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Abstract

A Highly Productive Implementation of an Out-of-Order Processor Generator

by

Christopher Patrick Celio

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Emeritus David A. Patterson, Co-chair

Professor Krste Asanović, Co-chair

General-purpose serial-thread performance gains have become more difficult for industry
to realize due to the slowing down of process improvements. In this new regime of poor
process scaling, continued performance improvement relies on a number of small-scale micro-
architectural enhancements. However, software simulator-based models, which computer
architecture research has largely relied upon, may not be well-suited for evaluating ideas at
the necessary fidelity.

To facilitate architecture research during this fallow period of Moore’s Law, we propose
using processor simulators built from synthesizable processor designs. This thesis describes
the design of a synthesizable, industry-competitive processor built on recent advancements in
open-source hardware: we leverage the new open-source RISC-V instruction set architecture,
the new Chisel hardware construction language, and the Rocket-chip processor generator.

Our processor generator is called BOOM, and it designed for use in education, research,
and industry. Like most contemporary high-performance cores, BOOM is superscalar (able
to execute multiple instructions per cycle) and out-of-order (able to execute instructions as
their dependencies are resolved and not restricted to their program order).

The BOOM generator was implemented using the Chisel hardware construction language,
allowing for the rapid implementation of parameterized designs. The Chisel description
generates synthesizable implementations of BOOM that can target both FPGAs and ASIC
tool-flows. The BOOM effort culminated in a test chip that was fabricated in the TSMC
28 nm HPM process (high performance mobile) using the foundry-provided standard-cell
library and memory compiler.

This thesis highlights two aspects of the BOOM design: its industry-competitive branch
prediction and its configurable execution datapath. The remainder of the thesis discusses
the BOOM tape-out, which was performed by two graduate students and demonstrated the
ability to quickly adapt the design to the physical design issues that arose.



i

To my parents,
for the many opportunities that they gave me.



ii

Contents

Contents ii

List of Figures iii

List of Tables iv

1 Introduction 1
1.1 Leveraging New Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 4
2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Technology and Research Trends . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Impact of Performance Slowdown on Architecture Research . . . . . . 10
2.3 Computer Architecture Research Trends . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Architectural Simulators . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 RTL Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.3 Energy Modeling Methodologies . . . . . . . . . . . . . . . . . . . . . 18

2.4 Processor Microarchitecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Out-of-order Processor Microarchitectures . . . . . . . . . . . . . . . . . . . 23

2.5.1 The Data-in-ROB Design (Implicit Renaming) . . . . . . . . . . . . . 23
2.5.2 The Physical Register File Design (Explicit Renaming) . . . . . . . . 25
2.5.3 The Differences Between the Two Styles . . . . . . . . . . . . . . . . 25

2.6 History of Out-of-order Processors . . . . . . . . . . . . . . . . . . . . . . . . 27
2.7 The Value of Out-of-order Execution . . . . . . . . . . . . . . . . . . . . . . 28
2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 BOOM Overview 31
3.1 The RISC-V Instruction Set Architecture . . . . . . . . . . . . . . . . . . . . 31
3.2 The BOOM Microarchitecture . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 The BOOM Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . 33



iii

3.2.2 Instruction Fetch and Branch Prediction . . . . . . . . . . . . . . . . 35
3.2.2.1 Branch Target Buffer (BTB) . . . . . . . . . . . . . . . . . 35
3.2.2.2 Return Address Stack (RAS) . . . . . . . . . . . . . . . . . 35
3.2.2.3 Conditional Branch Predictor (BPD) . . . . . . . . . . . . . 35

3.2.3 The Decode Stage and Resource Allocation . . . . . . . . . . . . . . . 36
3.2.4 The Register Rename Stage . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.5 The Reorder Buffer (ROB) and Exception Handling . . . . . . . . . . 36
3.2.6 The Issue Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.7 The Register File and Bypass Network . . . . . . . . . . . . . . . . . 38
3.2.8 The Execution Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.9 The Load/Store Unit (LSU) . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.10 The Memory System . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Design Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.1 RTL Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.2 RTL Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.3 The Chisel Hardware Construction Language . . . . . . . . . . . . . . 42
3.3.4 The Rocket-chip System-on-a-Chip Generator . . . . . . . . . . . . . 44

3.4 FPGA Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5 ASIC Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5.1 SRAM Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5.2 Custom Bit Array Register File . . . . . . . . . . . . . . . . . . . . . 50
3.5.3 Timing Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.7 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Branch Prediction 59
4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1.1 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.1.2 Deficiencies of Trace-based, Unpipelined Models . . . . . . . . . . . . 61
4.1.3 The State-of-the-art TAGE Predictor . . . . . . . . . . . . . . . . . . 62

4.2 The BOOM RTL Implementation . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.1 The Frontend Organization . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.2 Providing a Branch Predictor Framework . . . . . . . . . . . . . . . . 66
4.2.3 Managing the Global History Register . . . . . . . . . . . . . . . . . 66
4.2.4 The Two-bit Counter Tables . . . . . . . . . . . . . . . . . . . . . . . 69
4.2.5 Superscalar Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2.6 The BOOM GShare Predictor . . . . . . . . . . . . . . . . . . . . . . 71
4.2.7 The BOOM TAGE Predictor . . . . . . . . . . . . . . . . . . . . . . 71

4.2.7.1 TAGE Global History and the Circular Shift Registers (CSRs) 73
4.2.7.2 Usefulness Counters (u-bits) . . . . . . . . . . . . . . . . . . 73
4.2.7.3 TAGE Snapshot State . . . . . . . . . . . . . . . . . . . . . 74

4.3 Addressing the Gaps Between RTL and Models . . . . . . . . . . . . . . . . 74



iv

4.3.1 Superscalar Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.2 Delayed History Update . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3.3 Delayed Predictor Update . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.4 Accurate Cost Measurements . . . . . . . . . . . . . . . . . . . . . . 76
4.3.5 Implementation Realism . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4 Proposed Improvements for Software Model Evaluations . . . . . . . . . . . 77
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Describing an Out-of-order Execution Pipeline Generator 80
5.1 Goals and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2 The BOOM Execution Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2.1 Branch Speculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2.2 Execution Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2.3 Functional Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2.3.1 Pipelined Functional Units . . . . . . . . . . . . . . . . . . . 86
5.2.3.2 Iterative Functional Units . . . . . . . . . . . . . . . . . . . 89

5.2.4 The Load/Store Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.3 Case Study: Adding Floating-point Support . . . . . . . . . . . . . . . . . . 89

5.3.1 Register File and Register Renaming . . . . . . . . . . . . . . . . . . 91
5.3.2 Issue Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3.3 Floating-point Control and Status Register (fcsr) . . . . . . . . . . . 91
5.3.4 Hardfloat and Low-level Instantiations . . . . . . . . . . . . . . . . . 92
5.3.5 Pipelined Functional Unit Wrapper . . . . . . . . . . . . . . . . . . . 92
5.3.6 Adding the FPU to an Execution Unit . . . . . . . . . . . . . . . . . 94
5.3.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4 Case Study: Adding a Binary Manipulation Instruction . . . . . . . . . . . . 97
5.4.1 Decode, Rename, and Instruction Steering . . . . . . . . . . . . . . . 97
5.4.2 The Popcount Unit Implementation . . . . . . . . . . . . . . . . . . . 97

5.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6 VLSI Implementation Effort 104
6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2 BOOMv1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3 BOOMv2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.3.1 Frontend (Instruction Fetch) . . . . . . . . . . . . . . . . . . . . . . . 109
6.3.2 Distributed Issue Windows . . . . . . . . . . . . . . . . . . . . . . . . 112
6.3.3 Register File Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.4 Tapeout Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.5 Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.6 What Does It Take To Go Really Fast? . . . . . . . . . . . . . . . . . . . . . 120
6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120



v

7 Conclusion 122
7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.3 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A A Selection of Encountered Bugs 127

Bibliography 133



vi

List of Figures

2.1 Cell phone subscriber counts as provided by the United Nations . . . . . . . . . 5
2.2 45 years of microprocessor and technology trends . . . . . . . . . . . . . . . . . 6
2.3 40 years of processor performance . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 A processor takes a stream of instructions and performs computations as specified

by each instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 A common general-purpose processor architecture is the register-register load/s-

tore architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 An ARM Cortex-A15 pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.7 A physical register file design and a data-in-ROB design . . . . . . . . . . . . . 24

3.1 A conceptual outline of the BOOM pipeline . . . . . . . . . . . . . . . . . . . . 34
3.2 The instruction fetch frontend to BOOM . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Block diagram of the BROOM test chip . . . . . . . . . . . . . . . . . . . . . . 46
3.4 BROOM place-and-routed chip plot . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5 BROOM place-and-routed chip plot with annotations . . . . . . . . . . . . . . . 48
3.6 Photograph of a BROOM chip wire-bonded into a PCB . . . . . . . . . . . . . . 49
3.7 Instruction-per-cycle comparison running SPECint2006 . . . . . . . . . . . . . . 57
3.8 Performance ratio relative to the SPEC reference machine (a 296 MHz Ultra-

SPARC II) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 The TAGE predictor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 The BOOM Fetch Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3 The branch prediction framework . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4 A gshare predictor uses the global history hashed with the fetch address to index

into a table of 2-bit counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.5 Two-bit counter state machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.6 The gshare predictor pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.1 An example pipeline for a dual-issue BOOM . . . . . . . . . . . . . . . . . . . . 84
5.2 An example Execution Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3 The abstract Pipelined Functional Unit class . . . . . . . . . . . . . . . . . . . . 87



vii

5.4 The functional unit abstraction allows for the easy encapsulation of expert-written
functional unit logic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.5 The Functional Unit class hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.6 Support for the RISC-V single-(“F”) and double-(“D”) precision extensions was

implemented over a two week period . . . . . . . . . . . . . . . . . . . . . . . . 96

6.1 A comparison of a three-issue BOOMv1 and four-issue BOOMv2 pipeline . . . . 106
6.2 The datapath changes between BOOMv1 and BOOMv2 . . . . . . . . . . . . . 108
6.3 The frontend pipelines for BOOMv1 and BOOMv2 . . . . . . . . . . . . . . . . 110
6.4 A Register File Bit manually crafted out of foundry-provided standard cells . . . 114
6.5 All VLSI builds by date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.6 VLSI builds using LVT cells and arranged by build number . . . . . . . . . . . . 115



viii

List of Tables

2.1 The scaling factors of a single transistor under a Dennard Scaling regime (1965-
2005) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 The scaling factors of a single transistor in a post-Dennard Scaling regime (post-
2005) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 A sample of simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 A sample of academic out-of-order processors and the open-source UltraSPARC

T2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 The differences between the data-in-ROB design and the physical register file design 26

3.1 The compile and simulation times for the Verilator and VCS RTL simulators
when built using a 12-core Intel Xeon E5-2643 v2 (3.5 GHz) . . . . . . . . . . . 41

3.2 The set of bare-metal benchmarks provided by the riscv-tests repository . . . 43
3.3 The configurations used for each of the SRAMs used in a BOOM core . . . . . . 51
3.4 The parameters chosen for the tapeout of BOOM . . . . . . . . . . . . . . . . . 54
3.5 CoreMark, Area, and Frequency Comparisons of Industry Processors . . . . . . 55
3.6 Instruction-per-cycle comparison running SPECint2006 . . . . . . . . . . . . . . 58
3.7 Performance ratio relative to the SPEC reference machine (a 296 MHz Ultra-

SPARC II) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1 A survey of industry execution datapaths and the different functional units available 82
5.2 The hierarchy from an abstract FunctionalUnit to an expert-written fused multply-

add block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.1 The parameters chosen for analysis of BOOM . . . . . . . . . . . . . . . . . . . 107
6.2 The critical path length for each of the VLSI builds from the BROOM tapeout . 118



ix

Acknowledgments

A thesis is an enormous task, but thankfully, it is not something that is done alone. Many
friends, family, and mentors contributed to this work in both tangible and intangible ways.

First, I would like to thank my advisors, Krste Asanović and Dave Patterson, for allowing
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Chapter 1

Introduction

Computer architecture research centers on the study and evaluation of computer systems,
their organization, their interfaces, and their implementations. And yet, due to the complex-
ity of modern computer processors, architecture researchers only rarely design and implement
entire systems.

There are many valid reasons to eschew the arduous process of implementing full systems.
The man-power and the time required to take a project from conception to completion is high.
The level of re-use between chip-building research projects is also poor, exacerbating the
amount of effort required by each new team to construct a complete system. And certainly,
many ideas can be adequately evaluated using software simulators, where researchers can
add their one sliver of innovation to an existing research platform.

But some ideas are best evaluated in the context of a full system, and with enough detail
to provide performance, power, and area numbers. This thesis aims to provide a piece of
the puzzle by implementing — at the register-transfer-level (RTL) — a complete out-of-
order processor. We focus not just on the design, but on the manner in which it has been
productively produced using a new, more modern hardware construction language. We also
discuss how we implemented not just a single processor instance, but rather, a hardware
generator that can construct an entire family of out-of-order cores. We call our processor
generator the Berkeley Out-of-Order Machine, or BOOM.

1.1 Leveraging New Infrastructure

The feasibility of BOOM is in large part due to the available open-source infrastructure that
has been developed in parallel at UC Berkeley.

BOOM implements the open-source RISC-V Instruction Set Architecture (ISA), which
was designed from the ground-up to enable VLSI-driven computer architecture research. The
RISC-V ISA is clean, realistic, and highly extensible. Available software includes the GCC
and LLVM compilers and a port of the Linux operating system. The clean and simple design
of RISC-V allowed us to focus on our processor generator’s design without getting weighed
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down with awkward instructions that demand undue attention. And the advantage of an
open-source community-driven ISA allowed us to leverage an existing tool-chain and software
base without spending time away from processor implementation to manage software porting
efforts.

BOOM is written in Chisel, an open-source hardware construction language developed
to enable advanced hardware design. Chisel allows designers to utilize concepts such as
object orientation, functional programming, parameterized types, and type inference which
makes it easier to implement highly parameterized hardware generators. From a single
Chisel source, Chisel can generate a cycle-exact Verilog software simulator, Verilog targeting
FPGA designs, and Verilog targeting ASIC tool-flows. One of Chisel’s strengths is its focus on
generating well-formed, synthesizable Verilog. This feature decreased design risk. Chisel also
brings software development-level productivity to RTL coding. Other hardware description
languages feel unwieldy with many common design patterns being awkward or verbose to
describe. But Chisel lets us focus more time on the ideas we wanted to express, and less
time on figuring out how to express them.

UC Berkeley also provides the open-source Rocket-chip System-on-a-Chip (SoC) genera-
tor, which has been successfully taped-out over a dozen times in multiple different, modern
technologies by multiple groups [4, 57, 107]. BOOM makes significant use of Rocket-chip as
a library – the caches, the uncore, and the functional units all derive from Rocket. In total,
over 11,500 lines of code is instantiated by BOOM from the Rocket-chip repository.

1.2 Contributions

This thesis makes the following contributions:

• A complete implementation of a superscalar, out-of-order processor gener-
ator — We built a superscalar, out-of-order processor generator. BOOM implements
the entire RISC-V RV64G ISA and the page-based virtual memory Sv39 Privileged
ISA such that we can boot the Linux operating system and run user-level applications.

• A competitive implementation — BOOM achieves comparable (or better) branch
prediction accuracy and instructions-per-cycle performance relative to similarly sized
industry out-of-order processors.

• A productive implementation — We demonstrated our productive processor gen-
erator design by implementing it using only 16k lines of code. We were able to accom-
plish this task by leveraging many new artifacts in the nascent open-source hardware
ecosystem. Specifically, we were able to leverage the open-source RISC-V ISA and its
accompanying tool-chain and testing infrastructure, the open-source Chisel hardware
construction language, and the open-source Rocket-chip SoC generator.
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• Demonstrated productivity with an Agile tape-out — We further demonstrated
our productivity and agility by making significant micro-architectural design changes
as part of a two-person tape-out performed over four months.

1.3 Thesis Outline

In Chapter 2 we discuss the state of the industry and of research, and of the technology trends
that are motivating changes in both. In particular, there is a growing requirement for high
fidelity RTL-based simulations that can provide greater system depth and a higher degree of
confidence in performance and power estimations. In Chapter 3 we provide an overview of
our superscalar, out-of-order processor generator called BOOM. Chapter 4 discusses in detail
our implementation of the branch prediction and instruction fetch pipelines, and how we were
able to implement complex branch predictors that can be easily modified and changed to
explore new ideas. In Chapter 5 we discuss in more detail how we leveraged the Chisel
language to productively describe a superscalar, out-of-order datapath generator; we also
discuss how we leveraged expert-written functional units to increase our productivity in
describing a full processor system capable of executing floating-point applications. And
finally, in Chapter 6 we demonstrate our productivity through a case study in which we
taped-out an instantiation of BOOM as part of a test-chip fabricated using the TSMC 28 nm
HPM process.
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Chapter 2

Background

This chapter provides the background and motivation for implementing the open-source
Berkeley Out-of-Order Machine (BOOM). Section 2.1 discusses the importance of computers
and provides motivation for studying computer architecture. Section 2.2 discusses the trends
in technology regarding Moore’s Law and Dennard Scaling and their effect on processor
design and computer architecture research. Section 2.3 discusses the current state-of-the-
art in computer architecture research regarding processor simulators as well as related work
regarding similar register-transfer-level (RTL) implementation efforts. Section 2.4 describes
the organization, or microarchitecture, of a typical, modern processor and introduces the
out-of-order microarchitecture. Section 2.5 provides a taxonomy of out-of-order processors
while Section 2.6 discusses the history of out-of-order processors. Section 2.7 elaborates on
the performance advantages that out-of-order processors have over other processor designs
and Section 2.8 concludes.

2.1 Motivation

For the past half-century, computers have been a key enabler in technological and societal
change. The number of processors worldwide has continued to proliferate with little sign of
slowing despite the industry upheaval caused by the current slowing of Moore’s Law and the
end of Dennard Scaling in 2005.

Computer usage has been growing on many fronts. For cell phones, the numbers are
absolutely staggering. From the United Nation’s World Telecommunication/ICT Indicators
Database, over 6 billion people own a cell phone [116] (see Figure 2.1). As a point of
comparison, only 4.5 billion people have access to toilets or latrines [115]. For many, cell
phones have been an enabler for economic development and societal progress [1, 28, 96].

Cellphones are not the only benefactors of computer architectural innovation. The growth
of Software as a Service (SaaS) has led to a rise of a new class of computer – the Warehouse-
Scale Computer (WSC). There are many demanding applications running on WSCs: search,
media delivery, gaming, shopping, social networking, and machine learning. WSCs are typi-
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Figure 2.1: Cell phone subscriber counts as provided by the United Nations [116].

cally built in locations where the price of power is cheap as they require megawatts to power
(and cool) tens of thousands of compute nodes [77]. Over a ten year period, 30% system cost
of a WSC may go to energy, power distribution, and thermal management [77]. However,
using wimpier but more power-efficiency cores can dramatically degrade service response
times, making the trade-off between performance and power-efficiency a non-trivial design
problem [45].

At the opposite end of the compute spectrum, the Internet of Things (IoT) promises
to create a world of billions of “smart” sensors, dwarfing the current number of deployed
processors [9]. However, each device will likely have to be less than $1 and able to sustain
itself on a tiny power budget – perhaps sipping the necessary power from the environment
itself [80].

While the number of processors will continue to grow into the near future at all parts
of the compute spectrum, from small microwatt processors (IoT) to megawatt computers
(WSC), there are a number of challenges that designers face such as cost, reliability, service
response time, thermal constraints, and energy-efficiency [45].

2.2 Technology and Research Trends

Changes in semiconductor technology have provided computer architects with many new
tools with which to pursue higher performance processors in a variety of computing environ-
ments. Moore’s Law has provided architects with more (and faster) transistors with which to
implement more complex designs while Dennard Scaling has allowed the power requirements
to stay manageable. However, the end of Dennard Scaling has made power a first-order
design constraint and seriously limited full-frequency transistor utilization.

In 1965, Gordon Moore released a report discussing the trends in transistor technology.
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Figure 2.2: Although signs of slowing have begun to show, transistor counts have otherwise con-
tinued to scale as predicted by Moore’s Law for over 45 years. However, around 2005 processors
began to be restricted by power and thermal budgets at around 100 watts (the “power wall”) as
Dennard Scaling came to an end. This new power constraint prevented frequency from scaling any
further, which in turn adversely affected the scaling of single-core performance. Unable to improve
scalar performance at the same rates as before, transistor budgets have been redirected to focus
on other techniques for delivering value to the user. One technique has been to focus on increasing
parallel performance by increasing the number of logical cores.
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He noted that electronics became cheaper as more transistors could be placed onto a single
circuit chip reducing the total number of chips needed. However, as the number of transistors
increased, so did the probability of having a bad transistor, lowering the manufacturing
yield and increasing the cost of each chip. These two economic forces worked against each
other. But as manufacturing yield improves, cost-efficiency motivates smaller and smaller
transistors. In short, transistors would continue to become smaller very quickly, incentivized
by economics [72].

Moore noticed that the number of transistors per chip was doubling every year and —
from only five data points — predicted that this trend would continue for “at least 10 years”
into the future. Indeed, “Moore’s Law” — that the most cost-effective transistor size would
continue to shrink leading to a doubling of transistor counts roughly every 18 to 24 months
— has been maintained for over 50 years.

Three years after publishing his report, Gordon Moore, along with Robert Noyce, founded
Intel (originally called NM Electronics). Their first microprocessor, the Intel 4004 used
2,300 transistors in 10 um technology in 1971. 45 years later, the Intel Broadwell-EP Xeon
E5-2600 V4 shipped with 7.2 billion transistors using 14 nm technology [79]. Although the
number of foundries who can afford the rising costs of pursuing smaller technology nodes has
dwindled, some foundries have nonetheless released details of their intentions for delivering
7 nm technology [51].

Moore’s Law has provided computer architects an abundance of transistors with which
to implement new ideas and techniques for improving processor performance. However,
while Moore’s Law may end soon [70], the end of Denard Scaling ten years ago signaled the
beginning of a real crisis in the industry.

Table 2.1 shows the transistor scaling factors under a Dennard Scaling regime. By scaling
voltage, doping, and transistor size together, the signal delay through the transistor could
be increased by the same factor while maintaining the same power density as before. In
summary, under Dennard Scaling, as a transistor’s length and width were halved, new pro-
cessors could have four times as many transistors, be clocked twice as fast, and use the same
amount as power as the previous generation. This led to a golden era of computer archi-
tecture in the 1980s and 1990s as transistor counts doubled every 18 months and processor
clock frequencies doubled every 36 months. Software became faster by the virtue of Dennard
Scaling, and computer architects could explore more complex and transistor-hungry designs
to exploit the growing transistor budgets while still hitting their power budgets. Technology
improvements working in concert with microarchitectural innovations has led to a 50,000x
increase in single-core processor integer performance over the last 45 years as shown in Figure
2.3.

Although the scaling had never been perfect, around 2005, technology scaling fully di-
verged from the ideal scaling rates described by Dennard, as the voltage could no longer be
scaled even as transistors continued to become smaller [104]. As the gate oxide thickness
(tox) grew smaller (which directly sets the threshold voltage tth), the current leakage across
the gate grew, leading to a rising static power and a reduction in transistor reliability [46].
This static power is now significant enough to be a considerable factor in a processor’s power
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Table 2.1: The scaling factors of a single transistor under a Dennard Scaling regime (1965-
2005) [27]. By scaling the voltage and doping along with the size of the transistor each by κ,
each transistor can now be clocked κ times faster while maintaining the same power density as the
previous generation transistor.

Device or Circuit Parameter Dennard Scaling Factor
Device dimension (tox, L,W ) 1/κ

Device quantity (A) κ2

Doping concentration (Na) κ
Voltage (V ) 1/κ
Current (I) 1/κ

Capacitance (εA/t) 1/κ
Delay time / circuit (V C/I) 1/κ

Power dissipation / circuit (V I) 1/κ2

Power density (V I/A) 1
Utilization (1/Power) 1

Table 2.2: The scaling factors of a single transistor in a post-Dennard Scaling regime (post-2005).
As voltage can no longer be scaled down with transistors, each transistor now dissipated the same
power as before leading to an increase in power density equal to the increase in transistor density.
Constrained by power and thermal requirements, this leads to successive generations of processors
that are unable to use more and more of its transistors at full frequency at a rate of 1/κ2. This
inability to utilize all of the chips transistors at full frequency simultaneously is known as Dark
Silicon [104].

Device or Circuit Parameter Post-Dennard Scaling Factor
Device dimension (tox, L,W ) 1/κ

Device quantity (A) κ2

Voltage (V ) 1
Capacitance (εA/t) 1/κ

Delay time / circuit (V C/I) 1/κ
Power dissipation / circuit (V I) 1/κ2

Power density (V I/A=AFC2) κ2

Utilization (1/Power) 1/κ2
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budget. With the threshold voltage unable to scale any further, the supply voltage (Vdd)
scaling has also stopped. The supply voltage Vdd provides a quadratic relationship to the
processor’s dynamic power [24].

Powercpu = Powerstatic + Powerdynamic (2.1)

Static power is largely a function of the leakage current across the gate which worsens as
the threshold voltage is lowered.

Dynamic power is dissipated on every transistor state transition, and is thus dependent
on how often and how many transistors flip from off to on (and vice versa). The α term
denotes what fraction of transistors transit every cycle and is dependent on the workload, f
denotes the clock frequency, and C is the load capacitance of the processor.1,2:

Powerdynamic = α ∗ C ∗ V 2
dd ∗ f (2.2)

As frequency f is typically coupled to Vdd, this provides the following relationship to
dynamic power:

Powerdynamic ∝ V 3
dd (2.3)

With the supply voltage staying constant in a post-Dennard Scaling regime, each tran-
sistor now dissipates the same amount of power as before, leading to growing power density
as the number of transistors on a chip continues to increase. As Moore’s Law has continued
past the end of Dennard Scaling, this has meant that processors can no longer switch every
transistor at full frequency without exceeding the power or thermal limitations of the chip.
Instead, computer architects have had to rely on a number of techniques to manage the new
“power wall” limitations [104]. Table 2.2 describes this new scaling regime.

One change was a move to multicore processors. Instead of a single, monolithic, high
frequency core, processors moved to a modest number of processor cores that were clocked
at a slightly slower frequency than the previous generation. As shown by Equations 2.2
and 2.3, a slight reduction in frequency allows for a slight reduction in voltage which leads
to a significant reduction in power. However, the move to multicore processors has been a
significant burden on programmers. One problem with the shift to multicore processors is the
fact that most applications have a fundamental serialization limit, codified by Amdahl’s Law.
This serialization bottleneck restricts the maximum potential speedup from parallelizing a
particular algorithm [2].

Another approach to managing the power wall has been to rely on specialization. A
particular algorithm may only utilize a small, but highly specialized fraction of the chip. As
the program goes through different phases and utilizes different algorithms for each phase,

1These equations assume the voltage swing is equal to the supply voltage [99].
2Particularly for high-frequency processors, there is an added “short-circuit” power dissipation term that

occurs when both transistors in a CMOS gate are on simultaneously, connecting the power source to ground,
and is a function of activity factor α and frequency f [109].
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different parts can be turned on or off as needed. Specialized circuits, known as accelerators,
have been used for cryptography, compression, graphics, and machine learning. Accelerators
can provide performance and energy-efficiency improvements in the range of 100-1000x over
a general-purpose processor core [104].

2.2.1 Impact of Performance Slowdown on Architecture
Research

The end of Dennard Scaling has led to significant challenges in the field of computer archi-
tecture. Processor frequency gains and single-core performance has stalled. As shown in
Figure 2.3, it is becoming more and more challenging to realize additional gains in single-
core performance. For this reason, we believe it is becoming more important to simulate and
evaluate microarchitectural ideas at a higher level of fidelity than was needed in the past.

There are many different levels of fidelity for describing a processor. High-level, cycle-
approximate models are used to simulate a processor to provide a high-level view of how the
performance might change.

The register-transfer-level (RTL) is a level in which the processor description encom-
passes the behavior and movement of data between hardware registers. Although RTL was
originally used as a relatively high-level simulation abstraction to provide a cycle-accurate
simulation of a design, VLSI tools have since evolved to map RTL descriptions directly to
physical realizations.

While high-level, cycle-approximate models provide the flexibility to quickly iterate and
explore the design space, they have significant blind spots. RTL models provide a list
of advantages. First, coupled with the appropriate CAD tools, RTL implementations can
provide area, power, and timing information that is not available in higher-level models.
Second, RTL implementations are more likely to be grounded in reality. This grounding has
a number of advantages. It provides a higher degree in confidence, it can prevent correctness
errors from changing research conclusions, and it can motivate new design ideas that must
manage realistic constraints.

Despite industry’s best efforts, the gains in single-thread performance has continued to
slow. From the data from [53] and [78] (Figures 2.2 and 2.3), the SPECINT performance has
increased by only around 9% per year in the last six years. The most recent Intel processor,
the 2017 Kaby Lake, uses the same technology process and the same microarchitecture as its
2015 predecessor Skylake. Kaby Lake represents as “optimization” stepping in which Intel
utilized low-level optimizations to provide a 7% improvement in the peak clock frequency.
However, this peak frequency can only be realized by a small fraction of the processor at any
one point in time. Intel calls this “Turbo Boosting” in which a single core may be clocked at
a higher frequency while keeping the other cores in a lower energy state so long as the total
processor’s power and thermal requirements are maintained.

To realize these continued gains often requires a few new microarchitectural tricks, each
providing only a few percent gains each in performance. Thus, to evaluate a new, industry-



CHAPTER 2. BACKGROUND 11

1980 1985 1990 1995 2000 2005 2010 2015

year

1

10

100

1,000

10,000

100,000

P
e
rf

o
rm

a
n
ce

 v
s.

