respect to s and applying the equation of motion (28) leads
to the rms envelope equation . c : ‘ ' '

L o3Py (B) - [ dz (B) 2 oo
xy + KTy — P [ Tel i mz; Zet il ] - 23 =0. - {(29)
b . .
Here,
2 .
_ g°N _ ‘ : .
= _—HZEmeyE o = const | o | (30)
is the sheet beam perveance and
e = 3 [(#)(52) — (37)%]* E o (31) .

is the rms-edge emittance of the sheet-beam. For the 1D sheet-beam the perveance P has dimensions 1 /length, which.
contrasts to the typically defined dimerisionless perveance of a 2D unbunched bea,m£16, 18, 19, 21]. Additionally, the
rms edge emittance ¢ is connected to the rms emittance &q,mms = [(#2)(22) — (£3)?]1/? as € = 3&z,rms With a factor
of 3 rather than 4 as in the 2D case due to the structure of the 1D phase-space. . ‘ ‘ ‘
Contrasting the equations of motion (26) and (29) for the centroid X and envelope x, the fact that the applied field

- %g‘ enters only the centroid equation is not surprising since any nonzero applied field acts as an ideal (bending)
@ ! ) . .o

dipole term. The lack of image contribution in the envelope equation results from the independent of & structure of

the induced fields in the 1D geometry. The image term in the centroid equation [— %‘EI | will generally evolve in s with

the form of the density profile n produced by the sheet-beam distribution I Simila,rly,E in the envelope equation, both
the defocusing self:field perveance term (< P) and the emittance ¢ will generally evolve in s. Thus, the centroid and
envelope equations can only be integrated under additional assumptions or analysis to quantify generally non-constant -
terms in the equations, : ; : . X
For the special case of a sheet beam with uniform density between shatp edges at z = X + w3, We have

oo 0, X+z<z<ip, ’ . ,
n(ﬂ:)=/ de' f =4f, X—zp <z <X+, ‘ (32)
' % |0, Tpt <2 < X — 3y, C
with # constant in = but possibly varying in s.. Consistent with charge conservation, -
N

= o o - e



with N =.const. Using this denéity. profile the centroid equation (26) reduces to

X" 4 nX = ——& —h 2Py Zmtoa) (34)
' m’)’bﬂb c? mp'r — Lyl wpr — Ty 2 ’ :

and

3

’ Ty 2
3[fomde (3) - [2rde (%7
thereby reducing the envelope equation {29) to simply

2
mg-l-mmb—P—a—-:O. ' (35)
Note that Eqs (34) and (35) are decoupled for a uniform density sheet beam with the centrmd equation independent
of z; and the envelope equation independent of X. From Eq. (34), the image force acting on the centroid is a linear
defocusing force which is zero when the beam is centered in the aperture with X = {(z) = (z, +2,)/2. Even though
self-field forces are long-range in 1D, the image force becomes weak when the fractional deviation of X from the
aperture center at (T, + Tp)/2 becomes large due to relative values of induced charge on the two plates. Naturally,
the image force also becomes weak for small beam perveance P. From Eq. (35) the space-charge defocusing term of
a uniform density sheet beam is simply a constant (P). This structure a posteriori motivates the choice of numerical
coefficients incorporated in the definition of the sheet beam perveance P'in Eq. (30). The constant space-charge
defocusing term acting in the envelope equation contrasts forms found in 2D and 3D systems for uniform density
beams. In the 2D and 3D cases space-charge strength varies inversely with the beam envelope extent.
' Analysus by Sacherer [6] shows that the distribution

S
‘ '2_11-5\/1_(%)2_(%5:’;1:'{&)2 Tp € | |

satisfies the 1D Vlasov-Poison system consistent with the assumption of uniform beam density in Eq. (32). Here,
©(x) is the unit-step function defined by ©(x) = 0 for x < 0, and ©(z) = 1 for z > 0. The distribution (36) is the 1D
analog of the well-known 2D KV distribution[16, 21, 26]. It is straightforward to show that the KV distribution (36)
is a function of Coura.nt-Snyder invariants{20, 21 27] of the linear equation of motion ‘

&+ kT — £:'z': =0, ‘ (37)
Tb

whlch describes a particle moving within the uniform density beam (i.e., || < zp). Although the sheet-beam KV
distribution diverges at the phase-space edge, it does not possess the same degree of singularity (delta function)
in phase-space as occurs for the 2D KV distribution. The 1D KV distribution (36) is the unique self-consistent
distribution that produces a uniform density beam and evolves consistently with the envelope equation (35) with
¢ = const. An interesting feature of the construction in 1D is that it is consistent with image charges because
image forces are lincar in 1D and are therefore consistent with the preservation of Courant-Snyder invariants. This
contrasts the situation for a 2D KV distribution where image forces generally must be neglected [except for cases
where boundaries can be chosen for zero net image force such as an axisymmetric (8/60 = 0) beam confined within
. an axisymmetric plpe] for consistency with a KV distribution because the net image force on a particle within the
" beam generally varies nonlinearly with respect to the proximity of the particle relative to the aperture.

The existence of a self-consistent, uniform density sheet beam satisfying the centroid and envelope equations (34)
and (35) motivates construction of an rms equivalent beam analogously to the well-known 2D case. As in 2D, one
" can aid the interpretation of a general sheet-beam evolving with nonuniform density by replacing the actual sheet
beam distribution f with an “rms equivalent” KV sheet beam distribution. The rms equivalent beam has uniform
density with the same species (g, m), energy (8}, charge (N, or equivalently P), and identical first and second order
moments as the nonuniform density beam as summarized in Table I. The rms equivalent beam will have identical
centroid (X, X') and envelope (2, 2}) phase-space coordinates, and emittances (¢) as the nonuniform density beam
it replaces. The subsequent evolution of the rms equivalent beam according to the coupled envelope and centroid
equations (34) and (35) with constant normalized emittances generally provides a reliable model for the statistical
evolution of the real beam if nonlinear force effects leading to emittance growth are sufficiently small. The envelope



TABLE I: Sheet beam rms equivalency with = z — {z} and &’ =2’ — {z).

Quantity RMS " Calculated

. Equivalent From Distribution
Perveance p . = ¢*N/{(2eom; 3 %)
Centroid Coordinate X o= {m) .

Centroid Angle X! = (z')

Envelope Coordinate = /&)

Envelope Angle x4, = 37}/ T
Emittance €, = 3. /{82){&3") — (28')?

of a space-charge dominated beam will generally be insensitive to modest emittance growth that may result. from
nonlinear forces because the emittance term £2/z; in the envelope equation is small. Alternatively, the rms equivalent
prescription can be applied as a function of s to aid interpretation of the evolution of the physical beam. _

The rms equivalent beam can be used to form s convenient, dimensionless measure of space-charge strength in a
periodic or continuous focusing channel. For a periodic channel with (s + L,) = (s), techniques analogous to those
presented in Refs. [21] for 2D beams show that particles moving within an rms equivalent beam which is matched
to the focusing channel [i.e., KV rms equivalent parameters chosen so that the envelope solution to Eq. (35) has the
periodicity of the lattice with (s + Ly) = 23(s)] have phase advance , : :

- p8i+Lyp g, ' . . .
| cr=sf T LG8
' 8 Ty - : ' '

per lattice period. The choice of s; within the lattice period is arbitrary. The ratio a/op can be applied as a
convenient, normalized measure of space-charge strength with o/ € (0,1) with /oo — 1 corresponding to a warm
beam (P < &/x}) with zero space-charge intensity and o/gp — 0 corresponding to a cold beam (P > efz}) with
maximum space-charge intensity. For the special case of a continuously focused beam with « = kfm = const, the -
choice of lattice period L, to measure phase advances is arbitrary, and it can be shown that

o P ‘
oo - ! kgoﬂ':b ._ (39)
It is straightforward to show that this result is consistent with the linear equation of motion (37) for any particle -
evolving within a KV beam. , . : ' ' .

