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ABSTRACT

Image coding is one of the most visible applications of wavelets. There has been increasing number of reports
each year since the late 1980°s on the design of new wavelet coders and variations to existing ones. In this paper,
we report some results from our comparative study of wavelet image coders using a perception-based, quantitative
picture quality scale as the distortion measure. Coders are evaluated in rate-distortion sense; the influences of
different wavelets, quantizers, and encoders are assessed individually. Our results provide an insight into the
design issues of optimizing wavelet coders, as well as a good reference for application developers to choose from
an increasingly large family of wavelet coders for their applications.

Keywords: wavelets, wavelet transform, image coding and compression, image quality, distortion measure.

1 INTRODUCTION

Research in wavelet image coding since the late 1980’s has explored various aspects of wavelet image coders.! ™12

Today, this field continues to grow at a rapid pace; reports on new coders and variations to the existing ones
are appearing constantly at conferences and in journals. Despite the widespread interest in wavelet coders, there
has been no comprehensive and comparative study of the performance of various wavelet coders using a suitable
distortion measure. This makes it difficult to consider optimum designs or to choose from an increasingly large
family of wavelet coders for specific applications. We were thus motivated to perform a comparative study of
wavelet coders.

Our comparative study is confined to still images and is based on a rate-distortion measure. A common
expectation about wavelet image coders is that they produce subjectively better quality images than the standard
JPEG coder. This is a well recognized fact, at least for images encoded at low bit-rates. However, an objective
evaluation must rely on some quantitative distortion measure. The traditional distortion measure, the mean square
error (MSE), has long been recognized as inadequate because of its low correlation with human visual perception.
It is particularly inappropriate to use the MSE for evaluating wavelet coders which are largely motivated by
the properties of the human visual system (HVS).1® We chose to use a perception-based, quantitative distortion
measure, called the Picture Quality Scale (PQS), in our study. The PQS has been developed in the last few years
for evaluating the quality of compressed images. It combines various perceived distortions in image coders into
a single quantitative measure; and it correlates well with the subjective evaluation quantified by a mean opinion
score (MOS). In previous research, the JPEG image coder, along with one subband and one wavelet coder, was



studied extensively using the PQS.**

The design of a wavelet image coder can be divided into three parts: wavelet and related representations,
quantization strategies, and error-free encoding techniques. In each part, one has freedom to choose from a pool
of candidates and this choice will ultimately affect the coder performance. Therefore, it is necessary to evaluate
each choice independently, i.e., with the other parts of the coder fixed. The number of such combinations can be
prohibitively large, even after we eliminate some apparently unreasonable choices, so that in this paper, while we
review a large number of possible choices for each decision, we present our comparative results using two wavelets,
three quantizers, and three encoders on two test images.

The rest of paper is organized as follows: Section 2 reviews the family of wavelet image coders by listing
different choices of wavelets, quantizers, and encoders; Section 3 introduces the PQS as a distortion measure;
Section 4 presents experimental results of coder comparisons and some comments; Section 5 concludes the paper.

2 FAMILY OF WAVELET IMAGE CODERS

In this section, we review the family of wavelet image coders by examining the options we have for wavelet
representations, quantizers, and encoders. Generally speaking, a wavelet image coder can be made by selecting a
wavelet representation, a set of quantizers, and an error-free encoder. However, an arbitrary combination of the
three parts does not always make sense in practice. We will point this out as we encounter such situations.

2.1 Wavelet Representations

Wavelet representations differ in their choice of wavelets. We shall discuss a few general types of wavelets and
the associated representations in the context of image coding. We consider only separable 2-D wavelets which are
completely determined by corresponding 1-D wavelets and scaling functions.

Orthogonal Wavelets. These are the family of wavelets that generate orthonormal bases of L(R™). Among
them the most important ones to image coding are compactly supported orthogonal wavelets. In the discrete
wavelet transform (DWT), compactly supported wavelets correspond to FIR filters and thus lead to efficient
implementations. A systematic way of constructing compactly supported wavelets was developed by Daubechies,'®
and a fast algorithm for computing a DWT was given by Mallat.! Two popular families of compactly supported
wavelets are the Daubechies wavelets!® and Coifman wavelets, or Coiflets.!® Each family is parameterized by an
integer that is proportional to the length of the wavelet filter. For compactly supported wavelets, the length of a
wavelet filter is proportional to the degree of smoothness and regularity of the wavelet, which in turn can affect
the coding performance. However, studies?'® have found that for filter lengths greater than 8 or 10, the gain in
compression performance is nominal and not worth the additional computational cost.

