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ABSTRACT OF THE DISSERTATION  

 

Drool rules!  
Novel methods to further knowledge of microbial communities in the human oral cavity 

 

by 

  

Clarisse Augusta Marotz 

 

Doctor of Philosophy in Biomedical Sciences  

University of California San Diego, 2020  

 

Professor Rob Knight, Chair 

Professor Karsten Zengler, Co-Chair 

 

As I prepare my dissertation, a global Coronavirus pandemic is spreading--affecting the 

way we travel, work, and communicate. Transmitted primarily via respiratory droplets, this virus 

spread across the entire globe in a matter of months, highlighting the interconnectedness of modern 

life and the microscopic world which invisibly underlies all our interactions.  
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In fact, the vast majority of life on earth is microbial, and for the vast majority of time 

microorganisms were the only life present. Animals emerged in a robust microbial world, and our 

evolution was shaped by and from these microorganisms.  

Even during this global pandemic, it is easy to view ourselves as distinct, independent 

organisms. But recent evidence challenges this notion. Roughly 1% of our body weight is 

comprised of trillions of microorganisms, collectively referred to as the human microbiome. Our 

microbiomes are necessary for healthy nutrition, immune function, and even reproduction. How 

our microbiomes are formed, maintained, shared, and perturbed are active areas of research. My 

doctoral research focused on understanding and improving the molecular tools used to evaluate 

microbial communities and applying those tools to better understand human microbiomes.  

This dissertation begins with three reviews summarizing what we know about human 

microbiomes and what is still lacking. Chapters 2 and 3 describe benchtop and computational 

advances to the human microbiome field, respectively. The final chapter includes two research 

articles currently under review describing the application of these tools to gain novel insight into 

human oral microorganisms.  

Throughout my research, I found that human saliva served as a valuable tool for developing 

these novel techniques because it is simple to collect, high biomass, and relatively easy to 

manipulate. So although it was not my original intention, I have come to appreciate saliva as a 

valuable resource for pushing the boundary of human microbiome research. It is my hope that this 

research improves our ability to evaluate microbial communities across a broad range of contexts, 

allowing for future research on altering microbiomes to improve human and environmental health.  

 

 



1 

Chapter 1. 
 

Introduction 
 
 This introduction is divided ino three sections. The first section describes evidence that the 

microbial communities in our guts can influence our physiology. Although fecal matter 

transplantations have an ancient history, their use in modern medicine has only recently become 

widely accepted, and the data shows that by changing the microbes in an indivdual’s gut you can 

influence immunity and metabolism.  

Once the stage has been set for the translational power of understanding human 

microbiomes, the second section is a general summary of what is known about how microbial 

communities influence human biology. The final section is a co-authored opinion piece 

recognizing the current knowledge gaps preventing targeted microbiome perturbation studies and 

serves as a transition to my research in improving the available molecular tools for evaluating host-

associated microbiomes. 
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1.1  

Treating Obesity and Metabolic Syndrome with Fecal Microbiota 

Transplantation 

The worldwide prevalence of metabolic syndrome, which includes obesity and its 

associated diseases, is rising rapidly. The human gut microbiome is recognized as an independent 

environmental modulator of host metabolic health and disease. Research in animal models has 

demonstrated that the gut microbiome has the functional capacity to induce or relieve metabolic 

syndrome. One way to modify the human gut microbiome is by transplanting fecal matter, which 

contains an abundance of live microorganisms, from a healthy individual to a diseased one in the 

hopes of alleviating illness. Here we review recent evidence suggesting efficacy of fecal 

microbiota transplant (FMT) in animal models and humans for the treatment of obesity and its 

associated metabolic disorders. 

 

1.1.1 Introduction 

Over the past half-century, the prevalence of obesity and its related metabolic disorders, 

such as type 2 diabetes (T2D), non-alcoholic fatty liver disease, and hypercholesterolemia, have 

increased dramatically. Collectively, these diseases cause an undue burden on health care costs 

and significant morbidity and mortality. While these diseases are linked to human genetics and 

lifestyle changes, the human gut microbiome, or the microorganisms living in the gut and their 

collective genomes, is now recognized to play an emerging role in metabolic health and disease 

[1, 2]. Trillions of diverse organisms, including bacteria, fungi, archaea, and viruses, have co-

evolved to live in the human gut [3]. These commensal organisms comprise the gut microbiome, 
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and their collective genome, referred to as the metagenome, contains more than a hundred-fold the 

number of genes than their host does [4]. Certain metagenomic patterns are associated with 

obesity, as well as other phenotypes [5]. These patterns are responsive to weight change in 

individuals [6], suggesting that modulating the gut microbiome is dynamically correlated with the 

human host’s metabolic phenotype.  

There are many ways that the gut microbiota can be altered, including probiotics (non-

pathogenic organisms beneficial to the host), prebiotics (chemicals that induce growth and/or 

activity of commensal organisms), and fecal microbiota transplantation (FMT)[7]. Though 

beneficial effects of probiotics have been reported in many studies, none show an alteration in 

fecal microbiota composition [8]. FMT on the other hand, causes significant changes in fecal 

microbiota composition [9]. FMT as a potential therapeutic has a long history. The successful 

practice of altering gut microbiota with FMT from a healthy to diseased individual was first 

recorded in the 4th century for the treatment of severe diarrhea [10].  Recently, randomized 

controlled clinical trials show astounding successes for recurrent, refractory Clostridium dificile 

infection (CDI). Multiple studies have reported greater than 90% efficacy, dramatically more 

successful than traditional therapy, in resolving recurrent CDI [11]. Recent evidence from animal 

and human models suggests FMT could also be used as a therapeutic intervention against obesity 

[12, 13]. In this review we will provide a status update on the role of FMT in treating obesity and 

its associated metabolic disorders. 

 

1.1.2 Gut microbiota and host metabolism 

Whereas inter-individual microbiota composition can vary dramatically, a conserved set of 

bacterial functional gene profiles are present in all healthy individuals, implying a role for the 
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microbiome in physiological gut functioning [1, 14, 15]. Alterations of this complex physiological 

bacterial population associated with negative functional outcomes or disease, known as dysbiosis, 

can cause low-level inflammation and altered intestinal homeostasis. Dysbiosis is linked to a 

variety of ailments, including obesity and its associated metabolic disturbances [16].  

The mechanism by which dysbiosis leads to metabolic disturbances is not well understood. 

Leading theories include changes in the microbiome’s digestive efficiency and perturbed intestinal 

signaling through alterations of luminal metabolites, low molecular weight signaling chemicals, 

released by bacteria in the intestinal lumen such as secondary bile acids (BAs) and short-chain 

fatty acids (SCFAs)[17]. The gut microbiome is essential for fermenting indigestible foodstuffs 

into products that can be used by, or modulate, the intestine (e.g. complex carbohydrates into 

SCFAs) [18].  In murine models, obesity-related microbes are able to harvest greater energy from 

ingested material [19]. In addition, the microbiome’s metabolism of primary BAs to secondary 

BAs affects host metabolism by modulating activation of the farnesoid X receptor, a master 

regulator of hepatic triglyceride and glucose homeostasis [20], as well as G-protein coupled BA 

receptors, which can increase metabolic rate in brown adipose tissue [21-23]. Lastly, diet accounts 

for 57% of structural variation in the mouse gut microbiome [24], which shifts tremendously in 

response to the host’s gender, diet, circadian rhythms, and feeding pattern [25-28], suggesting that 

it is a malleable system amenable to manipulation for therapeutic advantage. 

 

1.1.3 Fecal matter transplant methodology 

Currently, only recurrent CDI is approved by the FDA for FMT therapy without requiring 

an investigational new drug (IND) approval. Therefore, the majority of FMT recipients have been 

treated for severe CDI. These individuals failed repeated treatment with antibiotics and had few 
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therapeutic options left. In addition, FMT has been studied in inflammatory bowel disease (IBD) 

since the etiology of this disease, at least in part, results from dysbiosis. However, there have been 

few controlled, randomized trials for IBD patients and there is no evidence that FMT improves 

clinical outcomes [33]. In all, FMT has been performed in primarily ill individuals who are at high 

risk for complications. Hence, the potential risks and complications for relatively healthy patients 

with obesity or metabolic syndrome remain hypothetically lower compared to previous studies 

performed in patients with refractory, recurrent CDI or IBD. 

Though FMT is relatively easy to perform, there is wide inter-institutional variability in 

methodology. For example, in preparation for FMT, some institutions give their patients multiple 

doses of doxycycline or vancomycin in an effort to reduce the native, dysbiotic population [29]. 

In many institutions, immediately prior to FMT, patients are typically given a polyethylene glycol 

colon preparation to increase the opportunity for the transplanted microbiome to successfully 

colonize the gut regardless of whether the FMT is introduced in the upper GI tract or through a 

colonoscopy. However, there is no published evidence suggesting that this preparation improves 

FMT clinical outcomes [22]. 