It is interesting to contrast centroid and envelope oscillations in X and x; supported by an rms equivalent sheet
beam and contrast results with those found in higher dimensional models [16-19]. First, for the centroid X, consider
the special case of a sheet beam transported without bending (¢ = ¢,) and with an aperture centered about z = 0
(applied focus center) with zp, = —p = 7p. Then the centroid equation (34) takes the form of Hill’s equation

X"t kX =0 ' o (40}
with ‘ ‘

Keff = K — ;p 7 ' (41)

This equation of motion shows that in this situation the image charges act as a continuous defocusing correction -
to the applied focusing function & and therefore the standard treatments from accelerator physics of single particle
orbits moving in a prescribed focusing function k.a(s) can be applied to describe the centroid orbit[20]. The lack of
nonlinear amplitude dependence in the sheet beam image force results in a stable centroid orbit that does not increase
in amplitude as oscillations advance in s {or phase), which is contrary to what is found (typically weak amplitude
increases in ) in higher dimensional models[17-19]. However, the sheet beam model has a roughly correct image-
charge induced shift in the phase advance of centroid oscillations when compared to higher dimensional models[17-
19). Changes in this simplified centroid analysis due to an asymmetric aperture (zpr # —2p) and/or bending forces
(¢1 # &) are straightforward to analyze. ' : : ‘
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Next, envelope oscillations-in zy for a sheet beam can be better understood by carrying out a standard stability
analysis taking p = zpo + dzp with xpo satisfying the envelope equation (35) in the absence of perturbations (i.e.,
dmp = 0). Assuming |§zs|/xs0 < 1 and expanding Eq. (35) to leadmg order gives the linearized envelope equation

o} +f«:5mb+3—5wb = S (42}

Typically, zpg is taken to be the matched solution when apphed to a perlodlc lattlce lie., for w(s + Ly} = F\:(S)
zp0{s + Lp) = xpo(s)]. Note that there is no direct modulation of the space-charge (perveance) term in Eq. (42) as is

_ the case for “quadrupole” symmeiry envelope modes found in 2D transverse models of an unbunched beam[17]. The

special case of a continuous focusing channel with k = kﬁo = const and a matched envelope o = const satisfying
kgoZso — P — €2/zd) = 0 further clarifies the correspondence between 1D and 2D model results. Assuming harmonic

variations in dxp oc €** with i = +/—1 and k the mode wavelength the linear envelope equation (42) reduces to a
dispersion relation showing stable oscillations with

2
LAY L
k'@(] . kﬁowbﬂ

32
=4 1+3(-—) .
-\0%0

Here, in the second form of the dispersion given, the continuous.focusing phase advance formula (39) has been applied
to express the result in terms of o//og. Note that the mode wavelength variation in o /o is identical to the familiar
“quadrupole” mode in 2D{17], thereby showing that the analog of quadrupole envelope mode oscillations can be
faithfully modeled in the sheet beam system. However, the shorter wavelength “breathing” modes supported in 2D
are not found in the sheet beam model. Analysis presented in Refs: [16, 17] can be paralleled to analyze the stability
properties of envelope modes supported by a matched sheet beam in a periodic focusing channel.

Finally, it is interesting to illustrate similarities in the sheet beam model and higher dimensional beam medels with
regards to rms emittance evolution. First, we differentiate the rms edge emittance definition in Eq. (31) with respect

(43)

to ¢ and a.pply the equa.tlon of motion (28) along with (&) = 0 = (¥} to show that
d , 36P o |
ds '2 N [(CI?%(.’.U’N,,) - (a"x’)(éva)] . (44)

This result can be shown to be éqmva,]ent to a statement that nonlinear components of the direct space-charge
field drive rms emittance growth in the sheet beam model. Analysis in Appendix B shows that for the special case

of a symmetric beam [i.e., n(x) = n(-z)] in a symmetric geometry without bending (i.e., Zp = —2p = x, and
qbg ¢y = const, and consequently X=0=X), Eq '(44) can be recast as[10]
| d.2_ 22 3/2 d( wp'}
s Nm'ybﬂb c2( ) (z?)1/2 (45)
where
) 2 A2 z 2
_ Ny e [T, |02
Wr = deg 2 pda; Az

sl (46)
- E—f dz N,(N — )

is a field energy measure. Note that Wy = const — W, where W = (¢p/2) [*7 L |0¢/08z|? is the self-field energy per
unit area for this geometry. This result is similar to the results obtained for unbunched axisymmetric beams in 2D by
P. Lapostolle, E. Lee, T. Wangler, and co-authors in Refs. [28-31]. As is the case in 2D, for fixed charge and envelope
half-width x5 = \/3(5:2), a uniform density sheet beam is found to minimize W[10], so from Wp = const — W and
Eq. (46), one expects as in 2I) beams that siymmetrlc local beam evolutions tending to make the beam density profile
less/more uniform will decrease/increase the rins edge emittance e. If the effect of emittance evo]utlon is negligible
on the mean square beam width (z2), then Eq. (45) can be integrated to obtain

' 18
T W e W)
18 (47)
gm0 = W),
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where subscript ¢ denote initial values.

" €. Parametric equivalénces with higher .dimensional beam models

When applying the 1D sheet beam model to analyze higher dimens_ional beam modaels, it is desirable to empioy

" sheet-beam parameters that are reasonably “equivalent” to the higher dimensional formulations. A simple equivalence

prescription to an unbunched, 2D transverse model of a coasting beam without bending is to set initial (s = s;) sheet -
beam parameters as follows: : T : )

Trivially, one should employ the samie particle species (g, m) and axial velocity (Gp) in the sheet-beam model as the
9D model. For either continuous or quadrupole (magnetic or electric) focusing channels, the applied focusing function
& of the sheet-beam model can be set as L

K= Kj, D - (48) _

where k; with j = z or y to represent either the z- or y-plane focusing function ; or ky of the 2D systerg. For the

case of solenoid focusing and an axisymmetric beam, it is reasonable to take &; in Eq. (48) to be the Larmor-frame
focusing strength[17, 32] of the higher dimensional model and interpret the sheet-beam model result as if it were in

‘the rotating Larmor frame. Formulas relating the focusing function & to applied field components for continuous,
* electric and magnetic quadrupole, and solenoidal focusing can be found in Refs. [16-19]. Aperture plate distances can

be set to the beam pipe radius r, of the 2D system (i.e., Tpr = —Tp = rp) for approximately correct image gtrengths.
The sheet-beam perveance P [Eq. (30)] can be set from the usual 2D beam dimensionless perveance @ =

M/ (2meamyd BEc?) (A = const here denotes the 2D beam line-charge) by requiring the rms equivalent uniform density

beams in both the sheet beam and the 2D model to have the same characteristic transverse spatial extent and density
scale #. This results in both systems having same characteristic plasma frequency wp = [4%/ (eom)]*/? of collective

. effects. For a shect beam with characteristic extent @, = /3(22) and density f = N/ (2xy), and- a 2D beam with

characteristic radial extent r, and density fi = A/(gnr?), taking equal densities and x5 = 73 gives an equivalent sheet
beam perveance of '

P——'«-—.. . - ' . (49)

- In applying Eq. (49) to 2D systems without z- and y-plane symmetry and 2D rms equivalent elliptical beam edge radii

re and 7y, it is reasonable to take ry = vy or Ty = 1y t0 analyze the z- or y-plane, or ry = \/raTy.if a plane-average
value is preferred for a beam which is not highly elliptical. For the case of a periodic focusing lattice and a matched

‘beam with significant period variation; it is reasonable to replace 7 and ry by period averages.

In a similar manner to the perveance equivalence, it is reasonable to set the rms edge emittance £ = 3¢y ms With

Eu,ema = [(#2){E?) — (&5)%]"/? [see Eq.'(31)] of the sheet beam in terms of the usual rms edge emittance €, = 4€4 sme

- of the 2D beam with

eme — )

Note that the difference in “edge” coefficients of 3 (1D) and 4 {2D) in & and &, result from the differing dimensionality
of the transverse phase-space. If there are significant z- and y-plane variations in the 2D emittances, then it may
be preferable to replace &, — &, in the equivalence (50) or replace e — |/Ezey depending on whether particular

- plane or average properties are desired. Similar, but more approximate, equivalences can be developed to the 2D case

presented above to apply the sheet beam model to 3D bunched beams. 7
Further insight can be achieved by applying the equivalency procedure outlined above to a 2D continuously focused
heam with focusing strength x; = ky = kf.,o = const, perveance @, rms edge emitiances £, = £, = const, and matched
envelope radii ry = r,, = 3, = const. The matched beam envelope equation kiore—Q/ ry—e2 /3 = 0 (see Ref. [17]) can
then be solved for 7, which is then insetted in the perveance equivalency condition (49) to obtain a simple expression

. for the equivalent sheet beam perveance with continuous focusing strength & = kf.m as :

P . -23/2kBOQ

N ) \/Q+1/Qz+4kf.,.0'e;%.j

)

_ In the limit of a space-charge dominated 2D beam, Q >» kgo€z, the equivalency condition (51).reduces to P/kgo =

24/Q. Conversely, in the limit of an emittance dominated 2D beam, kgoe, >> Q, and the equivalency condition (51)
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reduces to P/ kpo = 2Q/+/Fgos,. It is interesting to point out that for KV beam distributions in the context of this
continuous focusing equivalency, both depressed and unidepressed orbits of particles within the sheet beam and along
the principal axis of the 2D beani will be the same for the same initial conditions within the beam.

