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The Somatic Genomic Landscape of Glioblastoma

A full list of authors and affiliations appears at the end of the article.

Abstract
We describe the landscape of somatic genomic alterations based on multi-dimensional and
comprehensive characterization of more than 500 glioblastoma tumors (GBMs). We identify
several novel mutated genes as well as complex rearrangements of signature receptors including
EGFR and PDGFRA. TERT promoter mutations are shown to correlate with elevated mRNA
expression, supporting a role in telomerase reactivation. Correlative analyses confirm that the
survival advantage of the proneural subtype is conferred by the G-CIMP phenotype, and MGMT
DNA methylation may be a predictive biomarker for treatment response only in classical subtype
GBM. Integrative analysis of genomic and proteomic profiles challenges the notion of therapeutic
inhibition of a pathway as an alternative to inhibition of the target itself. These data will facilitate
the discovery of therapeutic and diagnostic target candidates, the validation of research and
clinical observations and the generation of unanticipated hypotheses that can advance our
molecular understanding of this lethal cancer.

INTRODUCTION
Glioblastoma (GBM) was the first cancer type to be systematically studied by The Cancer
Genome Atlas Research Network (TCGA). The initial publication (TCGA, 2008) presented
the results of genomic and transcriptomic analysis of 206 GBMs, including mutation
sequencing of 600 genes in 91 of the samples. The observations provided a proof-of-concept
demonstration that systematic genomic analyses in a statistically powered cohort can define
core biological pathways, substantiate anecdotal observations and generate unanticipated
insights.

The initial publication reported biologically relevant alterations in three core pathways,
namely p53, Rb, and receptor tyrosine kinase (RTK)/Ras/phosphoinositide 3-kinase (PI3K)
signaling (TCGA, 2008). Efforts to link the alterations found in these pathways to the
distinct molecular and epigenetic subtypes of glioblastoma revealed that coordinated
combinations were enriched in different molecular subtypes, which may affect clinical
outcome and the sensitivity of individual tumors to therapy (Noushmehr et al., 2010;
Verhaak et al., 2010).

Above and beyond these observations, it has become evident that GBM growth is driven by
a signaling network with functional redundancy that permits adaptation in response to
targeted molecular treatments. Thus, a comprehensive catalogue of molecular alterations in
GBM, based on multidimensional high-resolution data sets, will be a critical resource for
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future investigative efforts to understand its pathogenesis mechanisms, inform tumor
biology and ultimately develop effective therapies against this deadly cancer.

Toward those ends, TCGA has expanded the scope and depth of molecular data on GBM,
including adoption of next-generation sequencing technology (TCGA, 2011, 2012a). Here,
we report the efforts of the TCGA GBM Analysis Working Group (AWG) to further our
understanding of GBM pathobiology by constructing a detailed somatic landscape of GBM
through a series of comprehensive genomic, epigenomic, transcriptomic and proteomic
analysis.

RESULTS
Samples and Clinical Data

As summarized in Table 1, the dataset contains molecular and clinical data for a total of 543
patients. Note that different subsets of patients were assayed on each technology platform.
The most significant additions to the GBM dataset include sequencing of GBM whole
genomes, coding exomes and transcriptomes, expanded DNA methylomes as well as
profiling of a targeted proteome. In particular, 291 pairs of germline-tumor native DNAs
(e.g. without whole-genome amplification) were characterized by hybrid-capture whole-
exome sequencing (WES) and of these, 42 pairs underwent deep coverage whole-genome
sequencing (WGS). The transcriptomes of 164 RNA samples were profiled by RNA-
sequencing (RNA-seq). Protein expression profiles were generated from 214 patient samples
using reverse phase protein arrays (RPPA). The data package associated with this report was
frozen on 7/15/2013 and is available at the Data Portal: https://tcga-data.nci.nih.gov/docs/
publications/gbm_2013/.

TCGA sample collection spanned 17 contributing sites (SI Table S1). Tier 1 clinical data
elements (including age, pathology and survival) are available on 539 of 543 patients
(99.6%) and Tier 2 data including treatment information on 525 patients (96.7%) (Figure S1,
see Data Portal). Clinical characteristics of this patient cohort are similar to our previous
report in 2008 (TCGA, 2008) with a median age of 59.6 years and a male to female ratio of
1.6 (333:209). Median overall survival was 13.9 months with 2-year survival of 22.5% and
5-year survival of 5.3%. Due to TCGA selection of primary GBM, IDH1 mutation is
infrequent in the TCGA cohort compared to other published series. Of the 423 patients with
adequate sequencing coverage (by either whole exome next-generation sequencing or
previously reported Sanger-based sequencing), 28 (6%) had the IDH1-R132H mutation,
while one individual had an R132G and one had an R132C mutation. No IDH2 mutations
were found. The associated G-CIMP methylation pattern was present in all cases of IDH1
mutation (R132H/G/C) while seven G-CIMP cases lacked IDH1 mutations. Overall, G-
CIMP pattern was present in 42 out of 532 cases (7.9%). Clinically-relevant MGMT DNA
methylation status was estimated from CpG islands as previously described (Bady et al.,
2012). Conventional positive prognostic factors were confirmed by univariate analysis: age
< 50 (OS 21.9 vs. 12.3 months, p=2.4e-11), MGMT DNA methylation (16.9 vs. 12.7,
p=0.0018), IDH1 mutation (35.4 vs. 13.3, p=1.55e-5) and G-CIMP DNA methylation (38.3
vs. 12.7, p=8.3e-9). Age, MGMT and IDH1/G-CIMP status were independently significant
in multivariate analysis (SI Table S1).

Patients in this TCGA cohort were diagnosed between 1989 and 2011, with 414 patients
(76%) receiving their diagnosis in or after 2002 when the use of concurrent temozolomide
(TMZ) with adjuvant radiation became widely adopted. Combined TMZ chemotherapy and
radiation treatment is documented for 40% of all patients (217/543), and for 50.2% of the
414 patients diagnosed in or after 2002. Summaries of treatment classification classes are
provided in SI..
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Whole-exome sequencing identifies significantly mutated genes in glioblastomas
Solution-phase hybrid capture and whole-exome sequencing were performed on paired
tumor and normal native genomic DNA obtained from 291 patients. Overall, 138-fold mean
target coverage was achieved, with 92% of bases covered at least 14-fold in the tumor and 8-
fold in the normal – the threshold which offers 80% power to detect mutations with an
allelic fraction of 0.3 (Carter et al., 2012) (see Extended Experimental Procedures). Overall,
of the 291 tumor exomes sequenced, 21,540 somatic mutations were identified, with a
median rate of 2.2 coding mutations per megabase (lower-upper quartile range: 1.8 – 2.3).
Among the somatic mutations were 20,448 single nucleotide variants (SNVs), 39
dinucleotide mutations and 1,153 small insertions and deletions (indels). The SNVs
mutations included 5,379 silent, 3,901 missense, 831 nonsense, 360 splice-site and 760
mutations resulting in a frame shift.