The processing of fecal matter for transplant is not standardized and needs to be 

experimentally validated for optimal efficacy. The general principal, however, is more or less 

universal. As outlined in Figure 1, the donated stool is first mixed with saline solution to 

homogenize it into a liquid sample, and is then filtered to remove any solid feces that may interfere 

with the transplant.  
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Figure 1.1.1. Fecal Microbiota Transplantation schematic. A) Donor fecal matter is blended with saline solution 
and pushed through a metal sieve to achieve a homogenous liquid solution. B) Processed fecal microbiota is 
either delivered via a duodenal tube or colonoscopy. C) Representative data showing metagenomic diversity 
increases following FMT from lean donor to obese recipient. 
 

In order to standardize the processing of fecal matter, studies have compared the efficacy 

of frozen versus fresh stool samples prior to processing and transplantation. These studies have 

thus far shown no significant difference in primary outcomes [30, 31]. While studies have 

performed 16s rRNA sequencing before and after processing to evaluate sample loss, fecal matter 

contains 99% anaerobic species which may not survive vigorous aerobic blending [32, 33]. 

Furthermore, 16s rRNA sequencing does not discriminate viable from dead cells. Nevertheless, 

the overwhelming number of positive results obtained from FMT in treating CDI patients suggests 

that either the viability of the cells is relatively unimportant, or that a small proportion of survived 

cells is sufficient to induce a change in the recipient’s microbiome and a therapeutic effect.  

Processed fecal matter is typically delivered into the gastrointestinal tract of the patient by 

colonoscopy or duodenal tube/upper endoscopy (Figure 1B). While delivery route often varies 

from study to study, no statistically significant difference in outcome is reported between the 
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delivery methods for the treatment of CDI [11, 34]. This finding remains to be validated for the 

treatment of other diseases, such as IBD or obesity. Regardless, it is important to consider the 

potential risks associated with each potential delivery route. 

The protocol for FMT is widely variable, as summarized in Table 1, and standardization 

of this technique should help elucidate FMT’s efficacy. 

 

Table 1.1.1. Variability in fecal microbiota transplantation methodology. 
Points of variability Potential methodology Potential implications 

 

Patient preparation 
Type/length of antibiotic 
treatment, duration of colon 
preparation 

State of patient’s gut microbiome 
could impact susceptiblity to 
transplant  

Donor Patient relative, ‘super donor’, 
designer cultures? 

The identification of ‘super-donors’ 
hints at the possibility of moving 
toward the creation of safer, more 
standardizable synthetic probiotic 
communities 

Sample preparation Aerobic vs anaerobic; fresh vs 
frozen vs lyophilized 

A recent clincal trial reported no 
difference in clincal resolution 
between using fresh or frozen fecal 
sample for transplantation 

Administration Duodenal tube, colonoscopy, 
enema, pill 

Maximizing practicality of this 
technique while maintaing efficacy 
could impacts its prescription and cost 

Delivery site Colon, small intestine 

Spatial dynamics of the human 
microbiome remains poorly 
characterized, but could results in 
more targeted therapy 

 

1.1.4 Insulin sensitivity transferred from donors to recipients 

Recent studies in animal models show a functional relationship between the gut 

microbiome and obesity and its associated metabolic disturbances. For example, obesity and 

insulin resistance in adult rats on a high-fructose diet was reversed with orally administered 

antibiotics or oral FMT from control rats [13]. Transplanting fecal matter from twins discordant 
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for obesity into germ-free mice was recently examined [35]. Mice populated with the microbiome 

from the obese twin had increased adiposity and decreased bacterial diversity compared to mice 

populated with the microbiome from the lean twin. These results demonstrate the ability of the 

microbiome to alter the metabolic phenotype of the host. 

To date there has only been one published study testing the efficacy of FMT specifically 

for treatment of metabolic disorders in humans. The hallmark characteristic of metabolic syndrome 

is insulin resistance, where cells are hypo-responsive to insulin and therefore cannot maintain 

glucose homeostasis. Fecal microbiota from healthy, lean donors transferred through a duodenal 

tube to obese individuals diagnosed with T2D affected host metabolism [12]. The study compared 

patients who received allogenic transplant (n = 9) (i.e. stool from a healthy donor) to autologous 

transplantation (n=9) (i.e., their own stool). Although there was no reported difference in body 

mass index 6 weeks after transplantation, there was a significant increase in insulin sensitivity (as 

measured by the median rate of glucose disappearance) and fecal microbiota diversity, and 

decrease in fecal SCFA in the allogenic versus autologous group. These promising results have 

been widely cited and inspired multiple clinical trials (discussed below). Although FMT can 

induce microbiome alteration towards the donor population for up to 24 weeks post-FMT [29], 

further studies are need to determine whether FMT can have long-term effects on insulin 

sensitivity or weight. 

Additional clinical trials are necessary to validate the effects of FMT in those with obesity 

or metabolic syndrome. Importantly, these studies should be randomized, include autologous 

controls, contain meticulous metadata and track long-term microbiome and patient outcome data. 

ClinicalTrials.gov lists four ongoing clinical trials testing FMT for metabolic syndrome treatment. 

A phase 2 clinical trial at Massachusetts General Hospital is evaluating the impact of FMT capsules 
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on a primary outcome of body weight reduction over 18 weeks [ClinicalTrials.gov ID 

NCT02530385]. An Italian phase 3 clinical trial is tracking glucose homeostasis over a 6-month 

period following FMT in combination with diet and exercise [ClinicalTrials.gov ID 

NCT02050607]. Researchers from China’s Nanjing Medical University are evaluating the results 

of a phase 3 clinical trial on a single, nasogastric-delivered FMT on T2D over a 2-year period 

[ClinicalTrials.gov ID NCT01790711]. A Canadian double-blind pilot study is testing FMT 

efficacy in both metabolic syndrome and non-alcoholic fatty liver disease, which is closely 

associated with obesity [ClinicalTrials.gov ID NCT02496390]. 

The results from these clinical trials should give us a better idea of the microbiome’s 

functional role in human metabolic disorder. Future studies must be designed to identify which 

bacterial populations or functional microbe-host relationships underlie this phenomenon. 

  

1.1.5 Super-donors 

The selection of a donor for FMT is not standardized, although there is general consensus 

for the need to do so [36]. Initially, donors were typically family members identified by the patient.  

However, recent studies highlight the practical advantages of using standardized volunteer donors 

and creating screened biobanks [31, 34]. In general, donors are screened for healthy bowel 

movements according to the Bristol stool chart, communicable diseases, recent travel history and 

antibiotic history.  

In subsequent publications and conferences, Vrieze et al. noted that the patients who had a 

more robust improvement of insulin sensitivity after FMT received transplantation from the same 

limited number of donors [37]. That is, a minority of donor samples elicited a robust response, 

whereas other samples had no effect on patient’s metabolism. The success of the intervention, 
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hence, could be attributed to “super-donors.” Studies on the effects of FMT in alleviating 

symptoms of IBD have similarly observed that fecal samples from certain donors have a much 

greater therapeutic effect on multiple recipients [38]. Currently there is no way to identify super-

donors until after experiments have started. More recent FMT studies try to identify super-donors 

earlier in order to perform more rigorous analysis of their microbiome for the identification of 

therapeutic microbiota, which could allow for the design of a better alternative to FMT.  

There is a strong social stigma with FMT [39].  Because fecal matter is difficult to 

standardize, the ethical and social complications in transplanting feces, and the difficulty in 

monetization, alternatives to direct FMT are being actively pursued [40]. Gel capsules of fecal 

microbiota is a promising new technique which excludes the need for any gastrointestinal 

procedure [34, 41] and is preferred by patients [42, 43]. In fact, private companies already deliver 

FMT through oral capsules, mainly for the treatment of CDI. However, it is unclear whether these 

capsules are as effective as FMT itself. 

Another potential treatment is to design and produce probiotics in a donor-independent 

fashion. For example, the Vrieze et al., study identified increased butyrate-producing microbes in 

patients with increased insulin sensitivity following FMT [8]. If the increase of butyrate-producing 

bacteria is important for improvement of metabolic symptoms, then there is a possibility for more 

direct treatment of metabolic syndrome through pro/pre-biotics, which would be easier to control 

and administer. 

 

1.1.6 Potential risks 

One challenge with FMT is the difficulty in finding accurate measures of adverse reactions. 

Thus far, a vast majority of recipients are ill and it is difficult to differentiate between normal 
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disease progression and the effects of FMT. Nevertheless, although hundreds of individuals have 

undergone FMT, few negative outcomes have been reported, even in immunocompromised 

patients [44]. The majority of negative symptoms reported are mild, including diarrhea or fever 

[45-47]. Mortality has been observed in FMT trials, however it was attributed to unrelated causes 

in severely ill or elderly patients. Microbiota can predispose susceptibility to atherosclerosis using 

causative evidence in mice and correlative evidence in humans [48]. In addition, the spread of 

transmissible disease, while not reported, is still a viable threat, especially to the 

immunocompromised (e.g. IBD patient on immunomodulatory therapy, HIV patient with CDI). 