 V
A

X
-1

1
/7

8
0

Intel i7-7700k, 4.2 GHz (boosts to 4.5 GHz)

VAX-11/785

VAX 8700, 22 MHz

Sun-4/260, 16.7 MHz

MIPS M/120, 16.7 MHz

MIPS M2000, 25 MHz

IBM RS6000/540, 30 MHz

HP 9000/750, 66 MHz

Digital 3000 aXP/500, 150 MHz

IBM POWERstation 100, 150 MHz

Digital Aphastation 4/266, 266 MHz

Digital Alphastation 5/300, 300 MHz

Digital Alphastation 5/500, 500 MHz

AlphaServer 4000 5/600 21164, 600 MHz

Digital AlphaServer 8400 6/575 21264, 575 MHz

Professional Workstation XP1000 21264A, 667 MHz

Intel VC820 motherboard Pentium III processor, 1.0 GHz

IBM Power4, 1.3 GHz

Intel D850EMVR motherboard Pentium 4 processor (with hyper-threading), 3.06 GHz

Intel Xeon EE 3.2 GHz
AMD Athlon, 2.6 GHz

AMD Athlon 64, 2.8 GHz

Intel Core 2 Extreme 2 cores, 2.9 GHz
Intel Core Duo Extreme 2 cores, 3.0 GHz

Intel Core i7 Extreme 4 cores, 3.2 GHz (boosts to 3.5 GHz)
Intel Xeon 4 cores, 3.3 GHz (boosts to 3.6 GHz)

Intel Xeon 6 cores, 3.3 GHz (boosts to 3.6 GHz)
Intel Core i7 4 cores, 3.4 GHz (boosts to 3.8 GHz)

Intel Xeon 4 cores, 3.6 GHz (boosts to 4.0 GHz)
Intel Xeon 4 cores, 3.6 GHz (boosts to 4.0 GHz)

Intel Xeon 4 cores, 3.7 GHz (boosts to 4.1 GHz)
Intel Core i7-6700k 4 cores, 4.0 GHz (boosts to 4.2 GHz)

Intel Core i7-6700k 4 cores, 4.0 GHz (boosts to 4.2 GHz)

VAX-11/780, 5 MHz

22%/year

52%/year

23%/year

9.3%/
year

3.5%/
year
(??)

40 years of Processor Performance

Figure 2.3: Microarchitectural ideas for improving performance are becoming harder and harder
to come by. Data is shown comparing SPECIntbase performance relative to a VAX-11/780. Early
performance gains were largely technology driven. In the 1980s and 1990s, computer architectural
innovations – such as the ability to recognize and exploit instruction-level parallelism (ILP) –
worked together with continued technological improvements to deliver even greater performance
gains. However, the end of Dennard Scaling in 2005 caused processor frequencies to stall. Around
the same time, the remaining ILP had become more difficult to extract. Both of these factors have
conspired to slow single-core performance gains. Performance once again appears to be limited to
technology improvements and circuit-level techniques that provide more efficient usage of power.
As SPEC is updated over time, performance is estimated by use of a scaling factor to normalize
across different versions of SPECInt (SPEC89, SPEC92, SPEC95, SPEC2000, SPEC2006). The
scaling factor is empirically determined by running multiple versions of SPEC on a subset of the
provided machines. The SPEC performance of the just-released Kaby Lake i7-7700k is synthetically
created by comparing the relative Geekbench results [37] and the clock frequency improvement to
the Skylake i7-6700k, with which it shares the same micro-architecture and process technology.
Data is provided by [78].
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worthy idea requires a significant degree of fidelity to provide the necessary confidence.
Current methodologies are geared towards finding integer factor improvements, and are not
well suited for exploring small wins on the order of 2-3%. These small gains suggests a
requirement for higher fidelity methodologies that include utilizing RTL implementations.

2.3 Computer Architecture Research Trends

In a perfect world, computer architecture researchers would design, implement, and then
fabricate their research designs to fully analyze and evaluate their ideas. Although there are
a few examples of such ambitious research projects [88, 105, 57, 100], this methodology is
largely infeasible for a number of reasons. First, the feedback loop from generating an idea to
measuring a single implementation takes many years; the man-power and fabrication costs
can be prohibitive; and some research ideas attempt to explore future designs that speculate
technological abilities that are not yet available.

For these reasons, most computer architecture research relies on simulators to model
processors. Simulators can allow a very small team of researchers to quickly implement
and explore a design space before providing recommendations. Even industry first relies on
insights gained by simulators before spending resources implementing a physical design.

Ideal simulators attempt to achieve the following goals:

1. The fidelity of the simulator – does it accurately model the intended target?

2. The simulation speed of the simulator – how many design points (or workloads) can
we explore in a fixed period of time?

3. The scope of the simulator – does it provide area, power, and timing insight into the
design?

4. The flexibility of the simulator – can new ideas be quickly and easily implemented
and evaluated?

Unfortunately, these traits are in competition; there is no perfect simulator.

2.3.1 Architectural Simulators

Computer architecture research is largely carried out using simulators to model future hypo-
thetical processor designs. Unfortunately, most research has focused on ease of implementing
new ideas at the cost of fidelity, speed, and accuracy. Attempts to improve these metrics
have largely be zero-sum with the ease of implementing new ideas.

SimpleScalar, released in 1996, models an out-of-order processor which implements a
simplified derivative of the MIPS IV ISA [17]. However, SimpleScalar can only execute user-
level code making it difficult to explore interactions between user and privilege-level code
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like operating systems [16]. Users would also have to compile their benchmarks specifically
for SimpleScalar and could not study commercial or off-the-shelf software.

Simics is an functional architectural simulator released in 2002. It executes unmodified
software programs and is able to simulate a full system including supervisor instructions
and provides interfaces to many different I/O devices. However, it only provides functional
simulation and provides no microarchitectural or timing information [61]. Later efforts from
other groups have added their own timing models on top of Simics [62].

The SESC (“Super ESCalar”) simulator (2004) splits the execution model from the timing
model. One advantage of this separation of concerns is it allows small errors in the timing
model to not affect the correctness of the simulation. In a few cases, SESC developers
purposefully eschew rare corner-cases that could affect the simulation speed or complexity
of the simulator. SESC is not a full-system simulator and must trap all application system
calls and emulate them [75]. Although it targets a MIPS ISA, it requires a custom toolchain
to build applications to run on SESC. SESC is around 120k lines of code spread across nearly
400 files [52].

The QEMU emulator (2005) is a very fast functional full-system emulator. It uses dy-
namic binary translation to translate instructions from the target architecture into a sequence
of host instructions. QEMU then caches, or remembers, these translations for future iter-
ations through the program. This optimization allows QEMU to run close to native host
processor speeds, simulating over 1 billion instructions per second (1 GIPs) [12]. QEMU, by
itself, provides no timing modeling.

The gem5 simulation infrastructure (2011) provides both microarchitectural timings mod-
els and a full-system simulator able to simulate many different commercial ISAs. The gem5
system provides a flexible, modular framework that can utilize a number of processor models,
memory system models, and network models. The range of models of varying complexity
and accuracy allow users to trade off simulation speed for fidelity. Gem5 also provides a full
system simulation mode which simulates user-level and privilege-level software while also pro-
viding models of device drivers for the OS to interface with. Checkpoint saving and restoring
support is available, allowing researchers to avoid painful start-up overheads by loading up
the same architectural state from a particular workload onto different microarchitectures
under study [14].

MARSS (Micro Architectural and System Simulator) is a simulator (2011) built on top
of the QEMU emulator [12]. When executing in a low-level, cycle-approximate detailed
simulation mode, it is able to simulate a multicore processor at a simulation speed of 200 to
400 kilo instructions per second (KIPs) [76].

An updated version of SESC, called ESESC (“Enhanced SESC”), also uses QEMU for
its execution model, allowing it to simulate the ARM instruction set. ESESC approaches
simulating multi-threaded applications across multiple cores using Time-Based Sampling
(TBS). The ESESC developers found the average error of the time-based sampling method
to be within 4.99% compared to full simulation for a number of target configurations and
applications [5]. ESESC integrates with the McPAT energy modeling tool to provide models
for power and temperature. By utilizing sampling, ESESC can achieve up to 9 MIPs. The
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full ESESC repository contains over 14 million lines of C and C++ code, which includes
the tool chains, the QEMU simulator, and the McPAT energy model. The ESESC-specific
timing models are more manageable at 100k lines of code and the thermal and power code
is 300k lines of code [32].

SimFlex is another simulator that relies on statistical sampling to provide wider coverage
across long-running workloads. Flexus is a full-system simulation infrastructure built on
top of Simics. SimFlex is a methodology built on top of Flexus which uses a mixture of
restoring workload checkpoints, fast microarchitectural warming, and detailed simulation of
small simpoints to approximate the performance of a full workload [121].

Simulating processor cores at a high level of fidelity naturally leads to very slow simula-
tions — the simulation model (which runs on the order of 100s of kilohertz) is typically on the
order of 10,000 times slower than a real processor (running in the range of a gigahertz). As
processors move to using multiple cores, the simulation slow-down is exacerbated. Tan [103]
reported that the number of simulated cycles per benchmark in ISCA in 1998 was the same
in 2008, but that the simulated core counts had increased from 1 to 16, diluting the number
of simulated cycles per core.

The Sniper Multi-core Simulator tackles this problem by simulating each core at a higher
level of detail using “interval simulation” [38, 43]. Instead of simulating the core at a cycle-
approximate level, Sniper builds an analytical model as it executes a program. It begins
by breaking up programs into “intervals” based on the “miss events”, which are expensive,
slower operations such as cache misses or branch mispredictions. Sniper then analyzes how
these expensive miss events interact and provides an estimation for how much time each
interval adds to the simulation time. This higher level of abstraction allows Sniper to run
at “around 1 MIPS for an 8-core simulation” [5]. Sniper was validated against multi-socket
Intel Core2 and Nehalem systems and provides average performance prediction errors within
25% while achieving a speed of up to several MIPS [43].

Simulating even higher core counts has proven difficult, as the additional cores further
degrade the simulation speed. Ideally, each simulated (“target”) core could be simulated
on a single “host” core. However, to provide a cycle-accurate model, the host cores would
have to synchronize after simulating every target cycle. Also, any communication between
the target cores would have to be handled between the host cores before the next cycle of
target simulation could begin. The goal of Graphite is to enable thousand-core processor
simulations. Graphite accomplishes this by being a distributed parallel multi-core simulator
that relies on relaxing the strict ordering of events between the simulated cores. Each
target core is broken into two pieces — a core model and a memory model — each piece is
simulated via its own host thread. The threads are then scheduled across a cluster. When
target cores send data to one another, they also synchronize their clocks, allowing core clocks
to skew within a bounded amount of time. Running 1024 cores on eight 8-core processors
exhibited a 41x slow-down from native execution [69]. Graphite is built on top of Pin to
provide dynamic binary translation [59]. Pin allows off-the-shelf x86 ISA applications to be
functionally simulated while also providing event handlers to hook into the Graphite timing
model.
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ZSim is another thousand-core simulator that utilizes dynamic binary translation tech-
niques to create “instruction-driven timing models”, as opposed to “event-driven models”.
It also introduces a technique called “bound-weave”, a two-phase technique in which cores
may skew events with respect to each other for a bounded period of time for the first phase,
and in the second phase replay the trace of events to determine the actual latencies [85].

A major downside to all of these software simulators is the roughly ≈10,000x simulation
penalty to model any level of microarchitectural timing. One solution is to run the simulator
on a Field Programmable Gate Array (FPGA). FPGAs are silicon chips that are “pro-
grammable” – RTL hardware designs may be synthesized and “simulated” on the FPGA. As
FPGAs run on the order of 10s to 100s of MHz, FPGA-based simulators can provide orders
of magnitude increases in simulation speeds [23, 102].

Ramp Gold is a one example of an FPGA-based simulator [103, 102]. It simulates 64
SPARC in-order cores on a single $750 FPGA board. It accomplishes this by a) decoupling
the FPGA’s clock from the simulated target clock (many FPGA clock cycles are required
to simulate a single target cycle), b) abstracting some of the uncore timing models to allow
for higher-level descriptions, and c) multi-threading the single, physical processor pipeline
and sharing it across 64 simulated target cores. RAMP Gold’s FPGA clock ran at 50
MHz, or 0.0156 MHz target frequency, for a speedup of roughly 250x relative to a detailed
Simics+GEMS simulation of a similar target platform. The Ramp Gold functional model
is roughly 35,000 lines of SystemVerilog while the timing model is only 1,000 lines of Sys-
temVerilog [103]. However, Ramp Gold’s major downside is the difficulty in modifying Ramp
Gold to explore other processor design points. The timing model and the functional model
are fairly wedded to simulating homogenous, in-order cores.

Many of the simulators discussed all suffer from similar problems: 1) many do not support
full systems, 2) they suffer from slow simulation speeds (generally less than 200 kHz for
software simulators [85]), 3) they cannot produce area, power, or timing numbers, and 4)
they produce hard to trust or verify results when exploring new designs that look significantly
different from current industry designs.

Unfortunately, the challenges imposed by the power constraints brought on by the end of
Dennard Scaling make it vitally important that microarchitectural ideas are evaluated not
just by their effect on performance but also on area and power. Perhaps more importantly,
the significant slow-down in single-core performance improvements necessitate that any ideas
we explore must be done so with high fidelity.

2.3.2 RTL Implementations

Due to the limitations of simulators as described in the previous section, there have been a
few academic efforts to implement cores at the register-transfer-level (RTL). We will focus on
out-of-order cores which attempt to capture the highest level of general-purpose single-core
performance.

The Illinois Verilog Model (IVM) is a “latch-accurate” model of a 4-issue, out-of-order
core designed to study transient faults [119]. Written in Verilog-95, IVM originally relied
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Table 2.3: A sample of simulators. Many modern simulators use dynamic binary translation
(DBT) to accelerate execution, typically leveraging existing functional emulators QEMU [12] or
Pin [59]. Data compiled with help from [85].

Simulator year Engine Parallelization Detailed Full unmodified
Uarch System binaries

SimpleScalar [16] 1996 emulation sequential OOO no no
Simics [61] 2002 emulation sequential no yes yes
SESC [75] 2004 emulation sequential OOO no no

QEMU [12] 2005 DBT sequential no yes yes
Graphite [69] 2010 DBT (Pin) skew approx-IO no yes

Ramp Gold [103] 2010 FPGA sequential IO no yes
gem5 [14] 2011 emulation (m5) sequential OOO yes yes

MARSS [76] 2011 DBT (QEMU) sequential OOO yes yes
Sniper [43] 2012 DBT (Pin) skew approx-OOO no yes
ESESC [5] 2013 DBT (QEMU) sampling OOO yes yes
ZSim [85] 2013 DBT (Pin) bound-weave DBT-OOO no yes

Table 2.4: A sample of academic out-of-order processors and the open-source UltraSPARC T2. The
UltraSPARC T1, also open-source, was modified by Princeton to create the OpenPiton many-core
processor [11].

IVM SCOORE FabScalar Sharing BOOM UltraSPARC T2
[119] [10] [29, 84] [126] [74]

industry
√

fully synthesizable
√ √ √ √ √

FPGA
√ √ √ √

parameterized
√ √

floating point
√ √ √

atomic support
√ √

L1 cache
√ √ √ √ √ √

L2 cache
√ √ √ √

virtual memory
√ √

boots Linux
√ √

multi-core
√ √ √

ISA Alpha (sub-set) SPARCv8 PISA (sub-set)† Alpha (sub-set) RISC-V SPARCv9
lines of code 30,000 ? 75,000† 31,900 9,000 + 11,500 1,900,000

†Information was gathered from publicly available code at [33].
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on some unsynthesizable constructs (such as while loops that do not terminate on constant
synthesis-time values), but it has since been patched to be fully synthesizable [24].

The Santa Cruz Out-of-Order RISC Engine (SCOORE) was designed to efficiently target
both ASIC (1 Ghz at 90 nm) and FPGA generation (200 MHz) [67]. Unfortunately, SCOORE
lacks a synthesizable fetch unit and was never completed.

FabScalar is a tool for composing synthesizable out-of-order cores. It searches through a
library of parameterized components of varying pipeline width and depth to find an optimal
core design for a given benchmark set, guided by performance constraints given by the
designer [24]. FabScalar has been demonstrated on an FPGA [29], however, as FabScalar
did not implement caches, all memory operations were treated as cache hits. Later work
incorporated the OpenSPARC T2 caches in a tape-out of FabScalar [84].

The Sharing Architecture is composed of a two-wide out-of-order core (or “slice”) that can
be combined with other slices to form a single, larger out-of-order core. By implementing
a slice in RTL, they were able to accurately demonstrate the area costs associated with
reconfigurable, virtual cores [126].

Unfortunately, there are currently no open-source industry implementations of an out-
of-order core. However, Sun has released two of their SPARC v9 server-level processors, the
UltraSPARC T1 and UltraSPARC T2 cores under a GPL license in 2006 and 2007 [74]. The
T1 and T2 processors are in-order multi-threaded eight-core processors, supporting four and
eight threads respectively.

The goal of the UltraSPARC design was not to have beefy, complex, and expensive cores,
but rather to have a larger number of simpler cores that can support multiple threads each
to provide higher aggregate throughput. The T1 processor was produced in 2005 at 1.2 GHz
in 90 nm. The whole chip was 279 M transistors in 378mm2 and used roughly 70 watts [66].

OpenPiton is an academic research processor built using the UltraSPARC T1 source
code. Although they utilized the T1 cores (with some modifications), they implemented
their own uncore and network interconnects to build a many-core processor that could scale
to hundreds, if not thousands, of cores. They taped out a 25 core version on IBM 32 nm
SOI process on a 36mm2 die with a target frequency of 1 GHz [11].

Although our discussion has currently centered on academic research, industry has their
own need for RTL-level emulation of hardware designs. Engineers use “hardware emulation”
platforms to test and verify new chip implementations before sending the design out for
manufacturing. Even for industry, full-scale product prototypes are typically too expensive
to rely on (and are often too opaque to debug as problems arise).

Unfortunately FPGAs are typically capacity-constrained and are unable to fully contain
a processor design that is on the order of 100s of millions to billions of transistors. Intel
demonstrated emulating a complex Intel Nehalem out-of-order core3, but it required five
Virtex-5 FPGAs, required changes to the 5% of the RTL code, and could only run at a
target frequency of 520 KHz. Splitting the design to fit across an FPGA is a manual process
that includes needing to implement the infrastructure to communicate across the boundaries.

3An 8-core Xeon Nehalem-EX is 2.3 billion transistors.
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The other challenge is in translating the design to be synthesizable for FPGAs. Some
constructs, such as double-phase latch RAMs and aggressive clock gating, have no direct
FPGA analogue. Finally, after performing the remapping to a different implementation
technology, engineers then have to reverify that the design is still the same [86].

One solution used by industry is the Palladium hardware emulation platform from Ca-
dence Design Systems. Palladium allows engineers to directly simulate their designs without
requiring RTL code changes. And to handle capacity issues, Palladium tools can seam-
lessly partition a single design across an entire Palladium cluster. In a blogpost from 2011,
NVIDIA’s Emulation Lab discussed their use of multi-million dollar Palladium XP systems to
debug and verify their graphic processor (GPU) designs. Although they used multiple Palla-
dium clusters to simulate their GPUs, the entire lab could only simulate 4 billion transistors
in total [60]. For comparison, a single multimillion dollar 16-chassis Palladium emulator was
used by NVIDIA to debug their Fermi microarchitecture, a 3 billion transistor GPU in 40
nm [95]. The more recent Palladium XP II platform provides support of up to 2.3 billion
ASIC gates of design capacity and can emulate designs at speeds up to 4 MHz. Palladium
also provides some power analysis modeling, including the ability to identify power peaks
and to model low-power modes [19, 87, 20].

For established companies shipping large and complex designs, Palladium provides a
productive solution for verifying designs before manufacturing. However, Palladium is not
a good match for smaller teams that cannot afford the multi-million dollar price tag, or for
engineers who need closer-to-real-time performance for running longer software workloads,
or for early-stage design exploration where some aspects of the project may be abstracted
for flexible modifications of the system under test.

2.3.3 Energy Modeling Methodologies

After the end of Denard Scaling, power consumption and energy efficiency have become a
first-order design constraint. This “power wall” is further exacerbated for mobile processors,
which demand desktop-level user experiences in a roughly 1 watt envelope.

Power usage is important for all environments, though for different reasons. For mobile
processors, poor energy-efficiency directly limits the length of time between required battery
charges. High power-usage can create thermal issues and even physically burn the user. For
desktop processors, more power-usage requires louder air-cooling solutions. For servers, there
is a fundamental limit to how much power can be brought physically into the building for
powering the chips and the cooling systems to manage the heat given off by the processors.

Unfortunately, analyzing the power and energy usage of designs has proven to be very
difficult, and the most accurate measurements can only be made after a design has been
taken to the floorplanning phase (or better yet, measured from a physical chip). Instead, a
common technique is to couple analytical power models with micro-architectural simulators.

Wattch is a framework at the architectural level that connects to the SimpleScalar simula-
tor, allowed early culling of the design space via high-level power estimation. The functional
simulator generates microarchitectural event counts, such as instruction fetches or cache
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accesses, which are then fed into an abstract power model. However, Wattch only pro-
vides dynamic power modeling; it does not provide area, timing information, or static power
modeling. As transistors have become smaller, static power usage due to increased leakage
current has now become a significant fraction of total system power [15].

A similar energy estimation framework is SimplePower. SimplePower plugs into Sim-
pleScalar and models a 5-stage pipeline, L1 caches, and off-chip memory. It uses simple
analytical models for estimating memory power usage. For the busses between different lev-
els in the memory hierarchy, SimplePower uses a transition-sensitive approach, taking into
account both the switching activity and the interconnect capacitance on the bus lines. It
also models transition-sensitive functional units to get the data path power usage. However,
it only provides energy estimation for an integer RISC ISA using a 5-stage pipeline [118].

McPAT is the current popular tool that provides timing, area, and power estimations
for multi-core and many-core processors. McPAT supports both in-order and out-of-order
cores. McPAT can be integrated into any performance simulator, such as ESESC or gem5,
by taking in the dynamic activity event counts and feeding them into its power models.
McPAT also has the ability to model different processor energy states, and even feed that
information back into the architectural simulation to model power and thermal events during
the lifetime of the workload [58].

However, energy models like McPAT and Wattch can be difficult to trust. The accuracy
of the tools are constrained by the fidelity of the models and are limited in the validation
performed against existing systems. Component models can be too high-level, incomplete,
or make incorrect assumptions about the underlying microarchitecture [123]. Regarding
validation, McPAT was verified against a 90 nm Niagara, a 65 nm Niagara 2, a 65 nm Xeon
Tulsa, and a 180 nm Alpha 21364 by comparing peak power numbers based on maximum
switching activities. McPAT’s verification saw differences of between 11% and 23% between
published peak powers and McPAT’s estimations [58]. Although these methodologies can
be useful for exploring designs similar in technology and microarchitecture to previously
verified designs, these issues are exacerbated as researchers pursue more exotic processor
architectures in newer technology nodes for which there exists no good validation target.

Another issue with energy models, like the microarchitectural simulators that often feed
them, is their limited simulation speed. This problem is worsened as the model becomes more
detailed. However, there have been a number of techniques to accelerate energy models. One
approach has been to implement the power model in a synthesizable RTL description that
can be executed more quickly using an FPGA [25, 40]. Other techniques rely on an RTL-
level processor description which can be executed on an FPGA to achieve high simulation
speeds (10-100 MHz). However, choosing which microarchitectural events to track within
the FPGA simulation is a challenge and typically requires designer intuition [13, 101].

Strober is a tool which automatically instruments an RTL-level processor design and then
synthesizes and executes the design on an FPGA. Strober periodically snapshots the entire
microarchitectural state from the simulation, and then loads the microarchitectural state into
a gate-level simulation to get incredibly detailed power estimations. Designer intuition is not
needed as the entire state is snapshotted. These gate-level simulations are quite accurate
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as they simulate a floorplanned design at the gate and wire-level. However, they are also
incredibly slow – only a few hertz. Thus Strober builds an average power estimation by
sampling points in long-running workloads. Strober can also provide power estimations for
any arbitrary RTL, not just designs that look like processors [56].

2.4 Processor Microarchitecture

A processor takes in a stream of instructions and performs computations as specified by each
instruction. The architecture is the description of a processing system from the point-of-view
of the software/programmer. Nearly universally, general-purpose processor architectures
have consolidated on the following agreement with the programmer:

• a software program is broken down and described as a sequence of instructions

• each instruction is executed in the order specified by the program (“in-order”)

• each instruction is executed one at a time before moving to the next instruction

The microarchitecture is an implementation of the architecture. There can be many differ-
ent microarchitectures that all faithfully implement the same architecture. This distinction
between the architecture and the microarchitecture was pioneered by IBM with the IBM
System 360 [35]. Before the IBM S/360, new processor implementations often required sig-
nificant efforts to port old software to the new machines, as program binaries were typically
incompatible from one machine to the next.4 Over time, architectures began to organically
grow around different product lines (e.g., business, scientific computing, and defense) as cos-
tumers began to demand software compatibility as a requirement for buying new machines.
This fracture of architectures across product categories meant that processor companies like
IBM were dividing their development efforts. IBM astutely realized that the software was
both more expensive and more valuable than the hardware, and that there was a benefit to
unifying its disparate product lines under a single architecture.

IBM originally shipped four different microarchitectures – each at a different performance
and price points – that all implemented the IBM S/360 architecture. Software written and
executed on one machine could be trivially executed on a different microarchitecture. Users
that wanted better performance for their software need only buy a more powerful machine.
50 years later, IBM is still shipping ever faster IBM S/360-compatible processors. The z13
microarchitecture is a 5 GHz six-core processor implemented using 4.0 billion transistors
in 22 nm [120]. The S/360 Model 91 – one of the original microarchitectures released in
1966 – was only 120 thousand gates implemented using emitter-coupled logic circuits [35].
The Model 91’s central CPU was composed of four “frames” – each a 6x6x1 foot cabinet
composed of 20 motherboards each.

4One solution to binary incompatibility was the use of software simulators. However, this came with
a performance overhead. Some early machines came with hardware support to speed up emulation of
predecessor architectures [112].
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CPU

0x100:	add				r1	⟵	r2,	r3
0x104:	load			r3	⟵	(r1)
0x108:	sub				r1	⟵	r4,	r3
0x10c:	store		r1	⟶	(r3)
0x110:	bne				r2,	r3,	0x200
0x114:	...

Instructions
0x1400:	0xdeadbeef	
0x1404:	0xefef1212
0x1408:	0x13371337
0x140c:	0x00000000
0x1410:	0xef121234
0x1414:	...

Data

Figure 2.4: A processor takes a stream of instructions and performs computations as specified
by each instruction. The hardware provides the illusion to the programmer that instructions are
executed one at a time in the order specified by the program.

CPU

r0:	0x00000000
r1:	0x00000000
r2:	0x00001111
r3:	0x10203010

Register	
file

0x100:	add			r1	⟵	r2,	r3
0x104:	load		r3	⟵	(r1)
0x108:	sub			r1	⟵	r4,	r3
0x10c:	store	r1	⟶	(r3)
0x110:	bne			r2,	r3,	0x200
0x114:	...

Instructions
0x1400:	0xdeadbeef	
0x1404:	0xefef1212
0x1408:	0x13371337
0x140c:	0x00000000
0x1410:	0xef121234
0x1414:	...

Data

Figure 2.5: A common general-purpose processor architecture is the register-register load/store
architecture. Working-set data is stored in a small number of registers. Instructions can perform
logical, arithmetic, and control operations that operate on the values in the register file. Separate
load and store instructions move data in to and out of the data memory.
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Figure 2.6: An ARM Cortex-A15 pipeline (figure adapted from [41]). The A15 illustrates the
complexity of modern superscalar, out-of-order processors. Although the A15 targets mobile ap-
plications, its design is indicative of modern general-purpose application processors. See Section
3.2.1 for more details on the different stages of an out-of-order pipeline.
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2.5 Out-of-order Processor Microarchitectures

A significant bottleneck in processor performance arises from long latency instructions block-
ing the queue of instructions behind it. For example, a divide instruction may take many
dozen cycles to execute and produce a result. In a fully in-order processor pipeline, no newer
instructions may be issued to the execute stage until the divide instruction finishes. A more
common scenario is a load instruction that misses in the data cache. It may take many
dozen or even hundreds of cycles before the load data returns from main memory and the
load instruction can be retired.

A solution to this “head-of-queue” blocking is to allow newer instructions to proceed if
they are independent of the blocked instructions. For example, an add instruction whose
operands do not depend on the result of the long latency divide instruction may proceed.
The add instruction, taking only a few cycles to execute, will finish first and write its results
out-of-order with respect to the older divide instruction.

An even higher performance solution is to allow any instruction to be issued so long as
its operands are available (i.e., the instruction does not depend on a still-busy instruction).
Instructions that must wait on previous instructions “go to sleep” in an Issue Window. Newer
instructions that are not dependent on any still-busy instructions, may execute immediately
— or “out-of-order” with respect to the older, sleeping instructions. Sleeping instructions
are woken up as their operands become available. In this manner, instructions are executed
out of the Issue Window in the order that their dependences are resolved — a form of limited
dataflow — and not in the order specified by the program.