Mutations were evaluated across samples to distinguish genes which appear targeted by
driver rather than passenger mutations using both MutSig (TCGA, 2008, 2011, 2012a) and
InVEx algorithms (Hodis et al., 2012). MutSig assesses mutation significance as a function
of gene size, trinucleotide context, gene structure and background mutation rates. InVEx
compares the ratio of non-silent exonic mutations to synonymous and intronic/UTR
nucleotide variants, an algorithm that is particularly effective for genomes with elevated
mutation rates such as melanoma and lung adenocarcinoma. When both InVEx and MutSig
algorithms were run on the same dataset, a total of 71 genes were identified as significantly
mutated genes (SMG). To validate mutation calls, all 757 SNVs and indels detected by
exome sequencing in these 71 SMGs were subject to orthogonal validation by targeted re-
sequencing in 259 tumor/normal pairs. At sites with adequate coverage to detect the mutant
alleles, 98% of SNVs, 84% of insertions, and 82% of deletions were validated (see Extended
Experimental Procedures).

As summarized in Figure 1A, both InVEx and MutSig algorithms identified previously
reported genes as significantly mutated in GBM, namely PTEN, TP53, EGFR, PIK3CA,
PIK3R1, NF1, RB1, IDH1 and PDGFRA (Figure 1A). In addition, both algorithms identified
the leucine-zipper-like transcriptional regulator 1 (LZTR1), mutated in ten samples, as a
novel significantly mutated gene in GBM (SI Table S2, SI Figure S2). LZTR1, a putative
transcriptional regulator associated with the DiGeorge congenital developmental syndrome
(Kurahashi et al., 1995), has not previously been implicated in cancer. It is located at
chromosome 22q, and in five of six samples with available copy number data it was
simultaneously targeted by hemizygous deletion.

MutSig additionally identified 61 additional genes (71 overall) with mutation frequency
above background with a q-value of < 0.1 (SI Table S2). These included spectrin alpha 1
(SPTA1, mutated in 9%), which encodes a cell motility protein that interacts with the ABL
oncogene and is related to various hereditary red blood cell disorders; ATRX (6%), a
member of the SWI/SNF family of chromatin remodelers recently implicated in pediatric
and adult high-grade gliomas (Kannan et al., 2012; Liu et al., 2012; Schwartzentruber et al.,
2012); GABRA6 (4%), an inhibitory neurotransmitter in the mammalian brain; and KEL
(5%) which codes for a transmembrane polymorphic antigen glycoprotein (SI Figure S2).
Albeit at low frequency, several hotspot mutations were found to be significant in this cohort
of GBM, most notably the IDH1 R132H mutation. The BRAF V600E sequence variant,
which confers sensitivity to vemurafenib in melanoma (Chapman et al., 2011), was detected
in five of 291 GBMs (1.7%). Mutation of H3.3 histones, reported in pediatric gliomas
(Schwartzentruber et al., 2012), were not observed in this cohort of primary GBM.

To facilitate exploration of mutation data by non-computational biologists, we developed a
patient-centric table (PCT) that categorizes each gene in each sample by the type of
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mutation (silent, missense, InDel, etc.) observed, and describes the confidence of each call
based on the coverage in normal and tumor samples (see Data Portal, Extended
Experimental Procedures). To illustrate one potential use of this table, we interrogated the
mutation pattern of 161 genes functionally linked to chromatin organization (hereafter
referred to as CMG or “chromatin modification genes”, see Extended Experimental
Procedures) using this PCT. In total, 135 samples or 46% of the sample cohort harbored at
least one non-synonymous mutation in this CMG gene set (Figure 1B). Importantly, CMG
mutations were found to be mutually exclusive overall by MEMo analysis (p=0.0008)
(Ciriello et al., 2012), suggesting potential biological relevance of chromatin modification in
GBM.

Genomic gains and losses in GBM
We expanded our previously reported DNA copy number analysis from 206 GBMs (TCGA,
2008) to 543 samples. The larger data set, coupled with improvement of the analytical
algorithm GISTIC (Mermel et al., 2011), resulted in a significant refinement of previously-
defined amplification and deletion peaks, thus allowing improved nomination of candidate
gene targets for several recurrent somatic copy number aberrations (SCNA) (Figure 1C).
The most common amplification events on chromosome 7 (EGFR/MET/CDK6),
chromosome 12 (CDK4 and MDM2) and chromosome 4 (PDGFRA) were found at higher
frequencies than previously reported (SI Table S3), and often contained only a single gene in
the common overlapping region. Additionally, frequent gains of genes such as SOX2,
MYCN, CCND1 and CCNE2 were precisely established. Except for the highly recurrent
homozygous deletions in CDKN2A/B, all statistically significant DNA losses were
hemizygous. Losses were more frequent than amplifications, as has been reported as a
general pattern in cancer (Beroukhim et al., 2010). We were able to pinpoint single genes as
deletion targets in some cases, most notably in recurrent deletion of 6q26. While the 6q26
deletion has previously been associated with other candidates such as PARK2, our analysis
unequivocally defined QKI as the sole gene within the minimal common region and the
target of homozygous deletion in 9 cases. The QKI gene was also mutated in 5 cases without
evidence of deletion (two frame-shift, two missense and one splice-site mutation). This is
consistent with a recent publication demonstrating that QKI functions as a tumor suppressor
in GBM by acting as a p53-responsive regulator of mature miR-20a stability to regulate
TGFβR2 expression and TGFβ network signaling (Chen et al., 2012). Other single gene
deletion targets include LRP1B, NPAS3, LSAMP and SMYD3. Similar to the mutation data,
we have also algorithmically generated a Patient-Centric Table summarizing DNA copy
number aberration and DNA methylation status for each gene and miRNA for each of the
cases in the cohort (see Data Portal).