A major disadvantage of compactly supported wavelets is their asymmetry. This property translates into
nonlinear phase in the associated FIR filters. In computing a DWT using nonlinear phase wavelet filters with
finite-length data, a periodic “wrap-around” extension is often used. This may cause artifacts at the borders
of the wavelet subbands. These artifacts can be avoided if we use linear phase wavelet filters and a “flip-over”
data extension.! Symmetry in wavelets and their associated filters can be obtained only if one is willing to give
up either compact support or orthogonality of wavelets (except for the Haar wavelet). The use of noncompactly
supported wavelets such as the Lemarie-Battle wavelet in image coding has been demonstrated.! But, such a
choice adds computational burden and is not economical in a hardware implementation of the coder. For example,
although the coefficients of the Lemarie-Battle wavelet decay at an exponential rate, we found that 50 coefficients
(one side) are needed to achieve a reconstruction accuracy to 6 significant figures. If we want both symmetry and
compact support in wavelets, we are led to biorthogonal wavelets.

Biorthogonal Wavelets. The reason for using biorthogonal wavelets is mostly for their symmetry. The price we
pay for this is little as far as image coding is concerned. When using biorthogonal wavelets, the quadrature mirror
filters (QMF) we use to compute a DWT are no longer an orthogonal pair. They are, however, orthogonal to
another QMF pair that we use to compute the inverse DW'T. The perfect reconstruction property is preserved, and



Mallat’s fast algorithm can still be used. There are also systematic ways of constructing compactly supported
biorthogonal wavelets.!® One can choose, for example, to build filters with similar or dissimilar lengths for
decomposition and reconstruction, or which are nearly orthogonal.® Since there is little extra cost associated with
biorthogonal wavelets, they are adopted in several wavelet image coders.®® However, although the advantages of
using linear phase biorthogonal filters in image coding have been conjectured,'” a previous study by Rioul'® did
not clearly indicate this.

Wavelet Packets. Coifman et al.?’ introduced wavelet packets as a generalized family of multiresolution
orthogonal or biorthogonal bases that includes wavelets. A family of wavelet packet bases can be generated by
the same QMF pair that generate the wavelet. An extensive coverage on this topic can be found in a book by
Wickerhauser.?! From subband coding point of view, any subtree sharing the same root with the full subband tree
corresponds to an orthogonal or biorthogonal representation using a specific member of the wavelet packet bases
generated by a QMF pair. Clearly, one can choose from this rich family a “best” basis by some criterion. Coifman
and Wickerhauser? developed entropy-based algorithms for best basis selection. Their algorithm converges to a
minimum-entropy basis. Note that the “entropy” in Coifman and Wickerhauser’s algorithm is a measure of energy
compaction of a vector. Since natural images usually have their energy concentrated in low frequency bands, one
would imagine that an entropy-based algorithm would converge to the wavelet basis, which is often indeed the
case. Another algorithm for determining the best basis in a rate-distortion sense was developed by Ramchandran
and Vetterli.'® If one is concerned primarily with lossy compression, the best basis that minimizes the total
distortion for a given bit-rate is clearly preferable to a minimum-entropy basis.

Zero-Crossings and Local Mazima of Wavelet Transforms. Under certain conditions, an image can be ef-
fectively represented by the zero-crossings of the wavelet transform?? or local maxima of the wavelet transform
modulus.'? When wavelets are carefully chosen as a smoothed gradient operator, the zero-crossings and local
maxima of corresponding wavelet transforms can be interpreted as “multiscale edges”. Generally speaking, a non-
orthogonal wavelet is required for this purpose and the resulting wavelet transform of the image is oversampled in
space before the extraction of the zero-crossings and local maxima. Image coding using zero-crossings and local
maxima was demonstrated by Mallat?? and Mallat and Zhong.?3 The latter was refined by Froment and Mallat?*
and linked to the “second-generation image coding techniques”?® that use image features such as contours, as
coding primitives. A more recent coding system along this line was developed by Croft and Robinson.?® These
feature-based image coding systems usually require non-conventional quantization and encoding techniques. For
example, in the wavelet local maxima representation, coding performance would be better if quantization is done
on the chains of local maxima (edge contours) instead of individual local maxima.'? The quantized chains of
wavelet local maxima can then be encoded with a contour coder.?”