These reports underscore the importance of rigorous donor screening. Finally, these risks have to 

be tempered with the morbidity and mortality associated with obesity and its associated metabolic 

diseases, which as of yet have few effective treatments. 

Surprisingly, obesogenic properties of the gut microbiome can be transmitted through FMT 

as well. A case report documented the transmission of an obese phenotype from an overweight 

donor to a lean patient following FMT for the CDI treatment [49]. The donor was a young, obese 

relative undergoing rapid weight gain at the time of donation. The recipient was an individual who 

had never been obese. After receiving FMT, the recipient had rapid unintentional weight gain that 

could not be explained by recovery from CDI alone. Interestingly, the recipient reported increased 

appetite.  These observations remain controversial given that it’s a case report. However, it is 

consistent with rodent studies where transfer of fecal matter from obese mice to germ-free mice 

transmits the metabolic phenotype [35]. Regardless, the results of this report have affected FMT 

protocol at many institutions that now exclude obese donors from donating.   
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1.1.7 Conclusion  

FMT remains an exciting therapy with abundant potential. Nevertheless, there has been a 

lack of controlled, randomized trials for metabolic disease. Initially, the FDA considered FMT an 

IND, making it difficult for practitioners to use until all other therapeutic options had been 

exhausted. However, in 2014 the FDA stated that it would exercise enforcement discretion, 

allowing physicians to use FMT without IND applications for the treatment of CDI. For more 

investigational indications of FMT, an IND application with the FDA is still required.  

Given the amount of controlled clinical studies currently testing FMT for metabolic 

syndrome we should have a clear indication in the next few years of whether or not microbiota 

changes are causative or correlative in this rising epidemic, and whether altering the gut 

microbiome through FMT or similar procedures will provide new therapeutic options for obesity 

and its associated metabolic disorders. 
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1.2  

The Microbiome and Human Biology 

Microbiome research has dramatically reshaped our understanding of human biology over 

the last few years. New insights range from an enhanced understanding of how microbes mediate 

digestion and disease processes e.g. inflammatory bowel disease, to surprising associations with 

Parkinson’s Disease, autism and depression. In this review we describe how multiple new 

generations of sequencing technology, analytical advances coupled to new software capabilities, 

and the integration of animal model data have led to these new discoveries. We also discuss the 

prospects for integrating studies of the microbiome, metabolome and immune system towards the 

goal of elucidating mechanisms that govern their interactions. This systems-level understanding 

will change how we think about ourselves as organisms. 

 

1.2.1 Introduction 

When we think about what defines us as species, our thoughts naturally turn to the human 

genome. The Human Genome Project was a remarkable success in government-funded “Big 

Science”: in 2013 in his State of the Union address, President Obama estimated the cost of the 

Human Genome Project at $3.8 billion, with a return on investment (ROI) of an incredible 140:1. 

Yet the human genome, which is essentially fixed at birth, represents a small fraction of genetic 

diversity associated with our bodies. Estimates of the gene content in microbiome, either from 

back-of-the-envelope calculations [1] to empirical observations [2, 3] place the number of 

microbial genes associated with our human body from 2-20 million, exceeding the ~20,000 human 

genes by at least a factor of 100. Microbial cells even outnumber our own cells; although the early 

and widely reproduced estimates of 10:1 microbial to human cells are overstated. The most 
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detailed report to date suggests that we are only about 47% human on average by cell count [4] (of 

course, because microbial cells are much smaller, this corresponds to only a couple of kilograms 

of microbial biomass in a typical adult). The impact of this enormous number of microbial genes 

and cells on human biology must be profound. Furthermore, unlike our fixed human genomes, our 

microbial gene repertoires are highly malleable, offering exciting prospects for novel therapies. 

Our ability to read out these complex microbial communities and understand their impact 

on human biology has been transformed by advances in technology, especially DNA sequencing 

and computational methods. In just a decade, a typical study has advanced from collecting a few 

dozen sequences for each sample to a few hundred million. These advances open up a panoramic 

vista of how microbes change over space and time, and how they relate to processes ranging from 

the physiological and psychological. 

 

1.2.2 Early development of the microbiome field 

The term “microbiome” was often taken to refer to the collection of genes contained within 

a community of microbes, although today the term is also used to refer to the organisms themselves 

(often termed the “microbiota”, although we defer to common usage in this article). However, the 

first appearance of “microbiome” in the literature did not include a definition of relatedness 

according to genomic criteria. It represented the collection of all taxa that comprise microbial 

communities including bacteria, fungi and protists in the intestinal tract and their relationship to 

microbes in the oral cavity [5] or protozoan populations in sewage contaminated environmental 

waters [6]. At that time, microbiology systematics lacked a compelling phylogenetic context. 

Efforts by Stanier and van Niel [7] to transform the morphology-based microbial systematics of 

Bergey’s manual [8] into a phylogenetic framework had reached an impasse [9]. Morphology, cell 
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staining characteristics, physiological properties, capacity for biochemical reactions, and other 

anecdotal features could not identify membership or evolutionary relatedness between 

phylogenetic assemblages.  

Resolution of this problem and the foundation for today’s microbiome studies emerged 

from the physicist Carl Woese’s quest for the origin of life. Influenced by the Zuckerkandl and 

Pauling publication “Molecules as Documents of Evolutionary History [10], Woese predicted that 

molecular analysis of RNA components of the ribosome would reveal primordial branching 

patterns in the tree of life. He reasoned that the earliest life forms must have invented protein 

synthesis machinery with RNA components that would then be locked inflexibility with their 

binding partners and therefore evolve slowly. Specifically, interactions with the multi-protein 

complexity of the ribosome and with all other cellular proteins during their synthesis would impose 

strong evolutionary constraints on the ribosomal RNAs.  

Even before the development of any kind of DNA or RNA sequencing technology, 

RNA/DNA competition hybridization experiments confirmed Woese’s hypothesis by 

demonstrating that ribosomal RNAs evolved 100-fold more slowly than protein-coding regions in 

bacterial genomes [11]. Comparisons of the fragmentary rRNA sequence information captured by 

the then “state-of-the-art” two dimensional oligonucleotide fingerprinting technology, initially for 

5S rRNAs [11] but ultimately and more comprehensively for 16S rRNAs, provided a phylogenetic 

framework that still underpins contemporary microbial ecology and systematics [12, 13]. These 

early oligonucleotide cataloging efforts redefined microbial systematics through the discovery of 

11 major microbial phyla, but more profoundly led to the discovery of a third domain of life, the 

Archaea [13, 14]. When coupled with the first report of a full-length 16S rRNA sequence [15], the 

comparisons of oligonucleotide catalogues from hundreds of cultured organisms revealed a series 
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of interspersed fast- and slow-evolving regions that would eventually provide important technical 

advantages for contemporary microbiome investigations. This interleaved conservation pattern of 

slow and fast evolving regions allows rRNAs to serve as multi-handed molecular chronometers 

over disparate evolutionary time scales [16]. The slow-evolving regions allow amplification 

primers to be constructed (see below), and differences between the highly-conserved regions 

identify phylogenetic relationships that span the longest evolutionary time scales. In contrast, the 

fast-evolving regions provide fine-scale resolution often suitable for human microbiome 

investigations. Because the rRNA evolves at different rates in different taxa, even the full-length 

rRNA sequence does not permit resolution of all taxa, but in general the faster-evolving regions 

provide better resolution that is often important for clinical or forensic questions. 

The introduction of labor-intensive Maxam-Gilbert DNA sequencing [17] and Sanger 

dideoxy chain termination sequencing [18] led to a rapid expansion of cultivar rRNA databases 

that included sequences 100-300 nucleotides long. The conserved regions served as primer sites 

for reverse transcriptase-mediated direct sequencing [19] of purified 16S rRNAs or chain 

elongation sequencing of cloned rRNA genes [20]. The molecular biologist Norman Pace realized 

the revolution in microbial systematics enabled by molecular phylogenetics would have a profound 

impact on microbial ecology [21]. The initial molecular surveys of microbial diversity from 

environmental samples required the isolation and DNA sequencing of cloned rDNA inserts from 

recombinant libraries. Each sequence served as a proxy for the occurrence of a microbial genome 

in an environmental sample. Comparisons of environmental rDNA sequences to the rapidly 

growing rRNA database from cultivars revealed microbial diversity to be at least two orders of 

magnitude greater than previously appreciated. New technologies including the adaptation of 

polymerase chain reactions for amplifying and cloning rRNA gene sequences [22] and automated 
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DNA sequencing machines  accelerated the rate of discovery [23]. Woese’s eleven major bacterial 

phyla grew to more than 1000 [24]. Finally, the development of next-generation sequencing 

technologies capable of generating millions of reads for less than a penny/read once again pushed 

back the known limits of microbial diversity, much of which represents the very low abundance 

taxa that make up the rare biosphere [25].  