Allowing instructions to be issued to the execution units out-of-order provides a more
significant gain in performance. The main insight is the realization that, although a program
stream is inherently serial, there is actually a significant amount of instruction-level paral-
lelism. Thus, many independent instructions can be executed out-of-order with respect to
one another while still maintaining the illusion of respecting the in-order instruction stream.

2.5.1 The Data-in-ROB Design (Implicit Renaming)

There are a number of ways to implement a processor with out-of-order issue. One microar-
chitecture is called “implicit register renaming”, or “data-in-ROB”. After each instruction
has been fetched and decoded, it is placed in a “reorder buffer” (ROB), where all instructions
inflight are tracked in-order. Each instruction then marks its destination register as “busy”
in the scoreboard, with its ROB entry tag to denote which instruction is responsible for the
busy register (the “ROB tag”).

During the decode stage, each instruction reads the scoreboard to see if its operands are
busy. If all of the instruction’s operands are ready, the instruction reads its operands out of
the Architectural Register File (ARF) and the instruction and its operands are placed in the
ROB. The instruction is ready to be issued to the execution units at any time, even before
older instructions have been issued.
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Figure 2.7: A PRF design (left) and a data-in-ROB design (right).
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If an operand is marked as busy in the scoreboard, the instruction is unable to read its
operands from the ARF. Instead, it reads from the scoreboard the ROB tags of the instruc-
tions who will generate the data values it depends on. The instruction and its operands’
tags are placed in the Issue Window. The instruction then listens to the data bus; when
other instructions finish executing, the functional unit broadcasts the resulting values and
the corresponding ROB tags across the data bus to ROB and any dependent instructions
waiting in the Issue Window. Once the instruction has all of its operands, it may request to
be issued to the execution units.

In this design, the Architectural Register File (ARF) only holds the committed register
state while the ROB holds the speculative write-back data. On commit, the ROB transfers
the speculative data to the ARF. The Pentium 4 is an example of an implicit renaming
design.

2.5.2 The Physical Register File Design (Explicit Renaming)

An other style of out-of-order execution, which we will label the Physical Register File (PRF)
design, uses “explicit register renaming”.

A physical register file, containing many more registers than the ISA dictates, holds both
the committed architectural register state and the speculative register state. This is in
contrast to the data-in-ROB design, in which committed architectural state resides in the
ARF and speculative data resides in the ROB.

During the rename stage, the renamer maps the ISA (or logical) register specifiers of
each instruction to physical register specifiers. A map table tracks the mappings from logical
registers to physical registers. When an instruction needs to write a register, it is allocated a
new physical register. If the instruction is misspeculated, the previous mapping is restored.
As instructions execute, they write back their values immediately to the PRF. Newer in-
structions can then read their operands out of the PRF. If an exception occurs, the rename
map table contains the information needed to recover the committed state.

An advantage of this style is that all data is written into and read from a single PRF –
there is no broadcasting of all write data on a common data bus across to all issue windows.

The MIPS R10k [124], Alpha 21264 [55], Intel Sandy Bridge, and ARM Cortex-A15 cores
are all example of explicit renaming out-of-order cores.

2.5.3 The Differences Between the Two Styles

Figure 2.7 and Table 2.5 show a side-by-side comparison of the two styles of out-of-order
processors. Each style makes different tradeoffs.

The data-in-ROB design uses a architectural register file (ARF), only storing the com-
mitted data values for each ISA register. This is fewer registers than the PRF design, whose
register file must store both the committed architectural state and the speculative archi-
tectural state. However, the ARF must provide enough register file read ports to supply
operands to instructions as they are decoded. For a 4-wide decode stage, a machine that
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Table 2.5: The differences between the data-in-ROB design and the physical register file design.

Data-in-ROB Design Physical Register File Design
committed data Architectural Register File Physical Register File
speculative data ROB Physical Register File

operand read Decode Stage Register File Read Stage
(after Issue Stage)

write-back writing data into ROB writing data into PRF
wakeup broadcasting data broadcasting register pointers

to Issue Window to Issue Window
committing writing data into ARF updating rename table
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supports three-operand instructions must provide up to 12 read ports. An worst-case scenario
would be heavy-computational code that features a significant density of fused multiply-add
instructions (FMAs). One solution is to limit the maximum number of reads per cycle, but
this directly limits instruction bandwidth and would hurt performance of densely packed
arithmetic codes. Meanwhile, the write port count is tied to the machine’s commit width.

The PRF design does not suffer the same read port limitation. Instead, it can match
the read port requirements to the number of functional units supported. It can even rely on
dynamic read port scheduling and speculate that most instructions do not require more than
one operand [110]. A hypothetical 4-issue processor with two integer units, one floating point
FMA unit, and one load/store unit (and assuming a unified integer/floating point register
file) would need at most 9 read ports to fully satisfy all of its functional units.5 However,
by recognizing that many instructions only use one operand, and using dynamic read port
scheduling, this hypothetical processor could use even fewer read ports. The number of write
ports used in a PRF design is proportional to the number of functional units.

2.6 History of Out-of-order Processors

The CDC 6600 (1964) was the first machine to use an out-of-order issue pipeline. In the
central processor, the core maintained a scoreboard of busy registers and functional units.
If an instruction did not depend on a busy register and the functional unit was available,
the instruction could be issued out-of-order with respect to older, stalled instructions. The
processor stalled instructions:

1. if its operand was busy (a read-after-write (RAW) hazard, or true dependence).

2. if no functional unit was available.

3. if the instruction would overwrite a busy register (a write-after-write (WAW) hazard,
or output dependence).

As the CDC 6600 had ten different functional units and 24 registers, it was able to
exploit a modest amount of instruction-level parallelism by executing up to ten independent
instructions simultaneously [108].

In 1966, the IBM System/360 Model 91 introduced the data-in-ROB design for its float-
ing point unit. The data-in-ROB design allowed for a limited amount of “implicit register
renaming”; the architecture only provided four floating-point registers, but speculative re-
sults could be stored in the ROB and forwarded to newer instructions. Register renaming
allowed the Model 91 to execute past write-after-read (WAR) and WAW hazards. These
hazards are a common obstacle to executing multiple loop iterations simultaneously as the
same register specifiers are encountered each loop iteration.

5For a processor supporting an ISA like RISC-V, only the floating point unit has 3-read instructions.
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However, out-of-order execution came with a number of challenges that increased com-
plexity and limited potential performance. One of the early challenges was speculating past
branches.6 Without the ability to accurately speculate branches, the processors were un-
able to fetch enough instructions to keep the pipeline fully occupied. Supporting restartable
exceptions that maintained the programmer’s illusion of in-order program execution was
another complexity. Therefore, out-of-order designs receded until 1990, when IBM released
the first out-of-order micro-processor, the POWER1. The floating point unit utilizes register
renaming to help overlap floating point arithmetic operations from the current loop iteration
with floating point memory operations from the next loop iteration [42].

Since the POWER1, out-of-order processors have become the popular microarchitectural
choice for general-purpose computing needs. Single-threaded performance of general-purpose
applications is dominated by out-of-order processors [98]. In the datacenter (which service
many parallel requests), out-of-order processors are chosen over more energy-efficient in-
order cores due to their ability to better meet service-level agreement guarantees [45]. Cell
phones have also recently adopted out-of-order processors, such as the iPhone 4s, released
in 2011, which uses an 800 MHz ARM Cortex-A9.

2.7 The Value of Out-of-order Execution

Although there are a number of different styles of architectures and microarchitectures, out-
of-order processors are the popular choice for providing the best performance for general-
purpose applications.

The first advantage of out-of-order (OOO) microarchitectures, coupled with aggressive
speculation mechanisms, is their ability to construct superior instruction schedules. OOO
performance is largely constrained only by the true dependencies between instructions and
functional unit availability. By leveraging sophisticated speculation techniques, OOO cores
can speculate past control hazards and memory ordering hazards to develop an aggressive
schedule of instructions that is unavailable to in-order cores.

As one example, OOO cores rely on register renaming to break the anti- and output-
dependencies between loop iterations. This allows OOO cores to dynamically unroll loops
and execute multiple loop iterations in parallel simultaneously. In-order (IO) cores are largely
unable to overlap successive loop iterations, as they must wait for the registers used in one
iteration to free up before they can be reused in the next iteration. IO cores could adapt
register renaming to provide each loop iteration with a new pool of physical registers to
use, but the added complexity and hardware costs of register renaming make the marginal
increase in complexity in adding out-of-order issue relatively small. Another possible strategy
for IO cores is to rely on the compiler to statically unroll the loop. However, this comes with
its own costs, including increased code size, and can exhibit poor performance-portability
across different IO designs.

6The S/360 model 91 speculated the branch was taken if the branch target was one of the last 8 instruc-
tions executed.
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Another example of superior code scheduling is the OOO core’s ability to handle unbiased
branches. OOO cores can speculate past branches and effectively “hoist” instructions out
of a basic block and begin execution before the branch is resolved. Although an optimizing
compiler can effectively mimic the same behavior, it must statically choose which path
through the program to optimize for. However, branches are typically far more predictable
than they are biased. For example, a completely unbiased branch may alternate between
taken and not-taken paths in an easily predicted manner; the OOO design can perfectly
schedule this code sequence while an optimizing compiler attempting to statically schedule
code for an IO core will be utterly helpless.

The second advantage to OOO microarchitectures is that the same instructions in a
program can be executed using a different schedule from one iteration to the next, as a
response to dynamic events such as cache misses or branch mispredictions. This advantage
is known as dynamism, and it provides OOO designs with the flexibility to maintain a full
pipeline despite suboptimal static code schedules or unpredictable, long latency events such
as cache misses or branch mispredictions. Meanwhile, IO designs are more susceptible to
performance cliffs created by suboptimal instruction scheduling.

One example of dynamism at play is the better branch recovery exhibited by OOO
designs. OOO designs can overlap the branch recovery with the critical path of instructions
from before the branch. An IO design is at the mercy of the critical path latency assumptions
built into the code schedule, but an OOO design executes strictly based on instruction
readiness [64].

By dynamically finding and exploiting instruction-level parallelism within a program —
executing instructions in the order that the data is available, rather than sticking to an overly
strict, sequential ordering of instructions — OOO designs relieve compilers and programmers
of the pressure to provide good code schedules. However, some of these advantages are not
entirely restricted to OOO cores. A number of attempts have been made to provide at least
some of the advantages of OOO microarchitectures to simpler, more energy-efficient designs.
However, despite efforts to improve IO performance — adding run-ahead execution, data
prefetching, register checkpointing, among others — IO cores have still been unable to fully
match the performance of OOO microarchitectures [64].

2.8 Conclusion

Due to the trends in technology, single-threaded performance is becoming more difficult to
improve, and power has become a first-order design constraint. But despite the technology
trends and slowing of single-threaded performance, workloads continue to evolve. Unfor-
tunately, software simulators struggle to evaluate long-running and complex workloads and
are often unable to provide the fidelity to confidently evaluate ideas that provide impor-
tant, but small gains. Single-thread performance is still important and a bottleneck even
for large, multi-threaded systems. Despite their complexity, out-of-order processors are the
best microarchitecture for dynamically exploiting instruction-level parallelism and providing
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excellent single-thread performance. For these reasons, this thesis will explore implementing
an industry-competitive, high-performance out-of-order processor.
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Chapter 3

BOOM Overview

The goal of this chapter is to provide an overview of the design and implementation of the
Berkeley Out–of–Order Machine (BOOM). Out-of-order processors are the microarchitec-
ture du jour, used to provide high-performance general-purpose computing across a wide
spectrum of platforms, from mobile processors up to the main compute nodes in warehouse-
scale computers. The goal of BOOM is to provide a synthesizable, prototypical baseline
processor for research, education, and industry. As part of that mission, we fabricated an
SRAM resiliency chip using BOOM as its processing core. Although simpler cores have been
previously used for these SRAM resiliency studies [54, 127], BOOM may provide a more
accurate analog to modern processors. In particular, the out-of-order scheduling of BOOM
will allow for a better tolerance of the longer average latencies of memory operations brought
about by the dynamically reduced cache capacity when running in a lower-power mode.

Section 3.2 provides an overview of the microarchitecture of BOOM. Section 3.3 discusses
the design methodology and how using a new hardware language called Chisel provided us
a big productivity win. Section 3.4 touches on the FPGA simulation methodology that we
were able to leverage due to the synthesizability of BOOM. Section 3.5 goes into greater
detail on the VLSI implementation effort to tape out a processor using BOOM with a
two-graduate student team. Although BOOM is a parameterizable generator, Section 3.6
discusses the specific configuration we chose for a tape-out of BOOM, which is representative
of the parameters we focused on optimizing. We then conclude our overview of BOOM
with Section 3.7, which briefly provides performance comparisons of BOOM in relation to a
selection of contemporary industry processors.

3.1 The RISC-V Instruction Set Architecture

BOOM implements the RV64G variant of the RISC-V Instruction Set Architecture (ISA).
RV64G denotes the 64 bit address variant of the “general-purpose” subset. This subset in-
cludes the standard MAFD extensions which cover integer multiply/divide, atomic memory
operations, load-reserve/store-conditional, single- and double-precision IEEE 754-2008 float-



CHAPTER 3. BOOM OVERVIEW 32

ing point. BOOM also implements the Privileged ISA specification v1.9 and the External
Debug Support specification v0.11.

RISC-V is a free and open ISA developed at UC Berkeley to provide a clean, simple, and
high-performance architecture for use in research, education, and industry. Although inspired
by previous MIPS-based research derivatives, RISC-V is a “clean break” implementation.
RISC-V is now managed by the RISC-V Foundation, a non-profit trade group composed of
more than sixty member companies. For many companies, RISC-V provides an opportunity
to avoid vendor lock-in to any particular processor company. It also provides companies the
freedom to build their own RISC-V processors without requiring licensing agreements from
the controlling company of the ISA [9].

For researchers, RISC-V’s simplicity and lack of historical baggage allows them to focus on
their innovative ideas without distraction from a complex and bloated architecture. RISC-V’s
G subset provides the following features that make it easy to target with high-performance
designs:

Accrued floating-point exception flags The FP status register does not need
to be renamed, nor can FP instructions throw exceptions themselves.

No integer side-effects All integer ALU operations exhibit no side-effects, save
the writing of the destination register. This prevents the need to rename
additional condition state.

No cmov or predication Although predication can lower the branch predictor
complexity of small designs, it greatly complicates OOO pipelines, including
the addition of a third read port for integer operations.

no implicit register specifiers Even JAL (jump-and-link) requires specifying
an explicit destination register rd. This simplifies rename logic, which pre-
vents either the need to know the instruction first before accessing the re-
name tables, or it prevents adding more ports to remove the instruction
decode off the critical path.

Register specifiers rs1, rs2, rs3, rd are always in the same place This reg-
ularity allows decode and rename to proceed largely in parallel.

Relaxed memory model This decision greatly simplifies the Load/Store Unit,
which does not need to have loads snoop other loads nor does coherence
traffic need to snoop the LSU, as required by stricter memory models such
as total store order or sequential consistency.1

1A RISC-V Foundation Working Group is analyzing proposals to strengthen the relaxed memory model
that will likely require ordering loads to the same address.
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3.2 The BOOM Microarchitecture

3.2.1 The BOOM Pipeline

Conceptually, BOOM is broken up into 10 stages: Fetch, Decode, Register Rename, Dispatch,
Issue, Register Read, Execute, Memory, Writeback, and Commit. The Commit stage occurs
asynchronously with regards to the rest of the pipeline. Figure 3.1 shows a simplified high-
level outline of the BOOM pipeline.

Fetch Instructions are fetched from the Instruction Memory and pushed into a
FIFO queue, known as the fetch buffer.

Decode Decode pulls instructions out of the fetch buffer and generates the ap-
propriate “micro-op” to place into the pipeline.

Rename The ISA, or “logical”, register specifiers are then renamed into “phys-
ical” register specifiers.

Dispatch The micro-op is then dispatched, or written, into the Issue Window.

Issue Micro-ops sitting in the Issue Window wait until all of their operands are
ready and are then issued. This stage is the beginning of the out–of–order
part of the pipeline.

RF Read Issued micro-ops first read their operands from the unified physical
register file (or from the bypass network)...

Execute ... and then enter the Execute stage where the functional units reside.
Issued memory operations perform their address calculations in the Execute
stage, and then store the calculated addresses in the Load/Store Unit that
resides in the Memory stage.

Memory The Load/Store Unit consists of three queues: a Load Address Queue
(LAQ), a Store Address Queue (SAQ), and a Store Data Queue (SDQ).
Loads are fired to memory when their address is present in the LAQ. Stores
are fired to memory at Commit time (stores cannot be committed until both
their address and data have been placed in the SAQ and SDQ).

Writeback ALU operations and load operation results are written back to the
physical register file.

Commit The Reorder Buffer, or ROB, tracks the status of each instruction in
the pipeline. When the head of the ROB is not-busy, the ROB commits
the instruction. For stores, the ROB signals to the store at the head of the
Store Queue that it can now write its data to memory.

Some of these stages are combined together when possible, while other stages are further
sub-divided to achieve reasonable clock frequencies.
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Figure 3.1: A conceptual outline of the BOOM pipeline.
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3.2.2 Instruction Fetch and Branch Prediction

The purpose of the frontend is to fetch instructions for execution in the backend. Processor
performance is best when the frontend provides an uninterrupted stream of instructions. In
order to maintain an uninterrupted stream of instructions, the frontend must utilize branch
prediction techniques to predict which branch path it believes the instruction stream will
take long before the branch’s direction can be properly resolved. Any mispredictions in the
frontend will not be discovered until the branch (or jump-register) instruction is executed
later in the backend. In the event of a misprediction, all instructions after the branch must be
flushed from the processor and the frontend must be restarted using the correct instruction
path.

The frontend relies on a number of different branch prediction techniques to predict the
instruction stream, each trading off accuracy, area, critical path, and pipeline penalty when
making a prediction.

3.2.2.1 Branch Target Buffer (BTB)

The BTB maintains a set of tables mapping from instruction addresses (PCs) to branch
targets. When a lookup is performed, the look-up address indexes into the BTB and looks
for any tag matches. If there is a tag hit, the BTB will make a prediction and may redirect
the frontend based on its predicted target address. Some hysteresis bits are used to help
guide the taken/not-taken decision of the BTB in the case of a tag hit.

3.2.2.2 Return Address Stack (RAS)

The RAS predicts function returns. Jump-register instructions are otherwise quite difficult
to predict, as their target depends on a register value. However, functions are typically
entered using a Function Call instruction at address A and return from the function using a
Return instruction to address A+1.2 The RAS can detect the call, compute and then store
the expected return address, and then later provide that predicted target when the Return is
encountered. To support multiple nested function calls, the underlying RAS storage structure
is a stack.

3.2.2.3 Conditional Branch Predictor (BPD)

BOOM implements a global history predictor to predict the direction of conditional branches.
Global history predictors work by tracking the outcome of the last N branches in the program
(providing a “global” view) and hashing this history with the look-up address to compute a
look-up index into the BPD prediction tables.

The BPD only makes taken/not-taken predictions; it therefore relies on some other agent
to provide information on what instructions are branches and what their targets are. The

2Actually, it will be A+4 as the size of the call instruction to jump over is 4 bytes in RV64G.
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BPD can either use the BTB for this information or it can wait and decode the instructions
themselves once they have been fetched from the instruction cache. Because the BPD does
not store the expensive branch targets, it can be much denser and thus make more accurate
predictions on the branch directions than the BTB; whereas each BTB entry may be 60 to
128 bits, the BPD may be as few as one or two bits per branch.

3.2.3 The Decode Stage and Resource Allocation

The decode stage takes instructions from the fetch buffer, decodes them, and allocates the
necessary resources as required by each instruction (for example, loads are allocated an entry
in the Load Address Queue). The decode stage will stall as needed if not all resources are
available.

3.2.4 The Register Rename Stage

Renaming is a technique to rename the ISA (or logical) register specifiers in an instruction
by mapping them to a new space of physical registers. The goal of register renaming is
to break the output- (write-after-write) and anti-dependences (write-after-read) between
instructions, leaving only the true dependences (read-after-write). This technique is critical
to allowing out-of-order processors to speculatively execute far ahead of the commit point.
For example, output- and anti-dependency hazards are encountered when executing loops.
With renaming, processors can “unroll” the loop in hardware and execute multiple loop
iterations simultaneously, bounded only by the amount of true dependencies across loop
iterations and the issue width of the processor.

BOOM is a physical register file out-of-order core design. A physical register file, con-
taining many more registers than the ISA dictates, holds both the committed architectural
register state and speculative register state. The rename map tables contain the information
needed to recover the committed state. As instructions are renamed, their register specifiers
are explicitly updated to point to physical registers located in the physical register file.

When a branch passes through the Rename stage, a copy of the map table is made. On
a branch mispredict, the map table can be reset instantly from the mispredicting branch’s
copy of the map table.

3.2.5 The Reorder Buffer (ROB) and Exception Handling

The ROB tracks the state of all inflight instructions in the pipeline. The role of the ROB
is to provide the illusion to the programmer that their program executes in-order. If a
misspeculation, exception, or interrupt occurs, the ROB is tasked with helping reset the
microarchitectural state.

After instructions are decoded and renamed, they are then dispatched to the ROB and
the issue window and marked busy. As instructions finish execution, they inform the ROB
and are marked not-busy. Once the head of the ROB is no longer busy, the instruction is
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committed, and its architectural state is now visible. If an exception occurs and the excepting
instruction is at the head of the ROB, the pipeline is flushed and no architectural changes
that occurred after the excepting instruction are made visible. The ROB then redirects the
frontend to begin fetching instructions from the appropriate exception handler. During an
exception, the rename map tables are restored by rolling back the ROB over a period of
many cycles.

3.2.6 The Issue Unit

The issue window holds dispatched micro-ops that have not yet executed. When all of the
operands for the micro-op are ready, the issue slot sets its “request” bit high. The issue
select logic then chooses to issue a slot that is asserting its request signal. Once a micro-op
is issued, it is removed from the issue window to make room for more dispatched instructions.
BOOM uses three separate issue windows, partitioned on micro-op type (integer, floating
point, memory).

3.2.7 The Register File and Bypass Network

BOOM is a unified, physical register file design. The register file holds both the committed
and speculative state. Separate register files are used for storing integer and floating-point
register values.

The register file statically provisions all of the register read ports required to satisfy all
issued instructions.

ALU operations can be issued back-to-back by having the write-back values forwarded
through the bypass network. Bypassing occurs at the end of the Register Read stage.

3.2.8 The Execution Pipeline

The Execution Pipeline contains many different functional units to handle different operation
types: arithmetic operations, divides, address calculations, and floating-point manipulations.
The Execution Pipeline contains many different types of functional units, most pipelined,
like the fused multiply-add unit, while others, like the divider, are iterative. The issue select
ports on the issue windows must intelligently schedule micro-ops onto the functional units
while honoring their occupancy and hazard requirements. Chapter 5 describes in greater
detail how the Execution Pipeline is described in a generalizable manner to allow for a good
deal of parameterization and reduced developer burden.

3.2.9 The Load/Store Unit (LSU)

The Load/Store Unit is responsible for deciding when to fire memory operations to the
memory system. There are three queues: the Load Address Queue (LAQ), the Store Address
Queue (SAQ), and the Store Data Queue (SDQ).
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Once a store instruction is committed, the corresponding entry in the Store Queue is
marked as committed. The store is then free to be fired to the memory system at its
convenience. Stores are fired to the memory in program order.

Loads are optimistically fired to memory on arrival to the LSU. Simultaneously, the load
instruction compares its address with all of the store addresses that it depends on. If there
is a match, the memory request in the cache is killed. If the corresponding store data is
present, then the store data is forwarded to the load and the load marks itself as having
succeeded. If the store data is not present, then the load goes to sleep. Loads that have been
put to sleep are retried at a later time. If a load incorrectly executes ahead of an older store
to the same address, it will read out stale data. In this scenario, the entire pipeline must be
flushed and the load refetched once it reaches the commit point.

BOOM implements the release consistency memory model [39] described by the RISC-V
User-Level ISA v2.2, in which stores and loads may be freely re-ordered but synchronization
primitives with release and acquire semantics receive stronger ordering.

More explicitly, BOOM exhibits the following behavior:

• Write→Read constraint is relaxed (newer loads may execute before older stores).

• Read→Read constraint is relaxed (loads to the same address may be reordered).

• A thread can read its own writes early.

Naturally, a newer load may not execute before a store to the same address.

3.2.10 The Memory System

BOOM uses a non-blocking data cache. The cache has a three-stage pipeline and can accept
a new request every cycle.

• S0: Send request address

• S1: Access SRAM

• S2: Perform way-select and format response data

The data cache is also cache coherent which is helpful even in uniprocessor configurations
for allowing a host machine or debugger to read BOOM’s memory.

3.3 Design Methodology

3.3.1 RTL Design

BOOM is implemented at the register-transfer level (RTL) in the Chisel hardware construc-
tion language (see Section 3.3.3). Chisel generates a Verilog representation of BOOM which
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can then be fed into standard VLSI tools for synthesis, place, and route. We repeatedly used
results gathered from synthesis, and less often data from place-and-route, to drive design
decisions and to guide small changes, both implemented in the Chisel RTL.

This continuous feedback allowed us to quickly adapt to issues that showed in the VLSI
reports. We did not “freeze” RTL before the tape-out, but instead had multiple parallel
synthesis and place-and-route jobs running with fresh changes to the RTL. The use of Chisel
does not preclude pre-placing and floor-planning of any blocks. We also relied on register
retiming within the VLSI synthesis tools to facilitate a more flexible Chisel RTL description.
Instead of having to painfully place registers at the optimal point in the design, the synthesis
tools could be trusted to move registers to wherever provided the best quality of result.
Synthesis was roughly two to three hours while place-and-route took roughly 14 hours for
heavily congested designs and down to 9 hours once we had improved BOOM’s critical path
and congestion problems.

3.3.2 RTL Verification

Verification of BOOM’s RTL was performed using full-system testing by executing programs
on cycle-exact simulators of BOOM. Verilator [117], a fast and open-source Verilog simulator,
was used to transform the Chisel-generated Verilog into a cycle-exact simulator. We also
used the proprietary Synopsys Verilog Compiler Simulator (VCS) for RTL and gate-level
simulations. Although VCS compiles noticeably faster than Verilator when full waveform
debug mode is enabled (4 minutes versus 21 minutes), VCS simulates BOOM at roughly 1/20
the speed of Verilator. When using the parameters shown in Table 3.4, Verilator simulates
BOOM at 9,980 Hz and VCS simulates BOOM at 490 Hz (as measured running Hello

World). Table 3.1 shows a more complete breakdown of the compile and simulation speeds
of BOOM. All development work was done on a 12-core Intel Xeon E5-2643 v2 running at
3.50 GHz.

The basic sets of functional tests executed on BOOM is the riscv-tests suite [81], which
contains a set of 232 hand-written assembly programs that test instruction functionality
with limited white-box testing and 11 bare-metal C benchmarks (see Table 3.2). These test
simulations take roughly five minutes to run using Verilator across 12 Intel Xeon cores. We
also run the Coremark benchmark and Hello World on the RISC-V proxy kernel (riscv-pk)
to test running user-level programs on top of a privileged architecture. To provide more
confidence of correctness, but no debug visibility, we used an FPGA instantiation of BOOM
running at 50 MHz to test the ability to boot Linux and run applications that run for minutes
to hours in target time.

We use riscv-torture [82] to perform adversarial torture testing. The riscv-torture

program generates a random sequence of assembly instructions, pulled from a library of
assembly snippets and then interleaved. Although torture was able to find a number of
bugs early in BOOM’s development, torture has some significant blind spots that made
it less useful for finding more difficult-to-exercise bugs. For one, it does not exercise any
privileged architecture. Second, all branches are only executed once — torture does not
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Table 3.1: The compile and simulation times for the Verilator and VCS RTL simulators when
built using a 12-core Intel Xeon E5-2643 v2 (3.5 GHz) with parallelized make enabled. The Chisel
RTL must first be compiled to the FIRRTL intermediate representation language, and then from
FIRRTL the RTL can be lowered into Verilog. Verilator and VCS then consume the Verilog RTL
description to create a cycle-accurate simulator of BOOM.

Compilation Step Compile Time Simulation Time
Chisel → FIRRTL 0 m 12 s n/a
FIRRTL → Verilog 1 m 4 s n/a
Verilog → Verilator 3 m 3 s 9 980 Hz

Verilog → Verilator (debug) 20 m 13 s 6 310 Hz
Verilog → VCS 1 m 59 s 490 Hz

Verilog → VCS (debug) 1 m 59 s 370 Hz
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generate loops. Many of BOOM’s more challenging bugs rely on the building up and killing
of significant speculative state, which is most often exercised when running multiple loop
iterations simultaneously and then mispredicting the loop exit.

To find these more challenging bugs that slip past riscv-tests and riscv-torture, we
rely on two additional techniques. The first is the use of assertions – a code statement that
must always be true. Written in Chisel, these assertions stop simulation with a failure code
if a bad processor state has been encountered such that the assertion is no longer true. An
example is found in BOOM’s re-order buffer (ROB): when an instruction finishes executing
and informs the ROB that it is no longer busy, an assertion checks that the unbusied ROB
entry contains a valid instruction and that the ROB entry was previously busy. If the
instruction is trying to unbusy an invalid entry or an already not-busy entry, then an invalid
state has been encountered and the simulation is stopped with a failure code. One downside
of these assertions is that they are unsynthesizable constructs and thus are only available in
simulation mode.