Recurrent structural rearrangements defined by genomic and transcriptomic sequencing
To explore genomic and transcriptomal structural rearrangements, we performed whole-
genome paired-end sequencing with deep coverage on 42 pairs of tumor and matched
germline DNA samples as well as RNA sequencing (RNA-seq) of 164 GBM transcriptomes
(SI Table S4). We detected genomic rearrangements using BreakDancer and BamBam
(Sanborn et al., 2013) (see Extended Experimental Procedures), in addition to expressed
RNA fusions using PRADA (http://sourceforge.net/projects/prada/). In total, we identified
238 high confidence candidate somatic rearrangements, including 49 interchromosomal, 125
intrachromosomal and 64 intragenic structural variants (Figure 2A and B; SI Table S4). The
number of events per sample ranged from 0 to 32 (median: 2), with one sample containing a
distinctively high number of rearrangements in the context of local chromothripsis involving
a 7.5 Mb region on chromosome 1. No rearrangements were detected in eight samples.
Overall, the number of rearrangements generally appeared lower than what has been
previously reported for prostate cancer (Sanborn et al., 2013), lung adenocarcinoma
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(Imielinski et al., 2012) and melanoma (Berger et al., 2012). Recurrent intragenic events
were detected in seven genes: EGFR (n=12), CPM (n=3), PRIM2 (n=3), FAM65B (n=2),
PPM1H (n=2), RBM25 (n=2), and HOMER2 (n=2). Since unbalanced structural
rearrangements in DNA can be detected as breakpoints in DNA copy number profiles, we
investigated whether CNA breakpoints could indicate potential sites of recurrent structural
rearrangement using all 492 samples with aCGH data (n=492). Of note, 41 of 129 high-
confidence rearrangement events from whole-genome sequencing (WGS) involved genes
identified as significant targets of recurrent intragenic copy number breakpoints (iCNA) in
the larger cohort of GBM based on DNA copy number profiles (SI Table S4, Data Portal).

RNA seq analysis identified 48 interchromosomal and 180 intrachromosomal mRNA fusion
transcripts in 106 of 164 samples (Figure 2C; SI Table S4). Approximately 37% of these
were in-frame transcripts, 35% were out-of-frame and the remaining 29% were involved a 3′
or 5′ untranslated region (SI Figure S3A). A substantial portion (44%) of the
intrachromosomal events resulted from recombination of genomic loci located less than
1Mb apart. A notable example is the recently reported oncogenic FGFR3-TACC3 inversion
(Singh et al., 2012), which was detected in two cases. Interestingly, the FGFR3/TACC3
locus was focally amplified in both samples, suggesting that CNA could serve as a marker
of FGFR3-TACC3 rearrangement. Overall, focal amplifications involving FGFR3 or TACC3
were detected in 14 of 537 GBM copy number profiles (2.6%).

Ten of the 42 GBMs with WGS analyses demonstrated rearrangements between EGFR and
adjacent genes such as BRIP (n=2) and VOPP1 (n=2), or structural variants of genes
surrounding the EGFR locus, such as LANCL2 and PLEXHA (n=2) (SI Table S4). Both
types of 7p11 rearrangements were detected in six samples. This pattern was confirmed in
the RNA-seq data where eighteen samples of 164 samples showed evidence of transcribed
fusion transcripts, such as EGFR-SEPT14 (n=6), SEC61G-EGFR (n=4), LANCL2-SEPT14
(n=1) and COBL-SEPT14 (n=1) (SI Table S4). These fusions tended to be part of a focal
gain, suggesting a complex rearrangement (SI Figure S3B).

Genomic rearrangements pertaining to chromosome arm 12q were identified in 11 of 42
whole genomes and 12q-associated fusion transcripts were found expressed in 25 of 164
transcriptomes. A variety of different genomic and transcriptomic variants were found on
12q though none were recurrent (SI Table S4). The majority of 12q lesions occurred in
tandem, i.e. as adjacent events in the same GBM. As an illustration, a single sample showed
a pattern in which 15 non-adjacent segments (14 from chromosome 12 and one fragment
from chromosome 7) were highly amplified (>40 copies) with eight 12q rearrangement
events, including the MDM2, CDK4 and EGFR oncogenes (SI Figure S3C). WGS analysis
reconstructed two independent circular paths that accounted for all of the amplified
segments (SI Figure S3C). Each circle contained at least one oncogene, with one circle
(0152-DM-A) containing one copy of CDK4 and two copies of MDM2 and the other circle
(0152-DM-B) containing one copy of EGFR. These reconstructed circles are most consistent
with extrachromosomal double minute chromosomes (Kuttler and Mai, 2007). Recently, the
same data set was used to identify enrichment of genomic breakpoints relating to
chromosome 12q14–15, a locus harboring the MDM2 and CDK4 oncogenes, which
pertained to less favorable outcome (Zheng et al., 2013), and the reconstruction of double
minutes confirmed using orthogonal methods (Sanborn et al., 2013).

EGFR is frequently targeted by multiple alterations of DNA and RNA
As anticipated, EGFR was among the most frequently mutated genes and RNA-seq detected
a diversity of altered transcripts (Figure 3A). EGFR mutations were accompanied by
regional DNA amplification in the majority of cases, leading to a wide range of mutation
allelic frequencies. Comparing the allelic frequencies of point mutations in DNA- and RNA-
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seq data revealed a high degree of concordance between the type and prevalence of
mutations at the DNA level and the composition of expressed mRNA transcripts (SI Figure
S4A).

RNA-seq also provided a complete picture of aberrant exon junctions and a semi-
quantitative assessment of their expression levels. Transcript allelic fraction (TAF) was
calculated as the ratio of each aberrant exon junction to the sum of aberrant and wild-type
junctions at the 3′ junction end, corrected for read depth (80% confidence, binomial
confidence interval). TAFs for recurrent point mutations and junctions are summarized in SI
Table S5. In 11% of tumors, the aberrant exon 1–8 junction characteristic of EGFRvIII was
highly expressed (≥10% TAF), while 19% showed at least a low level expression (≥1%).
The results were concordant with an independent assessment of EGFRvIII by digital mRNA
assay using barcoded probes (nCounter, Nanostring Technologies and by real-time PCR (see
Data Portal). While the biological or clinical relevance of low-level EGFRvIII expression
remains to be demonstrated, EGFRvIII expression in a minor population of GBM cells has
been shown to confer a more aggressive tumor phenotype through paracrine mechanisms
(Inda et al., 2010).

A variety of other recurrent non-canonical EGFR transcript forms were detected in the
RNA-seq data (Figure 3A, SI Figure S4B). Three different C-terminal rearrangements
targeting the cytoplasmic domain of the EGFR were detected at ≥10% TAF in 3.7% of cases
and at ≥1% TAF in another 9%. Comparison with WGS data confirmed the presence of C-
terminal deletions in 9 cases where sequence data was available. C-terminal deletion
variants have previously been associated with gliomagenesis in experimental rodent systems
in vivo (Cho et al., 2012). The prevalence of EGFR C-terminal deletion reported here is
likely an underestimate since complete loss of the C-terminus may yield aberrant terminal
junctions not mappable by transcriptome sequencing. Relative under-expression of C-
terminus exons 27–29 (< 3 standard deviations) was readily apparent in another 7.3% of
cases without detectable aberrant junctions (Figure 3B).