III. THERMAL EQUILIBRIUM SHEET BEAM IN A CONTINﬁOUS FOCUSING CHANNEL

Thermal equilibrium distributions have been extenswely studied in 2D nonneutral plasmas confined in Penning-
Malmberg traps[33-35] and continuously focused beams[18, 19, 21, 34, 36, 37]. Results based on & 1D sheet beam
model can also be found in the Appendix of Ref. [7]. For a contmuously focused (k = kﬂo = const) sheet beam in
free-space (withoust conductmg apertures or bending} the thermal equilibrium distribution is given by

1/ :
1) = (TPAE) " oy (MR, ®

Here, T' = const is the thermodynamic temperature (expressed in energy units) in the laboratory frame and # = const
is the characteristi¢ density scale. This thermal equilibrium’ distribution is the special class of stable (8f/0H < 0) -
equilibrium that any initial distribution function f(z,2’,s = s;), however complex, will ultimately relax to through
collisional effects outside the Vlasov model. Although the timescale of collisional relaxation is typically slow relative -
to beam residence times in a machine, collective effects and couplings to external errors and noise sources can drive
enhanced rates of relaxation. In this rega.rd the sheet beam thermal dlstrlbutlon (52) can be considered the preferred
equ1hbr1um of the system :

A. Equilibrinum solution

We analyze properties of the sheet beam thermal equilibrium distribution (52) exploiting a close analogy to ex-
tensively analyzed theory presented in Appendix F of Ref. [21] for thermal equlhbrlum of a continuously focused 2D
cylindrical beam. First, the local kinetic temperature T; and beam density n are calculated from Eq. (52) as

da! .
T = m7br62 ? f-—oo - :;E f =T= const, . . 7
~ Jodat 1 (53)
nEf d.'l:'-f =_ﬁe_'¢', . '
where .
_ B (1, o 4b o0
(! = T. 2kﬁ0m + m’ya ﬁ202 ' (54)

Consistent with the reference choice ¢z = 0), Yz =0) =0 and &t = nfzx = 0) is identified as the on-axis density.
Note that the local kinetic temperature is spatially uniform — as should be expected with a thermsl equilibrium -
distribution. However, the density » varies in x due to the applied focusmg potential (oc kﬁoa:z) and the self-field
potential ¢ which are included in the effective potential . :

-Using Eqs. {53) and (54), the Poisson equation (3) for thermal equilibrium can be expressed in scaled form as

a—ﬁ¢=1+a—e—¢, I (55)

and solved subject to the boundary conditions P(p=0) =0 and %’pfi] p=0=0. Here,

%85 ko

2
.(.u‘p

A= -1, S (56)

= z/(wAp) is a scaled x-coordinate, and Ap = [T/ (mi )]1/ 2 and @, = [¢%/{eom)]"/2 denote the Debye length and
plasma, frequency formed from the peak (on-axis) densuty scale 7 and temperature T'. The parameter A € (0,00) is a
posntwe, dimensionless parameter relating the ratio of apphed to spa.ce—cha.rge defocusing forces and is analogous to the
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scaled parameter commonly employed in analysis of 2D thermal equilibrium beams and nonneutral plasmas[21, 38]. A

_ particular choice of gamma factors has been made so that T corresponds to the (nonrelativistic) kinetic temperature

- defined in the boosted beam frame(16, 21]. o ' : ‘ '
The transformed Poisson equation (55) is highly nonlinear and must, in general, be solved numerically for . The

numerical solution is illustrated in Fig. 2, where the normalized density ' '

Ny =" — ooy REC

- is plotted versus p = z/{Ap) for values of A covering several decades. Only positive p is shown because n(p) = n(—p).
For small values of A, the scaled density A varies little from unity from p=0 until intermediate-to-large values of p
fcorresponding to a large number of Debye lengths, since p = @ /{7Ap)], where N rapidly falls to exponentially small
values as p increases by 4-5 units (i.e., Debye lengths). The width in p of the z-falloff varies little with A, wheroas
the edge of the flat, central region scales a8 pedge = 2.3logyo(A). The extreme flatness of N when A .1 leads to
numerical precision problems when directly integrating Eq. (55) for 4 using standard numerical methods. Due to this
 the numerical solution is constructed by transforming Eq. (55) for SN =1-N =1—exp(—¢) and then numerically
solving for SA(p) out to near the beam edge where SN starts varying rapidly and then the solution is continued
from this near edge point to where N becomes exponentially small by directly integrating the transformed Poisson
equation (55). This procedure rapidly generates accurate solutions for arbitrarily small values of A without use of
special high precision numerical methods. For A > 1, e~¥ << 1+A and Eq. (55) can be analytically solved to show
that : . ' ' '

144,
b= —g—r,

N = e o042,

(68)

thereby showing consistently with'resu'lts in Fig. 2 that the 2-density profile A'{p) becomes Gaussian in what will be
shown to correspond to the warm beam limit. Approximate, closed form analytical solutions for A < 1 can also be
~ constructed using methods presented for the cylindrical beam cases in Refs. [21, 38]. . .

L

A=10"% ]

exp(—1
g- T

=N =
s o @ ©
b (= -]
ey

Density, h(x) /
=]
[yl

e ¢
[=}
o

10 20 . 30 4 50
z-Coordinate, p = z/{7pAp)

FIC. 2: Scaled density N = n{p)/A = exp{—1) is plotted versus the scaled z-coordinate p = z/{vsAp) calculated from the
solution of the transformed thermal equilibrium Poisson equation (55) for indicated values of A. o }

For modeling applications the sheet beam thermal distribution parametersﬁ and 7', or equivalently,
. T | ‘ :

™= —— 59
o mmfict S 69

should be related to standard parameters applied in accelerator physics siich as focusing strength (kgo), rms emittance
(€), and perveance (P) in addition to particle parameters g, m, B, and 5. Similarly, the scaled equilibrium parameter
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A can be better interpreted when cast in terms of the relative space-charge sfrength of an rms equivalent beam. To

- derive equations of constraint to implement this parameter conversion, first from Eq. {56)

. eomyp Rk,
¢?(1+4) -

e

Using this result, we have

(75’\D)2 = (1 + A) 32
B0

and the integrated density N can be expressed as

Zeom’y,@czklgo T /"’b
N= f dz 7 “‘1+A o-de’

and the perveance P [Eq. (30)] as |
P= 2€om73ﬂ202 \/H‘A/ 4o .
This perveance expressmn is also useful when recast as
— (_g)ﬁ 1+A
o ko) (fodpn )
S]mllarly, from the definition of the rms edge emltta.nce £ [BEq. (31)] reduces to
e = 32z

with the moments {x2) and (x"%) calculated directly from the distribution as

; 1+ A, [ dp N
() = T f}w LN
0
(3:12) = T*,
and T s eliminated using Eq (64) to obtain
' dp p*N
g? 9(1 + )3 ——{F =, N)
0
‘The emittance expression (66) can be alternativeiy_ recast as the constraint
/2
kgﬂ,e_3 1 As/z(f p P°N )
P2“.'(+) (de)S/z'
0

(60)

(61)

(62)

(63)

(65)

(66)

(67)

Because the RHS of this equation is a function of A and lcf;‘,(,r-:/P2 is a ratio of accelerator parameters, Eq. (67) -
can be a.pphed as a nonlinear integral constraint fixing the scaled equilibrium parameter A. Alternatively, the tune
depression o/do € (0,1) of a mafched rms equivalent beam can be calculated to interpret the value of A for the

thermal equilibrium sheet beam. Equation (39) is applied to calculate ¢/ag using zp =

_ . 12
LA PO S

o [ \/§k§0 V(x?) ] .
- [1 1 (e ]’
VB +A) (f[;’_odpp2N)1/2 '

(68)
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FIG. 8: Dimensionless thermal equilibrium parameter A = 7 ﬁfc‘zkgu /@3-«1 plotted versus rms-equivalent beam tune depression
o /o as calculated from Eq. (68). ' : : '

* Here, we employ Eq. (63) and (65) to calculate the ratio P/(k3,+/(x?)) as a function of A. Equation (68) is‘numerica;lly

evaluated to plot A es a function of 6/ € (0,1) in Fig. 3. From this plot it is evident that space-charge dominated
beams with small values of o /o¢ are modeled by thermal equilibria with. extremely small values of A.

The constraints in Eqs. (60)—(68) arc applied to clarify changes in the sheet-beam equilibrium as space-charge
intensity varies in Fig. 4. The density profile n(z) and contours of the phase-space disttibution flx, '} are plotted
for a constrained scale equilibrium with P/kgo = const and are illustrated as the relative space-charge strength (as -

- measured by rms equivalent beam o/oy) is varied. These plots can be interpreted as giving how an equilibrium with

fixed focusing strength (kge = const).and charge (i.e., perveance P = const) varies in structure as the temperature
(or equivalently, T"*) or phase-space area (i.e., emittance ¢) is varied. In Fig. 4(a) the scaled density is plotted for
x > 0. The corresponding kinetic temperature is spatially uniform with velue T; = T' = const. Contours of the scaled
distribution f(H)/f(0) are shown in Fig. 4(b)-4(d) for values of o/o¢ corresponding to high, intermediate, and low
values of o/cp (or space-charge intensity). Scaled parameters for the equilibrium presented in Fig. 4 are given.in

_ Table TI. Parameters are divided into scale independent ones applicable to any physical scale thermal-equilibrium

with the corresponding value of /0 (or A} and parameters dependent on the specific value of P/kgy employed in
Fig. 4. In Table II, z;, = /3(z%) denotes an rms measure of the beam half-width. Results presented in Fig, 4 are very
similar to 2D thermal equilibrium bream results presented in Appendix F of Ref. [21]. Note from the development in

‘Sec. 11 C, that if the goal is to choose the best sheet beam equivalent parameters to higher dimensional Systeqis the

parameters (including P/kgo) should be adjusted for the particular operating point set by the charge, emittance, and
focusing strength. For example, the continuous focusing equivalency condition (51} could be applied. For simplicity

" of presentation, this optimized equivalence detail is neglected in Fig. 4.