The second technique for finding bugs that has demonstrated significant success is com-
paring BOOM’s instruction commit log against spike’s instruction commit log. These com-
mit logs contain a sequence of the committed instructions’ PC address, instruction encoding,
register writeback address, and register writeback data. However, there are some signifi-
cant challenges with this type of co-simulation debugging. The first is that there are valid
differences between spike and BOOM that must be addressed — store-conditionals, timer
interrupts, and micro-architectural counters. The second challenge is that spike and BOOM
must present the exact same platform model; for example, differences in memory sizes or
available drivers could cause deviations in the resulting simulation. Like assertions, the
commit log capabilities are only available in simulation, which reduces the types of work-
loads that can be tested. However, ongoing research is exploring making both the assertions
and commit log capabilities synthesizable constructs for FPGA simulations, which would
allow both assertions and the commit log tracing to be used in a high-speed environment for
verifying longer running programs at roughly 50 to 100 MHz [8].

3.3.3 The Chisel Hardware Construction Language

BOOM is implemented in the Chisel hardware construction language (HCL). Chisel was
developed by UC Berkeley to enable advanced hardware design using highly parameterized
generators. Chisel allows designers to utilize concepts such as object orientation, functional
programming, parameterized types, and type inference. UC Berkeley implemented Chisel
as an open-source HCL built on top of the Scala language. However, Chisel is not a “high-
level synthesis” language; Chisel users still reason about registers, wires, and memories. The
BOOM source-code repository is 16,000 lines of Chisel code.

During elaboration time, Chisel source code is compiled into an intermediate represen-
tation known as FIRRTL (Flexible Intermediate Representation for RTL). The FIRRTL
compiler then gradually lowers the Chisel-generated FIRRTL code into Verilog code through
a series of compiler transformations. This explicit split between the Chisel-frontend and
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Table 3.2: The set of bare-metal benchmarks provided by the riscv-tests repository. Each is on
the order of 100k instructions.

dhrystone A synthetic embedded integer benchmark.
median Performs a 1D three element median filter.

mm Performs a floating-point matrix multiply.
mt-matmul A multi-threaded implementation of mm.
mt-vvadd A multi-threaded implementation of vvadd.
multiply A software implementation of multiply.

qsort Sorts an array of integers using quick sort.
rsort Sorts an array of integers using radix sort.
spmv Double-precision sparse matrix-vector multiplication.
towers Solves the Towers of Hanoi puzzle recursively.
vvadd Sums two arrays and writes into a third array.
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FIRRTL-backend allows the hardware designer access to the compiler internals in such a
way as to make it easier for designers to add their own transformation passes. For exam-
ple, ASIC tool flows and FPGA tool flows both consume Verilog, but the treatment of some
primitives such as memories may differ significantly. FIRRTL provides the options to instan-
tiate behavioral models of memories — useful for FPGA backends — or it can automatically
blackbox memories to facilitate designers providing their own memory blocks (common in
ASIC methodologies).

3.3.4 The Rocket-chip System-on-a-Chip Generator

BOOM’s source code only describes a core; the rest of the memory system, uncore, and
remaining SoC infrastructure must be provided.

As such, BOOM was developed to use the open-source Rocket-chip SoC generator [7].
The Rocket-chip generator can instantiate a wide range of SoC designs, including cache-
coherent multi-tile designs, cores with and without accelerators, and chips with or without
a last-level shared cache.

Rocket-chip is built around the Rocket in-order core. Rocket is a single-issue 5-stage
in-order core that implements the RV64GC ISA and page-based virtual memory. The orig-
inal design purpose of the Rocket core was to enable architectural research into vector co-
processors by serving as the scalar Control Processor. Rocket-chip, using Rocket as its core,
has been taped out at least fourteen times in three different commercial processes, and has
been successfully demonstrated to reach over 1.65 GHz in IBM 45 nm SOI [100].

From BOOM’s point of view, Rocket-chip can also be thought of as a “library of processor
components.” There are a number of modules created for Rocket that are also used by
BOOM: the functional units, the caches, the translation look-aside buffers, the page table
walker, the debug transport module, the privileged architecture state, and more. Rocket-
chip is implemented in 38,500 lines of Chisel code. By leveraging the existing silicon-proven
Rocket-chip infrastructure, we have been able to maintain focus on the BOOM core itself.

3.4 FPGA Implementation

Field-programmable Gate Arrays (FPGAs) are specialized integrated circuits that can be
programmed to emulate arbitrary hardware functions. The basic building block of an FPGA
is the configurable logic block (CLB). Each logic block is built out of look-up tables (LUTs),
memory state elements, and simple logic operations such as full-adders and multiplexer
selectors. Hundreds of thousands of logic blocks are then tiled across the FPGA. Both the
CLBs and the wiring connecting CLBs together are configurable by writing to configuration
memories to govern their behavior. In this manner, arbitrary hardware functions can be
executed on an FPGA. FPGAs also provide more fixed-function blocks, such as floating-
point arithmetic units, to more efficiently target particular applications. The hardware
functions being emulated by modern FPGAs can be reconfigured repeatedly.



CHAPTER 3. BOOM OVERVIEW 45

As FPGAs have grown rapidly in size, they have increasingly become attractive options
for emulating processor designs before committing to a particular design to send to the
foundry for fabrication.

We use the Xilinx ZC706 FPGA to emulate instances of BOOM. Synthesis, place, and
route take approximately 45 minutes to 60 minutes on an Intel Xeon Ivybridge. BOOM
runs at 40 to 50 MHz, a considerable speedup of roughly 5,000x - 100,000x over software
simulation of the same BOOM design using Verilator (10 kHz) or VCS (500 Hz). By using
Xilinx’s Memory Interface Generator (MIG), we are able to synthesize a DDR3 memory
controller to communicate with 8 GB of DDR3 SODIMM Memory that is on the ZC706
board. We run BOOM in a tethered simulation with a hardened ARM Cortex-A9 running
a front-end server to manage the host/target communications, which include binary loading
and console I/O.

By using an FPGA to simulate BOOM, running the full reference input sizes to bench-
marks becomes feasible. For example, one trillion cycles takes roughly 6 hours of wall clock
time. As SPECint2006 is roughly 20 trillion instructions spread across 35 workloads, a design
able to achieve one instruction per cycle can finish SPEC with reference inputs in five days.
With a small cluster of FPGA boards, this can be sped up to about 18 hours, the length of
time of the longest running workload.

3.5 ASIC Implementation

On Aug 15th, 2017, we taped out an ASIC implementation of an integrated chip using
BOOM as its processing core in TSMC 28 nm HPM (high performance mobile). We call
the chip BROOM, an acronym for the Berkeley Resilient Out-of-Order Machine. Figure 3.3
shows the block-diagram of the BROOM processor. BROOM consists of a single BOOM
core and a 1 MB L2 cache, each in their own clock (and voltage) domains.

The main focus of the research chip is to study SRAM resiliency techniques. The tech-
niques being explored allow the chip to lower the voltage on its SRAMs to improve the
energy efficiency of the processor. This work builds on prior resiliency efforts [54, 127].

BROOM was implemented using LVT-based standard cells and a foundry-provided mem-
ory compiler. The entire chip measures 2 mm by 3 mm and is composed of 72 million tran-
sistors. The chip is composed of 417k standard cells and 73 SRAM macros; the core and L1
caches make up 310k cells and 20 SRAM macros. The final sign-off in the slow-slow corner
was at 1.55 ns. Figures 3.4 and 3.5 show the place-and-routed chip plot (with and without
annotations).

BROOM uses 124 external IO pads and is wire-bonded to a PCB using chip-on-board
packaging, as shown in Figure 3.6. A serial interface provides communications to a Xilinx
ZedBoard Zynq-7000 FPGA which provides the glue logic between BROOM, a host com-
puter, and BROOM’s off-chip DRAM (mounted on the FPGA).

We successfully demonstrated booting Linux 4.6.2 on BROOM silicon on Dec 12, 2017.
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Figure 3.3: Block diagram of the BROOM test chip.
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Figure 3.4: BROOM place-and-routed chip plot.
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Figure 3.5: BROOM place-and-routed chip plot with annotations.
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Figure 3.6: Photograph of a BROOM chip wire-bonded into a PCB via chip-on-board packaging.
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3.5.1 SRAM Generation

SRAM memories are used to implement the relatively dense data arrays for the L1 instruction
cache, the L1 and L2 data caches, the conditional branch predictor, and the branch target
buffer.

For general logic, synthesizable Verilog RTL is generated from the Chisel RTL description
and run through the synthesis, place, and route tools. For targeting SRAM memories,
Chisel provides a SeqMem construct. The SeqMem construct provides a memory array with a
synchronous read semantics and undefined behavior for reads that occur simultaneous with
a write. Chisel can either provide its own Verilog behavioral model for SeqMems for RTL
simulation or flip-flop-based synthesis, or it can blackbox any SeqMem instantiations that use
one or two ports. For every SeqMem that is blackboxed by Chisel, an entry is added to a
Chisel-generated configuration file that lists the parameters of each SeqMem, including the
number and type of ports, the width and depth of the memory, and the bit-mask behavior of
the write port. The designer can then provide an SRAM instance in place of the blackboxed
SeqMem description that matches its parameters.

Table 3.3 shows the configurations for each of the SRAMs used within a BOOM core as
chosen for the BROOM tapeout. Some of the memories require masked writes to allow for
partial updates to an entry. The L1 data cache is the only SRAM in the core that requires
two ports. Two ports allows the for error correction schemes to read, modify, and write
(correct) the tags or data arrays while maintaining full request throughput.

For the BROOM tapeout, the conditional branch predictor (BPD) used is a gshare

predictor. BOOM’s gshare predictor tracks the last 13 branch outcomes and hashes this
“global history” with the lookup address to index into an array of two-bit counters. As
a particular branch is taken, the counter saturates upwards; and if not taken, the counter
saturates downwards. To fit the two-bit counters into single-port SRAM, the two-bit counters
are physically separated into a prediction (p) table and a hysteresis (h) table. The p-table is
further banked to allow for reads (predictions) and writes (updates) to occur simultaneously.
A single h-bit is then shared across two p-bit entries. The resulting gshare structure is three
equal-size single-port SRAMs. Section 4.2 discusses the BPD in more detail.

We used a TSMC-provided memory compiler to generate the SRAM memories. A Python

script generated the SRAM instantiation code by analyzing the Chisel-generated SRAM
configuration file and choosing the appropriate memory from a list of available foundry-
provided memories.

3.5.2 Custom Bit Array Register File

The BOOM integer register file used in the BROOM tapeout is a 6-read, 3-write register file
with seventy 64-bit registers. We chose to implement the register file by manually crafting
a register file bit out of foundry-provided standard cells. We then pre-placed each register
bit in an array and let the placer automatically route the wires to and from each bit. We



CHAPTER 3. BOOM OVERVIEW 51

Table 3.3: The configurations used for each of the SRAMs used in a BOOM core. The number of
uses, or instances, is also shown. For example, the L1 data cache is set-associative with four ways.

Use Depth Width Size Ports Mask Instances
(entries) (bits) (bytes) Granularity

L1 D$ tags 64 88 704 w+r 22 4
L1 D$ data 256 128 4096 w+r 64 4
L1 I$ tags 64 80 640 rw 20 4
L1 I$ data 256 128 4096 rw - 4
BTB tags 64 20 160 rw - 2
BTB data 64 44 352 rw - 2

BPD counters 128 64 1024 rw 1 3
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further divided up the bits into clusters for hierarchical read lines; tri-states drive the read
ports inside of each cluster and muxes select the read data across clusters.

The bits were described in structural Verilog and manually instantiated the foundry-
provided standard cells. We implemented the decode logic in Chisel and then blackboxed
the register file. We implemented a behavioral model of the custom array in Chisel to verify
the decode logic through RTL simulation and then performed additional verification of the
custom bit-array register file in gate-level simulation.

Aside from the integer register file and the SRAMs, no other logic in Chisel was imple-
mented via blackboxes.

3.5.3 Timing Analysis

Timing analysis was performed by analyzing the timing reports generated from Synposys
Design Compiler (synthesis) and Synposys IC Compiler (place-and-route) while targeting
the slow-slow corner.

Most critical paths required a small amount of refactoring to remove late-arriving signals
off the critical path. Other critical paths could be quickly solved by moving logic that is
“out-of-band from the main instruction pipeline” to an extra stage. One example is the
updating of the Branch Target Buffer (BTB) from a mispredicted branch as detected by
the Branch Resolution Unit (BRU) in the backend. Although the instruction fetch redirect
should happen as soon as possible, updating the BTB to correctly predict the branch on its
next execution is less critical.

An other helpful tool with addressing critical paths is register retiming. Register retiming
allows the tools to move the exact location of a register to improve timing results without
changing the functionality of the circuit. The ability of the VLSI tools to utilize register
retiming is repeatedly leveraged throughout the BOOM and Rocket-chip code base to reduce
the code complexity and improve quality-of-result. We directed the tools to use register
retiming on the following modules:

• Arithmetic Logic Unit (ALUUnit)

• Pipelined Integer Multiplier (Imul)

• Fused-Multiply-Add Pipeline (FPUFMAPipe)

• Integer-to-FP Conversion Unit (IntToFP)

• FP-to-FP Conversion Unit (FPToFP)

• Rename Stage (RenameStage – flattened and retimed)

• Branch Prediction Pipeline (BranchPredictionStage)

• Fetch Unit (FetchUnit)
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3.6 Parameters

Table 3.4 shows the parameters chosen for the BOOM tapeout. Our overall strategy was to
begin with a modestly sized processor, find and improve its critical paths, and then increase
the data structures (such as the branch predictor tables) to match the available area and
timing slack. Unfortunately, we found ourselves mostly limited in area. In response, we
reduced the L1 caches from 32 kB to 16 kB.

3.7 Performance Evaluation

Table 3.5 shows results of area, frequency, and performance comparisons of BOOM against
other industry processors using the CoreMark EEMBC benchmark. Our aim is to be compet-
itive in both performance and area against low-power, embedded out-of-order cores. Bolded
is the BOOM configuration taped out as part of the BROOM project using the parameters
listed in Table 3.4, labeled BOOMv2. Two older variants of BOOM, labeled BOOMv1 two-
wide and BOOMv1 four-wide, demonstrate the high-water mark of BOOM when fetching
two and four instructions per cycle respectively.

BOOMv1 enjoys higher performance over BOOMv2 largely for two reasons. First,
BOOMv1 uses the more complex, but more accurate TAGE branch predictor [89]. Second,
BOOMv2 adds an extra cycle of latency to the load-use delay.

These performance loss is not fundamental to the design of BOOMv2. We chose to min-
imize design risk of the BROOM tapeout by using a simpler gshare-based branch predictor.
The load-use delay can be addressed by adding a load-to-use bypass, cutting 5 cycles of
load-use delay to 3 cycles.

BOOMv1 was designed with only limited access to educational technology libraries and no
access to a memory compiler, and as such offers a shorter pipeline with more complexity per
stage. In contrast, BOOMv2 was designed with feedback provided by the TSMC 28 nm HPM
libraries and a foundry-provided memory compiler. Chapter 6 covers the design decisions
made in progressing from BOOMv1 to BOOMv2.

Figures 3.7 and 3.8 show performance comparisons while running 8 benchmarks from the
SPECint2006 benchmark suite. All data was taken by running each benchmark to completion
— roughly 12 trillion instructions per processor. Figure 3.7 shows the performance data
normalized to clock frequency. Rocket and BOOM data was collected on an FPGA using
a memory model that accurately simulates a 1 MB L2 cache with a 20-cycle access latency
and off-chip memory with a fixed 80-cycle access latency.

Figure 3.8 shows the full run-time performance by normalizing the target run time (in
seconds) to the SPEC 2006 reference machine, a 296 MHz UltraSPARC II. BOOM’s overall
simulated performance is on par with the out-of-order ARM Cortex-A9. As the BOOM and
Rocket performances are captured using an FPGA, the frequency used to calculate target
run time in seconds was chosen to match the frequency of the Cortex-A9 and is not based on
any particular silicon chip. Neither BROOM nor the other available silicon Rocket research
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Table 3.4: The parameters chosen for the tapeout of BOOM. Although BOOM is a parameterizable
generator, we must commit to a single configuration for a silicon instantiation.

Fetch Width 2 instructions

Issue Width
4 micro-ops

(2 int, 1 mem, 1 fp)
Issue entries (int) 16

Issue entries (mem) 20
Issue entries (fp) 10

ROB entries 48
Load/Store Unit 16 loads / 16 stores

FP Div/Sqrt disabled

Branch Target Buffer 64 sets x 2 ways
Return Address Stack 8 entries
Conditional Branch 13 bits of global history

Predictor (gshare)

L1 Cache 64 sets x 4 ways
(instruction) (16 kB)

L1 Cache 64 sets x 4 ways
(data) (16 kB)

Perf Counters 6 counters
Perf Events 37 events

Regfile 6r3w (int), 3r2w (fp)

Exe Units

iALU+iMul+iDiv
iALU

FMA+fDiv
Load/Store

FPU latency 4 cycles (SFMA, DFMA)
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Table 3.5: CoreMark, area, and frequency comparisons of industry processors. The BOOMv1
designs enjoy higher performance relative to the BOOMv2 chip due to its more sophisticated TAGE
branch predictor and its shorter load-use delay. Idealistic, perfect scaling is assumed to provide a
normalized area measurement across technologies.

Processor Core Area Scaled Area CoreMark/ Freq CoreMark/ IPC
(core+L1s) (to 28 nm) MHz/Core (MHz) Core

Intel Xeon E5 2687W (Sandy)† ≈18 mm2 @ 32nm 14 mm2 7.36 3,400 25,007 -
Intel Xeon E5 2667 (Ivy)* ≈12 mm2 @ 22nm 19 mm2 5.60 3,300 18,474 1.96
RV64 BOOMv1 four-wide 1.4 mm2 @ 45nm 0.54 mm2 5.18 n/a ** n/a ** 1.50
RV64 BOOMv1 two-wide 1.1 mm2 @ 45nm 0.43 mm2 4.87 n/a ** n/a ** 1.25

ARM Cortex-A15* 2.8 mm2 @ 28nm 2.8 mm2 4.72 2,116 9,977 1.50
RV64 BOOMv2 (BROOM chip) 0.52 mm2 @ 28nm 0.52 mm2 3.77 1,250 § 4,713 § 1.11
ARM Cortex-A9 (Kayla Tegra 3)* ≈2.5 mm2 @ 40nm 1.2 mm2 3.71 1,400 5,189 1.19

MIPS 74K‡ 2.5 mm2 @ 65nm 0.46 mm2 2.50 1,600 4,000 -
RV64 Rocket* 0.5 mm2 @ 45nm 0.19 mm2 2.32 1,500 ** 3,480 ** 0.76

ARM Cortex-A5‡ 0.5 mm2 @ 40nm 0.25 mm2 2.13 1,000 2,125 -

Results collected from *the author (using gcc51 -O3 and perf), †[26], or ‡ [6]. The Intel core areas include
the L1 and L2 caches.
** Results collected from RTL simulations. Area data provided via Cacti [122] and educational VLSI libraries.
Frequency data not available as designs were not fully pushed through to a DRC clean tape-in.

§ Frequency based off of place-and-route data.
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chips include a DDR PHY, making it unrealistic to run SPEC workloads. Without a DDR
PHY, the off-chip serial interface is the weakest link in running SPEC 2006 due to its 2 GB
memory requirement.
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Figure 3.7: Instruction-per-cycle comparison running SPECint2006. BOOM and Rocket perfor-
mance is measured by running each benchmark to full completion using reference input sizes on
an FPGA with a simulated memory system. The values plotted here are also shown in Table 3.6.
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BOOM and Rocket was chosen to match the frequency of the Cortex-A9. The values plotted here
are also shown in Table 3.7.
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Table 3.6: Instruction-per-cycle comparison running SPECint2006. BOOM and Rocket perfor-
mance is measured by running each benchmark to full completion using reference input sizes on
an FPGA with a simulated memory system.

benchmark Intel Ivybridge Cortex-A57 Cortex-A15 BOOM Cortex-A9 Rocket
400.perlbench 2.02 1.34 1.23 0.88 0.79 0.61

401.bzip 1.58 1.07 0.81 0.97 0.49 0.58
403.gcc 1.15 0.63 0.76 0.52 0.38 0.40
429.mcf 0.43 0.13 0.16 0.11 0.10 0.08

458.sjeng 1.48 1.08 0.97 1.05 0.73 0.69
464.h264ref 2.30 1.40 1.15 1.12 1.41 0.74

471.omnetpp 0.61 0.31 0.34 0.31 0.21 0.22
483.xalancbmk 1.41 0.67 0.69 0.45 0.35 0.33

geomean 1.21 0.66 0.65 0.55 0.43 0.38

Table 3.7: Performance ratio relative to the SPEC reference machine (a 296 MHz UltraSPARC II).
BOOM and Rocket performance is measured by running each benchmark to full completion using
reference input sizes on an FPGA with a simulated memory system. The frequency of BOOM
and Rocket was chosen to match the frequency of the Cortex-A9.

benchmark Intel Ivybridge Cortex-A57 Cortex-A15 BOOM Cortex-A9 Rocket
400.perlbench 37.1 9.7 8.4 4.9 4.9 3.4

401.bzip 26.4 7.6 5.6 4.2 3.0 2.5
403.gcc 37.2 9.2 8.3 4.3 4.1 3.3
429.mcf 53.5 6.9 7.0 5.0 3.5 3.5

458.sjeng 30.8 8.8 7.1 6.1 4.2 4.0
464.h264ref 54.8 15.8 12.3 6.8 7.5 4.5

471.omnetpp 26.2 5.8 5.8 4.3 3.3 3.1
483.xalancbmk 44.4 8.7 7.9 3.9 3.8 2.8

geomean 37.4 8.7 7.6 4.9 4.1 3.3
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Chapter 4

Branch Prediction

Branch prediction is a crucial component to the performance of advanced processors. Nor-
mally, branch instructions interrupt the stream of instructions as a branch that is taken
redirects the frontend to begin fetching instructions from a new memory location. As the
branch direction cannot be resolved until much later in the processor’s execution pipeline,
an unacceptable delay is encountered between branch resolution and fetching the subsequent
instructions that come after the branch. A common solution to this problem is to use spec-
ulation — predict the direction of the branch, make forward progress under the assumption
the prediction was correct, and rollback any changes if a misprediction occurred. By predict-
ing the direction of branch instructions, the processor can continue making forward progress
with no expensive delays. Instead, a penalty is paid only when the branch prediction is in-
correct. Thus, processor performance is best when the instruction fetch unit (the frontend)
is able to provide an uninterrupted stream of instructions to the execution backend.

Any branch mispredictions in the frontend will not be discovered until the branch in-
struction is executed later in the backend, typically 10s to 100s of cycles later. In the event
of a misprediction, all instructions after the branch must be flushed from the processor and
the frontend must be restarted using the correct instruction path. As modern processors
tend to support 100-200 instructions inflight, a branch misprediction can be a significant
performance hit. For example, if one in ten instructions is a branch, and a branch predictor
is 90% accurate, then 1% of instructions will be a mispredicted branch. If the average mis-
prediction penalty is 20 cycles, then for every 100 instructions the pipeline suffers a 20 cycle
penalty. For a workload that is otherwise enjoying an instruction / cycle (IPC) throughput
of 1.0, the 90% branch prediction accuracy translates to a 20% performance slowdown. Even
if accuracy is increased to 95%, the pipeline is still suffering a 10% slowdown.

This chapter discusses the challenges in mapping branch prediction strategies studied us-
ing software simulators to synthesizable hardware implementations. First, Section 4.1 briefly
discusses the state-of-the-art in branch prediction research and the challenges in mapping
these research software implementations to synthesizable hardware implementations. Sec-
tion 4.2 then describes BOOM’s implementation of a branch predictor in Chisel and how we
translated the implementation described by [89] (and related papers) to an RTL description



CHAPTER 4. BRANCH PREDICTION 60

for use by BOOM. Section 4.3 discusses how we explicitly addressed the gaps between RTL
and software models. This chapter concludes in Section 4.4 with some proposed improve-
ments to the existing software model frameworks for better capturing the complexity and
costs of branch predictors.

4.1 Background

This section provides some background and motivation to better understand the context of
BOOM’s branch prediction framework. First, this section discusses the research methodology
used to evaluate the current state-of-the-art predictor designs. Next, this section explores the
gaps between the current research methodology and the issues that arise in designing RTL
implementations of branch predictors. Finally, this section provides a high-level overview of
the state-of-the-art TAGE branch predictor [89].

4.1.1 Research Methodology

Branch prediction has been a popular focus of research for over three decades [97, 65]. Branch
prediction is critically important to a processor’s performance, but part of this longevity is
in part due to the ease at which branch prediction strategies can be evaluated and explored.
Prediction strategies can be evaluated by feeding predictor models a sequence of branch
instructions from an instruction trace one at a time. At each branch, the predictor model is
given the fetch address. The predictor model then provides its prediction — taken or not-
taken. Once the prediction has been performed, the simulation framework tells the branch
predictor model that correct outcome and the predictor can update itself as appropriate.
These un-pipelined, one-at-a-time models are simple and usually much less than a 1,000 lines
of C++ code. No other part of the processor needs to be implemented. The branch predictor
implementations need only provide predictions, and any correctness bugs in the predictor
have no impact on the functional behavior of the program traces. Also, the simplicity of
these trace-based simulators allow branch prediction models to simulate at a rate of roughly
10 million instructions per second (MIPS), far faster than other, full-featured processor
simulators.

One example framework of this method is the Championship Branch Prediction Contest
(CBP) [21]. The CBP is a contest held roughly every two years and co-located at the
International Symposium of Computer Architecture (ISCA) conference, whose organizers
provide the CBP simulator infrastructure and simulation traces. In the last CBP Contest,
all implementations were perceptron-based designs [50] or TAGE-based designs [89] (with
one design being a combination of both [49]). Both predictor styles have been reported to
be used by industry [18, 125] although specific implementation details or design deviations
from the academic versions have not been disclosed.
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4.1.2 Deficiencies of Trace-based, Unpipelined Models

Trace-based simulation has proven very useful for quickly prototyping branch prediction
strategies and discovering an upper-bound on the accuracy for a particular implementation.
However, it fails to capture some of the complexity of a superscalar processor that makes it
challenging to translate predictor models to RTL implementations [31]. These gaps arise both
from the trace-based nature of the model and from the sequential one-at-a-time, unpipelined
aspect of the model. Only committed instructions are executed, only one instruction is
predicted at a time, and that one instruction is then immediately updated before predicting
the next instruction.

The first gap between models and RTL implementations is that the models only predict
on a single branch instruction at a time. In comparison, high performance processors may
fetch around 4-8 instructions (or more) a cycle. The more instructions fetched in a cycle the
more likely the processor will fetch multiple branches in the same fetch packet. There are a
few ways to deal with superscalar prediction — one could perform 8 predictions in parallel
and choose the first taken branch [93], or one could perform only one prediction and track
the branch instruction responsible for the prediction for a particular fetch address. Unfortu-
nately, trace-based simulation provides no guidance in evaluating the tradeoffs between the
two approaches. There is also the issue of global history — does it track the outcome of
all branches in the program or does it track history only on the granularity of a fetch cycle
(“was any branch taken within this fetch packet?”).

Second, there is a delay between initiating a branch prediction and changing the flow of
instructions based on the prediction. For BOOM this delay is 3 cycles: 1) compute table
index by hashing the fetch address and the global history, 2) read the prediction tables, 3)
and make the final decision and redirect the fetch address. This delay means that the global
history used to hash into the predictor cannot completely contain all branches that have
occurred before it in the program — there may be some branches hiding in this prediction
shadow.

Third, there is a delay between performing the prediction in the Fetch stages and updating
the predictor with the resolved outcome in the Execute or Commit stages. Some predictors
may want to bypass inflight updates to new predictions, but the complexity of this bypass
structure is not captured in the simpler un-pipelined, one-at-a-time models. These simple
un-pipelined models also do not properly capture the complexity of storing the prediction
state required to update the predictor in the Execute or Commit stages.

Fourth, designs are typically judged by the amount of state bits required to make pre-
dictions. This does not account for the additional state required to reset the predictor on
a misprediction or exception, which for some designs can become very expensive. Some
proposed designs track over a thousand bits of history, which must be snapshotted and reset
on a misprediction. The winning entry in the CBP-4 4 kB space was TAGE-SC-L [91] with
10 tagged tables and a history length of 359 bits. Some of the implementation suggestions
for TAGE recommend using three circular shift registers (CSR) of roughly 10-13 bits each
per table to track indexing and tag computations. Each CSR must be snapshotted per pre-
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diction — for the winning design, this comes to roughly 250 bits of CSR state per fetch
cycle. In order to manage 40 cycles-worth of CSR state storage, the predictor would have
to add at least 30% to its total state storage on top of its existing 4 kB state used for the
prediction tables. Also, not all bits are created equal. Designs that can cram the prediction
tables into single-port SRAM can enjoy greater density, whereas more complex predictors
may require the use of multi-port flip-flop-based arrays which are much more expensive in
area and power.

Finally, trace-based models do not capture the implementation complexity and realism.
For example, the 2bc-gskew predictor used in the (cancelled) Alpha EV8 processor pur-
posefully avoids a local history predictor due to the number of read ports required by the
additional level of indirection provided by the local histories [93]. Instead, trace-based mod-
eling requires care from the model builder to stay within the realm of possibility [90].

4.1.3 The State-of-the-art TAGE Predictor

TAGE predictors are regarded as the most accurate of academic implementations, as judged
by the CBP contests, and can be found in processor simulators such as ESESC [5].