We identified two relatively uncharacterized recurrent EGFR variants, namely deletions of
exons 12–13 (Δ12–13) in 28.7% and exons 14–15 (Δ14–15) in 3%. EGFR Δ12–13 has been
previously identified by RT-PCR analysis of glioma (Callaghan et al., 1993). Both Δ12–13
and Δ14–15 appear to be expressed in minor allelic fractions (<10%), raising the question of
whether they result from splicing aberration or genomic deletion. Among tumors expressing
Δ12–13mRNA, analysis of aberrant junctions in WGS data (BamBam) failed to identify
concordant DNA deletion in 14/15 cases where data was available. One case showed a
concordant breakpoint as a minor component of a highly rearranged locus. By comparison,
EGFRvIII-expressing tumors had concordant deletion spanning exons 2–7 in all 7 cases
where WGS data was available (SI Table S5).

In total, 38.4% of cases harbored an EGFR genomic rearrangement or a point mutation
expressed in at least 10% of transcripts (Figure 3B; SI Table S5). Overall, 57% of GBM
showed evidence of mutation, rearrangement, altered splicing and/or focal amplification of
EGFR. While PDGFRA showed no recurrent gene fusions, intragenic deletion of exons 8
and 9 (PDGFRA Δ8,9) was highly expressed (≥10% TAF) in 1 of the 164 samples with
RNA sequencing data. Low-level expression of PDGFRA Δ8,9 was far more prevalent in the
RNA-seq data (n=29 of 163) and could represent a splice variant. This result is concordant
with previously reported estimates of Δ8,9 expression (Ozawa et al., 2010). A novel
PDGFRA variant with deletion of exons 2–7 was found highly expressed in a single case
(TCGA-28-5216).
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The landscape of somatic alterations in glioblastoma
The addition of whole exome and transcriptomal sequencing data has extended the palette of
somatic alterations affecting major cancer pathways in GBM. Figure 4 presents a landscape
view of the canonical signal transduction and tumor suppressor pathways in GBM based on
whole exome sequencing data of 291 patients. Unsupervised analysis of 251 GBMs with
both copy number and WES mutation data identified genes sets (modules) in which somatic
alterations were significantly mutually exclusive (MEMo, (Ciriello et al., 2012)). This
analysis confirmed mutual exclusivity among alterations affecting the p53 pathway (MDM2,
MDM4 and TP53), the Rb pathway (CDK4, CDK6, CCND2, CDKN2A/B and RB1), and
various components influencing the PI3K pathway (PIK3CA, PIK3R1, PTEN, EGFR,
PDGFRA, NF1) (SI Table S6).

As shown, at least one RTK was found altered in 67.3% of GBM overall: EGFR (57.4%),
PDGFRA (13.1%), MET (1.6%) and FGFR2/3 (3.2%). Half of the tumors with focal
amplification and/or mutation of PDGFRA harbored concurrent EGFR alterations (42.4%,
14/33), as did the majority of MET-altered tumors (3/4), reflecting a pattern of intratumoral
heterogeneity that has been previously documented by in situ hybridization (Snuderl et al.,
2011; Szerlip et al., 2012).

PI3-kinase mutations were found in 25.1% of GBM (63/251), with 18.3% affecting
p110alpha and/or p85alpha subunits and 6.8% in other PI3K family genes. PI3K mutations
were mutually exclusive of PTEN mutations/deletions (p=0.0047, Fisher’s Exact), with
59.4% of GBM showing one or the other (149/251). Considering the RTK genes, PI3-kinase
genes and PTEN, 89.6% of GBM had at least one alteration in the PI3K pathway and 39%
had two or more. The NF1 gene was deleted or mutated in 10% of cases, and never co-
occurred with BRAF mutations (2%).

Concordant with the previous TCGA GBM report, the p53 pathway was found to be
dysregulated in 85.3% of tumors (214/251), through mutation/deletion of TP53 (27.9%),
amplification of MDM1/2/4 (15.1%) and/or deletion of CDKN2A (57.8%). As expected,
TP53 alterations were mutually exclusive with amplification of MDM family genes
(p=0.0003) and CDKN2A (p=1.99e–7). Concurrently, 78.9% of tumors had one or more
alteration affecting Rb function: 7.6% by direct RB1 mutation/deletion, 15.5% by
amplification of CDK4/6, and the remainder via CDKN2A deletion.

As reported for lower grade gliomas (Ichimura et al., 2009), 12 of the 13 GBMs with IDH1
hotspot mutations harbored concurrent TP53 mutations. Consistent with recent reports,
mutations in SWI/SNF complex gene ATRX often co-occurred in these cases (Figure 4B).
Mutations in IDH1 and ATRX appear to be more prevalent in GBM samples without RTK
alteration (p=7.2e-5 and 7.3e-4, respectively), tumors genotypically more consistent with
secondary GBM (Ohgaki and Kleihues, 2007).

Telomerase reverse transcriptase (TERT) promoter mutations were recently reported in
glioma, mapping to positions 124 (C228T) and 146bp (C250T) upstream of the TERT ATG
start site (Killela et al., 2013). Of the 42 cases with deep coverage WGS data, 25 samples
had adequate coverage (read count >10) of the TERT promoter for mutational analysis. We
detected the C228T mutation in 15 of the 25 cases, while the C250T variant was found in
another 6 cases (Figure 4C). TERT promoter mutations at these two hot spots were
correlated with up-regulated TERT expression at the RNA level (Figure 4C). Interestingly,
the four GBMs with non-mutated TERT promoters all harbored ATRX mutations and these
were concurrent with IDH1 and TP53 mutations as recently described (Liu et al., 2012).
Finally, in line with the role of ATRX in alternative lengthening of telomeres (ALT)
(Lovejoy et al., 2012), ATRX-mutant GBM tumors do not exhibit elevated TERT RNA
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expression compared to tumors with TERT promoter mutations (Figure 4C). Taken together,
these data suggest that maintenance of the telomere either through reactivation of telomerase
by TERT promoter mutation-induced increased TERT expression or ALT as a result of ATRX
mutation is a requisite step in GBM pathogenesis.