Figure 4(a) illustrates how the thermal equilibrium density profile sharpens and becomes more step-function-like
with increasing relative space-charge strength (i.e., small /oo, or equivalently, small T*), and consistent with the
limiting form in Eq. (58) becomes Gaussian-like for weak space-charge strength (i.e., o/g¢ ~ 1, or equivalently large
T*}. The peak density 7 increases with increasing space-charge strength, while the statistical beam edge zp = +/Hz?)
decreases with increasing space-charge strength. The extreme flatness of the density profile as the beam cools can

- be understood as resulting from strong Debye screening of the linear applied focusing force. Properties of Debye

screening in the sheet-beam model are detailed in Sec. IIIB. Contrasting Figs. 4(b)-4(d}, note for weak space-charge

that the phase-space contours are neerly elliptical indicating nearly linear dynamics with the applied focusing field ‘
dominating. In this situation one expects particle oscillation frequencies cloge to the frequency that particles oscillate
in the (linear) applied focusing field. In contrast, for strong space-charge, the phase-space contours {note the large
change in the scale of the axes) become approximately rectangular indicating nearly force-free particle motion deep

~ within the beam core until particles enter the edge region where a strong nonlinear force transition effectively reflects

the particle back towards the core. In this situation, one expects a broad spectrum of a.mpl_itude—dependént particle
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FIG. 4: Thermal equilibrium distribution for a constrained scele set by P/kgo = 0.02. In (a} the scaled density profile
[/ {comi BZc)|n(z) is plotted versus the dimensionless -coordinate kgex for rms equivalent beam space-charge strengths
o/ =0.9, 0.8, ---, 0.1, In (b); (c), and (d}, normalized distribution contours f(H)/ f(0} = const are plotted as a function of
kapx and 2’ for ofgo = 0.9, 0.5, and 0.1. Contours are labeled by the value of f(H)/f(0). Values of g/g¢ correspond to the -
equilibrium parameters in Table II. Panels are ordered to allow direct contrasts with Fig 19 in Ref. [21].

TABLE II: Dimensionlqss parameters for a sheet beam thermal equilibrium presenfed in Fig. 4 calculated for specified values
of gfop. Scele independent parameters applicable to any physical size thermal equilibrium and scale dependent parameters
employed for the specific choice equilibrium employed in Fig: 4 are grouped in separate columns to the right and left.

Scale Independent Scale Dependent with % = 0.01
3 2 2 N .
X 0'/0'0 A f‘%gf . T:"%ﬁ kﬁo‘nt\n . m%gg 7 ) k,GDmb k,GDE.

0.9 |2.879 2499  3.686 5.399 x 102 7.5156 x 107F 0.05263 2.499 x 10 °
0.8 [1.003 6.204  4.541 |1.866 x 1072 1.663 x 107 0.02778 6.204 x 10~*
0.7 |0.5181 2712 6.027 0.841 x 1072 6379 x 10°% 0.01961 2712 x 10~*
0.6 [0.2500 1.481 - 8.157 6117 x 1073 2903 x 107% 0.01563 1.481 x 107*

© 0.5 |0.1007 0.9009 11.68 4109 x 1078 1.522x 107%  0.01333 9.009 x 10~°
04 |3.780x107% 0.5757 18.18 2844 x 1073 7794 x 107° . 0.01100 5.757 x 10°%
0.3 |7.562x 1072 0.3681  32.20 1.041 x 107% - 3.740 x 10~% . 0.01009 3.681 x 107°
0.2 [3.640 x107% 02201 7291 1.220 x 10~% 1.488 x 10~%° 0.01042 2.201 x 107
0.1 |5.522 %1072 0.1030 2946 15885 x 107*  3.463 x 1077 0.01010 1.030 x 1075

oscillation freq

interpretation.

uencies. The particle frequéncy distribution is explicitly calculated in Sec. IIIC and results verify this 4
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B. Debye screening

Paralleling Davidson’s 2D analysis carried out in the nonneutral plasma case [23, 33] which is directly applicable to
continuously focused beams, we show that the 1D sheet. beam thermal equilibrium distribution described in Sec. IITA
produces the same characteristic Debye screening of applied perturbations as found in 2D and 3D geometries. This
‘similarity of results between the 1D slicet-beam and more physical, higher-dimensional models occurs in spite of the
radically different long-range structure of the Coulomb interaction in 1D. One expects that similar Debye screening
of perturbations leads to similar collective effects, thereby supporting the idea that the simple sheet-beam model can
" be applied to better understand strong space-charge effects. _ . '
~ Tirst, consider a “test” sheet chargé placed at the origin (x = 0) with charge density p = ;6(z). Here, I; = const .
is the surface charge density representing the test sheet-charge and d(x) is 2 Dirac-delta function. The solution of the

‘1D Poisson equation in free-space, ai:fqb = -—-E%, gives the “bare” electric field
' 8% 5, | )
Bk w2 - 69
5 = 58u(@) 560 _ _ - (69)

Next, we consider the total potentié,l ¢ produced by the test sheet charge inserted in a thermal equilibriurh sheet
beam which is assumed to adiabatically adapt to the presence of the test charge. The Poisson equation describing
this situation is ‘ C : ’ :

. 62 : 00 - ¥ : .
Sab=—t [ i - Zoa. -

The parameter ¥; can be made arbitfa;riiy small for consistency with the assumption that the equilibi'ium is allowed -
to adiabatically adapt to the presence of the test charge. We expand the potential as

| =0 +64, | om
. where ¢ is the equilibrium potential in the absence of the test charge and d¢ is th_e perturbed potential from the

test charge. The test charge is taken to be sufficiently small whete l%g—%l « 1, and then consistent with the adiabatic
assumption, we have to leading order SR

n(z) = foo do’ f(H) =fne™® = ﬁe—xbu(m)e—qﬁcﬁ/(’vflT)

o po—to(@) {1 _ 999
=ne (1- 'YET)'

Here, o = %_(%kﬁof + —99@;—) Using this leading-order expansion and the fact that ¢o satisfies the thermal

my, A c? . : . .
equilibrium Poisson equation (70} in the absence of the test charge (X = 0) yields the perturbed Poisson equation
for d¢: v

. 32 . q2 g ) Et -
W&;} o c_ngne d¢ — _-55(:8). : (72)

'We further assume a relatively cold beam equilibrium (i.e., A < 1 and o/ small).. Then, consistent with the analysis
in Sec. ITT A, the density is flat near the test charge (i.e., ¥ ~ 0 and the forces from the equilibrium self-fields and
~ the applied focusing approximately cancel each other} and we can then take : .

Cpe@ ~q (73)
Under these approximations, the Poisson equation {72) for the perturbéd potential becomes -
& 8¢ )2 ' . ‘ |
G s —2 o Zts(m) 74
527 " el T o

1/2 - - . y
with Ap = (g%%) . The sclution of Eq. (74) for §¢ which is regular as|a:| — 00 i

Sep(w) = '_y_b%.e‘io_%e—lwll(%)\b), : . : (75)
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and the corresponding electric field is
8é b
_a_f ~ -Sgn(m)ﬁe—lwlf(jaho). : | )
The solutions in Eqs. (75) and (76) for the potential and electric field produced by the screened test charge are valid .
. out to values of = near the edge of the beam where n(x) varies significantly from 7.

Comparing Egs. (69) and (76) for the bare and screened electric field of the test charge, note that screening provided
by the sheet-beam equilibrium results in the bare electric field produced by the test charge being exponentially damped
in terms of the distance from the test charge in relativistic Debye lengths ysA5. The bare and screened electric fields
are contrasted in Fig. 5. As summarized in Table 111, this classic 1D Debye screening exponential factor has the same -
form in terms of the variation of the exponential damping factor of the potential 6¢ with distance from the test charge
as is found (approximate form} in 2D and (exact form) in 3D [39]. This equivalence in Debye screening characteristics
between the 1D, 2D, and 3D models occurs in spite of the radically different form of the Coulomb field in the three
cases. As in the 2D and 3D systems, the screened interaction in 1D does not require overall charge neutrality and
beam particles redistribute to screen the “bare” free-space field produced by the test charge. Because the collective
screening properties in 1D have the same characteristic scaling as in higher dimensional models, one expects similar
collective effects in the sheet beam model relative to the more physical, higher dimensional models. This supports
the use of simpler-to-solve sheet beam models to guide intuition on collective effects. Use of radically different models -
having similar Debye screening properties is considered an underlying reason why simpler, lower-dimensional numerical
simulations can represent processes in physical systems of higher dimensions[40]. '
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FIG. 5: {Color) Contrast of the bare (black) and screened (red) electric field of a test sheet charge inserted at &« = 0 in a -
thermal equilibrium sheet beam.