TAGE is composed of a small number of tables. As shown in Figure 4.1, each table entry
consists of a tag, an n-bit saturating prediction counter, and a saturating usefulness counter.
TAGE begins making its prediction by hashing the fetch address and the global history to
generate an index and a tag for each table. Each table uses geometrically more history than
the previous table as part of its hashing function. For example, the first table may use only
5 bits, the second table 17 bits, the third table 44 bits, and the fourth table 130 bits. If
the accessed entry has a tag hit, the table asserts a valid prediction and uses the prediction
counter to provide the taken/not-taken prediction. The usefulness information can be used
to decide which table should provide the prediction. Otherwise, the table with the longest
history that experienced a tag hit makes the prediction.

When TAGE is updated on a misprediction, a new entry is allocated in one of the TAGE
tables. If Table i made a prediction, then a new entry is allocated in some Table j such that
j > i but only if the current entry in Table j has a usefulness value of 0. If an allocation
fails because an available entry cannot be found, the usefulness counter is decremented for
each candidate entry for every table, making room for when the next allocation occurs.

A number of different techniques have been explored for degrading the usefulness counters
to prevent the tables from filling up with rarely used entries that prevent new allocations
from succeeding. These include clearing the bits after a fixed period of time or tracking how
many allocation failures occur before degrading all of the usefulness counters.

There are four main insights that make TAGE particularly accurate compared to previous
branch predictor designs.

First, TAGE adds tags to each entry. The heart of the TAGE predictor is the two-bit (or
three-bit) saturating prediction counter. But attached to each counter is a tag to provide
high confidence that a prediction from this counter truly matches with the fetch address
and history. These tags are roughly 10-13 bits, roughly four or five times more expensive
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Figure 4.1: The TAGE predictor. The requesting address and the global history are fed into each
table’s index hash and tag hash functions. Each table provides its own prediction (or no prediction)
and the table with the longest history wins. Each table has geometrically more history bits than
the previous table.
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than the prediction counters. Although intuition may suggest that a predictor with four or
five times as many counters would address most aliasing concerns, the use of tags nearly
completely eliminates aliasing and protects long-lived entries from being overwritten by
sporadic branches.

Second, TAGE is able to exploit very long histories — hundreds of bits — by performing
an XOR folding of the history to generate the index and tag hashes for each table. This
provides much more reach than predictors than are limited to n bits of history for a predictor
table of size 2n.

Third, different branches require different lengths of history to provide the most accurate
prediction. Some branches need very long histories to predict their direction while other
branches need relatively short histories to prevent pollution from branches in unrelated
program phases. Shorter histories also have the benefit of being faster to learn. Instead
of having a single history length that must balance the needs of both types of branches,
TAGE provides multiple prediction tables, each using a different history length. As each
table uses a geometrically increasing amount of history to make its predictions, TAGE is
able to accommodate both very long histories and very short histories.

Fourth, the usefulness counter provides a level of confidence behind each prediction —
each table (and in turn TAGE itself) only provides a prediction when it is confident that the
prediction is correct.

4.2 The BOOM RTL Implementation

This section discusses how BOOM predicts branches and then resolves these predictions,
covering many of the implementation details of BOOM’s branch prediction pipeline.

4.2.1 The Frontend Organization

The BOOM frontend covers instruction fetch and branch prediction as shown in Figure 4.2.
Instruction fetch begins by sending a fetch address to the instruction cache. An entire cycle
is devoted to accessing the SRAM within the instruction cache. In parallel to the instruction
cache access, the Branch Target Buffer (BTB) is accessed. The BTB uses the fetch address
to make a prediction on what the next cycle’s fetch address should be. Each BTB entry
contains a tag and a target. If the fetch address matches against a tag, then the target
provides the prediction. The BTB is a very expensive structure, roughly 60 bits per entry,
and it must make a prediction within a single cycle. Therefore, there is little room for
clever algorithms. BOOM’s BTB uses a bimodal predictor indexed by the fetch address to
predict taken/not-taken on a tag hit. The BTB also tracks whether the stored control-flow
instruction is a return or call, which interacts with a Return Address Stack predictor to
predict function returns. Although the BTB is crucial to good processor performance, it is
not the focus of this chapter. Instead, we focus on the larger conditional branch predictor,
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which relies on more sophisticated algorithms to accurately predict the taken/not-taken
direction of conditional branches.

The conditional branch predictor is accessed via the fetch address and makes a set of
taken/not-taken predictions a few cycles later. As BOOM’s branch predictor takes 3 cycles
to make a prediction, on a taken prediction BOOM’s branch predictor squashes two stages
of instruction fetch. As the conditional branch predictor only predicts taken/not-taken, it
can store its predictions in very dense arrays, potentially spending as little as 1 or 2 bits per
branch. For branch target information, the conditional branch predictor uses the instructions
freshly fetched from the instruction cache to provide the branch targets.

In the Fetch1 stage, while the BTB and instruction cache are being accessed, the condi-
tional predictor first computes a hash from the fetch address and the global history. Concep-
tually, the global history (ghistory) tracks the outcome of the last n branches in the program.
On the next cycle, Fetch2, this hash can then be used to index a particular set of entries
within the branch predictor. In parallel with the prediction table access, the instructions
returning from the instruction cache are searched for branches and the branch targets are
computed. Lastly, in Fetch3, the predictor’s predictions are matched against any branches
that have been fetched, a final prediction is made, and the fetch address is redirected if the
branch predictor disagrees with the current path set by the BTB. If a disagreement has oc-
curred between the branch predictor and the BTB, 2 cycles of instruction fetch are squashed
and the frontend starts fetching along a new branch path.

4.2.2 Providing a Branch Predictor Framework

Although there are a wide range of branch prediction algorithms, many fall into the same
category of “global history predictors” in which the fetch address and the global history are
used to make a prediction. Thus, it is possible to provide a branch predictor framework
that facilitates implementing new designs by abstracting away most of the complexity that
is shared across designs. In this manner, we can more easily explore different types of
conditional branch predictors.

At a high-level, BOOM provides an abstract BrPredictor class. This class provides a
standard interface into the branch predictor, it provides the control logic for managing the
global history register, and it contains the branch reorder buffer (BROB) which handles the
inflight branch prediction checkpoints. This abstract class can be found in Figure 4.3 labeled
“predictor (base)”.

4.2.3 Managing the Global History Register

The global history register, or ghistory, is an important piece of many branch predictor
designs. It contains the outcomes of the previous N branches (where N is the size of the
global history register). When fetching branch i, it is important that the direction of the
previous i−N branches is available so an accurate prediction can be made. Waiting till the
Commit stage to update the global history register would be too late as dozens of branches
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Figure 4.3: The branch prediction framework. The frontend sends the next fetch address to the
branch prediction pipeline (Fetch0 stage). A hash of the fetch address and the global history is
used to index the predictor’s prediction tables. The prediction tables are accessed in parallel with
the instruction cache (Fetch1 stage). The conditional branch predictor then returns a prediction
for each instruction in the fetch packet. The instructions returning from the instruction cache are
quickly decoded; any branches that are predicted as taken will redirect the frontend from the Fetch3
stage. Prediction snapshots and metadata are stored in the branch rename snapshots (which are
later used for fixing the predictor after mispredictions) and the Branch Re-order Buffer (B-ROB)
(which is used to update the predictor in the Commit stage). The predictor (base) provides a
generic, abstract implementation of a global history branch predictor. A new, concrete branch
predictor implementation only needs to provide its hashing function(s) and prediction tables.
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would be inflight and not reflected. Therefore, the global history register must be updated
speculatively, once the branch is fetched and predicted.

Managing the global history faces three main challenges:

1. superscalar fetch and prediction

2. delayed update between fetch-initiation and redirection-due-to-prediction

3. resetting the global history on a misprediction or exception

To address superscalar fetch and prediction, the global history does not track individual
branch outcomes, but rather compresses via an OR-reduction the direction of all conditional
branches within the fetch packet into a single bit. As the superscalar fetch width increases,
the odds of a taken branch increases. One solution is to hash in path history [73] to increase
the randomness of the global history register [93].

If a misprediction occurs, the global history register must be reset and updated to reflect
the actual history. This means that each branch (more accurately, each fetch packet) must
snapshot the global history register in case of a misprediction. As previously mentioned,
there is a delay between beginning to make a prediction in the Fetch1 stage (when the global
history is read) and redirecting the front-end in the Fetch3 stage (when the global history is
updated). This results in a “shadow” in which a branch beginning to make a prediction in
Fetch1 will not see the branches (or their outcomes) that came a cycle or two earlier in the
program. These “shadow branches” must be reflected in the global history snapshot.

There is one final wrinkle - exceptional pipeline behavior. While each branch contains
a snapshot of the global history register, any instruction can potential throw an exception
that will cause a front-end redirect. Such an event will cause the global history register to
become corrupted. For exceptions, this may seem acceptable - exceptions should be rare
and the trap handlers will cause a pollution of the global history register anyways (from the
point of view of the user code). However, some exceptional events include “pipeline replays”
— events where an instruction causes a pipeline flush and the instruction is refetched and
re-executed. For this reason, a commit copy of the global history register is also maintained
by the abstract branch predictor class and is used for resetting the history on a pipeline flush
event.

Some branch predictors such as TAGE require access to incredibly long histories – poten-
tially over a thousand bits. Global history is speculatively updated after each prediction and
must be snapshotted and reset if a misprediction was made. Snapshotting a thousand bits
is untenable. Instead, the Very Long Global History Register (VLHR) is implemented as a
circular buffer with a speculative head pointer and a commit head pointer. As a prediction is
made, the prediction is written down at V LHR[spec head] and the speculative head pointer
is incremented and snapshotted. When a branch mispredicts, the head pointer is reset to
snapshot+ 1 and the correct direction is written to V LHR[snapshot]. In this manner, each
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snapshot is on the order of 10 bits, not 1000 bits. BOOM provides two different implemen-
tations of ghistory — a shift register for short histories and the circular buffer for very long
histories.

4.2.4 The Two-bit Counter Tables

The basic building block of most branch predictors is the “two-bit counter table” (2bc). As
a particular branch is repeatedly taken, the counter saturates upwards to the max value
3 (0b11) or strongly taken. Likewise, repeatedly not-taken branches saturate towards zero
(0b00). The high-order bit specifies the prediction and the low-order bit specifies the hys-
teresis (how strongly biased the prediction is).

global history

PC
XOR

2b counter table

prediction
hysteresis

Figure 4.4: A gshare predictor uses the global history hashed with the fetch address (PC) to index
into a table of 2-bit counters. The high-order bit makes the prediction.

These two-bit counters are aggregated into a table. Ideally, a good branch predictor
knows which counter to index to make the best prediction. However, to fit these two-bit
counters into dense SRAM, a change is made to the 2bc finite state machine – mispredictions
made in the weakly not-taken state move the 2bc into the strongly taken state (and vice versa
for weakly taken being mispredicted). The FSM behavior is shown in Figure 4.5.

Although it’s no longer strictly a “counter”, this change allows us to separate out the
read and write requirements on the prediction and hystersis bits and place them in separate
sequential memory tables. In hardware, the 2bc table can be implemented as follows:

The P-bit:

• read - every cycle to make a prediction

• write - only when a misprediction occurred (the value of the h-bit).

The H-bit:

• read - only when a misprediction occurred.
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Figure 4.5: Two-bit counter state machine.

• write - when a branch is resolved (write the direction the branch took).

By breaking the high-order p-bit and the low-order h-bit apart, we can place each in
a two-ported (1r1w) SRAM. By making a few assumptions we can reduce this to a single-
ported (1rw) SRAM. We can assume that mispredictions are rare and branch resolutions
are not necessarily occurring on every cycle. Also, writes can be delayed or even dropped
altogether. Therefore, the h-table can be implemented using a single 1rw-ported SRAM by
queueing writes up and draining them when a read is not being performed. Likewise, the p-
table can be implemented using a 1rw-ported SRAM by banking the SRAM, buffering writes
into a queue, and draining the queue when there is not a read conflict for that particular
bank.

We also have to be aware that SRAMs have a particular ratio of depth to width where
they provide the best physical characteristics. The “tall and skinny” aspect ratio that the 2bc
tables require is a particularly bad design point. However, the solution is simple – tall and
skinny can be trivially transformed into the preferred rectangular memory structure. The
high-order bits of the index can correspond to the SRAM row and the low-order bits can be
used to mux out the specific bits from within the row. We have created a memory utility
class in Chisel that automatically transforms our single-ported memories into rectangular
structures.

4.2.5 Superscalar Predictions

A superscalar fetch unit fetches multiple instructions every cycle.
Thus, the BTB and conditional branch predictor must predict across the entire fetch

packet which of the many possible branches will be the dominating branch that redirects the
fetch address. This raises a challenge for structures like the BTB, which uses tag lookups to
facilitate their predictions — exactly what do we store as the tag?

To address this issue, when the BTB makes a prediction, it performs a tag match against
the predicted branch’s fetch address, and not the address of the branch itself. That is to say,
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when a branch is mispredicted, it informs the branch prediction structures of both its own
address (so we know which instruction is a branch) but also the address that was used by
the frontend to fetch the branch. In this manner, on future executions through the program,
the fetch address of the branch is used for the tag match, and the predictor can store an
offset to mark which instruction in the fetch packet is the branch.

Using this design, each BTB entry corresponds to a single fetch address, but it is helping
to predict across the entire fetch packet. The BTB entry can only store meta-data and
target-data on a single control-flow instruction. While there are certainly pathological cases
that can harm performance with this design, the assumption is that there is a correlation
between which branch in a fetch packet is the dominating branch relative to the fetch address,
and evaluations of this design using a trace-based superscalar fetch unit simulator has shown
this design is very complexity-friendly with no noticeable loss in performance. A different
design could instead choose to provide a whole bank of BTBs for each possible instruction in
the fetch packet which would increase the number of entries accessed and add to the critical
path to choose the winning taken branch.

4.2.6 The BOOM GShare Predictor

Gshare is a simple but very effective branch predictor. Predictions are made by hashing the
instruction address and the global history (typically a simple XOR) and then indexing into
a table of two-bit counters. Figure 4.4 shows the logical architecture and Figure 4.6 shows
the physical implementation and structure of the gshare predictor. Note that the prediction
begins in the Fetch1 stage when the requesting address is sent to the predictor but that the
prediction is made later in the Fetch3 stage once the instructions have returned from the
instruction cache and the prediction state has been read out of the gshare’s p-table. The
heart of the gshare predictor is a two-bit counter table implemented as described in Section
4.2.4.

4.2.7 The BOOM TAGE Predictor

BOOM also implements the TAGE conditional branch predictor. TAGE is a highly-para-
meterizable, state-of-the-art global history predictor [89, 90, 92]. The design is able to
maintain a high degree of accuracy while scaling from very small predictor sizes to very large
predictor sizes. It is fast to learn short histories while also able to learn very, very long
histories (over a thousand branches of history).

TAGE (TAgged GEometric) is implemented as a collection of predictor tables. Each
table entry contains a prediction counter, a usefulness counter, and a tag. The prediction
counter provides the prediction. The usefulness counter tracks how useful the particular
entry has been in the past for providing correct predictions. The tag allows the table to only
make a prediction if there is a tag match for the particular requesting instruction address
and global history. More information about the TAGE design can be found in Section 4.1.3.



CHAPTER 4. BRANCH PREDICTION 72

next
fetch
addr

hash

NPC (Fetch0)

pre-decode &
target compute

predictions

instructions

IC-Access (Fetch1) IC-Resp (Fetch2)

FetchBuffer

I$

w
redirectp-table

redirect if
predicted taken

predictor pipeline

predictor

predictor (base)

update
speculatively  ghistory

fetch
addr

Redirect (Fetch3)

decode
info

instructions

h-table

write-buffer
2bit Counter

Table

Branch Unit

update

Figure 4.6: The gshare predictor pipeline. The two-bit counter table is split into a separate p-table
(the high-order bit) and h-table (the low-order bit). Predictions only read the p-table. On every
branch resolution, the Branch Unit writes the branch outcome to the h-table. If a misprediction
occurs, the h-table is read and its value is written to the p-table.



CHAPTER 4. BRANCH PREDICTION 73

4.2.7.1 TAGE Global History and the Circular Shift Registers (CSRs)

Each TAGE table has associated with it its own global history, and each table has geomet-
rically more history than the previous table. As the histories become incredibly long (and
thus too expensive to snapshot directly), TAGE uses the Very Long Global History Register
(VLHR) as described in Section 4.2.3. The histories contain many more bits of history than
can be used to index a TAGE table; therefore, the history must be “folded” to fit. A table
with 1024 entries uses 10 bits to index the table. Therefore, if the table uses 20 bits of global
history, the top 10 bits of history are XOR’ed against the bottom 10 bits of history.

Instead of attempting to dynamically fold a very long history register every cycle, each
tage table stores its VLHR in a circular shift register (CSR). The history is stored already
folded and only the new history bit and the oldest history bit need to be provided from the
master copy of the VLHR to perform an update. Code 4.2.7.1 shows an example of how a
CSR works.

1 Example:
2 A 12 bit value (0b_0111_1001_1111) folded onto a 5 bit CSR becomes
3 (0b_0_0010), which can be found by:
4
5
6 /-- history[12] (evict bit)
7 |
8 c[4], c[3], c[2], c[1], c[0]
9 | ^

10 | |
11 \_______________________/ \---history[0] (newly taken bit)
12
13
14 (c[4] ^ h[ 0] generates the new c[0]).
15 (c[1] ^ h[12] generates the new c[2]).

Code 4.1: The circular shift register. When a new branch outcome is added,
the register is shifted (and wrapped around). The new outcome is added
and the oldest bit in the history is “evicted”.

Each TAGE table must maintain three CSRs. The first CSR is used for computing the
index hash and has a size n = log(num table entries). As a CSR contains the folded history,
any periodic history pattern matching the length of the CSR will XOR to all zeroes. This
can potentially be a quite common occurrence. To deal with this issue, there are two CSRs
for computing the tag hash, one of width n and the other of width n− 1.

For every prediction, all three CSRs (for every table) must be snapshotted and reset if a
branch misprediction occurs. Another three commit copies of these CSRs must be maintained
to handle pipeline flushes.

4.2.7.2 Usefulness Counters (u-bits)

The “usefulness” of an entry is stored in the u-bit counters. Roughly speaking, if an entry
provides a correct prediction, the u-bit counter is incremented. If an entry provides an
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incorrect prediction, the u-bit counter is decremented. When a misprediction occurs, TAGE
attempts to allocate a new entry. To prevent overwriting a useful entry, it will only allocate
an entry if the existing entry has a usefulness of zero. However, if an entry allocation fails
because all of the potential entries are useful, then all of the potential entries are decremented
to potentially make room for an allocation in the future.

To prevent TAGE from filling up with only useful but rarely-used entries, TAGE uses
a scheme for “degrading” the u-bits over time. A number of schemes have been proposed.
One option is a timer that periodically degrades the u-bit counters. Another option is to
track the number of failed allocations (incrementing on a failed allocation and decremented
on a successful allocation). Once the counter has saturated, all u-bits are degraded. BOOM
implements the u-bits as a 1-bit counter stored in a flip-flop array, as they are otherwise too
small to justify an SRAM and are easier to clear.

4.2.7.3 TAGE Snapshot State

For every prediction, all three CSRs (for every table) must be snapshotted and reset if a
branch misprediction occurs. TAGE must also remember the index of each table that was
checked for a prediction so the correct entry for each table can be updated later. TAGE
must remember the tag computed for each table – the tags will be needed later if a new
entry is to be allocated. Finally, commit copies of all CSRs are also maintained in the event
of a pipeline exception.

4.3 Addressing the Gaps Between RTL and Models

In this section we discuss how the BOOM RTL implementation of a branch predictor has
addressed the previously discussed deficiencies between the trace-based, unpipelined models
and RTL.

4.3.1 Superscalar Prediction

Superscalar fetch brings a number of challenges to branch prediction. Although unpipelined
simulators treat branch instructions as the basic quantum unit of execution, from the point-
of-view of the RTL, the fetch packet is the basis on which predictions are made.

Given the current fetch address, the branch predictor must provide answers to the fol-
lowing questions:

1. What should the fetch address be for the next cycle?

2. If we predict taken, which branch in the fetch packet should take credit?

BOOM’s BTB and conditional branch predictor take two different approaches to this
problem.
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The BTB performs a tag match using the fetch address. If there is a tag hit, the BTB pro-
vides an offset to denote which instruction in the fetch packet takes credit for the taken/not-
taken prediction. This can be problematic if many branches exist within a fetch packet that
alternate being taken/not-taken.

The conditional branch predictor instead uses a solution described by the EV8 proces-
sor [93]. A single lookup is performed based on an aligned fetch address which returns a
bit vector of predictions. Each bit corresponds to a taken/not-taken prediction for each in-
struction in the fetch packet. This prediction vector can then be cross-referenced against the
decoded fetch packet and the earliest predicted taken branch can be taken.

This method involves tracking the prediction counter state for all branches. In BOOM,
we tracked the outcomes for all branches within each fetch packet and updated the branch
predictor once the entire fetch packet had been committed. A write-mask allows BOOM to
only update entries where an actual branch resides to reduce aliasing.

This method of tracking the prediction state of individual branches works well for global
history predictors that do not use tags. However, for a given fetch address and global history,
there is likely only a single branch that is taken. Therefore, for more complex predictors
that add tags to each prediction entry, a more profitable solution is to only track the likely
taken branch and its offset within the fetch packet.

Superscalar fetch also adds difficulty to the management of the global history register.
Despite potentially fetching and predicting multiple branches every cycle, we reduce these
outcomes to a single bit of history per cycle. To do this, we take inspiration from the EV8 [93],
and reduce the taken/not-taken output across the entire fetch-packet via an OR-reduction.

4.3.2 Delayed History Update

The global history must reflect the outcome of all previous branches to the best of its ability.
This means we must update the global history speculatively, as we make predictions. How-
ever, as there is a delay between initiating a branch prediction and resolving the prediction,
the global history has a “shadow” in which branches are unable to see the direction of the
branch in the most recent cycles.

For processors such as the Alpha EV8 with its 8-wide fetch, this delay is accepted as
a “fact of life.” However, the Alpha EV8 designers mention that the difference between
their unpipelined simulator and their detailed Alpha EV8 micro-architectural simulator was
“insignificant” and the 3-cycle delayed history only “slightly degrades” accuracy with a “lim-
ited” impact [93]. They found adding in some path history recovers most of the performance
degradation. And for narrower-width processors, the odds of a branch being in the shadow
are rarer.

Part of the challenge in dealing with the delayed history update was in resetting the
history on a misprediction. On a misprediction on branch i, the global history must be reset
for use by branch i + 1 and updated to reflect the true outcome of branch i. This updated
history must include the branches that were in the shadow (e.g., branches i− 1 and i− 2) so
that branch i+1 sees the history it would normally see had branch i been correctly predicted.
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This snapshot restoration of the global history gets even more difficult when a fetch
packet contains multiple branches. If branch i at address a is mispredicted and its resolved
direction is not-taken, the front-end is restarted at address a + 41. If address a + 4 falls
within the same fetch packet as address a, there may be another branch i + 1. In order to
provide an accurate prediction of branch i+1, it must be provided a global history that does
not include branch i. This is to prevent double counting of the fetch packet that includes
branches i and i + 1, since, as discussed in the previous section, the entire outcome of the
fetch packet is reduced to a single bit of history.

4.3.3 Delayed Predictor Update

BOOM performs its updates of the conditional branch predictor after commit. This can
lead to some inaccuracy as a tight loop may have multiple iterations inflight and thus may
continue to mispredict the branches within the loop before the first iteration can update the
predictor. One solution is to bypass uncommitted updates to the fetch unit in a manner
similar to a store buffer bypassing data to dependent loads [90].

4.3.4 Accurate Cost Measurements

Unpipelined models judge branch predictors on two metrics: the number of branch mispre-
dictions and the number of bits used to track the prediction state.

However, not all branches have an equal effect on performance. One mispredicted branch
may be completely hidden behind a cache miss while another branch misprediction may
depend on a long latency operation and cause a large amount of wasted work to be discarded.
Although not explored in this thesis, a detailed processor and branch predictor simulation
may allow for more interesting ideas to be explored, such as detecting which branches are
“critical” and allocating different resources to critical branches [34].

The other aspect more accurately captured by RTL is the area and energy costs of the
branch predictor as opposed to the raw memory size of the predictor itself. First, some
prediction structures more readily map to size-efficient single-ported SRAMs. Second, RTL
implementations must be able to handle snapshot and recovery of the branch prediction state.
Some predictor designs require a significant amount of snapshot state that is not tracked
as a measurement in some branch prediction contests. For example, the gshare predictor
only needs to track ≈15 bits of history for each prediction. However, one of the submitted
TAGE predictor entries to the “4kB limited size” branch predictor contest uses 1347 bits
of history and 15 tables of mostly 1024 entires per table [91]. Although the global history
could be implemented as a circular buffer, which requires only saving and restoring a head
pointer, each table requires three circular shift registers of 7 to 16 bits each as recommended
by [68]. These snapshot costs are sizable relative to the rest of the predictor. A realistic RTL

1This discussion presupposes the ISA is RV64G in which all instructions are 4-bytes in size.
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implementation of TAGE is incentivized to either pursue other techniques of checkpointing
TAGE state or to pursue many fewer prediction tables.

4.3.5 Implementation Realism

Even if accurate costs of prediction and checkpoint state are taken into account, the design
may still fail a realizability test. For example, one branch prediction technique that has
been used previously is a local history predictor [55]. This requires tracking history on a
per branch instruction basis as opposed to the global history tracking branch outcomes on a
per program basis. This local history is then used to index into second-level table to make
a prediction. However, for a processor fetching four instructions a cycle, this design could
require a second-level table with 4 read ports. For this reason, the Alpha EV8 design team
discarded the use of a local history predictor which had been used in the previous Alpha
21264 design [93].

Branch predictors must also be capable of achieving high clock frequencies and low access
latencies, setting further constraints on the organization and algorithmic complexity of the
design. The Alpha EV8 team spent considerable effort mapping four separate branch pre-
dictors (with a tournament function to choose a winner amongst them) into a design using
single-ported, four-way interleaved banks. This required the designers to choose incredibly
clever hashing functions that caused each of the four branch predictors to index into the same
physical bank and wordline index, while still maintaining enough randomness in the hashed
offset to provide the appearance of four separate, uncorrelated branch predictors. Their
index hash functions also took into account the criticality of each bit. The bank selector is
most critical, so those two bits came straight from the fetch address and were unhashed. The
wordline index selection was less critical, and was performed using one logic-level of XOR
hashing with the global history. Finally, the bit offset index was least critical, and used a
larger XOR tree to compute.

4.4 Proposed Improvements for Software Model

Evaluations

Although we have strived to make implementing new branch predictor designs in BOOM an
approachable project, we recognize the incredible usefulness of C++-based software models
at exploring a vast design space, the ease at which new ideas can be implemented, and the
simulation speed that is competitive with FPGAs without suffering the FPGA synthesis
overhead. To this end, we have a few proposals that may help increase the fidelity of the
software-based simulation models without significantly hampering designer productivity.

Not all state bits are equal in cost. Designs should strive to account for the particular
implementation technology for their memory arrays. Are they using single-ported or two-
ported SRAM? Are these bits stored in flip-flops?
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Models can queue up prediction updates and perform them at some later time to mimic
the delay in updating the predictor. This delay can be changed to show the sensitivity of a
particular design to this update latency.

State checkpointing costs should also be measured. Although traces only provide a path
of committed instructions, the simulator could occasionally inject synthetic false paths that
then require state restoration when resolving the mispredicted branch. If the designer fails
to properly handle checkpoints and restores, the performance of the branch predictor may
suffer as it gets polluted by wrong information.

The simulation traces can be augmented with information on which branches may be
more critical relative to other branches. For example, a cache model could be used to
correlate which load-dependent branches are likely to be more expensive to mispredict due
to a cache miss from the load.

Although these proposed changes are not meant to replace the existing “Level 0” un-
pipelined simulators, they can provide a supplementary “Level 1” model that attempts to
provide a more accurate gauge of a branch predictor’s effect on performance, power, and
area. Valuable future work would be to find exactly where these Level 0 and Level 1 models
can lead to inconsistent qualitative results in providing relative rankings of different designs.

4.5 Conclusion

Branch prediction research has been an important and well-studied field for over 30 years.
Trace-based, one-at-a-time, unpipelined simulations have allowed researchers to focus on
quickly exploring the effectiveness of high-level algorithms to find the upper-bound perfor-
mance. However, RTL implementers must bring their own creativity to the table in mapping
well-performing models to RTL. This chapter discusses some of the gaps between models and
RTL and how BOOM’s implementation of two different branch predictors address these chal-
lenges.

There were a number of challenges in implementing a branch predictor at the RTL level.
Superscalar prediction and the disconnect between instructions and fetch packets, mixed
with the delayed updating of the global history register, meant that multiple executions of
the same code path might not see consistent behavior from run to run due to icache misses,
TLB misses, backend stalls, and branch mispredictions.

The delayed history register behavior was unbelievably difficult to handle. A “shadow”
existed where branches making predictions used a global history that did not reflect the
direction of the branch one or two cycles in front of it. When a branch mispredicted, the
global history has to be reset and corrected to reflect the true program’s global history which
must accurately capture this “shadow.” Path-based prediction [73] may prove to be a more
effective means of tracking program behavior.

Updating the predictor speculatively, maintaining predictor snapshots, and resetting the
predictor on mispredictions or pipeline exceptions is a complexity not explored in unpipelined
simulators. This complexity changes the cost models of different predictor configurations.



CHAPTER 4. BRANCH PREDICTION 79

Branch predictors have the nice property that correctness is not required, but the down-
side is that they are more difficult to test for performance degradation. A set of simple
functional tests were used to look for performance regressions, but more complex interac-
tions are difficult to verify.