While reported median survival for patients with GBM ranges from 12–18 months, a subset
of individuals will survive for more than three years (Dolecek et al., 2012; Dunn et al.,
2012). We cross-referenced our data set to identify any factor(s) associated with long-term
survival (n=39 or 7.7% of the cohort). Although no specific genomic alteration was
significantly over-represented in this subset, amplifications of CDK4 and EGFR and
deletion of CDKN2A were observed at decreased frequencies in these long survivors (see
Data Portal). Age at diagnosis was found to be a major determinant, with 79% of long-term
survivors being diagnosed at younger than 50 years of age. Despite their relatively favorable
prognosis, only one third of patients with G-CIMP+ GBM survived beyond three years,
suggesting that other factors yet to be identified are contributing to overall long-term
survival of GBM patients.

Molecular subclasses defined by global mRNA expression and DNA Methylation
Widespread differences in gene expression have previously been reported in GBM, grouping
TCGA tumors into proneural, neural, classical and mesenchymal transcriptomic subtypes
(Phillips et al., 2006; Verhaak et al., 2010). Samples not included in previously published
analysis (n=342) were classified into one of classes using single sample gene set enrichment
analysis (Figure 5A, SI Table S7) Similarly, we sought to assign each case in the TCGA
cohort to one of the DNA methylation subclasses. The promoter DNA methylation array
platforms used by TCGA have evolved with increasing resolution from the Illumina
GoldenGate (n=238), Infinium HumanMethylation27 (HM27, n=283) and Infinium
HumanMethylation450 (HM450, n=76) platforms (SI Figure S5A). We re-analyzed a total
of 396 GBM samples, comprised of 305 new GBM samples profiled on the HM27 (n=192)
and HM450 (n=113) platforms in addition to 91 cases profiled on HM27 that were included
previously (Noushmehr et al., 2010). Hierarchical consensus clustering of the DNA
methylation profiles stratified these 396 GBM cases into six classes, including G-CIMP
(Figure 5B, SI Figures S5B and S5C, and SI Table S7). Cluster M1 (35/58, 60%) is enriched
for mesenchymal GBMs while cluster M3 (18/31, 58%) is enriched for classical subtype
(Figure 5B, red and blue, respectively). As expected, the G-CIMP cluster is enriched for
proneural subtype tumors.

To be able to perform more robust exploration of the relationship of G-CIMP phenotype to
other genomic alterations, we incorporated the previously reported G-CIMP status
(Noushmehr et al., 2010) on 175 additional GBM cases profiled on the GoldenGate
platform. A total of 534 GBM cases, were used in the following integrative analyses. The
age of GBM diagnosis was statistically different (41yrs vs. 56yrs; p-value = 0.008) between
proneural G-CIMP (n=28) and proneural non-G-CIMP (n=22) subtypes, reinforcing the
notion that the epigenomics of these transcriptomically similar patients mark distinct
etiologies and/or disease characteristics. We observed seven G-CIMP(+) cases lacking IDH1
mutation. These were similar to G-CIMP cases harboring IDH1 mutations with respect to
their median age at diagnosis (40yrs vs. 37yrs, p-value = 0.58) and overall survival (mean
913 days vs. 1248 days, p-value = 0.45). IDH2 mutation was not detected in these seven G-
CIMP+/IDH1 wildtype GBM, suggesting that alternative pathway(s) responsible for the
hypermethylator phenotype.

Next, to identify genomic alterations enriched in each of the transcriptomic or epigenomic
subtypes, we referenced the Patient-Centric Tables to count DNA mutation and copy
number aberration events per subtype. This analysis confirmed previous reports,
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demonstrating significant associations between PDGFRA amplification and the non-G-
CIMP+ proneural subgroup, as well as NF1 inactivation and the mesenchymal subtype
(Figure 5A). Additionally, the enhanced power of the larger data set identified an
enrichment of ATRX mutations and MYC amplifications in the G-CIMP+ subtype, CDK4
and SOX2 amplifications in proneural subtype, and broad amplifications of chromosomes 19
and 20 in the classical subtype (Figure 5A). In contrast to G-CIMP, cluster M6 was
relatively hypomethylated, with a predominance of non-mutated IDH1 cases belonging to
the proneural subtype (22/37, 59%) with concurrent PDGFRA amplification (Figure 5B).

To explore a plausible connection between chromatin deregulation and DNA methylation,
we counted mutations in the 161 CMGs (Figure 1B) per each methylation subclass,. In
addition to the association of IDH1 and ATRX mutations and G-CIMP, mutations of other
CMGs were enriched across the M2, M4 and M6 subclasses (38% of cases in these three
subclasses harbor at least one CMG mutation vs. 18% among the other classes, p=0.0015).
Furthermore, cases with missense mutation or deletion of MLL genes (n=18) or HDAC
family genes (n=4) clustered in the M2 DNA methylation subtype (10/21). These patterns of
co-occurrence suggest a functional relationship between chromatin modification and DNA
methylation that remains to be elucidated. Recently, Sturm et al. reported that adult and
pediatric GBM with alterations of IDH1, H3F3A and receptor tyrosine kinases (RTK) were
associated with epigenetic subtypes (Sturm et al., 2012). We compared the Sturm et al
methylation-based classification with ours using the 74 TCGA cases that were also
classified by by those authors. We found that four tumors classified as “IDH” subtype in
Sturm et al. were assigned to G-CIMP subtype in our classification scheme (SI Figure S5D).
The “Mesenchymal” tumors were assigned to M1 and M2 (21/25), “RTK II ‘classic’”
tumors were assigned to M3 and M4 (30/34) and the “RTK I ‘PDGFRA’” tumors were
assigned to M6. No TCGA samples were clustered in the Sturm et al’s “G34” or “K27”
classes and we found the corresponding histone mutations to be absent across the TCGA
sample set.

Lastly, we explored the relationship of molecular subclasses with clinical parameters such as
treatment response or survival. In the current larger TCGA cohort, the survival advantage of
proneural subtype GBM (Phillips et al., 2006) was definitively shown to be conferred by G-
CIMP status, with non-G-CIMP proneural GBMs and not mesenchymal GBM tending to
show less favorable outcomes in the first twelve months following initial diagnosis
compared to other subtypes (p-value 0.07; SI Figure S6A). While most of the samples
clustered in the M6 group were classified as proneural, this methylation subclass was not
associated with adverse survival overall (SI Figure S6B) (Noushmehr et al., 2010). This
observation reinforces the notion that target genes affected by the G-CIMP phenotype likely
contribute to the improved prognosis for this subset of proneural GBM.