2.2 Quantization Techniques

Secalar Quantization (SQ). Suppose we have decomposed an image to N dyadic scales using a wavelet transform
or wavelet packet transform, either orthogonal or biorthogonal. This will yield 3N + 1 wavelet subbands. Since
the variance of each subband is generally different, we need to design a quantizer for each subband. If we assume
the encoder employed at the later stage uses variable-length codewords, we are led to consider only uniform
quantizers.?® In this case the design of a uniform scalar quantizer boils down to the choice of a quantizer step-size
for each subband. A simple but rather arbitrary design could be to start with some step-size g, and decrease
it by a factor of 2 for all three oriented subbands as one goes to the next coarser scale. The lowest subband is
often finely quantized using the smallest possible step-size. The ¢y can be determined by matching the averaged
entropy of all quantized subbands to the given total bit-rate. This design is obviously nonoptimal, but works
satisfactorily in practice as evidenced by the EPIC software.?’ More sophisticated quantizer designs can take
into account the characteristics of the HVS, or an optimally allocated bit budget for each subband. Lewis and
Knowles” designed a HVS-weighted quantizer that takes into account the HVS’ spectral response, noise sensitivity
in background luminance, and texture masking. If the bit budget has been allocated for each subband, then an
entropy-constrained optimum quantizer can be designed.?® The problem of optimal bit allocation in the context
of wavelet image coding was addressed in several papers.®31:33



Vector Quantization (VQ). Vector quantization is a generalization of scalar quantization in which vectors,
or blocks, of pixels are quantized instead of the pixels themselves. The general optimality of VQ over SQ was
discussed by Gersho and Gray.3? To apply VQ to wavelet image coding, the common approach is still to consider
each subband individually. In the work of Antonini et al.,> a subcodebook is generated for each subband, and a
multiresolution codebook is obtained by assembling all subcodebooks. Senoo and Girod®?® compared several VQ
algorithms for subband image coding and concluded that entropy-constrained VQ gives the best performance,
and that lattice VQ performs is only slightly worse, but with a much simpler implementation. Since subbands
are a hierarchical organization of oriented frequency bands, it is intuitive to consider quantizing a vector whose
elements span subbands of the same orientation. This idea, however, does not lead to a new form of VQ; it leads
to a new quantization strategy, referred to as “space quantization”.

Space vs. Frequency Quantization. We refer to the technique of designing quantizers, either scalar or vector,
for each individual subband as “frequency quantization” since each subband corresponds a different frequency
range. Since wavelet representations have both scale (frequency) and space contents, spatial grouping of data and
quantization are possible. However, this is somewhat beyond the scope of conventional quantizer design because
the number of samples corresponding to the same location in the same orientation is decreased by a factor of
4 as we move from fine to coarse scale subbands. Shapiro!! designed an elegant method, called the embedded
zerotree wavelet algorithm (EZW), to turn this difficulty into an advantage. Quantization is done by successive
approximation across the subbands with the same orientation. This results in an efficient data structure for
encoding zero and nonzero gquantized values. More recently, studies on joint space-frequency quantization3*33
attempt to fully exploit the space-frequency characteristics of wavelet representations.

2.3 Error-Free Encoding Techniques

Huffman Code and Run-Length Encoding. Although not an actual encoding technique, band based Shannon
entropy is commonly used in the evaluation of coding performance. A simple encoding technique results if Huffman
codes are designed for each band. Care must be exercised, however, to insure that accurate statistics are used to
design these codes. One can design a universal code based on an ensemble of typical images or explicitly transmit
the Huffman codes, along with the compressed image data, to the decoder. For highly skewed sources, such as
quantized wavelet transformed images, Huffman codes are known to be very inefficient. But, if the most probable
symbols (zeros) are removed from the source and encoded separately, little spatial correlation remains among the
non-zero values, which can then be encoded efficiently. Commonly, run-length encoding the abundance of zeros,
when combined with Huffman encoding of the non-zero values, produces good results.®”

Arithmetic Code. Adaptive arithmetic codes start with no information about the image and implicitly transmit
the model to the decoder in the compressed data stream, therefore, are free from the ensemble issues associated
with the design of Huffman codes. Binary arithmetic codes, such as the Q-code and QM-code,®” are more
computationally efficient than their multi-alphabet counterparts,3® but require a mapping from the quantized
coefficients to a sequence of binary decisions. A simple technique, which is similar to the run-length encoding
discussed above, proves to be very beneficial. The locations of the non-zero pixels are specified by encoding
a binary activity mask (all non-zero values are set to 1) with standard binary image compression techniques,
such as JBIG, after which the non-zero pixels are mapped through a balanced binary tree and encoded. Using
such a technique, we often obtain bit-rates less than the Shannon entropy (based on independent pixels) due
to the significant spatial correlation between the zeros in a wavelet transformed image. An alternative, efficient
representation of the zeros in the source is exploited by Shapiro’s zerotree'! coder.