 

1.2.3 The move to next-generation sequencing 

Early studies of the microbiome were limited to relatively small numbers of sequences 

because of the costs and time required for cloning and Sanger sequencing (typically, several dollars 

per sequence). These studies traditionally focused on rRNA gene amplification by PCR, then 

relating the individual sequences to one another via multiple sequence alignment and subsequent 

phylogenetic reconstruction (e.g., [26]). One critical aspect in these phylogenetic analyses was the 

assessment of the taxonomic composition of a community or set of communities, often placing the 

new sequences into a characterized reference such as the Ribosomal Database Project [27] or into 

a phylogenetic tree with new sequences added to those with existing taxonomy and/or environment 

annotation in Genbank. These workflows, going from sequence to phylogeny, became 

commonplace and tools such as ARB [28], which allowed users to align sequences, insert them 

into a phylogeny, and visualize the tree, became widespread.   

Because cost limited the number of sequences available per sample, obtaining abundance 

estimates of the organisms corresponding to the sequences was problematic, especially because 

many investigators used cheaper fingerprinting methods to choose only unique and diverse 

representative molecules for sequencing. Additionally, it was clear that the diversity was very high, 

with many new unknown sequences in each new dataset (including new sequences that were 
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artifacts of sequencing error), exceeding the capacity of phylogenetic reconstruction software and 

the computers of the time. Exacerbating the issue, there was considerable controversy about which 

phylogenetic methods to use, especially because theoretically more powerful methods such as 

maximum likelihood were limited to a few hundred sequences at most. To address these issues, 

researchers began to cluster sequences into operational taxonomic units (OTUs) often using a level 

of 97% sequence identity as a proxy for species; the number of sequences present in an OTU acted 

as a proxy for its abundance and allowed ecological diversity estimates to be computed [29]. 

Naively, the clustering could be performed using BLAST [30]. However, this approach was slow 

even with small numbers of sequences, because early methods relied on computing each pair of 

distances between sequences. Optimized methods for such calculations, notably DOTUR [31], 

which leveraged PHYLIP [32] to compute the distances, greatly improved the ability to generate 

OTU tables and pick representative sequences for phylogenetic reconstruction. DOTUR made the 

important contribution of refining the concept of an OTU beyond the idea of an identity threshold 

by introducing different methods of clustering (essentially, asking whether the threshold defined 

the maximum difference between any two sequences in an OTU, the average difference between 

any two sequences, or the maximum difference to the nearest sequence). 

The adoption of the OTU concept paved the way for classically trained ecologists to get 

involved in microbiome research, bringing with them decades of ecological theory and methods 

developed for the qualitative and quantitative study of macroscopic environments. In particular, 

they brought approaches suited for assessing the relationships between environmental factors and 

the organisms in a community such as ordination techniques [33]. One extremely powerful concept 

was the notion of beta diversity, which represents the dissimilarity between a pair of samples. 

These distances can be computed pairwise across a large number of samples to produce a matrix 
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that describes how similar every sample is to every other sample. These distance matrices can then 

be assessed for the presence of systematic structure through techniques like PERMANOVA [34] 

and principal coordinates analysis. 

There are many ways to compute beta diversity, but not all are equally informative for 

studying microbial communities [35]. In particular, methods that do not explicitly take phylogeny 

into account tend to underperform in expressing differences between samples, and can leading to 

inaccurate or implausible biological conclusions. In the mid 2000s, Cathy Lozupone asked whether 

including phylogeny could improve comparisons of microbial communities, and developed 

UniFrac [36] to perform such comparisons. Applying UniFrac to meta-analysis of over 100 

existing 16S rRNA studies spanning every conceivable natural environment on the planet rapidly 

yielded a remarkable pattern: the structure of a microbial community is influenced more by 

whether it was sourced from a saline or non-saline environment than any other factor recorded 

[37]. However, once samples from vertebrate guts were included, the split between host-associated 

and non-host-associated samples was even more profound than the saline-non-saline split [38], 

suggesting that microbial communities residing within hosts are uniquely specialized relative to 

other communities.  

 In parallel with analytic improvements such as UniFrac, the price of DNA sequencing 

dropped precipitously due to the huge investment in sequencing technology from the Human 

Genome Project. In particular, the advent of pyrosequencing, which performs sequencing by 

synthesis and detects the incorporation of a nucleotide by monitoring the release of pyrophosphate 

(39). In addition to a cost reduction, a single sequencing run could produce hundreds of thousands 

of sequences without the need of laborious clone libraries used by Sanger sequencing, albeit with 

increased sequencing error. These errors are particularly problematic when assessing the presence 
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of rare members of a community, because an erroneous sequence may appear real. Relatively 

simple criteria could be applied to remove many of the low quality reads, yielding error rates that 

were better than Sanger sequencing [40, 41]. The first application of pyrosequencing to 16S rRNA 

data yielded an unprecedented view into the “rare biosphere” [25], revealing an extremely long 

tail of rare taxa in marine ecosystems that was rapidly extended to other environments. 

Although pyrosequencing was cheaper than traditional capillary-based methods, it was not 

cost effective to perform a whole sequencing run per sample. For example, in 2007 the 454 

platform typically yielded about 500,000 reads for $12,000; while this reduced a multi-year, multi-

million dollar sequencing exercise to an 8-hour project, the cost per sample was still prohibitive 

for most applications. Simply combining libraries together would have made it impossible to track 

each sequence back to the sample from which it came. This challenge led to methods for 

multiplexing samples together such as by ligating nucleotide tags unique to each sample during 

PCR [42] or by including these tags on the PCR primers themselves, allowing readouts of multiple 

communities simultaneously [43]. Including formal “error-correcting” codes in the construction 

of these barcodes made it possible to tolerate errors within the barcode itself, and allowed confident 

multiplexing of hundreds of samples simultaneously on a run [44]. 

Through projects such as the Human Microbiome Project (HMP) [3] and MetaHIT [2], 

these advance in sequencing quickly moved the microbiome field from a data-poor science to a 

data-rich one. This wealth of data quickly resulted in computational bottlenecks. This analysis glut 

prompted the development of tools such as mothur [45] and QIIME [46]. The latter is an accessible 

and modular microbiome-focused analysis framework that can handle large volumes of data and 

operate in environments ranging from laptops to supercomputers.     
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 The modularity of the QIIME platform greatly simplified subsequent and inevitable 

technology transitions. For example, at the same time as the HMP was being performed, Illumina 

sequencing technology began to offer tens of millions of sequences per run. We used QIIME to 

process the 454 amplicon data in the HMP. Within the same issue of Nature in 2012, we also used 

QIIME with data from the Illumina platform spanning over 1 billion amplicon reads, at a depth of 

coverage of over 1 million reads per sample [47].  

A secondary benefit of the modularity of QIIME was the ability to add novel analyses 

methods easily. This approach allowed methods development to operate in concert with study 

design, such as the exploration of the biogeography of microbes on a person’s hands [48]. 

Similarly, the flexibility of the platform made it possible to utilize the statistical and visualization 

components on different types of data beyond 16S rRNA (for example, shotgun metagenomic data 

and metabolomics) to study the distribution of small molecules across the body in relation to the 

microbial inhabitants [49]. Critically, this approach standardizes a large portion of the 

bioinformatics pipeline and reduces  technical bias, which can often outweigh the biological 

differences among samples [50]. 

Most amplicon-based microbiome studies still perform OTU level analyses. However, in 

the last few years, there has been a strong motivation to go to the “sub” OTU level as methods 

have improved. One method, oligotyping [51], allowed researchers to partition OTUs into finer 

groups in a supervised fashion based on Shannon entropy of the variation within nucleotide 

positions, and to then assess whether these partitions were significantly correlated to study 

covariates. A related method, MED [52] operates in an unsupervised manner but is similar in 

concept. More recently, DADA2 [53] and Deblur [54] leverage the error profiles of the sequencing 

instruments themselves to determine the most probable molecules that were presented to the 
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sequencing instrument. Excitingly, although these approaches do not offer assured species or strain 

level resolution because the variation need to distinguish does not always exist in the target 

amplicon, they offer maximal precision and specificity from the data obtained. 

Next-generation sequencing also enabled shotgun metagenomics, essentially isolating total 

DNA from a sample, fragmenting it, and sequencing all the fragments. Shotgun metagenomics has 

overall been adopted less than amplicon sequencing for human microbiome studies due to the far 

greater depth of coverage needed, and, correspondingly, cost, although it has been critically 

important for obtaining functional as well as taxonomic insight into the human microbiome (see 

examples below). A particularly exciting emerging area is metagenomic assembly, where complete 

genomes can be assembled from metagenomic data, allowing very detailed tracking of the 

colonization of individuals by specific strains of bacteria during development [55]. However, 

earlier gene-based approaches such as those used in MetaHIT [2] and the HMP [3], especially 

when correlations among reads across multiple samples are used to generate co-abundance groups 

corresponding to genomes or large genome fragments [56], have been very useful for functional 

investigations. 