DNA methylation of the MGMT gene promoter is a known marker for treatment response
(Hegi et al., 2005). We found that the MGMT locus was methylated in 48.5% of patients in
our cohort (174 of 359 assessed), and that G-CIMP cases showed an increased likelihood of
having MGMT DNA methylation (79% of G-CIMP vs. 46% for non-G-CIMP; SI Figure
S6C). When correlated with outcome, MGMT status distinguished responders from non-
responders amongst samples classified as classical (n = 96; p = 0.01) but not among samples
classified as proneural (n = 66; p = 0.57), mesenchymal (n = 104; p = 0.62) and neural (n =
55; p = 0.12) (SI Figures S6D and E). In summary, our data provides evidence for MGMT
DNA methylation as a predictive biomarker in the GBM Classical subtype of GBM, but not
other subtypes.
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Regulatory networks of miRNA and mRNA in gliomagenesis
MicroRNAs (miRs) have been found to promote or suppress oncogenesis through
modulation of gene expression via mRNA degradation or inhibition of translation (Bartel,
2004; Krol et al., 2010). Recent studies have proposed additional mechanisms of miR-
mRNA regulation, including modulation of competing endogenous RNA (ceRNA), which
are mRNA with competitive miR binding sites (Sumazin et al., 2011; Tay et al., 2011).
Leveraging the existence of matched mRNA and miR profiling data on a large number of
samples, we sought to define the salient interactions between specific pairs of miRs and
mRNAs through both of these mechanisms.

We employed a relevance network based approach to infer miR:mRNA associations in
GBMs with matched miR and mRNA profiles (n=482). Putative regulatory targets of
individual miRs were defined as those genes having strong negative correlation with the
miR (< −0.3) and prediction support in three commonly used databases (Miranda, Pictar,
TargetScan). 133 miR:mRNA associations defined the final putative miR regulatory
network (see Data Portal). The most prevalent associations related to molecular subtypes.
For instance, hsa-mir-29a (part of the miR29 family, thought to play a role in the TP53
pathway (Park et al., 2009) was predicted to regulate 23 genes. 17 of these 23 genes were
expressed at distinctively high levels in the non-G-CIMP+ proneural tumors only, and not in
the G-CIMP+ tumors. Interestingly, three (BCL11A, PCFG3, SS18L1) of the 23 genes in
this subnetwork are predicted to act as PDGFRA ceRNAs (see below).

Competitive endogenous mRNAs (ceRNAs) are mRNAs co-regulated in trans by a common
miR (Sumazin et al., 2011; Tay et al., 2011). Here, we used a correlation- and NLS-based
approach, integrating miRNA and mRNA expression and copy number profiles to predict
ceRNAs for four GBM signature genes: PDGFRA, EGFR, NF1, and PTEN. Interestingly,
predicted PDGFRA ceRNAs significantly overlapped with proneural GBM signature genes
(p-value <1e-15), while EGFR ceRNAs significantly overlapped with classical GBM
signature genes (p-value=1.2e-14) (see Data Portal). Predicted ceRNAs of NF1 overlapped
with proneural signatures (P<1e-15) and PTEN-associated ceRNAs were correlated with the
mesenchymal signature. This provocative finding raises the possibility that ceRNA
regulation by miR may contribute to the transcriptomic signature that defines the molecular
subtypes in GBM, although this hypothesis remains to be tested.

Signaling pathway activation in different molecular subtypes of GBM
To assess whether enrichment of genomic alterations in molecular subtypes translates into
downstream pathway activation, we performed targeted proteomic profiling by reverse-
phase protein arrays (RPPA). 214 sample lysates were probed with 171 antibodies targeting
phospho- and/or total-protein levels among signaling pathways as previously described
(TCGA, 2012c). After normalization, co-clusters of correlated signaling molecules within
specific signaling pathways were observed (see Extended Experimental Procedures, Data
portal) and were utilized as readout of pathway activity status for correlative analyses.

Unsupervised clustering of RPPA data failed to produce a consistent partitioning of the
sample cohort into clearly-defined subtypes. However, 127 out of the 171 antibodies were
found to correlate significantly with transcriptomal subtype (Kruskal-Wallis, p<0.05;
Extended Experimental Procedures). As anticipated, EGFR amplification/mutation was
associated with significant elevations in total EGFR expression (p=3.74E-15) and
phosphorylation (p=1.44E-12, SI Figure S7A), both prominent in classical subtype tumors
(SI Figure S7B). Classical GBMs also showed relative downregulation of pro-apoptotic
proteins (including cleaved caspase 7, cleaved caspase 9, Bid and Bak) as well as MAP
kinase signaling, including its downstream target p90RSK. Notch1 and Notch3 expression
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were moderately increased in classical tumors, consistent with previous reports linking
EGFR and Notch activation in GBM (Brennan et al., 2009).

Mesenchymal subtype tumors exhibited elevated levels of endothelial markers, such as
CD31 and VEGFR-2, consistent with previous findings (Phillips et al., 2006), as well as
markers of inflammation (e.g., Fibronectin and its downstream target COX-2).
Mesenchymal tumors showed moderately increased activation of the MAPK pathway, as
evidenced by higher levels of phospho-Raf, phospho-MEK and phospho-ERK (Figure 6).
These tumors also exhibited decreased levels of the mTOR regulatory protein, tuberin (TSC2
gene product), which is inhibited by ERK phosphorylation.

In contrast to the mesenchymal subtype, proneural GBMs showed relatively elevated
expression and activation of the PI3K pathway including the Akt-regulated mTorc1
activation site (Figure 6). Proneural tumors showed greater inhibition of the 4EBP1
translation repressor, whereas mesenchymal tumors display elevated S6 kinase activation
(indicative of mTOR effector pathway activation). Therefore, both subtypes achieve mTOR
pathway activation although the specific patterns of steady-state protein activation differ.

G-CIMP+ tumors shared characteristics with their proneural superfamily, but also showed
decreased expression of several proteins, including Cox-2, IGFBP2 and Annexin 1. Among
the 171 antibodies tested in the TCGA dataset, these three proteins were the most negatively
prognostic (Cox proportional hazard test, p<0.0004–0.0013). IGFBP2 and Cox-2 have been
independently reported as poor prognostic markers in diffuse gliomas (Holmes et al., 2012;
Shono et al., 2001), and low IGFBP2 expression has been associated with global DNA
hypermethylation in glioma (Zheng et al., 2011). Members of the annexin family have been
associated with glioma growth and migration, and annexin-1 is known to be under-expressed
in secondary but not primary GBM (Schittenhelm et al., 2009). Together, the correlations of
these proteins with G-CIMP status suggest that their prognostic significance is not
independent. Analysis of DNA methylation for IGFBP2, COX2 and ANXA1 found no
evidence of hyper-methylation in G-CIMP tumors.