The sheet-beam Debye screening result also lends physical insight on why the density profile n is extremely 8at at
high space-charge intensity for a wide variety of choices of f(H) corresponding to smooth, self-consistent equilibrium .
distributions [see for example, the 1D thermal choice in Sec. IIT A, and 2D choices in Appendices D-F of Ref. [21)] for
waterbag, parabolic, and thermal forms]. Space-charge adapts to screen out the linear applied focusing force (leading
to a uniform density profile since a uniform density profile produces linear self-field forces} until distances far enough -
from the center are reached where there is insufficient charge in the equilibrium to further screen the applied focusing -
force and then the density rapidly falls to low values with a edge shape characteristic of the specific equilibrium
distribution function f{H). For the thermal equilibrium sheet beam, the smooth edge density profile rapidly falling
off to exponentially small values is the result of the smooth exponential dependence in Eq. (52). If desired, the snalysis
presented above can be extended by not taking the uniform density approximation in Eq. (73) and/or changing the .
position of the test charge in the equilibrium [Z:8(2} — X0(z — 2;) with 2 = x, the position of the test sheet charge] -
to study how the Debye screening is modified as the test charge approaches the edge of the beam and/or space-charge
becomes weak.
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TABLE III: Form of the screened potential prodﬁced by a test charge inserted in a continuously focused thermal equlhbflum
beam distribution in 1D, 2D, and 3D models. Here, A, = const is line-density of & test charge in 2, ¢: = const 1s the charge
of the test charge in 3D, and the Debye length Ap = [« T/(q 2#)]*/? is defined the same in 1D, 2D, and 3D.

Dimension Distance Measure  Lest Charge Density  Screened Potential

- pP= b~
1D o el Deb(z) . A1 o1/ A0)

=VEEE Mg | R e~/ (1AD) e
2D = m2+g2 Ati%‘n)" 2@607](’%‘5 rHwAD} e pmAp
3D r=+22+y2 +2°  qb(x)é(@)é(2) ] Z%e—r/(qb,\g)

C. Distribution of particle oscillation‘ ﬁ'equencies

Tn accelerator physics particle oscﬂlatlon frequencies are of fundamental interest. Effects are often interpreted

" in terms of resonances between characteristic particle oscillation frequencies and (periodic) applied and self-field

produced perturbations acting on the beam. Therefore, it is important to understand how the distribution of particle
oscillation frequencies changes due to intense self-field effects. Historically speaking, space-charge effects have often

- been interpreted with uniform density “KV”-type distributions which produce linear self-field forces that are more

amenable to analytic analysis. In such a KV description of beams, all particles internal to the core distribution have
the same characteristic oscillation frequency regardless of the amplitude of particle oscillations. Consequently, the

" . KV model can predict strong resonances and pronounced instability. Such results are often at odds with simulations

and laboratory experiments with more physical, smooth distributions which have a spectrum of oscillation amplitude
dependent frequencies and both lesser degrees of instability and lesser consequences thereof due to low saturation
amplitudes. Here, we extend results first presented in Appendix A of Ref. [7] and employ the sheet beam model

‘with a thermal equilibrium distribution to show that strong space-charge results-in a broad distribution of particle

oscillation frequencies consistent with expectations of enhanced stability. Impllca.tmns of results are broadly discussed.
First, consider a sheet beam in a continuous focusing channel with £ = kﬁo = const without an aperture.(free-space)

* and an unspecified equilibrium distribution f{H). For any particle in the distribution, H = 3z’ 2y2 kf,nx + —Z%gg

const. The value of H can be taken as a measure of the particle oscillation amplitude and the number of partmles with
a particular value of H is determined by the value of f(H). Methods ahalogous to those presented in Ref. [41] can
be applied to show that the continuously focused equilibrium potential is necessarily symmetric with ¢(x) = ¢(—x).

Using these results, the wavelength A of a full cycle of the closed partlcle orbit in the 1D equilibrium can be expressed

as

A= ¢ ds—23/2 dz

orbit f \/H k 3:2 N _73%2_05) (7)

where & = ¢ > ( is the turning point of the orblt {i.e., x = z; corresponds toa' = 0 and =" < 0) which sa.tlsﬁes the

~ constraing

L2 2 Q‘¢($'—"$t)=

— - )
o kﬂ(}zt m,yagﬁgcg (7 )

Here, without loss of génerality, we have assumed. a, potential reference ¢{z.= 0) = 0 so that H > 0 for all particles.

Use of an action-angle formulation[42] with J = §_...dz 2’ and A = 8J/0H produces an identical formula to evaluate

_ as the direct calculation leading to Eq. (77).

It is convenient to denote the depressed wavenumber of the pa.rt;lcle oscillation by

kﬁ_T . . o ‘(79)

In the absence of beam space-charge (P — ), all particles, .regardless of the value of H , have the same uhdepressed

~ wavenumber of particle oscillations under the action of the linear applied focusing force, i.e.,

. g 2T ‘ .
}131510 kg =kgo = o con_st.. ‘ . (80
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We measure the relative particle oscillation wavenumber by

k‘g )qo 27 . .
, koo A (kod) - ®1) _

The value of kg/kgo will depend on the value of H in the particle distribution f(H). Because space-charge is defocusing
- and cancels out part of the applied focusing force over the orbit cycle, particles oscillate less rapidly in the presence
of space-charge (P > 0), and we have A > Ao (with the equality holding for P = 0) and kg/kgy € [0,1]. Thus,
ka/kgo provides an easy-to-interpret, scale independent, normalized measure of spatial oscillation frequency in the

distribution f(H).

For a sheet-beam thermal equilibrium, some stralghtforwa.rd analysis using the results of Sec. IIT A shows that
Eqs. (77) end (78) can be expressed in scaled dimensionless form as

. . Pt
, (k-ﬁu)\)=23/2\/1+Af fi—P, '
‘ N

. Yip=pt) = H | . (83)
" Here, pr = 24/ (1pAp) ia the scaled turmng poirt of the orbit, and

-

and

. mwfER  H . : '
H=—T0—H = (84)
is the scaled Hamiltonian. ' :

Several limits of Eq. (82) can be simply calculated and are useful to help verlfy numerical calculations. First, for

A > 1 Eq. (58) can be applied for % to calculate py = \/2H /(1 + A) and show that
' VEEI+) i

VH - (1+A)6%/2

This result shows that Bq. (82) is consistent with the required result that all particles oscillate with wavenumber
A = 2m/kgo in the applied focusing force when space-charge defocusing forces are negligible. Next, regardless of the

value of A, for small amplitude particle oscillations with # < 1 we calculate the limiting form of (kgoA). Taking -
Yy<H < 1, Eq. {55} can be solved to show that ¢ = Ap?/2 giving py =~ 4/2H/A. Using these results in Eq. (82),
the resulting integral can be calculated to show that- ‘ R

(kaoNany ~ PPVIT A f —om (85)

1+A
A H

thereby showing there is always a minimum oscillation frequency in the distribution with limg_ o kg/kgo = '

lll'ﬂH_'0 21!'/(]4:‘30A) -\/A/(l +A
The distribution of particle. oscillation frequencies calculated in an equilibrium can be more readily interpreted -
when cast in normalized form. For the sheet beam thermal equilibrium, we define

; F(H) &
FH =z ——=—"==¢
W= T 1)
as a normalized [ie., [i° di F(H ) = 1] distribution with F(H)dH giving the fraction of particles with oscilla-

tion  amplitude within dH of H. Carrying out a probablilty transform from the variable H to kp/kpo, we take
F(kp/kpo)d(ks/kao) = F(H)dH and obtain |

B Jim (kgo)) = 2

(86)

- (87)

i

: e f (Isgo))2e~ ' a
F(ka/kao) = dkg/kao) o d(kgoz\) ) (©8)
Tl '

Flka/kg ) is the normalized [i.e. fo kﬂ/kﬁ[}) F(kg/kgo) = 1] distribution of relative oscillation frequenc:1es in the

heam w1th F(kg/kao)d(ks/kpo) giving the fraction of particles with relative frequencies within d{kg/kgo) of (ka/kgo).
' We numetically generate plots of the normalized distribution of sheet beam. osmllatmn frequencies F' as a function
of ka/kgo for specified values of the thermal equilibrium parameter A = 1382c2k2) /02 — 1 [Eq. (56)] as- follows:
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1) Using the formulation in Sec. ITIL A, the solution for the effective potential 9(p) of the equilibriym is numericaily
calculated for specified A out to a sufficiently large cutoff value of p. ‘ :

2) The scaled oscillation wavelength (kgoX) is calculated as a function of H using Eqs. (82) and (83) for discretized .

values of H € o, I;’max]. Here, Hyax is an sufliciently large eutoff value of H to resolve the “tail” of the

distribution and the discretized values of H must generally be appropriately spaced to resolve features of the
distribution. '

3) The derivative d{kgoA)/dH is numerically calculated as a function of H using the discretized data in 2) .