 

1.2.4 Placing the human microbiome in context 

Next-generation sequencing techniques and the tools developed to effectively handle the 

data produced from these sequencing efforts have enabled deep exploration of the microbiome not 

possible even a decade ago. Several groups were studying the human microbiome, particularly the 

skin microbiome, in the early 2000s, and the first shotgun metagenomic analysis of the gut was 

performed using Sanger sequencing in 2006 [57]. Many patterns, such as the high level of diversity 

among individuals in the human gut [58] and the profound differences among human body sites 
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[59] were clear from the first amplicon studies to systematically explore these topics. However, 

microbiome research exploded after the release of data collected from the first large-scale effort 

to characterize the healthy human microbiome across the body, the Human Microbiome Project 

(HMP). The HMP was an NIH-funded multi-million dollar project which many components, but 

among the largest was a description of the microbiomes of up to 18 body sites in 242 healthy 

humans; the findings were published in two companion papers in Nature in 2012 [3, 60]. 

Unsurprisingly, drastically different microbial communities, both in terms of diversity and 

composition, were harbored by different body sites in the HMP cohort, consistent with earlier 

results from amplicon sequencing alone [59]. Stool and oral communities were the most diverse 

microbial communities in terms of number of different organisms present, and the microbial 

communities of vaginal samples proved least diverse, comprised mainly of Lactobacillus spp.[60]. 

Interestingly, sub-locations of body site classes (i.e., skin, mouth, vagina, or gut) harbor specific 

microbial communities; for example, while all locations in the oral cavity harbor Streptococcus as 

a major taxonomic group, the second most dominant group is different in the buccal mucosa 

(Haemophilus), supragingival plaque (Actinomyces), and subgingival plaque (Prevotella) [3]. 

Individual differences in the microbiome are sufficiently large and reproducible that they may be 

useful for forensic purposes [61, 62], and can even match up family members [63] and sexual 

partners [64], although courtroom applications of such technologies remain for the future. 

Cross-individual differences were specific to body site; for example, while an individual 

can harbor a variety of species in their oral cavity, all individuals in the HMP cohort appear to 

carry the same or similar types of organisms (Streptococcus, Neisseria, Haemophilus, Veillonella), 

and while the skin microbiome in general is not highly diverse for a single individual (dominated 

by Propionibacterium, Staphylococcus, or Corynebacterium), individuals tend to harbor markedly 
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different communities from one another [3]. Stool samples collected from individuals in the cohort 

exhibited tremendous variability, ranging from complete dominance by the Firmicutes to complete 

dominance by Bacteroidetes (the two major bacterial phyla in the gut). Despite this wide variety 

in taxonomic composition, both within body sites and between body sites, metabolic and functional 

pathways in the metagenomes were much more constant and evenly diverse, with several “core” 

pathways including ribosome and translational machinery, ATP synthesis, and glycolysis 

ubiquitous across body sites and individuals [3], consistent with previous work identifying the 

same patterns in the gut alone [65]. This observation lends strong support to a multi-omics 

approach toward characterizing healthy (and diseased) microbiomes, as it will not be sufficient to 

determine the microbial composition of a community alone. 

Although humans have explored a remarkably wide ecological niche relative to other 

vertebrate species, with an unprecedented geographic range and diversity of different diets, placing 

the human microbiome in the context of other mammals suggests that we are relatively 

unremarkable. Both at the level of taxonomy and function, we resemble other omnivorous primates 

such as chimpanzees closely [66, 67]. In general, mammals with the same diet and gut physiology 

harbor similar microbiomes, although there is substantial phylogenetic inertia, such that bears, 

which have diversified in a span of ~5 million years into obligate carnivores (polar bears), 

herbivores (pandas), and omnivores all harbor similar microbiomes [66]. Comparative studies of 

the microbiomes of great apes (including humans) show a considerable level of co-phylogeny, 

such that the gut microbiome tracks the overall pattern of host evolution [68, 69]. Unfortunately, 

very little data is available for other body sites such as the oral and skin communities, in part due 

to the difficulty of collection. Intriguingly, different species of apes have been observed to 
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converge in their gut microbiota when living in the same habitat, suggesting that there may be 

inter-species transfer [70]. 

The mouse microbiome is notably different from the human microbiome, and although the 

dominant phyla (Firmicutes and Bacteroidetes) are the same, the genus-level composition is 

notably different. In general, mouse samples are perfectly separable from human samples using 

techniques such as principal coordinates analysis [71].  This has important implications for the use 

of mouse models to make inferences about human biology: in general, because the background 

microbiota are so different, mouse studies are more effective for demonstrating possible 

mechanisms than identifying specific taxa associated with human biological processes. The use of 

gnotobiotic mice, i.e. mice colonized with known microbial communities such as those derived 

from human samples, is extremely useful in understanding the impact of human-associated 

bacteria on conserved mechanisms in the host, and for example individual human microbiomes 

transferred to mice can confer phenotypes ranging from adiposity [72] to features resembling 

Parkinson’s disease [73]. Perhaps most excitingly, Christensenella, a microbe associated with low 

body mass indices in human twin studies, causes mice inoculated with an obesogenic microbiome 

from humans to remain lean [74], demonstrating the ability to move from population-level 

observations to mechanistic work in an individual microbe. However, human-derived microbes 

are displaced from gnotobiotic mice on exposure to mouse-derived microbes within a few days 

[75], underscoring the requirement to keep such mice completely isolated environmentally. 

Placing the human microbiome in an environmental context, the microbiology of the built 

environment consists mainly of human-derived microbes with the dominant input being from the 

skin, and the individual-specific nature of this input can be tracked longitudinally to demonstrate 

transmission of microbes from individual people to surfaces they touch and spaces they inhabit 
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[76]. After death, the microbiome undergoes a specific suite of changes mixing endogenous 

community members with those derived from the soil, in a pattern so systematic that it can be used 

to estimate postmortem interval [77]. Intriguingly, the skin acts as a taxonomic bridge between 

other human body sites and environmental microbiomes, being dominated by Firmicutes (common 

in other human body sites), Actinobacteria (common in both human body sites and in the 

environment), and Proteobacteria (more common in environmental samples) [38]. However, the 

profound differences between host-associated and free-living microbial communities also apply to 

the human microbiome specifically, and this factor dominates large-scale comparisons of 

microbiomes. 

 

1.2.5 Associations between the microbiome and human development 

Although most studies of the human microbiome to date have focused on adults, there is 

immense interest in the microbiome during development both because of the profound changes 

that it undergoes during this process and because of the exciting prospects for early-life 

interventions that could promote health over a lifetime. Additionally, the microbiome appears to 

have far-reaching effects on reproductive and developmental biology that were unanticipated until 

recently. 

The vaginal microbiome of pregnant women differs from that of the general population 

[78, 79], although the degree of stability within the community depends on its composition [79, 

80] Overall, pregnancy is associated with a loss of microbial diversity within the vaginal 

community [78], and transition toward community structures dominated by Lactobacillus [78-80]. 

These shifts may be hormonally driven, with the bacterial community responding to increased 

estrogen during gestation [80]. The elevated Lactobacillus may also be protective for the 
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developing infant. Lactobacillus-dominated communities protect against bacterial vaginosis [81], 

a defect in the vaginal microbiome that is associated with elevated risk of preterm birth [82]. 

The mother’s gut microbiome is radically remodeled between the first and third trimester 

[83], with the third trimester microbiome being markedly different from that of non-pregnant 

women. Late-term pregnancy has been associated with increases in the relative abundance of the 

phyla Proteobacteria and Actinobacteria and a loss of community diversity [83], an aberrant 

community relative to that of healthy adult women [83]. 

The changes in the maternal microbiome seeds the infant’s first microbial communities. 

There is some controversy [84-86] whether this seeding occurs prenatally, or during birth. Recent 

papers [87, 88] have argued for a placental microbiome in the absence of amniotic infection. 

However, evidence suggests the observed placental microbiome may be a result of contamination 

in low-biomass samples [86]. One study was unable to detect differences between a placental 

microbiome and negative controls. Regardless of whether or not the microbial community is 

seeded prenatally, the mode of delivery has a strong role in shaping the neonatal microbiome. The 

microbial communities across multiple body sites of vaginally born infants more closely resemble 

an adult vaginal community, while infants born by C-section had communities that more closely 

resembled the skin microbiome [89, 90]. Additionally, birth method modulates the vertical 

transmission of gut microbes from mother to child [90], and the effect of vaginal birth could be 

seen in the microbiome through one year of age [90]. Studies in adults have not described a 

significant difference associated with delivery method, although it remains unclear whether the 

early-life changes in the microbiome can affect later phenotype by acting at a critical period in 

development. In mice, the time of colonization of initially germ-free mice with microbes 
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determines whether permanent alterations in behavior and in gene expression at distal tissues 

including the brain occur [91], and the same may be true in humans.  