3 PICTURE QUALITY SCALE (PQS)

Research into the psychophysics of human visual perception has revealed that the HVS is not equally sensitive
to various types of distortion in an image. This directly affects the perceived image quality. The PQS is based
on quantitative measures of several distortion factors. Because these distortion factors are correlated, a principal



component analysis is done to transform them into uncorrelated “sources of errors”, and dominant sources are
identified. These errors are then mapped to a PQS value by a model which was obtained from a linear regression
analysis with the Mean Opinion Score (MOS).

3.1 Distortion Factors

The current version of the PQS includes five distortion factors of which the first two are derived from random
errors and the last three from structural errors. Here we give only a description of these distortion factors.
Formulas for computing the actual numerical measures are detailed in two references.!*3%

Distortion Factor F1 i1s a weighted difference between the original and the compressed images. The weighting
function adopted is the CCIR television noise weighting standard. Here the viewing distance is assumed to be
four times the picture height.

Distortion Factor Fs is also a weighted difference between the original and the compressed images. The
weighting function is from a model of the HVS. In addition, an indicator function is included to account for the
perceptual threshold of visibility.

Distortion Factor F3 reflects the end-of-block disturbances. The HVS is quite sensitive to linear features in
images. In block coders, the error image contains discontinuities at the end of blocks, which explains blocking
artifacts in the compressed image.

Distortion Factor Fy accounts for general correlated errors. Textures with strong correlation are more per-
ceptible than random patterns. The error image having strong correlation suggests more apparent distortion in
the image to human viewers.

Distortion Factor Fs is a measure of the large errors that occur for most coders in the vicinity of high contrast
transitions (edges). Two psychophysical effects occur in the vicinity of high contrast edges. On the one hand,
the visibility of noise decreases; this is referred to as “visual masking”. On the other hand, the visibility of
misalignments increases.

3.2 Principal Component Representation of Distortion Measures

Because the distortion factors { F;}1<;<5 are correlated, a principal component analysis is performed to decor-
relate distortion measures and identify the dominant sources. This 1s done for a test set of distorted images
obtained from representative coders. Table 1 lists a covariance matrix of {F;}, Cp, which was computed from
a set of 24 distorted images obtained by encoding two reference images with transform and DPCM coders for
a range of quality scales. An eigen analysis on C'p gave the transform matrix that decorrelates {F;}. It was
found out that among the five eigenvalues of C'p the three largest ones accounts for 98% of the total error energy.
Therefore, the three eigenvectors corresponding to the three largest eigenvalues can be chosen to transform {F;}
into a principal component representation, {Z;}1<i<s.

3.3 Formation of the PQS

Since the various distortion factors collectively contribute to the overall perceived image quality, we seek a
functional model mapping the distortion factors or measures to a single quality scale, the PQS. This model can
be experimentally determined by studying the functional relationship between the distortion measures and the
MOS, a five scale subjective ranking of image quality in terms of perceived distortions that are described in Table
2.3 The simplest model is a linear one in which the PQS is expressed as a linear combination of uncorrelated
principal distortion measures, {7;}, that is,

3
PQSIbO+ZbiZi

i=1



Table 1: Covariance Matrix of Fj; Table 2: The Scales of the MOS

Fy Fy F3 Fy Fy Grading Scales Impairment

Fy | 1.00 | 0.97 |1 0.95 | 0.03 | 0.97 5 Imperceptible

Fy | 097 | 1.00 | 0.99 | 0.15 | 0.91 Perceptible, but not annoying
F5 095|099 | 1.00 | 0.17 | 0.88 Slightly annoying

rF, | 003|015 |0.17 | 1.00 | 0.11 Annoying

F5 | 0971091 | 088 | 0.11 | 1.00 Very Annoying

= N Co|

where {bi}osl'sg are the partial regression coefficients obtained by multiple linear regression of {Z;} against the
MOS.3840 Nonlinear models have also been studied that employ neural networks to compute the PQS.*!42

For the aforementioned set of 24 distorted images, the MOS values were obtained from an experiment involving
nine observers under the conditions specified by the CCIR.3° The observers were allowed to give half scale scores.
A multiple linear regression analysis of {Z;} against the MOS gave by = 6.431, by = —0.069, by = —1.475,
bs = —0.136, with correlation coefficient R = 0.88.