4) Equations (88) and (81) are applied to parametrically plot the frequency distribution F(kg/kgo) versus kg/kgo -
using the discretized data points in H. Co . '

In this procedure we find that care must be taken in spacing discretized values of H € [0, Hyax] to achieve sufficient
accuracy when calculating d(kgo))/dH. Points were taken with uniform increments in log H to concentrate resolution

" for small H with systematic spacing while still covering a large range with a reasonable number of points.

Results calculated from steps 1) and 2) of this procedure are presented in Fig. 6 where the normalized particle
oscillation wavelength (kgo))/(2r) and frequency kg/kgo are plotted versus the transformed Hamiltonian H. Curves
are shown for indicated values of rms equivalent beam space-charge strength as measured by ofoo € (0,1) (or .
equivalently, the equilibrium parameter A given in Table I3). Properties of the thermal equilibrium distribution for
these values of a/og can be found in Sec. IILA. Results are consistent with the weak space-charge limit in Eq. {(85)

- as evident by the curve for (kgoA)/(27) in Fig. 6(a) with o/0o = 0.9 approaching unit value: Limiting velues of

(kgoX)/(2m) and kg/kgo as H — 0 are consistent with Eq. {86). Note from Fig. 6(b) that the frequency of particle

oscillations ky varies more over the indicated range of particle oscillation energy measured by H as the space-charge

strength increases (i.e., smaller values of o/ay). : . S
Results obtained from steps 3) and 4) of the procedure to.calculate the frequency distribution F versus normalized

particle oscillation frequency kg/kgo € (0,1) are shown in Fig. 7. The curves are applicable to thermal equilibrium

. distributions of arbitrary physical scale and illustrate changes over a broad range of relative space-charge strength,

Tsble IV summarizes corresponding properties of the frequency distribution plots F(kg/kgo). Statistical properties
of F' tabulated include: mean frequency (yr), rms frequency spread about the mean frequency (o), frequency width

‘measure (F,), and relative frequency width (F,,/1tr). These quantities are defined by

Mean: tr = kg /kgo,

. — ‘ — 2 . .

_RMS Width:  a¢.= 1/ (ks — ks)*/ kg0 = \/ K — g /g0, | (89)
Width Measure: Fy, = 2v/30F, - o . ‘
Relative Width:  Fu/pie. '

Here, overlines denote averages with respect to the freqﬁency distribution F, i.e.,
1 : . o
o= [dlholkp) oF. (90)
0 - ,

The 24/3 coefficient multiplying the rms width o in the definition of t,hé statistical width measure o is taken to

‘give a reasonable sense of the width of F in kg/kgo about kg/kgo. The factor is motivated by analogy to the 1D rms

equivalent sheet beam discussion in Sec. IIB. The relative width £, /i simply measures the frequency width (Fy
relative to the mean frequency (ir) to give a better sense of the effective spread in frequencies. Extreme measures of

- the distribution are also tabulated including the value of F and kg/kgo at the peak and lefi-edge cutoff of F. To aid

interpretation, quantities tabulated are illustrated in Fig. 8 for F'(kg/kso) shown for the mid-range value o Joo = 0.5,

To better understand the parametric variations of the frequency distribution F illustrated in Fig. 7 and Table IV,
first note that for o/ay corresponding to weaker rms equivalent beam space-charge (i.e., nearer the o/op = 0.9 case)
that F is sharply peaked with relatively smell width in kg/kgo. As space-charge becomes stronger (reduced o/a0),
the distribution becomes broader in width and more smoothly varying relative to the o/aq = 0.9 case. Regardless of

~ the value of o/ao € (0, 1), there is always a lower bound value of kg /kgo > 0 at the left of the distribution. This value

is consistent with the H — 0 limit value calculated from Eqgs. (86) anc_lloccurs‘because for finite o /oo Debye screening
does not result in a perfectly flat density profile within the core of the beam with an appropriate value where the
space-charge defocusing force will cancel the linear applied focusing force. However, for very strong space-charge (see

" afog = 0.1, 0.2 curves and corresponding table entries) this minimum value of kz/kgo is very close to zero because

the density profile in the core is exceedingly flat from almost complete Debye screening of the linear applied focusing
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‘Wavenumber, (kgoA)/(27)

Frequency, kg/kao

olog =10.1 L
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Scaled Hamiltonian, H

FIG. 6: Scaled patticle- oscillation wa,venumber (k,go/\) /(2m) (a and oscillation frequency kg/kgo (b) versus dimensionless
transformed Hamiltonian H. Shown for rms equivalent beam space-charge strength cr/a'u = 0.9, 0.8, 0.7, , 0.1. Scaled
equilibrium pararmeters corresponding to ¢ /oy are given in Table II. ’

field. ' Conversely, for weak sp&ce—cha,rge {see the /oo = 0.8, 0.9 curves and table entries) the density profile deep
within the core of the beam is near Gaussian-shaped and there is only limited cancellation of the applied focusing
strength In all cases, the frequency distribution F is an asymmetric function of. ka/kgo about the mean frequency (i.e.,
kg/kgo = kg/kgo). The average normalized frequency kg/kgo is not generally equal to the rms equivalent beam tune -
depression o/ay (i.e., kg/kgo # o/00), though the difference becomes substantially less for both relatively weak (see
a/oq = 0.9) and strong (see o/og = 0.1) space-charge than for broadly about middle-range of o/aq {see o/oq = 0.8
— 3) Also, both the peak value and left cutoff of F' closely coincide for weaker space-charge (same values to the
precision tabulated for o/co = 0.9, 0.8) but shift significantly as space-charge becomes stronger. In both the extreme
limits of weak (/09 — 1) and strong (o/oy — 0) space-charge, F' becomes.a Dirac-delta function with unit area
under the curve but infinite height and zero width. However, properties of the delta-function representation are very
different in the weak and strong space-charge limits. In the weak case, the distribution is one-sided with zero width
with mean frequency ks/kgo — 1. In the strong case, the mean [requency goes to zero (E — () while the spread
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relative to the mean appears to remain broad as the limit is approached (i.e., Fy/pr large). Note from Table IV that

.. the frequency width relative to the mean frequency (i.e., the relative width F, /i) appears to monotonically increase

with increasing space-charge strength (decreasing o /aq).
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FIG. 7: Normalized frequency distribution F' versus normalized particle oscillation frequency kg / kg for the thermal equilibrium
sheet beam. Shown for rms equivalent beam space-charge strength o/ay = 0.9, 0.8, 0.7, - -+, 0.1, Corresponding Hamiltonian
dependencies used to calculate the plot-are given in Fig, 6. Statistical and extreme properties of the distribution curves are

given in Table IV and quantities tabulated are illustrated graphically in Fig. 8,

TABLE IV: Statistical and extreme valués of the frequency distribution F for the thermal equilibrium sheet beam paramgters
plotted in Fig. 7. Values tabulated are illustrated graphically in Fig. 8.

. . Statistical Measures ~ Extreme Measures

Meam: RMS: gp = Width: ~ Relative Width:| At Max[F] | At Left F* Cutoff
oloe A e =Fafkpo \/KZ—Fa [koy Fu=230r Fultr F  kelkgo |F - kplkso
09 - 2879 © 0,886 0.0176 0.0610 0.0680 27.3 0.862 27.3 0.862
0.8 1.093 0774 . 0.0354 0.123 ’ 0.159 12.1 0.723 12.1 0.723
0.7 0.5181 - |0.663 . 0.0631 ] 0.184 0.277. 7.13 0.598 7.00 0.584
0.6 0.2500 0.557 - 0.0696 0.241 0.433 5.03 0.515 4.47 70447
0.5 0.1097 0.456  0.0833 - 0.289 - 0634 - 1412 0.434 2.79 - 0.314
0.4 3.780 x 1072 |0.361 0.0915 0317 0.878 3.83 0.352 1.58 Q.101-
0.3 7.562 % 107* (0.274 0.0898 0.311 1.14 4.03 0.270 0.698 - 0.0866
0.2 3.649 x 107 10.190 0.0750 0.260 . 1.37 ’ 4.94 0.177 0.153 0.0191
0.1 5.522 x 1078 |0.102 0.0465 0.161 1.58 8.18 0.0912 |0.00191 0.000235

The parametric results for distribution of particle oscillation frequencies in the sheet beam thermai 'equi].il::;rium
likely have properties in common with a wide variety of smooth, continuously focused sheet beam distributions. Here

~ we conclude this section with a point discussion on such similarities together with a more speculative point discussion

on the extent to which features found for the continuously focused sheet beam thermal distribution might extrapolate
to provide guidance for periodically focused systems in higher dimensions and resulting implications for transport
and stability of beams with intense space-charge, By nature, these point discussions are more speculative than the

systematic developments presented up to this point. It is hoped that this discussion can help stimulate future research.

o Many features illustrated for the thermal equilibrium distribution including the sharp left-cutoff of the frequency.
distribution F in kg/kgo and both the approximate scaling of rms distribution width £, and relative width
Fy /e in kg/kgo are likely to persist for other choices of equilibrium sheet beam distributions f(H} that are
reasonably smooth. However, the shape of the “tail” of F for high values of kg/kgo is likely to vary with the -
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FIG. 8; (Color) Quantities listed in Table TV illustrated for ¢/oo = 0.5.