 The microbiome undergoes rapid changes during the first three years of life, followed by 

a more gradual maturation [47, 90, 92]. The development of the infant microbiome correlates with 

changes in the breast milk composition and microbiome over the first year of development [90, 

93–95]. Human breast milk contains unique oligosaccharides not found in any other mammalian 

milk [96]. Many of these sugars are recalcitrant to host digestion, but can be directly utilized as a 

primary carbon source by Bifidobacterium, and to a lesser extent, some Bacteroides species. This 

is directly reflected in the distinct infant gut microbiota which is dominated by Bifidobacterium 

[97]. Over the first four months of breast feeding, lactose increased while the concentration of both 

monosaccharides and oligosaccharides decreased [94]. The carbohydrate metabolism capacity of 

vaginally delivered, breast fed infants respond to this change in breast milk composition: at four 

months of age, infant metagenomes had an increased in abundance of lactose-specific transport 

genes [90]. 

Weaning forces a maturation of the microbiome [90, 92]. The introduction of solid food 

diversifies the microbiome and shifted carbohydrate metabolism to complex carbohydrates and 

starch [90]. Chronologically older infants who were exclusively breast feed appeared microbially 

younger than their peers who had been introduced to solid food. However, nutritional disruption 

can alter this maturation: children with persistent malnutrition were microbially delayed compared 

to their healthy peers [90, 92]. 

    The widespread use of antibiotics, which began in the 1940s with large-scale production 

of penicillin (discovered in 1928; [98]) ushered in a new era of human medicine. Diseases and 

infections that had taken the lives of thousands were no longer considered dangerous, leading to 
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the designation of antibiotics as the “wonder” or “miracle” drugs. Inappropriate use of antibiotics, 

however, had led to a swath of serious health problems. Overuse of antibiotics in children in 

particular is a major public health problem. Most of the common illnesses experienced during 

childhood, such as diarrhea and upper respiratory tract infections (UTIs) are caused by viruses, not 

bacteria; therefore, the prescription of antibiotics in these cases is ineffective at best [99]. The 

detrimental effects of antibiotic usage on the gut microbiome have been described both in children 

and adults [100, 101]. Given that the first three years of life are a crucial time period for gut 

microbiome maturation, antibiotic treatments during this time period have the potential to inflict 

detrimental alterations to normal gut microbiome maturation, with potentially serious long-term 

effects. In mice, early life treatment with antibiotics increases weight gain and adiposity and delays 

microbiome maturation, while altering the metabolic activity of the fecal microbiome even into 

adulthood, long after antibiotic exposure [102]. The negative effects on microbiome maturation 

are also cumulative, becoming more pronounced with additional antibiotic courses, a significant 

observation given that the average child in the U.S. receives 10 courses of antibiotics by age 10 

[102]. Similarly, the microbiomes of children exposed to multiple antibiotic treatments in the first 

three years of life have less diverse and more unstable gut microbiomes compared to their untreated 

counterparts [103]. Antibiotic resistance genes in the gut microbiome also rise sharply in this group 

after antibiotic administration [103]. Antibiotic treatment in children has also been associated with 

an increased risk for obesity [104], asthma and allergies [105, 106], diabetes [107], and 

inflammatory bowel disease [108], all diseases associated with dysbiosis and that, like antibiotic 

usage, have increased in prevalence over the recent decades. 

Intriguingly, the rate of approach to the adult state is consistent in different populations, 

although the adult state that is reached in each case is markedly different [47]. Efforts to understand 
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the specific factors that lead to these cross-population differences in the adult microbiome are a 

major area of interest currently. Far less information is available about the maturation of the 

microbiome at other body sites, although characterizing these patterns of change will clearly be of 

great importance. 

 

1.2.6 Large and small effects on the microbiome: what really matters? 

As noted above, the human gut microbiome matures during the first three years of life, and 

remains relatively stable throughout adulthood [47] . Therefore, all factors influencing the 

microbiome likely have the greatest impact in this early developmental time window. 

Nevertheless, some factors have a dramatic impact on microbial composition at all life stages, and 

some factors have more subtle influences [109]. 

One of the most dramatic ways to influence the microbiome is with antibiotics. Even short 

term doses of antibiotics prescribed for acute infections can perturb gut microbial composition for 

years [110]. Resistance genes selected for during antibiotic treatment can persist in the microbial 

community long after the therapy has ended. While the degree and direction of dysbiosis in 

response to antibiotic treatment varies by individual, there are some overarching trends. For 

example, bacterial diversity decreases during the week immediately following antibiotic exposure 

and then begins to recover, although often the original state is not fully returned. In addition to 

changes in alpha diversity, antibiotic treatment can also have a significant microbial gene 

expression, protein activity, and overall microbial metabolic function [111]. 

Perhaps unsurprisingly, long-term diet is the primary determinant in the taxonomic and 

functional structure of the human gut microbiota. The nutritional composition of food affects 

which microbial species flourish, and, in some cases, selectively deplete certain taxa. While all 
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mammalian gut microbiomes share a core set of genes covering essential metabolic functions, the 

relative abundances of these genes and the specific taxa that carry them clearly distinguish 

carnivores, omnivores, and herbivores [67]. This leads to the observation that diet drives 

convergence of gut microbiomes across mammalian species. 

The difference in the microbiome between western and nonwestern populations is 

profound, and likely driven at least in part by diet [47, 112], although controlled experiments to 

confirm this or detailed studies in immigrant populations have not yet been performed. Such 

studies comparing large numbers of populations, rather than individuals, will be essential for 

understanding the plasticity of function in the human microbiome in response to the many diverse 

diets represented in human populations worldwide.  

Within the US population, long-term dietary patterns shape stable microbial communities, 

and small dietary changes are often not enough to disrupt the community factors that make an 

individual’s microbiome unique [113, 114]. In two studies of short-term dietary interventions 

lasting less than a week, the microbiome reverted to its original state within days, and the 

magnitude of the change was smaller than the baseline differences among individuals [115]. In 

children with severe malnutrition, antibiotic treatment followed by a dietary intervention was not 

sufficient to alter microbial development long term, and the improvements in the microbial 

community structure associated with therapy required continuing dietary intervention [114, 116].  

There are many examples emerging of the effects of individual dietary items. For example, 

dietary emulsifiers can disrupt the gut mucosal barrier inducing low-grade inflammation and 

changes in microbial composition [117]. Similar effects have been observed with artificial 

sweeteners, both in human and mouse studies, with individual differences in response largely 

explained by the microbiome [118]. The microbiome may explain the large individual-level 
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differences in response to specific dietary items that have long confounded weight loss studies. 

One recent groundbreaking study used continuous glucose monitors to explore post-prandial 

glucose response in a population of 800 people who were fed a controlled sequence of meals, 

allowing the effect of individual food items to be determined and related to various parameters 

including the microbiome [119]. Although the population average results recaptured the glycemic 

index for each food almost perfectly, individual variation in response was very high, and in a 

validation cohort of 100 individuals not involved in the initial study it was possible to design 

“good” and “bad” isocaloric, macronutrient-balanced diets for the same individual based on the 

microbiome, with markedly different impacts on glycemic response. These studies have 

tremendous potential to stratify patients effectively for dietary treatments of diabetes and obesity. 

Host genetics also contribute to the structure of the microbiome, albeit with far smaller 

effect size. The best evidence for genetic influence on the microbiota in humans comes from twin 

studies comparing monozygotic and dizygotic twins. Initial 16S rRNA gene sequencing studies on 

dozens of people revealed no significant difference in the similarity between mono- and dizygotic 

twin gut microbiota, although both types of twins were more similar to their twin than to their 

mother or an unrelated adult [65]. However, a more targeted approach on a much larger cohort of 

hundreds of twin pairs revealed that community membership (alpha diversity) rather than 

community structure (relative abundances) are responsible for driving the similarities seen among 

monozygotic twins. While host genetics seem to play a relatively minor role in shaping the 

microbiome, certain taxa (for example Christensenellaceae) are indeed heritable.  

The microbiome has been associated with many other processes, ranging from exercise 

[120] to infections [121] to stress [122] to sleep cycles [123], though typically with small effect 

size. Despite much interest in the possibility that probiotics modify the microbiome, the effects 
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tend to be very small, and may occur more at the level of transcription than of community change 

[124]. Identifying probiotics that have permanent, large effects on the microbiome remains an 

important topic for future research. 