Interestingly, samples with RTK amplification had lower levels of canonical RTK-target
pathway activities as measured by phospho-AKT, phospho-S6 kinase and phospho-MAPK
co-cluster levels (SI Figure S7C). While PTEN loss and deletion were each associated with
incremental increases in AKT pathway activity, PI3K-mutant samples had lower AKT
activity than samples lacking PI3K mutations, concordant with findings in breast cancer
(TCGA, 2012c). Samples harboring NF1 mutation/deletion showed elevated MAP kinase
activity (p-ERK and p-MEK, p-value<0.001), and trended towards decreased PKC pathway
activity. These examples of non-linear relationship between protein signaling and underlying
genetic mutations speak to complex and likely dynamic signaling in cancers.

DISCUSSION
In this study, we provided a comprehensive catalogue of somatic alterations associated with
glioblastoma, constructed through whole genome, exome and RNA sequencing as well as
copy number, transcriptomic, epigenomic and targeted proteomic profiling. With the
availability of detailed clinical information including treatment and survival outcome for
nearly the entire cohort, this rich data set offers new opportunity to discover genomics-based
biomarkers, validate disease-related mechanisms and generate novel hypotheses.

In addition to alterations in signature oncogenes of GBM, such as EGFR and PI3K, we
found that over 40% of tumors harbor at least one non-synonymous mutation among the
chromatin-modifier genes. A role for chromatin organization in GBM pathology, which has
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been described for cancer types such as ovarian carcinoma (Wiegand et al., 2010) and renal
carcinoma (Varela et al., 2011), is suggested. We also detected mutations in genes for which
targeted therapies have been developed, such as BRAF (Chapman et al., 2011), and FGFR1/
FGFR2/FGFR3 (Singh et al., 2012), demonstrating the potential clinical impact of this
TCGA dataset.

Structural rearrangements that contributed to the overall complexity of the genome and
transcriptome were detected in the majority of GBM. A high frequency of structural variants
on the q arm of chromosome 12, involving the MDM2 and CDK4 genes, was observed and
associated with the presence of double minute, extrachromosomal DNA fragments, which
may be functionally relevant (Zheng et al., 2013). The identification of complex EGFR
fusion and deletion variants in nearly half of GBM confirm relevance of this category of
somatic alterations to the disease. While the development of a therapeutic strategy targeting
mutated EGFR could have a major impact on survival and continues to be a topic of great
interest (Vivanco et al., 2012), strategies will need to address the possibility that different
EGFR alterations might exist concurrently in a tumor and yield differential biological
activities and/or responses to any given targeted inhibitor.

Another level of biological complexity is revealed by targeted proteomic profile, which
showed that the impact of specific genomic alterations on downstream pathway signaling is
not linear. The discordance between genomic features and proteomic activation status speak
to a complex, and likely dynamic, relationship between signaling and molecular alterations.
This observation has provocative clinical implication as it directly challenges the notion that
therapeutic inhibition of downstream signaling components along a pathway would yield
similar efficacy of targeting the mutated gene itself. Additionally, this observation highlights
the limitation of TCGA data, namely its inherent static nature given a single time point
analysis, and its inability to map specific genetic or protein changes to the individual cells or
cell population given its approach to whole-tumor tissue analysis.

In summary, this report reaffirms the power and value of TCGA’s comprehensive
multidimensional and clinically annotated GBM reference dataset in enabling hypothesis
generation based on unanticipated observations and relationships emerged from unbiased
data-driven analyses. We believe that this public resource will serve to facilitate discovery
of new insights that can advance our molecular understanding of this disease.

EXPERIMENTAL PROCEDURES
Patient and Sample Characteristics

Specimens were obtained from patients, with appropriate consent from institutional review
boards. Details of sample preparation are described in the Extended Experimental
Procedures.

Data generation
In total, 599 patients were assayed on at least one molecular profiling platform, which
platforms included: (1) exome sequencing, (2) DNA copy number and single nucleotide
polymorphism arrays, (3) whole genome sequencing (4) gene expression arrays, (5) RNA
sequencing, (6) DNA methylation arrays, (7) reverse phase protein arrays and (8) miRNA
arrays. Details of data generation are described in the Extended Experimental Procedures.

Whole Genome and Exome Sequencing Data Analysis
Massively Parallel Sequencing Exome capture was performed by using Agilent SureSelect
Human All Exon 50 Mb according the manufacturer’s instructions. All exome and whole
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genome sequencing was performed on the Illumina GA2000 and HiSeq platforms. Basic
alignment and sequence quality control were done by using the Picard and Firehose
pipelines at the Broad Institute. Mapped genomes were processed by the Broad Firehose
pipeline to perform additional quality control, variant calling, and mutational significance
analysis.

RNA Sequencing Data Analysis
Libraries were generated from total RNA and constructed using the manufacturers protocols.
Sequencing was done on the Illumina HiSeq platform. Read mapping and downstream data
analysis (expression profiles, fusion transcripts, structural transcript variants) were
performed using the PRADA pipeline.

Array Data Preprocessing and Analysis
To ensure across-platform comparability, features from all array platforms were compared
to a reference genome as previously described (TCGA, 2008). Both single platform analyses
and integrated cross-platform analyses were performed, as described in detail in the
Extended Experimental Procedures.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• Exome DNA sequencing in 291 glioblastomas, 42 with whole genome
sequencing

• RNA sequencing of 164 glioblastomas identifies recurrent gene rearrangements

• Copy number, DNA methylation, protein, mRNA and miRNA expression
profiles of 543 GBMs