" specific form of the distribution. Distributions with a maximum H cutoff in f(H) will have a corresponding,
upper-bound value of kg/kse where F* — 0. This contrasts the situation for the thermal distribution where
F smoothly reduces to exponentially small values as kg/kgo becomes larger. Procedures introduced in this
paper. to calculate the equilibrium structure (see Sec. I A) and the corresponding distribution of particle
oscillation frequencies F' for the thermal equilibrium distribution can be straightforwardly adapted to other

" continuously focused equilibrium distributions f(H). Specific examples of other equilibria. with significantly
different phase-space structures include 1D sheet beam equilibria analogous to the 2D continuous focusing
waterbag and parabolic equilibria presented in Appendices D and E in Ref. [21].

. The broad distribution of particle oscillation frequencies found for strong space-charge is not surprising given the

" equilibrium structure plots presented in Sec. III A. When space-charge is weak, particle oscillation frequencies

_ are only slightly depressed from the oscillation frequency in the linear applied focusing force which is independent
of the amplitude of oscillation. But- as space-charge defocusing becomes strong, Debye screening in the core of

" the beam leads to a flat density profile with a nearly linear space-charge defocusing force which almost cancels .
the applied focusing resulting in nearly force free motion within the core. Particles with large enough oscillation
amplitude enter the edge of the beam and the applied focusing force overwhelms the rapidly dropping space-
charge force and reflects the particles within a few Debye lengths. Thus, for stronger space-charge, the frequency
of particle oscillation becomes strongly amplitude (as measured by the transformed Hamiltonian Fif } dependent

* as evident from the low /o curves in Flg 6(b).

¢ The statistical width F,, (or equivalently, the rms w1dth o) of the frequency distribution F for a thermal equi- -
librium sheet beam appears broadest for o/og ~ 0.4 but remains relatively broad over a wide range of strong
space-charge — including the extreme case shown with o/oq = 0.1. To the extent this broad parametric width
is preserved for other relatively smooth, but non-thermal, near-equilibrium and rms matched beam distributions
helps clarify why space-charge dominated beams have been observed in laboratory experiments and simulations
appear to have robust stability to internal modes[43-45]. Althongh the single particle frequencies do not simply
correspond to collective mode frequencies, the spectrum of frequencies of the equilibrium beam strongly influ- |
ences collective mode properties. This can be understood from the method of characteristics[18, 19, 23], which
shows that small-amplitude mode perturbations evolve according to a linear operator acting along characteris- -
tic orbits in the equilibrium. Thus the spectrum of single particle frequencies in the equilibrium can strongly
impact collective mode properties. Generally speaking, one expects a broader distribution of frequencies in

" the. equilibrium to result in a lesser degree of instability with both smaller growth rates and srna.ller unstable
parameter regions with lower sa.turatlon a.mphtudes for unstable perturbations. .

e Vlasov simulations of 2D transverse continuously focused beams support the point above that beams with
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strong space-charge exhibit & high degree of stability. Initial rms envelope matched 2D beams having highly
nonuniform density and/or kinetic temperature profiles are found to rapidly relax with- little net emittance

" growth or envelope mismatch even for very strong space-charge strength[46]. Such results suggest a broad

underlying spectrum of particle and wave oscillation frequencies in beams with strong space-charge even when
the initial distribution is far from equilibrium form. Similar resulis are found in periodic quadrupole focusing
channels[47]. Effective relaxations of initial semi-Gaussian beam distributions resulting from phase-mixing and
nonlinear wave interactions are found in simulations to occur most rapidly for /oo ~ 0.5 where results here
suggest that the frequency spectrum is most broad{48]. ‘ L :

Simulations and theory show that if beam stability is practically defined in terms of limited rms emittance
growth. and halo generation, then a wide variety of 2D initial distributions are stable when transported in a
periodic quadrupole transpott channel without errors regardless of space-charge intensity — so long as the
applied focusing strength is'go S 85° per lattice period[43, 45). Large rms emittance growth results from
significant numbers of near-edge particles rapidly evolving outside the statistical edge (core) of the beam and
rapidly increasing in oscillation amplitude due to interaction with matched envelope oscillations of the core

“beam rather than growth of collective modes internal to the core of the beam. Interior mode instabilities,

if present, appear to saturate at.low amplitudes with little consequence. Insofar as the continuously focused
thermal equilibrium sheet beam can provide a model for particle orbits in a nonequilibrium periodic quadrupole
focusing channel, results found here showing a broad range of particle oscillation frequencies in the core of beams
with intense space-charge further support the relative lack of detrimental internal mode instability noted above.

It has been observed that the rms equivalent KV distribution works well to model beams with smooth distri-

"butions and weak space-charge[49]. This occurs in spite of the expectation that in weak space-charge regimes

smooth distribution beams should have nonuniform (Gaussian-like in the thermal equilibrium cage) density
profiles leading to more nonlinear space-charge forces. The frequency distribution plots of the smooth thermal
distribution suggest why the smooth distribution can be well modeled by a KV distribution in gpite of the (small)
nonlinear seif-field forces. As o/og — 1 the frequency distribution F becomes sharp with narrow rms width
in kg with kg/kgo = o/og. Thus particle orbits in the smooth distribution should be well approximated by
particles making up an rms equivalent KV distribution in spite of the (small} nonlinear space-charge force being
modeled by & linear force. This suggests that the KV model can be reliable to predict low-order collective mode -
resonarices when space-charge intensity is relatively weak. In weak space-charge regimes spurious instabilities of
the KV model associated with the singular KV distribution form are less problematic: in 2D continuous focusing
models, all KV modes are stable for /oy > 0.3985 (see Appendix B of Ref. [50]). Recent experiments and sim-
ulations supporting the reliability of KV model to interpret space-charge effects for relatively weak space-charge

_are presented in' Ref. [9].

Conversely to the weak space-charge case discussed in-the point above, in the strong space-charge limit the
KV model is expected to provide a poor approximation to smooth distributions. For thermal distributions
this failure occurs in spite of the fact that for low values of ¢/gg the density profile is very uniform for many
Debye lengths before rapidly falling to exponentially small values in a few Debye lengths at the beam edge (see
Sec. IITA). The broad range of particle frequencies in smooth distributions.is expected to strongly modify the

- collective response other than for lowest order (envelope) modes.” The. plethora of strongly unstable, higher-

order KV modes[49, 50] appears to be suppressed, or saturates at low ampliudes with little consequence, when
equilibrium orbits no longer. advect perturbations with a single characteristic frequency. Historically, sheet
beam model results with KV distributions were first applied by Sacherer[6] to analyze space-charge induced
resonance effects in rings. Interpretations and extensions to higher dimensions presented by R. Baartman in
Ref. [8] have also been influential. Present results suggest that extrapolating such KV model results for collective
mode resonances may be questionable when applied to collective modes beyond lowest order when space-charge
intensity is high. However, this does not imply that all KV model results are invalid. For example, lowest order
linear (envelope) instability appears robust enough to extrapolate to other distributions[43-45]. Also, Startsev
et al. [51-53} analyzed a robiist low-order transverse-longitudinal collective instability applying the method of
characteristics using (single-frequency) KV -orbit equilibrium characteristics with perturbation operators for
a smooth (thermal) core distribution to estimate growth rates and found good agreement with r-2z Vlasov

gimulation results.

Because generally kg/kgo # 0/do, it follows that the unique particle oscillation frequency in an rms equivalent
KV beam doés not equal the average oscillator frequency in the thermal distribution. Similar deviations from
rms equivalency are reasonable to expect for other smooth distributions and suggest caution in the application
of rms equivalent parameter interpretations. Notice from Table IV, that for the thermal equilibrium sheet beam
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. kg/ kﬁo < ofoy for all values of a/ao except 0’/0‘0 = 0.1 where the deviation is small. The deviation of kg/kgo
from /o9 should be zero in both the weak (o/0y — 1) and strong (c/cg — 0) space-charge limits.