 

1.2.7 Microbiomes and disease 

Bacteria in and on the human body have a significant impact on health and on the 

development of disease states. Microbiome alterations at different body sites have been associated 

with many diseases, which include perhaps obvious examples, such as dental caries and bacterial 

vaginosis; examples of chronic conditions, such as obesity, cardiovascular disease, inflammatory 

bowel disease and malnutrition; and even diseases not traditionally suspected to be linked to the 

microbiome, including as Parkinson’s disease, autism and depression. A partial list of these 

diseases and their microbial links appears in Table 1; it is impossible to be comprehensive given 

the rapid discovery of new links between the microbiome and diseases.  

 
Table 1.2.1. Disease states and their microbial links. 
Disease Description & microbiome link Reference 

C. difficile associated diarrhea Typical example of change in gut microbiome leading to 
enduring disease state. 

(149) 

Obesity (metabolic disease) Increased capacity of gut microbiome to harvest energy 
from the diet. 

(150) 

Inflammatory Bowel Disease  Gut inflammation disease driven by genetic, 
environmental and altered microbial factors. Adherent 
enterobacteria may promote initial ulceration events. 

(151), 
(152) 

Parkinson’s Disease  The microbiome can promote disease progression in 
genetically susceptible individuals.  

(73) 

Atopic dermatitis Skin inflammation driven by Staphylococcus aureus 
dominance (with genetic predisposition).  

(126) 

Acne vulgaris Skin disorder mediated by certain Propionibacterium 
acnes strains, together with the vitamin B12 pathway. 

(153) 
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Table 1.2.1. Disease states and their microbial links, continued. 
Disease Description & microbiome link Reference 

Chronic skin wounds Staphylococcus aureus, Pseudomonas aeruginosa and 
other bacterial pathogenesis in chronic wounds. 

(154) 

Autism Certain gut microbiota gained abundance in autism. Gut 
microbiota changes (in animal models) induce changes. 
Maternally produced microbially metabolites lead to an 
autism phenotype in mice. 

(155, 156) 

Asthma and allergies Dust of traditional farms stimulates the immune response 
and protects against asthma and allergies. 

(157) 

Acute Anorexia Lower gut alpha diversity in anorexia patients. Evidence 
that molecular mimicry of microbial metabolites may 
contribute to autoantibody production. 

(158) 

Rheumatoid Arthritis  Altered gut and oral microbiome in rheumatoid arthritis 
patients. RA patients have increased translocation of oral 
bacteria in the gut; treatment partially corrects this. 

(145) 

Atherosclerosis  Lack of intestinal symbiotic microbiota (in mice) induced 
plaque, while low levels of cholesterol were given in the 
diet. 

(159) 

Cystic Fibrosis Characterized by chronic lung infections, commonly with 
hypermutable Pseudomonas aeruginosa strains. 

(160, 161) 

Bacterial vaginosis Deviation from a low pH, lactobacillus dominated 
community to a higher pH, more diverse microbial 
community. 

(162) 

Dental caries Increased phylogenetic diversity and overabundance of 
Prevotella taxa associated with dental caries. 

(163, 164) 

Depression Transplantation of the microbiome into germ free mice 
induces depressions symptoms. These are associated 
with alterations in carbohydrate metabolism in the 
microbiome and hippocampus. 

(131) 

Type I diabetes In mouse models, the microbiome is required for the 
development of diabetes, although low dose antibiotics 
increase susceptibility. Changes in microbial development 
mark the progression to disease but predate the clinical 
presentation. 

(165, 166) 

Type II diabetes Lower levels of bacterial LPS in blood in type II diabetes 
patients.  

(167) 

Malnutrition Altered gut microbiome strongly linked with childhood 
malnutrition. 

(168) 
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Table 1.2.1. Disease states and their microbial links, continued. 
Disease Description & microbiome link Reference 

Cardiovascular disease Diet & gut microbiome were linked with trimethylamine-N-
oxide (TMAO) levels in plasma and cardiovascular 
disease risk (with genetic predisposition). 

(169) 

Multiple Sclerosis Suggested evidence of gut microbiota changes related to 
autoimmunity and pathology of MS. 

(170) 

Alcoholic Liver Disease Intestinal dysbiosis, bacterial overgrowth and increased 
gut permeability. 

(171) 

Osteoporosis Direct and indirect impact of the gut microbiome on 
deregulated bone remodeling. 

(128) 

Colorectal cancer Pathogenic microorganisms potentially initiate and 
facilitate the process of colorectal cancer 

(129) 

Addiction Antibiotic treatment increased addictive behavior for 
animals receiving low dose opioids in a mouse model of 
addiction 

(172) 

Irritable Bowel Syndrome Mucosal and luminal gut microbial changes, although 
causal effect is unproven. 

(130) 

 

In any study of the microbiome and disease, it is important to include the question of 

correlation versus causation. For example, psoriasis vulgaris patients have a different skin 

microbiome relative to healthy controls [125], but is this altered microbiome the cause of the 

disease state, or rather a consequence of the altered skin texture? For example, recent discoveries 

have suggested that atopic dermatitis may be caused by the altered microbiome [126], whereas the 

altered microbiome in psoriasis patients appears to be a side effect or an effect of the physiological 

changes of the skin [127]. Even if the microbiome is not causing a condition directly, the 

subsequent shift in the community may afford increased risk to other diseases, and furthermore, 

the microbiome may still be useful for assaying specific diseases or subtypes particularly in 

difficult to diagnose conditions like Crohn’s Disease. 
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Interestingly, direct and indirect microbial links have been discovered for osteoporosis 

[128], colorectal cancer [129], irritable bowel syndrome [130] and mineral deficiency diseases, 

although it is still uncertain in these cases whether the altered microbiome is a cause or a 

consequence. An especially important method of determining causality has been demonstrating 

the ability to transfer human phenotypes to germ-free mice (wild type or other). This has now been 

done successfully for a number of diseases and conditions, including obesity [72], malnutrition 

[116], insulin resistance resulting from artificial sweeteners [118], depression [131], and even 

jetlag [132]. This technique has tremendous potential for establishing that microbes can cause a 

specific phenotype and for untangling molecular mechanisms, especially when combined with 

metabolomics, although negative results can be difficult to interpret in light of the many genetic 

and physiological differences between humans and mice. Gnotobiotic pigs, which provide a better 

physiological model, have been of intense interest in this respect recently, especially in studies of 

nutrition [133]. 

Like all other mammals, humans co-evolved with their microbiota and developed a wide 

range of innate immune responses to protect the body against infection while still sustaining 

bacterial presence. The gut microbiome is in constant and intimate interaction with the host 

immune system, and influences both the innate and adaptive immune function [134]. The innate 

immune response involves dendritic cells, neutrophils, natural killer cells. The adaptive immune 

response involves T and B cells activation. Specific microbiota are associated with the 

development of particular T cell subtypes [135]. A shift in the gut microbiome can cause beneficial 

as well as detrimental outcomes mediated by CD4+ T cell subtypes regulation [136]. This 

relationship between the gut microbiome and the immune system is strongly implicated in a range 

of inflammatory disorders. In particular, dysbiosis has been associated with increased oxidative 



 42 

stress, which can drive a chronic inflammatory response [137] which is exacerbated by a decrease 

in community members known to produce short chain fatty acids (SCFAs) [138]. The lack of these 

SCFAs, such as butyrate, has the potential to promote an inflammatory response in the gut 

epithelium [139]. Given the association between inflammation and autoimmune diseases, it is no 

surprise that many of them have been linked with the gut microbiome.  

However, the microbiome is only a piece of the puzzle in the development and progression 

of disease. The microbiome, along with genetic susceptibility, epigenetic regulation, and 

environmental factors create a complex interactome. Underlying genetic susceptibility is often 

required as an underlying etiology for conditions. While cystic fibrosis has long been considered 

a disease with classic Mendelian inheritance, the lung microbiome play an important role in long 

term prognosis [140]. In more complex genetic diseases such as inflammatory bowel disease [141] 

and Parkinson’s disease [73, 142], the microbiome plays an important role in the etiology but is 

not causative alone. Crosstalk between the microbiome and epigenetic regulation may also 

modulate disease susceptibility, although the directionality of this interaction is unclear [143]. The 

role of diet and chemical exposure in disease management is also an important consideration. For 

instance, both diet and medication are used in the treatment of Type II diabetes. Conventional 

wisdom suggests type II diabetics avoid simple carbohydrates to control their blood sugar. 

However, there is a large degree of inter-individual glycemic response to foods. Some of this 

variation can be explained by the individual microbiome. Indeed, the microbiome is a far better 

predictor of a diet that limited the postprandial glucose spikes than a nutritionist [119]. The role of 

drug treatment in disease management, and the role of the microbiome in disease response, are 

also under active investigation. A large cross sectional study of patients with Type II diabetes 

found treatment with metformin was a better predictor of their microbiome than their diagnosis 
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[144]. Treatment played a role in microbiome remediation in Rheumatoid Arthritis: treatment 

disease-modifying antirheumatic drugs partially restore microbial balance [145].  However, 

microbiome can regulate the way in which drugs are metabolized: detrimental side effects of both 

metformin [144] and acetaminophen [146, 147] are related to microbial metabolism. 