4 RESULTS AND COMMENTS

In this section we present some results from our comparative study of several wavelet coders. The comparison
is in the rate-distortion sense where the distortion is measured by the PQS. Two popular test images, Lenna and
Barbara, both 256 x 256, were used in the experiment. A total of 266 encoded 1mages were compared, representing
a combination of two wavelets, three quantizers, and three encoders, plus the EZW coder for coding the two test
images at seven bit-rates ranging from 0.5 to 2.0 bpp. The two wavelets used are the orthogonal, 8-tap wavelet
of Daubechies (D8)!® and the biorthogonal, “9-7” wavelet of Barlaud (B97).°17 All wavelet transforms are
computed for 4 dyadic scales, resulting in 13 subbands. All three quantizers are scalar quantizers: the first is the
non-optimized quantizer (Q1) described in Section 2.2; the second is the HVS-weighted quantizer (Q2) of Lewis
and Knowles”; the third is an entropy-constrained quantizer (Q3) where a bit budget is optimally allocated to each
subband and used as a constraint in the quantizer design.3%3! All three encoders are band based, i.e., each band is
processed separately. They are: a simple Huffman encoder (E1), run-length encoded zeros plus Huffman encoded
non-zero values (E2), and the activity mask based technique discussed in Section 2.3, where we QM-encode the
mask using a 7-pixel spatial predictive context and the non-zero values using binary tree decomposition (E3).
In addition, we tested the EZW coder with the B97 wavelet, tree-structured spatial quantization, and adaptive
arithmetic encoding.

The results are organized and presented in several ways. In assessing the choice of wavelets and quantizers,
we use the computed entropy H of a quantized wavelet representation as the bit-rate, assuming we have an
ideal entropy encoder. The two wavelets {B97,D8} are compared for fixed quantizers and the three quantizers
{Q1,Q2,Q3} are compared for fixed wavelets. To compare the three encoders, we plot actual bit-rate outputs
from {E1,E2,E3} versus H (which is the lower bound on bit-rate if pixels are independent). Finally, we compare
the overall performance of a few coders synthesized from different choices of wavelets, quantizers, and encoders.

4.1 Comparison of Two Wavelets

Figure 1 contains six plots comparing B97 with D8 for fixed quantizers, {Q1,Q2,Q3}. In all cases B97 leads
D8, by as much as 0.43 PQS for a given bit-rate or 0.2 bpp for a given PQS value. Note that filters of B97 and
D8 have similar lengths. The advantage of biorthogonal wavelets over orthogonal wavelets is clear and consistent
in this experiment.



4.2 Comparison of Three Quantizers

Figure 2 compares our three quantizers for fixed wavelets, {B97,D8}. We find that Q2 is the winner in most
cases. For low bit-rates, Q2 is sometimes slightly outmatched by one of the other quantizers. At higher rates,
Q2’s dominance increases. Recall that Q2 is a HVS-weighted quantizer. Its advantage is not obvious when we
examined the peak signal-to-noise ratios (PSNR). In fact, the difference between the three quantizers by PSNR
i1s within 0.2 dB for all bit-rates tested. This shows that PQS indeed takes into account the characteristics of the
HVS. No clean relationship between Q1 and Q3 can be derived from our results; Q3 beats Q1 for Lenna, but the
situation is reversed for Barbara, though by different degree.