• Integrated analysis of somatic alterations, molecular subtypes and affected
pathways
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Figure 1. Somatic genomic alterations in glioblastoma
(A) Summary of significantly mutated genes from 291 exomes. Specific mutations for
LZTR1, SPTA1, KEL, and TCHH are shown in SI Figure S2.
Upper histogram: Number of mutations per sample (substitutions and indels). Left
histogram, rate of mutations per gene and percentage of samples affected.
Central heat map: Distribution of significant mutations across sequenced samples, color
coded by mutation type.
Left histograms: Overall count and significance level of mutations as determined by log(10)
transformation of the MutSig q-value. Red line indicates a q-value of 0.05.
Right histogram: Summary of focal amplifications (red) and deletion (blue) determined from
DNA copy number platforms (asterisk denotes inclusion in statistically significant recurrent
CNA by GISTIC).
Lower chart: Average fraction of tumor reads versus total number of reads per sample.
Bottom chart: top, rates of non-silent mutations within categories indicated by legend;
bottom, mutation spectrum of somatic substitutions of samples in each column.
(B) Mutations in 38 genes related to specific epigenetic function categories (out of 161
genes linked to chromatin modification) across 98 GBMs (out of 292 GBM). IDH1 mutation
status is included to illustrate its co-occurrence with ATRX mutation. An additional 37
GBMs harbored mutations in one of the remaining 129 CMGs.
(C) Recurrent sites of DNA copy number aberration determined from 543 samples by the
GISTIC algorithm. Statistically significant, focally amplified (red) and deleted (blue)
regions are plotted along the genome. Significant regions (FDR<0.25) are annotated with the
number of genes spanned by the peak in parentheses. For peaks that contain a putative
oncogene or tumor suppressor, the gene is noted.
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Figure 2. Structural rearrangements and transcript variants in GBM
(A) Circos plots of structural DNA and RNA rearrangements in six GBMs, selected from 28
cases with available whole genome and RNA sequencing based on their rearrangement
frequency. Outer ring indicates chromosomes. Copy number levels are displayed along the
chromosome map in red (copy number gain) and blue (copy number loss). Each line in the
center maps a single structural variant to the site of origin for both genes (see SI Figure S3
for additional analysis of fusion transcripts derived from RNA sequencing).
(B) The chromosome arm of origin of both ends of each rearrangement detected in whole
genome sequencing data from 42 GBM were counted and compared to chromosome arm
length.
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(C) The chromosome arm of both partners in fusion transcripts detected from RNA
sequencing data from 164 GBM were counted and compared to chromosome arm length.
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Figure 3. Somatic alterations of the EGFR locus
(A) EGFR protein domain structure with somatic mutations summarized from 291 GBMs
with exome sequencing and transcript alterations identified across 164 GBMs with RNA
sequencing.
(B) EGFR alterations are summarized by transcript prevalence in 164 GBMs with RNA
sequencing. Red, top: focal amplification or regional gain inferred from DNA copy number.
Blue: Prevalence of sequencing reads with EGFR point mutation. Green: prevalence of reads
with aberrant exon-exon junctions (e.g., 1E–8S is a junction spanning from the end of exon
1 to the start of exon 8, consistent with EGFRvIII mutation). Black: EGFR fusion transcript
detected (see rearrangements). See related SI Figure S4 for comparison of EGFR mutations
in DNA and RNA and for a summary of EGFR rearrangements.

Brennan et al. Page 23

Cell. Author manuscript; available in PMC 2014 October 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4. Landscape of Pathway Alterations in GBM
Alterations affecting canonical signal transduction and tumor suppressor pathways are
summarized for 251 GBM with both exome sequencing and DNA copy number data.
Rearrangements are underestimated in this summary since RNA-seq data were available for
only a subset of cases with exome sequencing data (153/291, 61%).
(A) Overall alteration rate is summarized for canonical PI3K/MAPK, p53 and Rb regulatory
pathways.
(B) Per-sample expansion of alterations summarized in 5A. Mutations (blue), focal
amplifications (red) and homozygous deletions are selected from the patient-centric tables
and organized by function. All missense, nonsense and frame-shift mutations are included.
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EGFRvIII is inferred from RNA data and included as a mutation if >=10% transcribed
allelic frequency. Deletions are defined by log2 ratios < −1 or <−0.5 and focally targeting
the gene (see Extended Experimental Procedures). Amplifications are defined by log2
ratio>2 or >1 and focal.
(C) Left: For a cohort of 25 GBMs for which whole genome sequencing allowed
genotyping, TERT promoter C228T and C250T mutations occurred in a mutually exclusive
fashion. All four TERT promoter wildtype GBM harbored ATRX mutation, and were
enriched in G-CIMP group.
Right: TERT promoter mutations are associated with elevated expression.
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Figure 5. Molecular subclasses of GBM and their genomic molecular correlates
(A) Genomic alterations and survival associated with five molecular subtypes of GBM.
Expression and DNA methylation profiles were used to classify 332 GBMs with available
(native DNA and whole genome amplified DNA) exome sequencing and DNA copy number
levels. The most significant genomic associations were identified through Chi-square tests,
with p-values corrected for multiple testing using the Benjamini-Hochberg method.
(B) Genomic alterations and sample features associated with six GBM methylation clusters.
Epigenomic consensus clustering was performed on 396 GBM samples profiled across two
different platforms (Infinium HM27 and Infinium HM450). Six DNA methylation clusters
were identified (see related SI Figure S5), represented as M1 to M6, where M5 is G-CIMP.
These DNA methylation signatures are correlated with 27 selected features composed of
clinical, somatic and copy number alterations; DM cluster, G-CIMP status, four TCGA
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GBM gene expression subclasses, two clinical features (Age at diagnosis/overall survival in
months), somatic mutations (IDH1, TP53, ATRX) and 18 selected copy number alterations.
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Figure 6.
Canonical PI3K and MAPK pathway activation determined by reverse phase protein arrays
and compared between GBM subclasses: Proneural (P, purple, n=55) and Mesenchymal (M,
red, n=45). Activation/expression levels are plotted for principal signaling nodes of the
MAPK (phospho-MEK and phospho-p90RSK), PI3 kinase (pS473-Akt) and mTOR
(TSC1/2, phospho-mTOR, p235/236 S6, phospho-4EBP1 and EIF4E) pathways (p-values,
two-tailed T-test). Mesenchymal tumors showed increased activation of the MAPK pathway
(evidenced by higher levels of phospho-MEK and downstream phospho-p90RSK) and
decreased levels of phospho-ERK inhibitory target TSC2. In contrast, proneural tumors
showed relatively elevated expression and activation of members of the PI(3) kinase
pathway including Akt PDK1 target site threonine 308 (p=0.01, not shown) and Akt
mTORC2 target site (serine 473). Phospho-ERK levels were not significantly different
between these two subtypes.
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Table 1

Characterization platforms and data availability

Data Type Platforms Cases in 2008 Cases in 2013

DNA sequence of exome

Illumina on native DNA 0 291

Sanger on native DNA 91 148

Illumina on whole genome amplified DNA 0 163

DNA sequence of whole genome Illumina on native DNA 0 42

DNA copy number/genotype
Affymetrix SNP6 206 578

Agilent 224K/415K 206 413

mRNA expression profiling
Affymetrix U133A 206 544

Affymetrix Exon 201 417

mRNA sequencing Illlumina on native cDNA 0 164

CpG DNA Methylation

Illumina GoldenGate 242 242

Illumina 27K 0 285

Illumina 450K 0 113

miRNA expression profiling Agilent 205 491

Protein expression profiling Reverse phase protein arrays 0 214

Clinical characteristics Tier 1/Tier 2 206 543
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