Despite these challenges, a synthesizable branch predictor has been successfully imple-
mented for BOOM. Using a geometric mean across 9 SPECint benchmarks, BOOM using
a 15-bit gshare predictor has a branch misprediction rate of 8.9%, which is half as many
mispredictions as the Cortex-A9 with 19.0%. A 13-bit gshare predictor, implemented using
three 2kB single-port SRAMs, was taped out as part of the BROOM test chip.
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Chapter 5

Describing an Out-of-order Execution
Pipeline Generator

The execution pipeline resides in the core’s “backend” and is where operations, as described
by the instructions that have been fetched by the frontend, are carried out. For a modern
out-of-order core, these operations are executed speculatively (the frontend may have fetched
the wrong instructions) and in the order of their dependences (and not in the order they
were fetched).

The execution pipeline contains many different functional units, each supporting a differ-
ent set of operations such as arithmetic computations, memory system requests, or changes
to the control flow of the instruction stream.

The execution datapath can vary widely between processors in both the number and the
mix of the provided functional units. A Cortex-A15 can issue up to eight micro-ops per cycle
onto eight different functional units — two integer arithmetic/logic units (ALUs), an integer
multiplier, two floating-point/NEON vector units, a branch unit, a memory load unit, and a
memory store unit. The pipeline depth of each functional unit of the A15 varies from three
cycles for an integer ALU unit to twelve cycles for a floating-point unit [113]. Similarly, the
Samsung M1 is able to issue up to nine micro-ops per cycle — it adds an additional issue
scheduler for store data generation [18]. Table 5.1 shows a comparison of different industry
processor datapaths.

The goal of this chapter is to provide insight into how BOOM’s execution pipeline is
mapped to Chisel RTL and how leveraging good software engineering practices has allowed
us to describe a parameterizable pipeline generator that can be extended with additional
functionality relatively quickly. More importantly, we have been able to utilize expert-
written hardware units designed for use in a different context by encapsulating them in a
manner that allows them to operate within a parameterized and highly speculative out-of-
order pipeline. By implementing a pipeline generator for BOOM’s out-of-order execution
pipeline and utilizing expert-written hardware, we were able to quickly implement RISC
instructions in BOOM as well as pursue more radical design changes such as those discussed
in Chapter 6.
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This chapter first details the design goals and challenges behind the implementation of
BOOM’s execution datapath in Section 5.1, followed by a description of the implementation
in Section 5.2. Section 5.3 then presents a small case study describing how adding support for
single- and double-precision floating point was aided by BOOM’s generator design. Section
5.4 walks through an example of adding a new instruction to BOOM’s pipeline. Section 5.5
discusses some of the limitations of the generator design and Section 5.6 concludes.

5.1 Goals and Challenges

As a processor generator, BOOM needs the flexibility to provide the designer a range of
execution datapath options. If BOOM can generate a variety of datapath designs, the
designer can then explore the design space via simulation to find the optimal functional unit
mix that provides the best performance for a particular set of workloads. In order to achieve
this goal, the execution datapath must be parameterizable. However, this flexibility comes
with challenges.

The first challenge is the wide reach of the execution pipeline. It interacts with many
disparate parts of the processor core and making the execution pipeline flexible requires
making all of the other units it interacts with flexible as well. Adding additional functional
units typically requires adding more issue ports to the issue windows and more read and
write ports to the register file.

Another challenge is that functional units are incredibly complex units that are carefully
crafted to provide high performance within a given area constraint. Therefore, it is highly
desirable to reuse expert-written functional units that were likely implemented with different
micro-architectures in mind. BOOM makes use of the berkeley-hardfloat repository [114],
which provides a set of expert-written floating-point units designed for the in-order Rocket
processor and Rocket-compatible vector units. However, the hardfloat units are designed
under the assumption that all operations the units receive are committed and will modify the
architectural state of the processor. This assumption is at odds with the highly speculative,
run-ahead nature of an out-of-order processor like BOOM.

In summary, the two main design challenges are:

1. Providing flexibility to change the number and mix of functional units in the execution
datapath.

2. Being able to leverage expert-written functional units that may not perfectly match
an out-of-order pipeline.

To address this challenge, BOOM has a notion of an abstract FunctionalUnit class that
provides a generic interface to the rest of the execution datapath. Expert-written functional
units can then be encapsulated within the FunctionalUnit wrapper. The wrapper handles
the meta-data needed to track the speculation state of each micro-op occupying the functional
unit’s pipeline and suppresses write-back as needed once each micro-op finishes execution.
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Table 5.1: A survey of industry execution datapaths and the different functional units available.
There is no consensus on the exact number and mix of functional units provided. More functional
units allows for more simultaneous operations that improves performance, but more units require
more issue ports and register file ports, which are expensive commodities.

MIPS R10K Cortex-A9 Cortex-A15 Samsung M1
[124] [44] [113] [18]

Year 1996 2007 2010 2016
Max Issue

5 4 8 9
Width

Dedicated
0 0 1 1

Branch Unit

Simple 1 1 2 2
Integer Unit ALU+Br ALU+Br ALU ALU

Complex 1 1 1 1
Integer Unit iMul/iDiv iMul iMul ALUC/iMul/iDiv

Floating 1+1 1 2 1 + 1
Point Unit FAdd+FMul FP/NEON FP/NEON FMul/SIMD+FAdd/SIMD

Memory Unit
1 1 1+1 1+1+1

Load/Store Load/Store Load+Store Load+Store AddrGen
+Store DataGen
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This functional unit abstraction can be further extended; an abstract ExecutionUnit can
encapsulate many functional units and provide a generic interface to the processor’s issue
ports, register file ports, and load/store unit ports. The next section, Section 5.2, goes into
more detail on the implementation of BOOM’s execution datapath and how it addresses the
challenges raised here.

5.2 The BOOM Execution Pipeline

The execution pipeline covers the execution and write-back of micro-ops. Although the
micro-ops will travel down the pipeline one after the other (in the order they have been
issued), the micro-ops themselves are likely to have been issued to the execution pipeline
out-of-order. Figure 5.1 shows an example execution pipeline for a dual-issue BOOM.

5.2.1 Branch Speculation

All micro-ops that are “inflight” in BOOM are given a branch mask, where each bit in the
branch mask corresponds to an un-executed, inflight branch that the micro-op is speculated
under. Each branch in Decode is allocated a branch tag, and all following micro-ops will have
the corresponding bit in the branch mask set (until the branch is resolved by the Branch
Resolution Unit).

If the branches (or jumps) have been correctly speculated by the front-end, then the
Branch Resolution Unit’s only action is to broadcast the corresponding branch tag to all
inflight micro-ops that the branch has been resolved correctly. Each micro-op can then clear
the corresponding bit in its branch mask, and that branch tag can then be allocated to a
new branch in the Decode stage.

If a branch (or jump) is misspeculated, the Branch Resolution Unit must redirect the PC
to the correct target, clear the front-end and fetch buffer, and broadcast the misspeculated
branch tag so that all dependent, inflight micro-ops may be killed.

These branch resolution signals are broadcast to all functional units which must track
the speculation status of each micro-op under its stewardship and suppress the write-back
of any killed micro-ops.

5.2.2 Execution Units

An Execution Unit is a module that a single issue port will schedule micro-ops onto and
contains some mix of functional units. Phrased in another way, each issue port from the
issue window talks to one and only one Execution Unit. An Execution Unit may contain just
a single simple integer ALU, or it could contain a full complement of floating point units, a
integer ALU, and an integer multiply unit.

An Execution Unit provides a bit-vector of the functional units it has available to the
issue scheduler. The issue scheduler will only schedule micro-ops that the Execution Unit
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Issue 
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Writeback
(3 write)bypassing
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bypassing

ALU

FPU

bypass
network

Regfile
Read

(5 read)

imul

Regfile

Execute Unit #0

Execute Unit #1

Figure 5.1: An example pipeline for a dual-issue BOOM. The first issue port schedules micro-ops
onto Execute Unit #0, which can accept ALU operations, FPU operations, and integer multiply op-
erations. The second issue port schedules ALU operations, integer divide instructions (unpipelined),
and load/store operations. The ALU operations can bypass to dependent instructions. Note that
the ALU in EU#0 is padded with pipeline registers to match latencies with the FPU and iMul
units to make scheduling for the write-port trivial. Each Execution Unit has a single issue-port
dedicated to it but contains within it a number of lower-level Functional Units.

1 val exe_units = ArrayBuffer[ExecutionUnit]()
2
3 exe_units += Module(new ALUExeUnit(is_branch_unit = true,
4 has_fpu = true,
5 has_mul = true,
6 shares_csr_wport = true
7 ))
8 exe_units += Module(new ALUExeUnit(has_div = true
9 ))

10 exe_units += Module(new MemExeUnit())

Code 5.1: Describing the pipeline in Chisel code. Additional Execution Units may be
added to exe units and the connections to the register file and issue window will be
handled automatically.
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Figure 5.2: An example Execution Unit. This particular example shows an integer ALU (that
can bypass results to dependent instructions) and an unpipelined divider that becomes busy during
operation. Both functional units share a single write-port. The Execution Unit accepts both kill
signals and branch resolution signals and passes them to the internal functional units as required.
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supports. For functional units that may not always be ready (e.g., an iterative divider), the
appropriate bit in the bit-vector will be disabled (see Fig 5.2).

The abstract Execution Unit module provides a flexible abstraction which gives a lot of
control over what kind of Execution Units the architect can add to their pipeline. The rest of
the processor pipeline – the issue ports, the register file ports, and the load/store unit ports
– only need to interface directly with the abstract Execution Unit input/output interface.

Code 5.1 shows the top-level instantiation of the execution pipeline. An ArrayBuffer

of ExecutionUnits are constructed. The register file ports and issue select ports are auto-
generated to interface with the exe units array. Constructor arguments to each Execution
Unit enables the desired functional units within each Execution Unit.

5.2.3 Functional Units

Functional units are the muscle of the CPU, computing the necessary operations as required
by the instructions. Functional units typically require a knowledgable domain expert to
implement them correctly and efficiently.

For this reason, BOOM uses the expert-written, low-level functional units from the Rocket
and Berkeley hardfloat repositories [83, 114]. However, the expert-written functional units
created for the Rocket in-order processor make assumptions about in-order issue and commit
points – namely, that once an instruction has been dispatched to them it will never need
to be killed. These assumptions break down for out-of-order processors that derive a lot of
their performance by speculatively running ahead and executing instructions that may need
to be killed.

Instead of attempting to re-write the functional units to understand the semantics of a
speculative and out-of-order pipeline, BOOM provides an abstract FunctionalUnit class
(see Fig 5.3) that “wraps” the lower-level functional units with the parameterized auto-
generated support code needed to make them work within BOOM. The request and response
ports are abstracted, allowing functional units to provide a unified, interchangeable interface.
Each functional unit also provides a set of configurable parameters allowing the wrapper to
match the underlying characteristics of the low-level functional unit.

Figure 5.5 shows the full hierarchy of functional units and their abstract helper modules.
From the abstract FunctionalUnit class, functional units are further broken down into
Pipelined and Iterative units.

5.2.3.1 Pipelined Functional Units

A pipelined functional unit can accept a new micro-op every cycle, and each micro-op will
take a known, fixed latency.

Speculation support is provided by auto-generating a pipeline that passes down the
micro-op meta-data and branch mask in parallel with the micro-op within the expert-written
functional unit. If a micro-op is misspeculated, it’s response is de-asserted as it exits the
functional unit. Fig 5.3 shows an example pipelined functional unit.
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Figure 5.3: The abstract Pipelined Functional Unit class. An expert-written, low-level functional
unit is instantiated within the Functional Unit. The request and response ports are abstracted and
bypass and branch speculation support is provided. Micro-ops are individually killed by gating off
their response as they exit the low-level functional unit.
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hardfloat
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PipelinedUnit
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FunctionalUnit
(adds generic IO)

Figure 5.4: The functional unit abstraction allows for the easy encapsulation of expert-written
functional unit logic. The expert-written logic is instantiated by a PipelinedUnit, which adds auto-
generated speculation support logic. The encompassing FunctionalUnit abstract class provides a
generic I/O interface into the unit that allows the rest of the BOOM pipeline to interface with any
functional unit.
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5.2.3.2 Iterative Functional Units

Iterative functional units take a variable (and unknown in advance) number of cycles to com-
plete a single operation. Once occupied, they de-assert their ready signal and no additional
micro-ops may be scheduled to them. An example iterative unit is an integer divider.

Speculation support is provided by tracking the branch mask of the micro-op in the
functional unit. An expert-written iterative functional unit should provide a kill signal to
quickly remove misspeculated micro-ops. BOOM currently only supports single-occupancy
in its iterative functional units.

5.2.4 The Load/Store Unit

The Load/Store Unit (LSU) is a challenging unit to encapsulate. A pipelined MemAddrCalc

unit is exposed as an Execution Unit to the issue ports for scheduling load and store micro-
ops. However, the LSU differs from other pipelined functional units in a number of ways.
First, it needs a connection to the L1 data cache which can invoke architecturally-visible
changes. Second, load instructions exhibit a variable execution latency due to cache misses
and structural hazards in the data cache.

5.3 Case Study: Adding Floating-point Support

This section highlights the advantages to the implementation strategy behind BOOM’s ex-
ecution datapath by discussing the success in adding floating-point instruction support to
BOOM over a period of twelve days and in 1092 lines of code.

The RISC-V ISA supports single (F) and double-precision (D) floating-point operations
that handle operations that act on a new set of 32 floating-point registers. The F and D
extensions also add a new floating-point control and status register (fcsr), which stores the
current dynamic rounding mode, and the accrued exception state (fflags). Data can be
moved into and out of the floating-point register file via load and store instructions or by
moving values to and from the integer register file.

The RV64FD ISA supports the IEEE 754-2008 floating-point standard and includes sup-
port for fused multiply-adds, divisions, and square roots. IEEE 754 floating-point comes
with a number of challenges not faced with integer-only pipelines including:

1. support for a separate floating-point register file

2. new special-case values such as infinities, NaNs (not-a-number), and subnormals

3. accrued exceptions to track the occurrence of overflow, underflow, division by zero,
invalid operation, and inexact result

4. multiple rounding modes such as round-to-nearest-ties-to-even (RNE) and round-towards-
zero (RTZ).
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Figure 5.5: The Functional Unit class hierarchy. The dashed ovals are the low-level functional
units written by experts, the squares are concrete classes that instantiate the low-level functional
units, and the octagons are abstract classes that provide generic speculation support and interfacing
with the BOOM pipeline.
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The berkeley-hardfloat repository [114] provides a library of parameterizable hardware
floating-point units written in Chisel. The included units provide support for fused multiply-
add, divide, square root, conversion between integer and floating-point values, and conversion
between floating-point values of differing precision. The implementations of the hardware
units total roughly 3,800 lines of code. The widths of the exponent and significand are
parameterizable. The floating-point units intending to be pipelined are implemented as
combinational logic; the instantiating module must add registers behind the floating-point
logic and use the synthesis tool’s register retiming logic to effect the desired pipeline latency.

5.3.1 Register File and Register Renaming

In adding floating-point support, we decided to use the existing physical register file to hold
both integer and floating-point values. We augmented the register renaming stage to treat
the 32 floating-point registers as an extension of the existing 32 integer registers by mapping
f0 through f31 to logical registers 32 through 63. This technique allows the busy table,
rename map tables, free list register allocator, and register wakeup logic to come “for free”.
None of these structures have any knowledge of integer versus floating-point but instead
see the integer registers x0 through x31 as logical registers 0 through 31 and the floating-
point registers f0 through f31 as logical registers 32 through 63. All physical registers were
expanded to 65-bits as the berkeley-hardfloat units are designed to handle an internal
65-bit format in which the exponent has an additional bit to handle subnormal numbers
more efficiently.

Chapter 6 discusses later efforts to separate the floating-point registers from the integer
registers to aid in physical design.

5.3.2 Issue Window

We also continued using a single unified issue window to store all instructions. The pipelined
floating-point unit (FPU), which handles fused multiply-add operations, conversions, and
moves, was placed into the same execution units with other integer functional units. As
such, FMA operations used the same issue select port and register file ports as the pipelined
integer ALU and integer multiplier units (see Figure 5.1). To make the scheduling of the
write ports easier, all functional units within an execute unit are padded to the same latency.
For example, the integer ALU now matches the latency of the 3-cycle double-precision FMA
unit. To prevent any performance degradation, the ALU is able to bypass its value to any
dependent operations until it is written back to the register file.

5.3.3 Floating-point Control and Status Register (fcsr)

The RISC-V F and D extensions add accrued exception state. Many floating-point operations
may set an exception condition code upon completion. However, no exception is taken.
Instead, the programmer must query the floating-point status register to view the current
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state of the exception condition codes. Each FPU has a port into the re-order buffer (ROB)
to track its exception state. Upon commit, the exception state is accrued into the floating-
point status register. When a CSR read instruction for the floating-point status register is
encountered, the pipeline is serialized.

Both static and dynamic rounding modes are supported. Static rounding modes are
embedded in the instruction and are passed down the pipeline as part of the micro-op meta-
data. The dynamic rounding mode is set as part of the floating-point control/status register.
Changes to fcsr serializes the pipeline.

5.3.4 Hardfloat and Low-level Instantiations

The berkeley-hardfloat repository provides a library of low-level building blocks encom-
passing 3,800 lines of Chisel code. The Rocket-chip processor library instantiates these blocks
and provides the control logic and pipeline registers to build a fully functioning floating-point
pipeline. Code 5.2 shows the instantiation of the FMA pipeline. Notice that this FMA
pipeline has no knowledge of speculation or out-of-order execution. Any requests sent to the
FMA pipeline will return a fixed latency cycles later and cannot be killed.

BOOM then bundles the FMA pipeline and other floating-point pipelines to implement a
full floating-point unit (FPU). The bundled units include a single-precision FMA pipeline, a
double-precision FMA pipeline, an Int-to-FP conversion unit, an FP-to-Int conversion unit,
and an FP-to-FP conversion unit. This FPU unit, including all of the control logic, is 203
lines of code. To make scheduling the write port easier, all operations use the same latency.
This unit also has no knowledge of speculation.

Table 5.2: The hierarchy from an abstract FunctionalUnit to an expert-written fused multply-add
block. The lower level units originate from other repositories.

Repository Unit lines of code
BOOM FunctionalUnit (abstract) 20
BOOM PipelinedFunctionalUnit (abstract) 69
BOOM FPUUnit (speculation wrapper) 10
BOOM FPU (no speculation support) 203
Rocket FP pipelines (e.g., DFMA Pipeline) 274

hardfloat hardfloat blocks (e.g., mulAddSubRecodedFloatN) 2,061

5.3.5 Pipelined Functional Unit Wrapper

As the FMA pipeline and the FPU that instantiates it has no knowledge of speculation, we
must encapsulate them in a PipelinedFuntionalUnit to provide the necessary speculation
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1 class FPUFMAPipe(val latency: Int, sigWidth: Int, expWidth: Int) extends Module
2 {
3 val io = new Bundle {
4 val in = Valid(new FPInput).flip
5 val out = Valid(new FPResult)
6 }
7
8 val width = sigWidth + expWidth
9 val one = UInt(1) << (width-1)

10 val zero = (io.in.bits.in1(width) ^ io.in.bits.in2(width)) << width
11
12 val valid = Reg(next=io.in.valid)
13 val in = Reg(new FPInput)
14 when (io.in.valid) {
15 in := io.in.bits
16 val cmd_fma = io.in.bits.ren3
17 val cmd_addsub = io.in.bits.swap23
18 in.cmd := Cat(io.in.bits.cmd(1) & (cmd_fma || cmd_addsub), io.in.bits.cmd(0))
19 when (cmd_addsub) { in.in2 := one }
20 unless (cmd_fma || cmd_addsub) { in.in3 := zero }
21 }
22
23 val fma = Module(new hardfloat.mulAddSubRecodedFloatN(sigWidth, expWidth))
24 fma.io.op := in.cmd
25 fma.io.roundingMode := in.rm
26 fma.io.a := in.in1
27 fma.io.b := in.in2
28 fma.io.c := in.in3
29
30 val res = new FPResult
31 res.data := fma.io.out
32 res.exc := fma.io.exceptionFlags
33 io.out := Pipe(valid, res, latency-1) // <<--- register re-timing
34 }

Code 5.2: The code for the FMA pipeline is shown that instantiates a berkeley-hardfloat
mulAddSubRecodedFloatN module for describing a fused multiply-add unit. Notice line 33
pads the latency of the unit and uses register retiming to implement a parameterized
latency, pipelined FMA unit.
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1 class FPUUnit(num_stages: Int) extends PipelinedFunctionalUnit(
2 num_stages = num_stages,
3 num_bypass_stages = 0,
4 earliest_bypass_stage = 0,
5 data_width = 65)
6 with BOOMCoreParameters
7 {
8 val fpu = Module(new FPU())
9 fpu.io.req <> io.req

10 fpu.io.req.bits.fcsr_rm := io.fcsr_rm
11 io.resp <> fpu.io.resp
12 io.resp.bits.fflags.bits.uop := io.resp.bits.uop
13 }

Code 5.3: Wrapping the FPU in the pipelined functional unit wrapper.

support. This encapsulation is straightforward, as the abstract class is doing all of the
heavy work of auto-generating the supporting speculation hardware and tracking of the
inflight micro-ops and branch masks. As shown in Code 5.3, this takes 10 lines of code.
Now, micro-ops may be executed on this unit out-of-order and any micro-ops killed by
misspeculation will have their writes suppressed while leaving the other micro-ops in the
pipeline untouched. Table 5.2 shows the entire hierarchy from berkeley-hardfloat to
BOOM’s abstract class FunctionalUnit, complete with a breakdown of the lines of code for
each level in the hierarchy.

5.3.6 Adding the FPU to an Execution Unit

The final step of adding an expert-written unit to BOOM is to take the PipelinedFunctional-
Unit and instantiate it in an Execution Unit. The Execution Unit is a collection of func-
tional units that share a single issue select port and a set of register file access read and
write ports. To make adding floating-point support to BOOM easy, we added the FPUs to
existing integer Execution Units. This approach was made possible by placing the floating-
point instructions into the same issue window and using the same physical register file as
the integer instructions. Code 5.4 shows the necessary code added to an existing Execution
Unit to instantiate an FPU and have it share the existing request port and response port
with the other functional units.

5.3.7 Results

Figure 5.6 shows how quickly floating-point support was added based on the git commit
history. At the end of two weeks, we could describe somewhat arbitrary superscalar, out-of-
order datapaths with floating-point units. We could parameterize the latency of the FPUs
and the number of FPUs. In changing these configurations, the issue ports, register file
ports, rename logic, wakeup logic, and more are auto-generated to interface with the new
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1 // The list of all functional units in this ExecutionUnit
2 val fu_units = ArrayBuffer[FunctionalUnit]()
3 ...
4
5 // FPU Unit -----------------------
6 var fpu: FPUUnit = null
7 if (has_fpu)
8 {
9 fpu = Module(new FPUUnit())

10 fpu.io.req.valid := io.req.valid && io.req.bits.uop.fu_code_is(FU_FPU)
11 fpu.io.req.bits.uop := io.req.bits.uop
12 fpu.io.req.bits.rs1_data := io.req.bits.rs1_data
13 fpu.io.req.bits.rs2_data := io.req.bits.rs2_data
14 fpu.io.req.bits.rs3_data := io.req.bits.rs3_data
15 fpu.io.req.bits.kill := io.req.bits.kill
16 fpu.io.fcsr_rm := io.fcsr_rm
17 fpu.io.brinfo <> io.brinfo
18
19 fu_units += fpu
20 }
21 ...
22
23 io.resp(0).valid :=
24 fu_units.map(_.io.resp.valid).reduce(_|_)
25 io.resp(0).bits.uop :=
26 new MicroOp().fromBits(
27 PriorityMux(fu_units.map(f => (f.io.resp.valid, f.io.resp.bits.uop.toBits))))
28 io.resp(0).bits.data :=
29 PriorityMux(fu_units.map(f => (f.io.resp.valid, f.io.resp.bits.data.toBits))).toBits

Code 5.4: Instantiating the FPU within an Execution Unit.
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plemented over a two week period.
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configuration. This effort was made easier by having a good abstraction framework developed
and having an open-source repository of expert-written functional units to utilize.

THis two week case study of adding floating-point support was only an initial effort.
Chapter 6 will discuss a later effort to improve synthesis quality-of-result by splitting the
integer and floating-point registers into separate register files and the splitting of the issue
window into three separate issue windows for integer, memory, and floating-point operations.

5.4 Case Study: Adding a Binary Manipulation

Instruction

Provided the framework discussed in the previous sections, we can quickly add new instruc-
tions to BOOM that do not deviate too far from standard RISC-like micro-ops.

A proposed extension to the RISC-V ISA is the Binary manipulation extension “B”. This
extension may include rotates, byte swaps, counting leading zeroes, and population count.
The popcnt instruction returns the number of 1s in a register. This instruction was added
to the x86 ISA as part of the SSE2 extension and was measured to take 3 cycles on an Intel
Skylake core with a throughput of 1 instruction per cycle [36].

A potential implementation of popcnt can be described using fully combinational logic
and then padded with two registers and retimed to provide three cycles to complete the
computation while also allowing a pipeline throughput of one operation per cycle.

5.4.1 Decode, Rename, and Instruction Steering

First, our instruction must be added to the decode table in the Decode stage (Code 5.5). In
particular, we must specify the type of registers used by the instruction and which functional
unit the instruction should be steered towards. The register types help guide register re-
naming and ensures we write back to the correct register file. Instructions that want to add
additional operations to existing functional units can continue to use an existing functional
unit’s code. For example, saturating arithmetic will want to use the existing arithmetic logic
unit (ALU) path.

5.4.2 The Popcount Unit Implementation

We then need to implement the popcount functional unit. This unit will perform a popcount
operation with the specified latency and throughput but otherwise have no support for
speculation. Code 5.6 shows an implementation of a popcount unit.

Next, we encapsulate the low-level popcount unit with the PipelinedFunctionalUnit

abstract class to provide the speculation support necessary for speculative, out-of-order
execution as shown in Code 5.7.

Next, we need to instantiate this PipelinedPopcntUnit functional unit within an Exe-
cution Unit as shown in Code 5.8. We can place the popcount functional unit within the
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1 // frs3_en
2 // is val inst? | imm sel
3 // | is fp inst? | |
4 // | | is single-prec? rs1 regtype | |
5 // | | | micro-code | rs2 type| |
6 // | | | | iq-type func unit | | | |
7 // | | | | | | | | | |
8 // | | | | | | dst | | | |
9 // | | | | | | regtype | | | |

10 // | | | | | | | | | | |
11 val table: Array[(BitPat, List[BitPat])] = Array(// | | | | |
12
13 POPC -> List(Y, N, X, uopPOPC , IQT_INT, FU_POPC, RT_FIX, RT_FIX, RT_X , N, IS_X,
14
15 // bypassable (aka, known/fixed latency)
16 // is_load | br/jmp
17 // | is_store | | is jal
18 // | | is_amo | | | allocate_brtag
19 // | | | is_fence | | | |
20 // | | | | is_fencei | | | |
21 // | | | | | mem mem | | | | is unique? (clear pipeline first)
22 // | | | | | cmd msk | | | | | flush on commit
23 // | | | | | | | | | | | | | csr cmd
24 // | | | | | | | | | | | | | |
25
26 N, N, N, N, N, M_X , MSK_X , N, N, N, N, N, N, CSR.N),
27 ...

Code 5.5: The decode table entry for popcount. The most relevant part is marking the

register types and the functional unit type (FU POPC).

1 class PopCntUnit(num_stages: Int) extends Module
2 {
3 val io = new Bundle {
4 val valid = Bool(INPUT)
5 val dw = Bool(INPUT)
6 val in0 = UInt(INPUT, 64)
7 val out = UInt(OUTPUT, 64)
8 }
9

10 val result =
11 Mux(io.dw,
12 PopCount(io.in0),
13 PopCount(io.in0(31,0)))
14
15 io.out := Pipe(io.valid, result, num_stages).bits
16 }

Code 5.6: The “expert-written” popcount functional unit. It has no knowledge of
speculation or out-of-order execution and provides no ability to kill any particular micro-op
currently occupying the popcount unit. The PopCount construct in Chisel combinationally
sums the bits in a signal. The latency is padded to num stages by using the Pipe construct
which adds registers to effect the requested latency. Synthesis tools can later use register
retiming to balance the popcount logic as needed.
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1
2 class PipelinedPopcntUnit(implicit p: Parametrs) extends PipelinedFunctionalUnit(
3 num_stages, p(tile.TileKey).core.popc.latency,
4 num_bypass_stages = 0,
5 earliest_bypass_stage = 0,
6 data_width = 64)(p)
7 {
8 val pcu = Module(new PopCntUnit)
9 pcu.io.valid := io.req.valid

10 pcu.io.in0 := io.req.bits.rs1_data
11 pcu.io.in1 := io.req.bits.rs2_data
12 pcu.io.dw := io.req.bits.uop.ctrl.fcn_dw
13
14 io.resp.bits.data := pcu.io.out
15 }

Code 5.7: The “expert-written” popcount functional unit is then encapsulated by the
PipelinedFunctionalUnit abstract class that provides the speculation support and
interfacing with the rest of the execution pipeline.
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1 class ALUExeUnit(
2 ...
3 use_popc : Boolean = false)
4 (implicit p: Parameters)
5 extends ExecutionUnit(
6 ...
7 has_popc = has_popc)(p)
8 {
9 ...