» In recent studies by M. Dorf et al. in Refs. (54, B5], x- and y-plane particle oscillation frequencies are calculated
- by spectral analysis of orbits in continuous and periodically focused beams with unbunched thermal equilibrium -
core distributions. Characteristic widths and scaling of 2D frequency distributions agree. well with the 1D sheet
beam model presented here, suggesting further that the sheet beam model can be broadly applied. The primary
- difference between the 1D and 2D results appear to be that the sharp left cutoff in 1D becomes rounded in 2D
which is likely attributable to dimensional scaling of 2D volume measures folded into the distribution projection,
. Note also that in 2D system with nonlinear space-charge forces, Floquet’s theorem does not apply and particle
_orbits are not closed in the z- or y-planes, so phase-advances (frequencies) are formally ill posed. However, .
nearly constant frequency distributions obtained by transforming long orbits suggest that for equilibrium-like
distributions that frequency projections can be regarded as nearly statlonary which furthers correspondence to

) the 1D model results presented here. .

o Finally, it appears likely that halo prope'rties should be significantly different in them sheet beam model relative
- to higher dimensional models. Large amplitude halo is primarily driven by the breathing envelope mode{56].
In the sheet beam model, the lower frequency quadrupole envelope mode appears to be accurately represented -
[see Sec. IIB and Eq. (43)], but the higher-frequency bréathing mode is not supported. Furthermore, scaling of
space-charge forces with distance outside the envelope outside an rms equivalent core is different in the sheet
- beam model (constant) relative to higher dimensional models (fall-off with distance)[43]. Together these features
. likely result in different characteristic halo resonances in the sheet beam model relative to higher dimensional
. models. However, for non-tenuous halo processes léading to space-charge induced transport limits as described
in Refs. [43, 45), it is possible that resulting stability thresholds due to a variety of collective processes driving .
a significant fraction of particles well outside the beam core may be similar in sheet beam models though the
final saturated beam states could differ due to different halo resonances supported. ‘ :

IV. CONCLUSIONS

-A 1D sheet beam model has been reviewed and extended in & manner intended to enable applications to a broad -
range of beam transport problems with intense space-charge. A full Vlasov model with and without finite geometry
effects, as well as reduced centroid and envelope moment descriptions, were developed. Specific attention was paid
to the choice of sheet beam parameters appropriate to model more realistic, higher dimensional beam models. The
reduced complexity of the 1D sheet beam modél enables significant analytical progress on a variety of difficult problems
" with self-consistent space-charge. The sheet beam model also provides a simple framework which can be explmted to
evaluate advanced methods for direct Vlasov simulations.

‘The efficacy the sheet beam model was illustrated with solutions to several problems of fundamental interest. A
sheet beam thermal equilibrium distribution was developed in a continuous focusing model to provide an example
of a realistic, smooth distribution function. The thermal equilibrium was thoroughly analyzed and shown to have
remarkably similar properties to higher dimensional models in terms of both the equilibrium structure and Debye
screening properties of a test charge placed in the equilibrium. These results support the conclusion that the sheet
beam model can be applied to reliably model beam equilibria and collective waves that closely resemble those in
higher dimensional models. The simplicity of the 1D sheet beam model was further exploited to explicitly calculate
the self-consistent distribution of particle oscillation frequencies within the thermal equilibrium distribution. Results
were presénted in a manner which applies to any thermal equilibrium regardless of physical scale, and quantified
how strong space-charge significantly broadens the distribution of particle oscillation frequencies. Because a broader
_ distribution of frequencies is expected to have reduced consequences of resonances with perturbations, this result
" helps explain the robust stability to internal modes typically observed in beams with intense spa.oe—ch&rge in. both
laboratory experiments and numerical mmula.tlons :
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- Appendix A: SYSTEM ENERGY CONSERVATION CONSTRAINT

For continuous focusing with = k% = const, the Vlasov equation (14) can be operated on  with
6o . _
N ferdy [ dz' 12... and the boundary conditions f(z = Tty Lpr) = O applied to the result to show that

Epl
8 (o [ 1, o fo0 L g g\ T Of _ _
B /:;P‘ dm];mdm 5.’5 f — /:;p! dm[mdw | k’@0$+m’¥gﬁgc2 aa: 2 6.‘17" =0. B . (Al)

Similarly, the continuity equation

2ﬂ-i—ifmdm:’:c"f=0 : - | '(A'2)
ds o fooo 7 ‘
is derived as usual by operating on the Vlasov equation with' ffomdm’ . +++ and applying the boundary .condition
f(z' — £00) = 0 to the result. The continuity equation {A2) and. the Poisson equation (3) with n = [, dz’ f can
then be applied together with partial integration to express Eq. (Al) as ' : '

8 [ reer o0 1 1. p Zpr
el d de' | = 12 - {) [ dx.
s {-/:::,,; :r:‘/_m x (2.1‘ + 2’63033 f+ SR A

The terms within {---} in Eq. (A3) can be identified (in order expressed) with the usual scaled “kinetic”, applied
focusing potential, and electric field energies of the bounded 1D system. The term on the RHS of Eq. {A3) is related
_ to the scaled energy flow provided by an external power source Tequired to impose potentials ¢ = ¢y, ¢, on the plates
at x= a:p;',‘mp.,.._ If ¢; = const and ¢, = const, the s-derivative can be moved through ¢; and ¢, to obtain ’

N
. _5§{¢’r—3—m

T=Zpi

6_¢ T=Tpr

2 ’
(] a 8¢ .
5o } (A3)

~ mypec® " 9s b

T=Tpl

0 99
ds O

‘"¢I%

M Mpl}.. : g (A4)

~ Equations (A3) and (A4) immediately imply the energy conservation constraint given in Eg. (21). Further clarification
of the external source term in Eq. (21) is achieved by applying the field solution in Eq. (10) to show that

- ¢ug§ @ | dbemd) [Ty e (g

T=Tpr p=Bor m'{’f' - mﬂl eo(mm‘ - 1"?:) Tpt - €p

‘;br%

Because ¢y, ¢, end N are constants and the geometry is fixed, Eqs. (A4) and (AB) show that we can replace

w [, 8| | __ ae=d) [ |
T [%w oo, 0o ] TRy —5) oy N - 49

in Eq. (21) because the new term differs from the replaced term by a constant. "This replacement explicitly shows
that the external source term can be eliminated when ¢; = ¢, = const because it is a constant (replacement term-
. vanishes). The physical interpretation of this result is that the plate bias does not matter when the left and right

plates are connected — as must be the.case on physical basis. Similarly, if ¢; = ¢ # const, Eq. (10) can be applied to
E=Tpr . . - .

show that ¢%%§ ‘ Pl = 0 and consequently the conservation Eq. (21) can be applied in this case with no external
T=dp : : .

source term. If desired, the field solution in Eq. (10) can be applied to recast the field energy (€0/2) [, ::dw |8¢/ 8|2
in Eq. (21} in explicit form. ' ‘

Appendix'B: FIELD-ENERGY EMITTANCE RELATION
Under the assumption of a symmetric beam with n(z) = n(—x) focused within a symmetric geometry with :i:p,» =

—&p = T with no bending (¢, = ¢ = const), the field resolution in Eq. (11) has only & direct (free-space) component.
~ In this case, Z =z, # =g, Ny = —(€0/q)0¢/0z + N/2, and Eq. (44) can be expressed as .
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For notational simplicity in this reduced geometry, we denote

. d ’ N ) . :
AE E/ BnE) =N, (B2
_ S 0 | ,
so that —8¢/z = (g/eo) N2 and express the self-field energy per unit area as -
. . ) ® 2 2 pz - . : ‘
w=% "4 |2 = q—f "dz (N2)2, ' (B3)
2. —zp € Jo '

Following O. Anderson in Ref, [10], some manipulations then show that the field moments in Eq. (B1) can be expressed

as -

6¢’ L qu 2‘7'.]1 ~W ,

3:5 gN dey

GOBN L d (PN

6:f: gNds\ dg b
The (a;aqﬁ/am) moment in Eq. (B4) is stralghtforward to calculate using Eq (23) to show that (m6¢/6‘w) =

—[2g/{coN)] [;7dz rNin and then applying n = ONZ/Ox and partial integration. The {(2'8¢/Oz) moment can

be obtained by first directly calculating dW/ds = (2¢%/ey) f,"dx NS8NZ/8s. Then 8N:/9s in this expres- -
sion is recast by first operating on the Vlasov equation (14 w1th f dx’--. to derive the continuity equation

Bn/ Bs + (8/8z) ( 5 de’ z'f ) =0, and then the continuity equatlon is mtegrated for the symmetric density profile

to show that N2 /8s = — f dz’ 2’ f. Using this expression and adding ¢2N 2z,/(4€0) = const within the s-derivative

then obtains the given result The field moments (B4) are then inserted in Eq.' (B1) and d/ ds( %y = 2{zx='} is applied
to. obtain :

By

d, 18 dWF
s T Nm gl (< fas’ )WF) |

=L(m2>3/2_d_ /IRY
Nmey Bic? ds \ (22)1/2 ) -

with Wy = ¢®N2x,/(4¢ey) — W [Eq. (46)], thereby deriving Eq. (45).
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