4.3 Comparison of Three Encoders

Figure 3 shows the output bit-rates of three encoders versus computed entropies for Lenna and Barbara.
Similar results were observed for all wavelets and quantizers, therefore, to reduce the number of plots presented,
we averaged the results across wavelets and quantizers to produce the composite results shown. In each plot we
also draw a line of unit slope where the output bit-rate equals the entropy. As expected, the simple Huffman
encoder (E1) always gives a bit-rate higher than the entropy, especially at low bit-rates where there are a large
number of zeros, i.e., when the source is highly skewed. When combined with run-length encoding of the zeros
(E2), the results are much better, and only slightly worse than our best, activity mask based technique. We
must point out, though, that our Huffman code results are image specific and do not include the overhead of
transmitting 13 (one per subband) Huffman codes to the decoder. Therefore, the bit-rates for E1 and E2 in
Figure 3 are lower bounds on the rate of a more realistic such code. We did not compute the cost of transmitting
the Huffman codes or consider the design of a generic Huffman code based on an appropriate ensemble of images
because the results for code E3 are better and do not ignore any hidden costs. We observe that E3’s bit-rates are
consistently lower than the (independent pixel) entropy, which may appear counterintuitive to some, but is correct
since we are exploiting spatial dependencies in the source which are not reflected in the entropy computation.
Note that by using E3 we can obtain bit-rates as much as 0.3 bpp below the entropy. We declare E3 the winner.

4.4 Comparison of Wavelet Coders

We now compare a few complete wavelet image coders synthesized from different wavelets, quantizers, and
encoders. A combination of “the best” gives the B97-Q2-E3 for both Lenna and Barbara. We also present D8§-
Q1-E3 and D8-Q1-El for Lenna and D8-Q3-E3 and D8-Q3-E1 for Barbara. These coders along with the EZW
coder are compared in Figure 4. For Barbara, B97-Q2-E3 1s the sure winner followed by the EZW and D8-Q3-E3.
For Lenna, B97-Q2-E3 is the winner for most bit-rates, with EZW winning at high bit-rates. For both images,
the simple Huffman encoder yields, clearly, the poorest coder. Of course, an intelligent designer would not choose
such a code. Our results only indicate how bad such a brute force design can be.

The EZW coder is, in our mind, the state-of-the-art in wavelet image coding. The fact that we can make
an even better coder (in terms of PQS vs. bit-rate) just by assembling available techniques testifies to the value
of good synthesis in wavelet coder design. Comparing the EZW with B97-Q2-E3, we found that both exploit
dependency between quantized coefficients for encoding, which provides the possibility to achieve bit-rates below
the entropy. The difference is that B97-Q2-E3 exploits intraband dependency by encoding the activity masks
while the EZW exploits interband dependency by encoding the zerotrees. While the zerotrees take advantage
of the space-scale characteristics of wavelet representations, we noticed that the EZW’s performance becomes
relatively poor at low bit-rates, suggesting its higher overhead for encoding the zerotrees. For quantization, the
EZW uses successive approximation, while B97-Q2-E3 uses a HVS-weighted quantizer which contributes to its
higher performance as measured by the PQS. Lastly, the good performance of D8-Q3-E3 and D8-Q1-E3 suggests
that the effect of different wavelets (of similar filter lengths) is less significant than that of quantizers and encoders.



5 CONCLUSION

We have presented some results from a comparative study of different wavelet image coders using a perception-
based picture quality scale. While these results provide a good reference for application developers to choose
a good wavelet coder for their applications, they also shed some light on issues of optimum design of wavelet
coders. Our work shows that an excellent wavelet coder can result from a careful synthesis of existing techniques of
wavelet representation, quantization, and error-free encoding. Exploiting the dependency of quantized coefficients,
including zeros, is a very effective way to boost the overall performance of a wavelet coder. Quantizers designed
with considerations of the characteristics of HVS also show advantages when an appropriate distortion measure
is used. The effect of variations between asymmetric orthogonal and symmetric biorthogonal wavelets is also
noticeable, but less significant when compared with the other two factors.
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Figure 1: Comparison of two wavelets, {W97 D8}. Left and right columns are for Lenna and Barbara, respectively.
Top: comparison under quantizer Q1; Middle: comparison under quantizer Q2; Bottom: comparison under
quantizer Q3.
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Figure 2: Comparison of three quantizers, {Q1,Q2,Q3}. Left and right columns are for Lenna and Barbara,
respectively. Top: comparison under wavelet B97; Bottom: comparison under wavelet D8.
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Figure 3: Comparison of three encoders, {E1,E2 E3}. Bit-rates are averaged over {B97,D8} and {Q1,Q2,Q3} for
the same images. Left: comparison for Lenna; Right: comparison for Barbara.
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Figure 4: Comparison of four wavelet image coders. Left: comparison for Lenna; Right: comparison for Barbara.
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