10
11 // signal to the issue select port via the fu_types bit vector
12 // that we support popcnt operations.
13 io.fu_types := FU_ALU |
14 ...
15 Mux(Bool(has_popc), FU_POPC, 0.U)
16
17 // The list of all functional units in this ExecutionUnit
18 val fu_units = ArrayBuffer[FunctionalUnit]()
19 ...
20
21 // POPCNT Unit -----------------------
22 var pcu: PipelinedPopcntUnit = null
23 if (has_popc)
24 {
25 pcu = Module(new PipelinedPopcntUnit())
26 pcu.io.req.valid := io.req.valid && io.req.bits.uop.fu_code_is(FU_POPC)
27 pcu.io.req.bits.uop := io.req.bits.uop
28 pcu.io.req.bits.rs1_data := io.req.bits.rs1_data
29 pcu.io.req.bits.rs2_data := io.req.bits.rs2_data
30 pcu.io.req.bits.kill := io.req.bits.kill
31 pcu.io.brinfo <> io.brinfo
32
33 fu_units += pcu
34 }
35 ...

Code 5.8: The popcount unit with speculation support is then instantiated by an Execution
Unit, which provides the interfacing to the rest of the execution pipeline. In this example,
we have added the popcount unit to the existing ALUExeUnit and then signaled our support
of popcount instructions via the fu types bit vector, which provides the issue select port
information on what operations this Execution Unit supports.

existing ALUExeUnit and provide a new constructor parameter to enable the popcount unit
as desired. In Code 5.9 we show instantiating the popcount unit in an Execution Unit
alongside an integer multiplier and an integer ALU.

5.5 Limitations

The organization of BOOM’s execution pipeline — focused on supporting RISC instructions
– has allowed us to quickly and easily add support for the entire RV64G ISA by reusing
expert-written functional units. However, some assumptions have been made and not all
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1 val exe_units = ArrayBuffer[ExecutionUnit]()
2
3 exe_units += Module(new ALUExeUnit(is_branch_unit = true,
4 has_fpu = true,
5 shares_csr_wport = true
6 ))
7 exe_units += Module(new ALUExeUnit(has_div = true
8 has_mul = true,
9 has_popc = true

10 ))
11 exe_units += Module(new MemExeUnit())

Code 5.9: Describing the pipeline with a popcount unit added to the second ALUExeUnit.
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types of instruction extensions map well to the current organization.
First, BOOM only supports resolving one branch instruction per cycle. Although this is

not an insurmountable restriction, we did not find it necessary to handle a higher throughput
of branches.

The data cache that BOOM interfaces with only provides a single 64 bit request port;
therefore BOOM only supports instantiating one memory execution unit that can handle
one load address or store address computation per cycle. Many high-performance cores are
capable of handling two loads per cycle, but that capability comes at a greater complexity
and power cost. The modifications to BOOM’s execution pipeline to support two loads per
cycle would be relatively modest — the main difficulty would be implementing a new data
cache that could support two loads simultaneously.

The execution pipeline autogenerates the register file read port connections. However,
the read ports on the register file are statically scheduled (each Execution Unit has its
own private read ports). For wider processors, this becomes an over-provisioning of a very
expensive resource. Many instructions only use one operand. And for instructions that do
need operands, [111] notes that 60% of operands are available through the bypass network.
However, as BOOM statically schedules the read ports, this sets an upper limit on BOOM’s
issue width as the number of required register read ports will grow more quickly than if
dynamic scheduling techniques were used.

Finally, there are some limitations that make BOOM’s execution pipeline organization
ill-suited for more CISC-like instructions, in particular, instructions that require interac-
tions with the memory system or introduce stateful side-effects that make out-of-order and
speculative run-ahead more difficult. For example, many proposed RISC-V extensions blend
the boundaries between processor instructions and domain-specific accelerators (DSA). One
challenging example is a crypto engine — a DSA that allows the programmer to implement
a number of different cipher algorithms [63]. The crypto engine may access memory, which
adds both the complication of interfacing with the cache hierarchy and the challenges of
throwing page fault exceptions. Crypto engines are also stateful. The engine must be con-
figured, instructions may induce state transitions, and the operating system may need to
interact with it differently based on the current privilege mode. Some instructions will write
to its own internal registers and other instructions may write back to the integer register file.
The engine may also handle some instructions with a fixed latency while other operations
may have a variable latency. Finally, crypto engines may have their own resources that need
to be allocated. All of these properties make it a challenge to integrate into BOOM’s RISC
execution pipeline.

5.6 Conclusion

This chapter described the organization of BOOM’s superscalar execution pipeline and how
its organization was motivated by a desire to build a parameterizable generator and a need to
utilize expert-written functional units. This organization has worked well for implementing
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instructions that map well to RISC pipelines. More complex instruction extensions that
require their own memory port accesses or provide more stateful execution will require a
more careful evaluation of how best to implement them within the BOOM processor.

The next chapter, Chapter 6: VLSI Implementation Effort, will discuss the changes made
to BOOM based on a design exploration performed through synthesis, place, and route using
a foundry-provided standard-cell library and memory compiler. The speed that these changes
were made, which included splitting apart the register files and adding new functional units
to manage moving data between register files, was greatly aided by the design methodology
discussed in this chapter.
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Chapter 6

VLSI Implementation Effort

On Aug 15, 2017, we taped out an SRAM resiliency test-chip using a BOOM core as the
central processing component. This chip was called BROOM, for the Berkeley Resilient
Out of Order Machine. The focus of the BROOM chip was on resiliency techniques that
would allow SRAM to both prevent and tolerate higher bit-cell failure rates while running at
lower voltages to save power. A number of techniques were explored including line recycling,
dynamic column redundancy, and tag protection via flip-flop-based bit bypassing.

While Section 3.5 discusses some of the methodology we followed to tapeout an out-of-
order core written in Chisel using standard cells, this chapter will focus on the design changes
made to BOOM in light of new synthesis, place and route data provided by a foundry-
provided standard-cell library and memory compiler. For this tapeout and the associated
analysis, we used the TSMC 28 nm HPM process (high performance mobile).

We labeled the culminating design “BOOMv2”, an update in which the design effort has
been informed by analysis of BOOM in a contemporary industrial tool flow. In contrast,
the only synthesis data available during the design evaluation of BOOMv1 was provided
through educational libraries that lacked a memory compiler and provided unrealistic tim-
ings. We also had access to standard single- and dual-ported memory compilers provided
by the foundry, allowing us to explore design trade-offs using different SRAM memories and
comparing against synthesized flip-flop arrays. The main distinguishing features of BOOMv2
over BOOMv1 include an updated 3-stage front-end design with a bigger, set-associative
Branch Target Buffer (BTB); a pipelined register rename stage; separate floating-point and
integer register files; a dedicated floating-point pipeline; separate issue windows for floating-
point, integer, and memory micro-operations; and separate stages for issue-select and register
read.

Managing the complexity of the register file was the largest obstacle to improving BOOM’s
clock frequency and manufacturability. We spent considerable effort on place and routing a
semi-custom 9-port register file to explore the potential improvements over a fully synthe-
sized design in conjunction with microarchitectural techniques to reduce the size and port
count of the register file.

BOOMv2 has a 37 fanout-of-four (FO4) inverter delay after synthesis and 50 FO4 after
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place-and-route, a 24% reduction from BOOMv1’s 65 FO4 after place-and-route. Unfortu-
nately, instruction per cycle (IPC) performance drops up to 20%, mostly due to the extra
latency between load instructions and dependent instructions. However, the new BOOMv2
physical design paves the way for IPC recovery later.

6.1 Background

BOOM was inspired initially by the MIPS R10K and Alpha 21264 processors from the 1990s,
whose designs teams provided relatively detailed insight into their processors’ microarchitec-
tures [124, 71, 55]. However, both processors relied on custom, dynamic logic which allowed
them to achieve very high clock frequencies despite their very short pipelines1 — the Alpha
21264 has 15 fanout-of-four (FO4)2 inverter delays [22]. As a comparison, the synthesizable3

Tensilica’s Xtensa processor, fabricated in a 0.25 micron ASIC process and contemporary
with the Alpha 21264, was estimated to have roughly 44 FO4 delays [22].

As BOOM is a synthesizable processor, we must rely on microarchitecture-level techniques
to address critical paths and add more pipeline stages to trade off instructions per cycle
(IPC), cycle time (frequency), and design complexity. We also lack the manpower to carry
out many of the custom design techniques to reach the low FO4 of past industry designs.
However, as process nodes have become smaller, transistor variability has increased and
power-efficiency has become restricting, many of the more aggressive custom techniques
have become more difficult and expensive to apply [3]. Modern high-performance processors
have largely limited their custom design efforts to more regular structures such as memories
and register files.

6.2 BOOMv1

BOOMv1 follows the 6-stage pipeline structure of the MIPS R10K — fetch, decode/rename,
issue/register-read, execute, memory, and writeback. During decode, instructions are mapped
to micro-operations (uops) and during rename all logical register specifiers are mapped to
physical register specifiers. For design simplicity, all uops are placed into a single unified
issue window. Likewise, all physical registers (both integer and floating-point registers) are
located in a single unified physical register file. Execution Units can contain a mix of integer
units and floating-point units. This greatly simplifies floating-point memory instructions
and floating-point–integer conversion instructions as they can read their mix of integer and
floating-point operands from the same physical register file. BOOMv1 also utilized a short

1The R10K has five stages from instruction fetch to integer instruction write-back and the Alpha 21264
has seven stages for the same path. Load instructions take an additional cycle for both processors.

2An inverter driving four times its input capacitance. FO4 is a useful, relatively technology-agnostic
measurement of a circuit path length.

3A “synthesizable” design is one whose gate net list, routing, and placement is generated nearly exclu-
sively by CAD tools. For comparison, “custom” design is human-created logic design and placement.



CHAPTER 6. VLSI IMPLEMENTATION EFFORT 106

BOOMv1-2f3i

int/idiv/fdiv

load/store

int/fma

fetch

issue/rrd
queues

wb

integer

load/store

fp

fetch
dec, ren,

& dis

issue/rrdqueues

BOOMv2-2f4i

wb

Figure 6.1: A comparison of a three-issue (3i) BOOMv1 and four-issue (4i) BOOMv2 pipeline
both which can fetch two instructions every cycle (2f). Both show two integer ALU units, one
memory unit, and one floating-point unit. Note that BOOMv2 uses a distributed issue window to
reduce the issue port count for each separate issue window. In BOOMv1 the floating-point unit
shares an issue port and register access ports with an integer ALU. Also note that BOOMv1 and
BOOMv2 are parameterizable, allowing for wider issue widths than shown here.
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Table 6.1: The parameters chosen for analysis of BOOM. Although BOOM is a parameterizable
generator, for simplicity of discussion, we have limited our analysis to these two instantiations.

BOOMv1 BOOMv2

BTB entries
40 64 x 4

(fully-associative) (set-associative)

Fetch Width 2 insts 2 insts

Issue Width 3 micro-ops 4 micro-ops

Issue Entries 20 16/16/16

Regfile 7r3w 6r3w (int), 3r2w (fp)

Exe Units

iALU+iMul+FMA iALU+iMul+iDiv

iALU+fDiv iALU

Load/Store FMA+fDiv

Load/Store

2-stage front-end pipeline design. Conditional branch prediction occurs after the branches
have been decoded.

The design of BOOMv1 was partly informed by using educational technology libraries
in conjunction with synthesis tools. While using educational libraries was useful for finding
egregious mistakes in control logic signals, it was less useful in informing the organization of
the datapaths. Most critically, we lacked access to a memory compiler. Although tools such
as Cacti [122] can be used to analytically model the characteristics of memories, Cacti works
best for reproducing memories that it has been tuned against such as single-port, cache-sized
SRAMs. However, BOOM makes use of a multitude of smaller, irregular SRAMs for modules
such as branch predictor tables, prediction snapshots, and address target buffers.

Upon analysis of the timing of BOOMv1 using TSMC 28 nm HPM, the following critical
paths were identified:

1. issue window select

2. register rename busy-table read

3. conditional branch predictor redirect

4. register file read

The last path (register-read) only showed up as critical during post–place-and-route anal-
ysis.
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Figure 6.2: The datapath changes between BOOMv1 and BOOMv2. Most notably, the issue
window and physical register file have been distributed and an additional cycle has been added to
the Fetch and Rename stages.
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6.3 BOOMv2

BOOMv2 is an update to BOOMv1 based on information collected through synthesis, place,
and route using a commercial TSMC 28 nm process. We performed the design space explo-
ration by using standard single- and dual-ported memory compilers provided by the foundry,
and by hand-crafting a standard-cell-based multi-ported register file. Figures 6.1 and 6.2
shows the organization of the BOOMv1 and BOOMv2 cores.

Work on BOOMv2 took place from April 9th through Aug 9th and included 4,948 ad-
ditions and 2,377 deleted lines of code (LOC) out of the total 16k LOC code base. The
following sections describe some of the major changes that comprise the BOOMv2 design.

6.3.1 Frontend (Instruction Fetch)

The purpose of the frontend is to fetch instructions for execution in the backend. Processor
performance is best when the frontend provides an uninterrupted stream of instructions.
This requires the frontend to utilize branch prediction techniques to predict which path it
believes the instruction stream will take long before the branch can be properly resolved.
Any mispredictions in the frontend will not be discovered until the branch (or jump-register)
instruction is executed later in the backend. In the event of a misprediction, all instructions
after the branch must be flushed from the processor and the frontend must be restarted
using the correct instruction path.

The frontend end relies on a number of different branch prediction techniques to predict
the instruction stream, each trading off accuracy, area, critical path cost, and pipeline penalty
when making a prediction.
Branch Target Buffer (BTB) The BTB maintains a set of tables mapping from instruc-
tion addresses (PCs) to branch targets. When a lookup is performed, the look-up address
indexes into the BTB and looks for any tag matches. If there is a tag hit, the BTB will
make a prediction and may redirect the frontend based on its predicted target address. Some
hysteresis bits are used to help guide the taken/not-taken decision of the BTB in the case of
a tag hit. The BTB is a very expensive structure – for each BTB entry it must store the tag
(anywhere from a partial tag of ≈20 bits to a full 64-bit tag4) and the target (a full 64 bit
address5).
Return Address Stack (RAS) The RAS predicts function returns. Jump-register in-
structions are otherwise quite difficult to predict, as their target depends on a register value.
However, functions are typically entered using a Function Call instruction at address A and
return from the function using a Return instruction to address A+1.6 – the RAS can detect
the call, compute and then store the expected return address, and then later provide that

4Actually less than 64 bits since few 64-bit machines will support using all 64-bits as part of the virtual
address.

5An offset from the look-up address could be used instead but that adds an adder to the critical path.
6Actually, it will be A+4 as the size of the call instruction to jump over is 4 bytes in RV64G.
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Figure 6.3: The frontend pipelines for BOOMv1 and BOOMv2. To address critical path issues,
BOOMv2 adds an extra stage. The branch predictor (BPD) index hashing function is moved to
its own stage (F1), pushing back the BPD predictor table accesses a cycle as well (F2). BOOMv2
also utilizes a partially-tagged, set-associative BTB (BOOMv1 uses a fully-tagged fully-associative
BTB). This requires adding a checker module which verifies that the predictions from the BTB
matches the instructions being fetched.
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predicted target when the Return is encountered. To support multiple nested function calls,
the underlying RAS storage structure is a stack.
Conditional Branch Predictor (BPD). The BPD maintains a set of prediction and
hysteresis tables to make taken/not-taken predictions based on a look-up address. The BPD
only makes taken/not-taken predictions – it therefore relies on some other agent to provide
information on what instructions are branches and what their targets are. The BPD can
either use the BTB for this information or it can wait and decode the instructions themselves
once they have been fetched from the instruction cache. Because the BPD does not store the
expensive branch targets, it can be much denser and thus make more accurate predictions
on the branch directions than the BTB – whereas each BTB entry may be 60 to 128 bits,
the BPD may be as few as one or two bits per branch.7 A common arch-type of BPD
is a global history predictor. Global history predictors work by tracking the outcome of
the last N branches in the program (“global”) and hashing this history with the look-up
address to compute a look-up index into the BPD prediction tables. For sophisticated BPD,
this hashing function can become quite complex. BOOM’s predictor tables are placed into
single-ported SRAMs. Although many prediction tables are conceptually “tall and skinny”
matrices (thousands of 2- or 4-bit entries), a generator written in Chisel transforms the
predictor tables into a square memory structure to best match the SRAMs provided by a
memory compiler.

Figure 6.3 shows the pipeline organization of the frontend. We found the a critical path in
BOOMv1 to be the conditional branch predictor (BPD) making a prediction and redirecting
the fetch instruction address in the F2 stage, as the BPD must first decode the newly fetched
instructions and compute potential branch targets. For BOOMv2, we provide a full cycle to
decode the instructions returning from the instruction cache and target computation (F2)
and perform the redirection in the F3 stage. We also provide a full cycle for the hash indexing
function, which removes the hashing off the critical path of Next-PC selection.

We have added the option for the BPD to continue to make predictions in F2 by using
the BTB to provide the branch decode and target information. However, we found this path
of accessing the prediction tables and redirecting the instruction stream in the same cycle
to be too slow using the foundry-provided memory compilers.

Another critical path in the frontend was through the fully-associative, flip-flop-based
BTB. We found roughly 40 entries to be the limit for a fully-associative BTB. We rewrote
the BTB to be set-associative and designed to target single-ported memory. We experimented
with placing the tags in flip-flop-based memories and in SRAM; the SRAM synthesized at a
slower design point but place-and-routed better.

7We are ignoring the fact that predictors such as TAGE [89] actually do store partial tags which can
allow them to predict which instructions are branches.
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6.3.2 Distributed Issue Windows

The issue window holds all inflight and un-executed micro-ops (uops). Each issue port selects
from one of the available ready uops to be issued. Some processors, such as Intel’s Sandy
Bridge processor, use a “unified reservation station” where all uops are placed in a single
issue window. Other processors provide each functional unit its own issue window with a
single issue select port. Each has its benefits and its challenges.

The size of the issue window denotes the number of in-flight, un-executed instructions
that can be selected for out-of-order execution. The larger the window, the more instructions
the scheduler can attempt to re-order. For BOOM, the issue window is implemented as a
collapsing queue to allow the oldest instructions to be compressed towards the top. For
issue-select, a cascading priority encoder selects the oldest instruction that is ready to issue.
This path is exacerbated either by increasing the number of entries to search across or by
increasing the number of issue ports. For BOOMv1, our synthesizable implementation of a
20 entry issue window with three issue ports was found to be too aggressive, so we switched to
three distributed issue windows with 16 entries each (separate windows for integer, memory,
and floating-point operations). This removes issue-select from the critical path while also
increasing the total number of instructions that can be scheduled. However, to maintain
performance of executing two integer ALU instructions and one memory instruction per
cycle, a common configuration of BOOM will use two issue-select ports on the integer issue
window.

6.3.3 Register File Design

One of the critical components of an out-of-order processor, and most resistant to synthesis
efforts, is the multi-ported register file. As memory is expensive and time-consuming to
access, modern processor architectures use registers to temporarily store their working set
of data. These registers are aggregated into a register file. Instructions directly access the
register file and send the data read out of the registers to the processor’s functional units,
whereby the resulting data is then written back to the register file. A modest processor that
supports issuing simultaneously to two integer arithmetic units and a memory load/store
unit requires 6 read ports and 3 write ports.

The register file in BOOMv1 provided many challenges – reading data out of the register
file was a critical path, routing read data to functional units was a challenge for routing
tools, and the register file itself failed to synthesize properly without failing the foundry
design rules. Both the number of registers and the number of ports further exacerbate the
challenges of synthesizing the register file.

We took two different approaches to improving the register file. The first level was purely
microarchitectural. We split apart issue-select and register-read into two separate stages —
issue-select is now given a full cycle to select and issue uops, and then another full cycle is
given to read the operand data out of the register file. We lowered the register count by
splitting up the unified physical register file into separate floating-point and integer register
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files. This split also allowed us to reduce the read-port count by moving the three-operand
fused-multiply add floating-point unit to the smaller floating-point register file.

The second path to improving the register file involved physical design. A significant
problem in placing and routing a register file is the issue of shorts – a geometry violation in
which two metal wires that should remain separate are physically attached. These shorts are
caused by attempting to route too many wires to a relatively dense regfile array. BOOMv2’s
70 entry integer register file of 6 read ports and 3 write ports comes to 4,480 bits, each
needing 18 wires routed into and out of it. There is a mismatch between the synthesized
array and the area needed to route all required wires, resulting in shorts. Although we
were able to safely synthesize a 9 port register file in isolation with some guidance on the
area placement and density targets, the routing tools were unable to physically place the
synthesized register file without shorting wires when synthesizing the register file in place
with the rest of the processor.

Instead, we opted to blackbox the Chisel register file and manually craft a register file
bit out of foundry-provided standard cells. We then laid out each register bit in an array
and let the placer automatically route the wires to and from each bit. While this fixed the
wire shorting problem, the tri-state buffers struggled to drive each read wire across all 70
registers. We therefore implemented hierarchical bitlines; the bits are divided into clusters,
tri-states drive the read ports inside of each cluster, and muxes select the read data across
clusters.

As a counter-point, the smaller floating-point register file (three read ports, two write
ports) is fully synthesized with no placement guidance.

6.4 Tapeout Methodology

Figure 6.5 shows all VLSI builds and their critical path lengths performed over a four month
period as part of the BROOM tapeout effort. The reported clock frequency is calculated from
the critical path, which is the summation of the target clock period and the negative clock
skew. Data from post-synthesis (“syn”) and post-place-and-route (“par”) are shown and
include builds performed at both the slow-slow (“SS”) typical-typical (“TT”) corners.
Early builds were only of a BOOM core plus an L2 cache while later builds add in the
resiliency (“res”) hardware central to the main thesis of the BROOM chip. One should
be careful of drawing conclusions from this figure; most builds resulted in LVS and DRC
violations and many changes were made between each build. For example, early builds
explored shrinking structure sizes to find the most fundamental critical paths while later
builds sought to find the upper limits of structure sizing before the post-place-and-route
critical path noticeably worsened. Table 6.2 provides a brief description of each VLSI build
that is shown in Figure 6.5.

The BROOM tapeout effort started with a preliminary analysis of the BOOM’s quality-
of-result (QoR). This effort was performed using RVT-based cells and targeting the TT corner.
By changing BOOM’s configurations, we could build an intuition of what critical paths were
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read port provides a read-enable bit to signal a tri-state buffer to drive its port’s read data line.
The register file bits are laid out in an array for placement with guidance to the place tools. The
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truly critical and arrive at a plan of action for addressing these paths with a mixture of micro-
architectural changes and physical design effort. For example, by removing an execution unit
or shrinking the issue window size, we could better understand the benefits of design changes
that would provide fewer issue ports per issue window. At this stage, we had concluded that
four critical paths needed to be managed. As previously mentioned in Section 6.2, these
critical paths were:

1. issue window select

2. register rename busy-table read

3. conditional branch predictor redirect

4. register file read

The micro-architectural changes to address the first two items together took one month.
We also quickly prototyped a new frontend design that approximated a critical path fix for
item three but was otherwise functionally incorrect. This frontend prototype helped justify
the necessary design work before we committed to a full redesign of the frontend. We began
testing these new changes in mid May and labeled the new design “BOOMv2”. Figure 6.5
shows the cluster of activity that correspond to the BOOMv1 and early BOOMv2 analysis.
After the initial BOOMv2 analysis was performed, another month of design effort went into
BOOM to finish implementing the new frontend design and to apply changes based on the
initial VLSI feedback.

Starting in late June, as the BOOMv2 RTL effort finished up, the implementation focus
switched to physical design. Figure 6.6 shows the VLSI builds from July onwards that
were performed using LVT-based cells at the slow-slow corner. Parameters in BOOM, for
example the ROB size or the branch predictor sizing, were reduced to get a better feel for
the fundamental critical paths that still required work and to find which modules had the
greatest affect on DRC and LVS errors. At this stage, the clock frequency improved as the
BOOM parameters were changed to instantiate a smaller BOOM core.

Once we were relatively happy with the BOOM micro-architecture, we added the re-
siliency hardware to the design. Many of these resiliency structures are on the critical paths
of SRAM accesses. Thus, any VLSI builds with resiliency hardware enabled may generate
analysis reports that hide critical paths that still need attention in the BOOM RTL. To allow
improvements to both the resiliency structures and to the BOOM core to occur in paral-
lel, we continued to perform VLSI builds with and without the resiliency hardware enabled
(labeled “res” in Figures 6.5 and 6.6).

As our attention shifted to physical design issues, we began to explore a number of
strategies for implementing a 6-read, 3-write register file. Although we attempted to use
placement hints and floorplan scripts to help guide a synthesized register file design, we
eventually settled on the semi-custom arrayed design discussed in Section 6.3.3 after coming
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to the conclusion that the place and route tools could not manage a synthesized 9-port
register file without committing geometry errors.

For the final stage of the implementation effort, we focused on fixing LVS and DRC errors
while continuing to make small improvements to the critical paths that showed up in the
place and route reports. We also began to increase structure sizes in BOOM that were no
longer on the critical path in the post–place and route reports. For example, we quadrupled
the size of the branch predictor.

Finally, on August 14th, we taped out an LVS clean, DRC sane design based on the sub-
mission deadline provided by TSMC. Up to (and past) that deadline, we continued making
changes to the RTL to improve the QoR. Each additional build continued to provide us new
critical paths to address. The final critical path of the place and routed design was through
the resiliency error logging code.

More time would have allowed us to continue to improve both the clock frequency and
the IPC performance of BROOM. With enough time available, we could have focused on
fixing more systemic critical paths, particularly the write-back path for data returning from
the data cache. Fixing this path would go hand-in-hand with fixing the IPC performance
problem introduced by the longer load-to-use dependency. However, the rush to produce a
LVS clean, DRC sane design that would be relatively free of RTL logic errors prevented us
from committing to more risky and invasive fixes. Future VLSI implementation efforts can
start from a known, good design point and can avoid the early exploratory builds that were
needed for the BROOM tapeout.

6.5 Lessons Learned

The process of taking a register-transfer-level (RTL) design all the way through a modern
VLSI tool flow has proven to be a very valuable experience.

Dealing with high port count memories and highly-congested wire routing are likely to
require microarchitectural solutions. Dealing with the critical paths created by memories
required microarchitectural changes that likely hurt IPC, which in turn motivates further
microarchitectural changes. Lacking access to faithful memory models and layout early in
the design process was a serious handicap. A manually-crafted cell approach is useful for
exploring the design space before committing to a more custom design.

Memory timings are sensitive to their aspect ratios; tall, skinny memories do not work.
We wrote Chisel generators to automatically translate large aspect ratio memories into rect-
angular structures by changing the index hashing functions and utilizing bit-masking of reads
and writes.

Chasing down and fixing all critical paths can be a fool’s errand. The most dominating
critical path was the register file read as measured from post-place and route analysis. Fixing
critical paths discovered from post-synthesis analysis may have only served to worsen IPC
for little discernible gain in the final chip.
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Table 6.2: The critical path length is reported from each of the VLSI builds during the BROOM
tapeout. The critical path is the summation of the target clock period and the negative clock skew.
Many changes were made beteween each run, only some of the major points are documented here.
Run #90 is the final design that was submitted to TSMC for fabrication. Most of the other builds
have violations.

Run Corner Resiliency Description
Post-synthesis Post-place-and-route

Cycle Time (ns) Cycle Time (ns)
1 TT - first attempt using BOOMv1 0.904
2 TT - retime idiv unit 0.923
3 TT - retime idiv unit 0.892
4 TT - reduce BTB entry count 0.860
5 TT - disable BPD & fdivsqrt units 0.879
6 TT - reduce issue window to 4 entries 0.966
7 TT - begin using early prototype of BOOMv2 1.245
8 TT - 1.018
9 TT - issue-width=1 (timing met) 1.000
10 TT - reduce cycle time 0.989
11 TT - fetch latency=3 0.889
12 TT - fdivsqrt disabled 0.892
13 TT - issue-width=2 0.893
14 TT - integer issue window entries=10 0.853
15 TT - decrease integer & fp issue window sizes 0.850
16 TT - issue-width=2 0.908
17 TT - 1ns clock (syn timing met) 1.000
18 TT - 1ns clock (syn timing met) 1.000 1.855
19 TT - pipeline register read 0.983
20 TT - add retiming to rename stage 0.908
21 TT - retime & ungroup rename stage 0.894
22 TT - rearrange constraint file 0.933
23 TT - add compile ultra -retime flag 0.900
24 SS - move to SS corner 1.376 1.792
25 SS - Add resiliency 1.470 2.190
26 SS - fixes to floorplan 1.830
27 SS - multi-voltage domain 1.400 1.840
28 SS - loose cycle time 1.378 1.840
29 SS - loose cycle time with imul retiming 1.416
30 SS - change int RF size to 70 registers 1.377
31 SS - move to LVT std cells 1.206 1.540
32 SS - feed in floorplan to DC 1.228 1.459
33 SS - add -congestion in clock opt psyn flag 1.228 1.460
34 SS - change int RF size to 100 registers 1.224 1.448
35 SS - fixed top connection (passes RTL simulation) 1.206 1.520
36 SS - feed in new floorplan (2col4row for dcache) 1.720 1.460
37 SS - new set-associative BTB 1.300
38 SS - 1.413
39 SS - retimed BPD pipeline and fetch unit w/o fp 1.256
40 SS - with fp 1.450
41 SS - use flip-flops for BTB 1.188 1.550
42 SS - use LVT SRAM for BTB 1.265 1.470
43 SS yes add in resiliency with BOOMv1 1.495 1.890
44 SS yes add in resisliency with BOOMv2 1.610
45 SS - updated BTB w/ SRAM-based gshare BPD 1.367
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Run Corner Resiliency Description
Post-synthesis Post-place-and-route

Cycle Time (ns) Cycle Time (ns)
46 SS - p table using FF; (BTB tag is also FF) 1.204 1.650
47 SS - try to remove a dependence on bpd request 1.290
48 SS - RAS bypass calls = false 1.234
49 SS - 1.2 ns clock 1.290
50 SS - 1.1 ns clock 1.263
51 SS yes 1.540
52 SS - 1.0 ns clock 1.269
53 SS - remove internal w→r bypass 1.260
54 SS - with fp 1.155
55 SS - RAS entries=0 1.225
56 SS - RAS entries=0 1.200
57 SS - RAS entries=8; with fp 1.200 1.500
58 SS yes remove I$ s1 disparity dependency 1.449
59 SS yes with fp 1.369
60 SS yes D$ bypass ecc (decode.uncorrected) 1.360
61 SS yes I$ s1 tag disparity 1.328
62 SS yes Set caches to ways=4; disable ECC 1.232
63 SS yes use earlier commit 1.420 1.754
64 SS yes caches to ways=4; use SRAM for BPD and BTB 1.209 1.730
65 TT - TT corner 0.783
66 SS - SS corner with new RTL commits 1.134 1.582

67 SS yes
use new custom RF array; (logic error; coupled iss+rrd

1.266 2.282
stages)

68 SS - with new RTL commits 1.174
69 SS yes regfile array without muxing (with correct raddr register) 1.266 1.799
70 SS yes use hierarchical bitlines 1.230 1.640
71 SS yes use hierarchical bitlines; rerun previous 1.230 1.629
72 SS - add BPD prediction in F3 1.207
73 SS - gshare history length increased to 13 bits 1.247
74 SS - remove BPD F2 redirect 1.210
75 SS yes add BPD prediction in F3; retime alu 1.437 1.632
76 SS - Fix correctness bug in BPD 1.175
77 SS yes use flip-flops for BTB tags 1.213
78 SS yes retime LSU; set history to 13b; BTB set to 2 ways 1.345 1.744
79 SS yes 1.641
80 SS yes remove retiming on LSU; separate bb array; ECC logging 1.110 1.554
81 TT yes 0.913
82 SS yes halve gshare’s htable; error logging changes 1.179 1.649
83 SS yes fix LSU 1.137 1.640
84 SS yes ECC logging fixes 1.156 1.705
85 SS yes fix critical path on valid bit 1.169
86 SS yes add L2 miss counter 1.113
87 SS yes BTB update 1.133
88 SS yes delay write to fp regfile 1.103
89 SS yes fix L1 I$ bb array connection 1.196 1.779
90 SS yes final tapeout version 1.174 1.680

91 TT yes
after tapeout fixes; remove timing analysis for ECC

1.223 1.633
logging; fix placement in L2 tags

92 SS -
delay write to fp RF; use flip-flops for BTB tags;

1.072 1.634
use synthesized int regfile

93 SS - use SRAM for BTB tags; use custom int regfile 1.085
94 SS - set dont touch to the regfile 1.096 1.485
95 TT - TT corner 0.733
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Describing hardware using generators proved to be a very useful technique; multiple
design points could be generated and evaluated, and the final design choices could be com-
mitted to later in the design cycle. We could also increase our confidence that particular
critical paths were worth pursuing; by removing functional units and register read ports, we
could estimate the improvement from microarchitectural techniques that would reduce port
counts on the issue windows and register file.

Chisel is a wonderfully expressive language. With a proper software engineering of the
code base, radical changes to the datapaths can be made very quickly. Splitting up the
register files and issue windows was a one week effort, and pipelining the register-rename
stage was another week. However, physical design is a stumbling block to agile hardware de-
velopment. Small changes could be reasoned about and executed swiftly, but larger changes
could change the physical layout of the chip and dramatically affect critical paths and the
associated costs of the new design point.

6.6 What Does It Take To Go Really Fast?

A number of challenges exist to push BOOM below 35 FO4. First the L1 instruction and
data caches would need to be redesigned. Both caches return data after a single cycle (they
can maintain a throughput of one request a cycle to any address that hits in the cache). This
path is roughly 35 FO4. A few techniques exist to increase clock frequency but increase the
latency of cache accesses.

For this analysis, we used regular threshold voltage (RVT)-based SRAM. However, the
BTB is a crucial performance structure typically designed to be accessed and used to make
a prediction within a single-cycle and is thus a prime suspect for additional custom effort.
Another solution is to increase the latency of BTB predictions and accept a bubble inserted
into the fetch pipeline on taken branch predictions.

There are many other structures that are often the focus of manual attention: functional
units; content-addressable memories (CAMs) are crucial for many structures in out-of-order
processors such as the load/store unit or translation lookaside buffers (TLBs) [47]; and the
issue-select logic can dictate how large of an issue window can be deployed and ultimately
guide how many instructions can be inflight in an out-of-order processor.

However, any techniques to increase BOOM’s clock frequency will have to be balanced
against decreasing the IPC performance. For example, BOOM’s new front-end suffers from
additional bubbles even on correct branch predictions. Additional strategies will need to be
employed to remove these bubbles when predictors are predicting correctly [94].

6.7 Conclusion

Modern out-of-order processors rely on a number of memory macros and arrays of different
shapes and sizes, and many of them appear in the critical path. The impact on the ac-
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tual critical path is hard to assess by using flip-flop-based arrays and academic/educational
modeling tools, because they may either yield physically unimplementable designs or gener-
ate designs with poor performance and power characteristics. Re-architecting the design by
relying on a hand-crafted, yet synthesizable register file array and leveraging hardware gener-
ators written in Chisel helped us isolate real critical paths from false ones. This methodology
narrows down the range of arrays that would eventually have to be handcrafted for a serious
production-quality implementation.

As BOOMv2 has largely been an effort in improving the critical path of BOOM, there
has been an expected drop in Instruction per cycle (IPC) performance. Using the Coremark
benchmark, we witnessed up to a 20% drop in IPC based on the parameters listed in Ta-
ble 6.1. Over half of this performance degradation is due to the increased latency between
load instructions and any dependent instructions. There are a number of available tech-
niques to address this that BOOM does not currently employ. However, BOOMv2 adds a
number of parameter options that allows the designer to configure the pipeline depth of the
register renaming and register-read components, allowing BOOMv2 to recapture most of the
lost IPC in exchange for an increased clock period.
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Chapter 7

Conclusion

Details matter. Continued innovation in the processor space must come from performance
improvements that are power-neutral, or power improvements that increase the headroom to
allow for more aggressive performance techniques. Building real systems not only provides
a stable basis from which to perform detailed performance and power analyses, but also
provides deeper insight and intuition that is molded by exposure to both low-level details
and cross-cutting issues. As one example, in BOOM the interplay between the issue queue
select ports, the register file read ports, and large-scale memory array process technology
drove us to re-evaluate and re-implement multiple parts of BOOM once we had access to a
real commercial tool-flow. Mimicking designs from older generations — in which different
implementation methodologies and logic styles were used — left us under-informed compared
to the knowledge we gained in analyzing our own designs using a modern tool-flow.

Some of the most exciting research has been built upon the works of others. As recent
examples, the Rocket-chip SoC has shown up in the first silicon-photonics-enabled micropro-
cessor (MIT, CU Boulder, Berkeley) [100] and in the 511-core Celerity processor (UCSD,
Cornell, Michigan, and UCLA) [4]. Similarly, the open-source UltraSPARC T1 processor
from Sun has been used to help build the 25-core OpenPiton processor (Princeton) [11], and
the UltraSPARC T2 was used as part of the heterogeneous Fabscalar chip (NCSU) [84].

Likewise, this work has been in part made possible by leveraging existing infrastructure
newly available in the open-source hardware ecosystem; namely, the RISC-V Instruction Set
Architecture, the Chisel hardware construction language, and the Rocket-chip SoC generator.

Hopefully, BOOM can can serve as a platform for the next set of implementers and
researchers. By providing a detailed implementation of a high-performance, general-purpose,
open-source processor, we hope to enable researchers to pursue new avenues of study that
require full systems that can provide a higher fidelity of results. And hopefully, they too can
learn from it as much as I have.
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7.1 Contributions

This thesis includes the following contributions:

• A complete implementation of a superscalar, out-of-order processor gener-
ator — We built a superscalar, out-of-order processor generator called BOOM that
is capable of booting the Linux operating system and running user-level applications.
Many of the details in implementing a full system kept us honest. The floating-point
support is often a missing piece in academic projects, but it served to motivate many
of the challenges and learning experiences in building a parameterizable generator ca-
pable of running general-purpose codes. Many corners can be cut in integer-only cores,
but floating-point instructions begin to stretch the boundaries of “RISC” ISAs. These
extra challenges include three register operands, longer instruction latencies, implicit
condition codes, condition flag side-effects, and register moves between a new set of
architectural registers.

• A competitive implementation — BOOM achieves comparable (or better) branch
prediction accuracy and instructions-per-cycle performance relative to similarly-sized
industry out-of-order processors. The pursuit for a competitive processor led us to focus
on new areas we would have otherwise avoided. We needed to support real benchmarks,
which forced us to support floating-point instructions and atomics. We also spend
considerable time on branch prediction — without a competitive branch predictor, no
other improvements would have mattered. And unfortunately, if a research processor
significantly lags in performance to commercial offerings, many studies using it become
less informative.

• A productive implementation — We demonstrated our productive processor gen-
erator design by implementing it using only 16k lines of code. In order for others to
build off of our work, our platform must be easy to understand, easy to modify, and
easy to extend.

• Demonstrated productivity with an agile tape-out — We further demonstrated
our productivity and agility by making significant micro-architectural design changes
as part of a two-person tape-out performed over four months. We demonstrated that it
is possible to take the BOOM Chisel design to silicon, and that Chisel does not preclude
lower-level physical design optimizations. We showed both what kind of changes are
possible to be performed quickly using Chisel, as well as showed what physical design
hurdles still remain. Hopefully, this effort paves the way for others to take BOOM to
silicon too.
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7.2 Future Directions

As BOOM is an open-source processor generator, there is a opportunity for others to take
BOOM in new directions, to use it to augment their own research, or to simply improve
and contribute back to BOOM. This section lists some of the opportunities and interesting
questions that BOOM can help explore.

Implementing new RISC-V instruction extensions BOOM is a scalar processor
that implements the “G” general-purpose subset of the RISC-V ISA. However, the RISC-V
Foundation is actively developing new extensions for RISC-V, some that may radically alter
the micro-architecture of future “general-purpose” processors. For example, all contem-
porary high-performance, general-purpose commercial processors implement some form of
data-parallel acceleration, typically in the form of SIMD (Single Instruction Multiple Data),
which allows one instruction to operate on multiple elements in parallel. Even for general-
purpose codes, SIMD instructions can be used to accelerate the zeroing and copying of large
arrays in memory. The RISC-V Foundation is developing a Vector Extension that will pro-
vide the same benefits enjoyed by other ISAs such as the x86 SSE and AVX SIMD extensions
and ARM’s NEON extension. However, the current RISC-V Vector Extension proposal pro-
vides new opportunities and complexity challenges beyond SSE, AVX, and NEON. Some of
these challenges include its reconfigurable vector length, its polymorphic encoding, its usage
of a vector data register as an implicit predicate register, and its reconfigurable scalar, vec-
tor, and matrix register shapes. How best to address these challenges and map a competitive
design to an out-of-order pipeline is an interesting challenge. Other extensions have been
proposed, some which may map poorly to an out-of-order pipeline. Some of these proposed
instructions include adding loop-count instructions, overflow arithmetic, and integer-packed
SIMD to help support applications such as specialized digital signal processing (DSP), man-
aged run-time languages, and low-power energy-efficient computing.

Co-processor and accelerator interfaces The Rocket in-order processor has found
significant success in part by providing a co-processor/accelerator interface called RoCC.
Example accelerators that have used the RoCC interface include the Hwacha vector-thread
processor [106], the DANA neural network accelerator [30], and the Celerity binarized neural
network (BNN) specialized accelerator [4]. Implementing the RoCC interface in BOOM
would provide researchers a higher-performance control processor for their research. It would
also open up new and interesting research questions regarding the interactions between out-
of-order cores and their co-processors. For example, what would be the performance benefits
of implementing the RISC-V Vector Extension as a RoCC co-processor (in which all RoCC
commands are sent at instruction commit) versus a more tightly integrated vector unit within
BOOM that exercises register renaming and speculative out-of-order vector execution?

Design verification Chisel has facilitated rapid and agile RTL implementation efforts.
However, design verification is still a significant obstacle and the best approaches to reduce
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the verification load is still an open question. As a complex IP block, BOOM can serve as
a platform of study for future verification efforts. As an example of such early stage efforts,
the most recent bug found in BOOM manifested at over 400 billion cycles into simulation.
Finding this bug required a sophisticated FPGA-accelerated simulation framework, built
upon the Strober infrastructure [56], that used synthesizable assertions to find the error and
a state snapshot-and-replay capability to extract a waveform from the failing scenario [8].

Agile physical design Similar to design verification, physical design is also a signifi-
cant hurdle to cheaper, more agile hardware development. Although Chisel allows for RTL
changes to be made quickly, some RTL changes can have significant effects on the physical
design. For example, an added memory block can take up too much area and cause routing
congestion. Human intervention may be needed to guide changes to the floor-plan to allevi-
ate the new routing congestion, or worse, a micro-architectural change at the RTL level may
be necessary to reduce timing pressure. Large-scale memory arrays pose another problem
for agile physical design. There remains significant value in crafting custom memory arrays
over foundry-provided memory compilers, which unfortunately can require designers to make
binding decisions earlier in the design process than they would normally prefer.

Design space exploration (DSE) A challenge with hardware generators is how does
the designer choose a specific parameter set to instantiate in silicon? A design like BOOM
can provide enough configuration options to create a design space of millions of unique
designs. As each instance requires hours to evaluate, and CAD tool-flows are too expensive
to allow for significant parallelism of this analysis, care must be taken to decide which design
points are worth pursuing. Ideally, an intelligent DSE search algorithm would only choose
points that were likely to appear near the pareto-optimal frontier.

Performance improvements With five graduate-student-years of design effort, BOOM
achieves a modest level of performance that is on par with some of the older out-of-order
designs that are in ARM’s current IP catalogue. However, there is significant head-room in
improving upon BOOM’s performance that can be explored. A couple areas for performance
improvement include data-prefetching, larger issue queue designs, memory disambiguator
predictors, accelerated atomic and fence instruction execution, a wider superscalar width,
and a more aggressive instruction fetch unit.

7.3 Final Remarks

The end of Moore’s Law and Dennard Scaling brings us into a period that is both scary
and exciting. Manufacturing process technology alone can no longer give us better chips.
Instead, the onus is on the architects and the micro-architects to continue taking progress
to new heights.
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Architects have a lot to be thankful for. Silicon transistors are incredibly small, fast,
plentiful, and cheap. Commodity chips routinely ship with hundreds of millions, even billions,
of transistors running at a few gigahertz with air-cooling. New fields are growing into billion
dollar industries: search, mobile, automative, and internet-of-things demand increased focus
on the topics of machine learning, inference, sensing, and processing. These new applications
are motivating new innovations in architecture and micro-architecture, demanding novel and
highly-specialized accelerators to extract the best performance for a given power envelope.

One of the challenging aspects of a more specialized future is that chip companies must
cope with concurrently shipping more and increasingly specialized designs, while also ship-
ping fewer units of any particular design. This diminishing ability to amortize the design
and verification costs requires design teams to achieve more with fewer resources.

This suggests a future of hardware design that will likely focus on enabling implementers
to be more agile and more able to cheaply explore new designs. However, implementation
is not the only challenging part to chip design: physical design and verification will need to
undergo similar revolutions in agile methodology.

FPGAs have gotten small enough to provide a relatively cheap option for companies
and hobbyists to prototype hardware designs, reducing some of the risk in taking designs to
silicon. This option has also opened up the door for creators to share and use hardware IP
without the expenses of silicon fabrication, ushering in a new period of open-source hardware.

The slowing down of Moore’s Law and the longer process node periods also provide
another hidden benefit: slow and steady can win the race. Previously, process iterations
were so quick that designs had to begin conception well in advance of that particular process
becoming commoditized. The period between design conception and product delivery had to
be short enough to avoid targeting a process that became obsolete by a product’s launch [48].
With more time between process switches, more knowledge can be built up on each node.
Designs also improve more slowly, as they must rely on micro-architectural innovation to
realize continued performance improvements. It is now more possible than ever for academics
and hobbyists to catch up to industry designs.

The out-of-order core is just one piece of the future computing landscape. While well-
suited for general-purpose applications, out-of-order cores will need to interface with spe-
cialized accelerators and devices to deliver the best use of the limited transistor- and power-
budgets.

Hopefully, BOOM can play a small, but important role in this future.
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Appendix A

A Selection of Encountered Bugs

Possibly the biggest gamble that was made in the course of this thesis was choosing a project
that had to actually function correctly! In most micro-architectural software simulator im-
plementations, the functional model and the timing model are separated such that any errors
in the timing model — where the research ideas are implemented — do not affect the cor-
rectness of the workloads being analyzed. But as BOOM is a processor, there is no such
functional/timing model split. Thus, if the implementation of a research idea affects the
technical correctness of BOOM, then the benchmarks will likely crash. This is not conducive
to productive research! In that spirit, this section shares just a few of the bugs that were
encountered during the development of BOOM. At a minimum, we hope that this section
can encourage and inspire work in validation and testing.

The following bugs cover a range of categories and are ordered roughly in the chronological
order that they were found. Some of these bugs were found quickly after implementing new
features, while other bugs lingered and took a fine-tooth comb to suss out. Some were
the fault of typographical or copy/paste mistakes. Some were bugs in other libraries — a
few were found in the berkeley-hardfloat units and one was encountered in Chisel 1.0’s
simulation library. One of the more common classes of bug in BOOM involved the failure
to properly kill a misspeculated instruction, which was often due to failing to update an
instruction’s branch-mask properly or failing to check if the instruction should be killed.
These suppose-to-be-killed instructions would often bounce around the processor and wreak
havoc on the micro-architectural state. Another common class of errors was caused by
changing interfaces in which signals could be left dangling or in which contracts between
modules changed, particularly with interfaces to external projects like Rocket-chip.1

Finding many of these bugs has been slow and tedious. Some bugs were found using
the riscv-torture fuzzer [82] while others required using assertions to catch them. Per-
formance bugs were especially difficult to track down, but thankfully are less important
than correctness bugs. The worst bugs to solve are those that only arise when executing
long-running applications that simply hang! A number of techniques were used to find the

1The latest Chisel 3.0.0 provides stronger protections against dangling I/O signals.
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source of these bugs. Assertions were the favored method, but the comparison of commit
logs, waveforms, and even printfs were heavily utilized. Having an existing processor in
Rocket to compare against often proved invaluable. The spike ISA simulator was another
valuable tool, however, it proved to be surprisingly difficult to get spike and BOOM to
agree on the trace of committed instructions exactly. Many valid differences made it difficult
to compare BOOM to spike, including the load-reserve/store-conditional instruction, timer
interrupts, external I/O interactions, and platform deviations. Recent research has been
exploring FPGA-accelerated validation as a new tool for validating Chisel-based designs
executing very long workloads [8].

Surprisingly poor performance exhibited — An early implementation of a two-wide
superscalar issue design was causing any given ALU operation to be issued to both ALU
functional units. This mistake turned a dual-issue machine into a very expensive single-issue
machine. The bug was caused by the first issue selector not properly informing the second
issue selector that it had chosen that particular instruction already.

Multiple branches sharing the same branch tag — A full branch mask was not
properly stalling the Decode stage until more branch snapshots could be allocated. This
bug caused new branches to be allocated old (but still in-use) branch tags and chaos to
break loose when one of the newer branches misspeculated and killed instructions older than
itself. This error was caused by a typo: dis mask (dispatch-stage valid mask) was being
used instead of dec mask (decode-stage valid mask), which corresponds to the valid bits in
a different stage in the processor.

Failing simple arithmetic tests — Not having enough bits specified in the width of the
ALU control signals caused the ListLookup decode table to generate incorrect logic.

Fetching incorrect instruction bits — The instruction cache improperly latched a re-
quest when suffering from a cache miss. This error was only exercised under two conditions:
1) when the data cache also missed in the cache causing back-pressure to the instruction
cache as only one request is allowed to go off-tile per cycle, and 2) when a branch misspec-
ulation occurred on the next cycle causing a new and different instruction to be requested.
The original instruction bits eventually returned but were given the new instruction’s tag.

Some instructions got skipped and were never executed after an exception — The
ROB can commit multiple instructions per cycle. In this case, the ROB sees an exception in
the commit bundle and takes it, but fails to notice the busy instructions that are older than
the excepting instruction that must be allowed to finish first. These inflight instructions
would get lost as the exception is taken too early.

The exception pc was being set improperly — On an exception, the epc was set to
the aligned pc, and not the pc of the excepting instruction. This bug was hard to notice
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because 1) often the aligned pc matched the excepting pc, and 2) the instructions starting
at the aligned pc were typically idempotent.

The wrong store data could get bypassed to the dependent load — If two stores
at the same address existed in the Store Queue, it was possible for the load to get data from
the wrong store. This error was typographic: the sdq val signal (“is the store data valid?”)
was used to help generate the address-match bit-vector instead of the saq val signal (“is
the store address valid?”).

Load misspeculation error — A store checks the Load Address Queue (LAQ) for any
younger loads that have incorrectly executed ahead of the store. If multiple loads fail, only
the oldest load needs to be tracked since its pipeline flush will dominate the younger load.
However, in this error, a fixed priority encoder was used instead of an age-based priority
encoder, causing the wrong load to be marked as having failed. The older load would then
proceed with having incorrect data and the younger load would be replayed. A commit log
comparison against an ISA simulator allowed us to find the specific load that was receiving
stale data.

Iterative muldiv unit writing bad data to the register file — If the iterative muldiv
unit received a request on the same cycle that the request was killed, the request incorrectly
continued executing and would eventually write back to a physical register. However, as the
iterative unit can take tens of cycles to resolve, it was likely that that particular physical
register would be added to the freelist and then reallocated to a new instruction. This new
instruction would then receive a garbage value.

Incorrect value from muldiv unit — When dividing by zero, the integer muldiv unit
incorrectly returned the absolute value of x instead of x.

An ECALL instruction crashes the C++ simulator process — A fetch packet con-
tains a (branch, ecall) pair. The Decode Stage does not properly stall the ECALL instruction
until the branch direction is resolved. Although the branch is suppose to direct the instruc-
tion stream around the ECALL instruction, the ECALL instruction executes a bad syscall
number, an invalid address access is attempted in the host memory, and the simulator process
crashes.

401.bzip suffers a hanged pipeline 33 million cycles in — A branch is misspeculated,
but a load on this misspeculated path still writes back data to the register file and clears its
ROB busy-bit. This problematic load had been sleeping in the LAQ and retried on the same
cycle as the branch was resolved. This load fails to get killed and instead returns its data
from a matching (and non-speculative) store. Had the load tried to get its data from the
data cache it would have properly been killed. The error was caused by reading the wrong
stage’s br-mask. The correct signal was l uop.br mask, instead of r mem uop.br mask.
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Rocket BTB bug leads to incorrect instruction PC trace — The BTB was predicting
a taken branch as jumping incorrectly to PC+4 instead of its proper target. In actuality, the
BTB should have either predicted not-taken or predicted taken but with the correct target.
The Rocket in-order core only checks the expected target matches the actual target and was
fine with this turn of events of a “taken” branch to PC+4. BOOM was checking only the
branch direction, saw taken, and decided the branch had been correctly speculated.

Trying to run Linux for the first time; throws misaligned fetch exception — A
JALR instruction jumps to the wrong address. Linux was the first program BOOM ran that
is placed in the “negative” addresses. The error was a lack of sign-extension of the PC when
used as an operand for the AUIPC instruction.

Linux hangs; spinning on an exception to an unknown instruction — A timer
interrupt incorrectly jumps to a faulting page when attempting to execute the interrupt
handler. The PC for evec (exception vector) was not being properly sign-extended.

The dhrystone benchmark was printing out “%” instead of carriage returns —
The BTB predicted not-taken for a fetch packet with (branch, jump). The frontend failed to
redirect the unconditional jump, as it decided to not override the BTB’s prediction of the
branch that preceded it.

Increasing the BTB beyond 64 entries causes target program crashes — The
BTB’s associative search generates a one-hot encoded bit vector. A bug in early Chisel 1.0’s
C++ multiword simulation library incorrectly handled one-hot encodings that were larger
than the native register width of the host machine (64-bits in this case).

BOOM hangs; AMO never succeeds — The Inflight Load Queue (IFLQ) was leaking
entries and eventually filled up completely, preventing forward progress. The problem was
that when the data cache nacked an AMO, the AMO’s entry in the IFLQ was not cleared
as it was not a “load”.

BOOM believes that +0.0 and −0.0 are different — Multiplying a negative 0.0 could
cause the raw bits in the 65-bit recoded floating-point format to mismatch against an unscaled
0.0. This was a bug in the berkeley-hardfloat comparison units. Similarly, infinities could
also be scaled and caused to erroneously mismatch too. Although these errors were found
using torture, which generates a small test program when a failure is detected, this error was
annoyingly difficult to reproduce since smaller snippets from the failing torture test failed to
reproduce the error. In order to reproduce the error, the test program needed to multiply
using a number like 3 that would change the mantissa.
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Unreasonably bad performance when load misspeculations occurred — When run-
ning large programs with a non-zero number of store-load ordering misspeculations, perfor-
mance was significantly worse than expected. It was noticed that branch prediction accuracy
correlated strongly with the frequency of store-load ordering misspeculations. Each ordering
failure causes a pipeline flush and retry. The eventual culprit was the global history of the
branch predictor was not being properly rolled-back when taking these “mini-exceptions.”
The fix was to maintain a commit check-point copy of the global history.

Poor branch prediction performance in a hand-crafted test — A small “branch
obstacle course” returned unexpectedly poor performance. A bad indexing math error caused
the most significant bit of the global branch history to be ignored.

The berkeley-hardfloat floating-point square-root unit returned the wrong an-
swer for the input value 171 — This was found with overnight torture testing.

BOOM ran fine in Verilator but hanged on the FPGA — A new signal was added
to a top-level I/O in the Rocket-chip tile which drives the reset-vector (which address do we
start executing from when the core comes out of reset?). In Verilator simulation, the Debug
Transport Module immediately forces BOOM to begin loading the test binary by executing
a program out of the Program Buffer. However, the FPGA platform used a faster Tethered
Serial Interface (TSI) to load the program while BOOM is held in reset. Once finished, the
TSI then removes BOOM from reset and the TSI-specific boot-loader has BOOM jump to
the application code. But since BOOM begins incorrectly at a random address after reset
instead of in the boot-loader, the FPGA emulation hanged.

BOOM hangs 50% of the time running complex applications after updating
Rocket-chip — A refactoring of the I/O interfaces left the invalidate-load-reservation signal
dangling. Thus, for half of the simulation executions the signal was randomized to 1, or
“always-invalidate-load-reservation”, which prevents forward progress for any binary that
uses load-reserve instructions.

The 445.gobmk benchmark returns an assertion error at 14.9 billion cycles —
Using an FPGA simulation with synthesized assertions, we found a bug in which a mis-
speculated FP-to-Int move instruction incorrectly writes back to an invalid ROB entry. The
FP-to-Int instruction suffers a structural hazard in accessing the write-back port on the reg-
ister file due to a load instruction. During this same cycle a branch misprediction kills all
the entries in the FP-to-Int queue. A copy/paste bug from a previous flow-through queue
implementation causes enq.valid to set deq.valid to true even though the enq.bits is
reading from a misspeculated entry before the dequeue pointer has been updated. Without
FPGA acceleration, this bug would have required 431 days of Verilator runtime.
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The 401.bzip2 benchmark returns an assertion error at 500 billion cycles — A
JAL instruction jumps to the wrong target. This is caused by improper signed arithmetic
in the frontend’s handling of the unconditional jump target. This was found using FPGA-
accelerated validation. Otherwise, this would have required 39 years of Verilator simulation
to find.

A kernel panic occurs on an illegal instruction when reading the rdtime CSR —
The latest RISC-V Privileged Specification v1.10 adds a feature to support faster instruction
emulation by writing the illegal instruction bits into the control-status register (CSR) mtval
(previously mbadaddr). BOOM instead wrote the excepting PC into mtval, continuing with
the previous v1.9 behavior for mbadaddr. A read of the CSR rdtime is suppose to throw an
illegal instruction on the Rocket-chip platform so that the machine mode can then emulate
the CSR read by accessing the memory-mapped real-time clock and returning that value
instead. However, by writing the PC into mtval, the emulation routine was confused and
thought the illegal instruction was in fact an illegal instruction instead of a read of the rdtime
CSR. This bug required a comparison of Rocket’s commit log and waveform against BOOM’s
commit log and waveform to track the correct instruction path through the different privilege
levels. Part of the fix involved patching the upstream RISC-V conformance tests to check
for proper illegal instruction handling.
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[7] Krste Asanović, Rimas Aviz̆ienis, Jonathan Bachrach, Scott Beamer, David Bian-
colin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam Izraele-
vitz, Sagar Karandikar, Benjamin Keller, Donggyu Kim, John Koenig, Yunsup Lee,
Eric Love, Martin Maas, Albert Magyar, Howard Mao, Miquel Moreto, Albert Ou,
David Patterson, Brian Richards, Colin Schmidt, Stephen Twigg, Huy Vo, and An-
drew Waterman. “The Rocket Chip Generator”. EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2016-17 (2016).
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