One challenge to overcome in therapeutic applications of the microbiome, however, is that 

our microbiomes are unique to each individual, and change over time. These properties complicate 

both diagnostic use of the microbiome and its viability as a therapeutic target. In diseases such as 

C. difficile, the shift in the microbial community is remarkable [148], but the picture is less clear 

cut for many of other associations of microbiome with disease. As in human genetics work, it is 

necessary to understand the scope of diversity associated with different human populations, as well 

as the context of lifestyle and diet, so that we can understand deviations from the norm and specific 

aspects of concern for a particular disease state relative to a particular background. 

 

1.2.8 Conclusions 

The microbiome is complex, dynamic, and spatially structured. It is clearly important for 

many physiological and disease processes in which its involvement was completely unsuspected 

until recently. With all this complexity, especially the emerging links to metabolism, host genetics, 

epigenetics, and immunology, one might easily give up hope of being able to untangle the complex 

relationships, let alone exploit them for therapeutic benefit. However, other complex fields of 

biology offer hope. For example, although mass spectrometry analysis of an orange yields many 

compounds that have not yet been identified, we know that the vitamin C it contains is essential 

for preventing scurvy. Similarly, we can expect that some effects on the microbiome will be so 

large that they can be identified and exploited in a systematic way for any individual (for example, 
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fecal transplant for recurrent C. difficile), whereas other dysbioses will be far more subtle and 

require individual-specific approaches, perhaps aided by model systems such as gnotobiotic mice, 

organoids, or in vitro models. 

Although our capability to analyze the microbiome has expanded rapidly, it is clear that 

the ability to collect more sequences and timepoints will continue to revolutionize microbiome 

studies. Even depth of coverage of 1 million amplicon reads per sample merely scratches the 

surface of a 39 trillion-strong gut microbiota, and it is entirely possible that rare species that we 

cannot yet detect play important roles in many ecosystems and disease processes. Better methods 

of metagenome assembly and interpretation, especially from shallow-coverage samples, are 

urgently needed to provide statistical power for studies that need to cover hundreds to hundreds of 

thousands of individuals to reveal subtle effects. Computational methods, especially to integrate 

newly collected samples with large-scale resources such as the HMP, also need to be made far 

more accessible to a broad audience. However, we can imagine a day, perhaps soon, when easy 

tracking of the microbiome together with continuous analytics in the cloud, perhaps even at the 

consumer level (as it were, complementing one’s Fitbit™ with a “Shitbit”), will place control of 

the microbiome for life-long health in the hands of each individual. Already, consumer products 

like the TweetPee™ allow a soiled diaper to alert the parents by Twitter or text message based on 

moisture alone – the potential for high-resolution tracking of additional microbiome variables is 

tremendous. The only question will be how to protect privacy, given the highly personal and 

personalized nature of the microbiome, and how to best place control of the microbiome in the 

empowered hands of each individual. 
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1.3  

Are microbiome studies ready for hypothesis-driven research? 

Hypothesis-driven research has led to many scientific advances, but hypotheses cannot be 

tested in isolation: rather, they require a framework of aggregated scientific knowledge to allow 

questions to be posed meaningfully. This framework is largely still lacking in microbiome studies, 

and the only way to create it is by discovery- and tool-driven research projects. Here we describe 

the value of several such projects from our own laboratories, including the American Gut Project, 

the Earth Microbiome Project (which is an umbrella project integrating many smaller hypothesis-

driven projects), and the knowledgebase-driven tools GNPS and Qiita. We argue that an 

investment of community resources in these infrastructure tasks, and in the controls and standards 

that underpin them, will greatly enhance the investment of hypothesis-driven research programs. 

 

1.3.1 Introduction 

Microbiome research is making dramatic progress, with thousands of papers now published 

each year linking specific microbes and/or host-microbe co-metabolites to specific diseases, 

physiological properties, or environmental parameters. Much of this research is performed in a 

traditional, hypothesis-driven way, or at least presented as a rational reconstruction that fits this 

model, much as Darwin re-wrote much of his discovery-driven work as hypothesis driven to 

increase its respectability under the influence of contemporary philosophers of science such as 

William Whewell [1]. However, it should be noted that hypothesis-driven science was not always 

so respectable -- Isaac Newton famously wrote “Hypotheses non fingo”, or “I feign no 

hypotheses”, in an essay appended to the second edition of the Principia [2] -- so the tradition of 

modifying how science is framed in order to meet respectability criteria dates back at least 300 
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years. In any case, what can be framed as a singular hypothesis suffers important limitations based 

on what we can measure, and what we already know. 

Ten years ago Chris Anderson, editor of Wired magazine, set off an international debate 

with his article “The End of Theory: The Data Deluge Makes the Scientific Method Obsolete” [3]. 

The idea was that with enough data, hypotheses will emerge from the data (“Let the data speak for 

itself”) has become widely discussed in the rapidly growing data science profession. A thoughtful 

review of this topic was written in EMBO Reports in 2015-”Could Big Data be the end of theory 

in science? A few remarks on the epistemology of data-driven science” [4]. As the author points 

out: 

“Francis Bacon, the “father of the scientific method” himself, in his Novum Organum 

(1620), argued that scientific knowledge should not be based on preconceived notions but on 

experimental data. Deductive reasoning, he argued, is eventually limited because setting a premise 

in advance of an experiment would constrain the reasoning so as to match that premise. Instead, 

he advocated a bottom-up approach: In contrast to deductive reasoning, which has dominated 

science since Aristotle, inductive reasoning should be based on facts to generalize their meaning, 

drawing inferences from observations and data.” 

One constant in microbiome research has been that most factors that we would intuitively 

suspect to drive differences in the microbiome are of minor importance. For example, although 

long-term dietary changes have a major effect on the microbiome, short-term changes don’t[5,6]. 

Similarly, sex has a very limited impact on microbiomes across the human body [7,8] and has a 

much weaker effect than many other variables such as age (even within adults) and the time of 

year the sample was collected [9,10]. Perhaps more surprisingly, factors such as temperature and 

pH have a much smaller impact on environmental microbiomes than salinity [11,12], and even the 
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saline vs. non-saline difference is much smaller than the host-associated vs free-living difference 

[12,13]. Samples from different sites of the same person’s body can be more different from one 

another in terms of their overall microbial communities than radically different free-living 

microbial communities, such as soils versus oceans [12]. Differences of this magnitude can also 

occur within the gut of a single person, with sufficiently large perturbation [DOI: 

10.1101/277970]. 

As a consequence, it is easy to incorrectly frame hypotheses, especially when supervised 

ordination and classification techniques are used in experiments with many confounding variables. 

For example, suppose that for mouse experiments we don’t know that cage effects are important 

in the microbiome [14], then we profile the microbiomes in each of two cages of each of two 

different genotypes of mice. Our results are likely to be driven by which pair of cages happens to 

resemble each other more closely. If the variable of cage is not measured, or not tested in an 

unsupervised model, we might never know that our results are driven by this important 

confounding variable! There may be many more important confounding variables that we are not 

yet aware of, so longitudinal studies with meticulous metadata annotation will be crucial for 

defining which environmental factors matter. This is especially important in the context of clinical 

samples, where single data points are often collected and obtaining contextual information in 

retrospect is exceedingly difficult [15]. 

Similarly, a frequent practice is to discard unannotated microbes or unannotated molecules, 

focusing on the subset of microbes or molecules that can be matched to an existing database. 

Because databases of both microbes and molecules are heavily biased (microbes, by studies of 

known pathogens which come from only a small number of taxonomic groups, and molecules, by 

commercially available compounds), the entities that actually best discriminate among classes of 
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samples may be lost in the analysis: often, only 60% of sequences and 2% of molecular features 

from an untargeted metabolomics experiment can be annotated by existing references [16,17]. 

However, a rational reconstruction of why the annotatable microbes or molecules are plausible can 

always be developed by creative scientists looking to respond to their reviewers’ criticism that 

their manuscript is “too descriptive”. 

 

1.3.2 The Need for Maps 

An important metaphor in science and information visualization is the idea of the map, 

whether of real spaces or of abstract spaces. Indeed, as data volumes increase, it is frequent that 

the field moves from tests of hypotheses among sites, to tests of these hypotheses with replicates 

at each site, to spatially or temporally explicit sampling, to detailed spatial maps. This progression 

has already occurred in 16S rRNA amplicon-based microbiome studies over the past decade 

[12,18], and has increasingly been taking place in mass spectrometry-based metabolome studies 

over the past four years [19-24].  

The value of spatial maps is so self-evident that the results are often cursed by obviousness. 

For example, the finding that metabolomes cluster by individual, as revealed by principal 

coordinates analysis (PCoA), is interesting (Fig. 1A). However, the finding that a given molecule 

such as lauryl sulphate (m/z 355.219) covers one individual, but is absent from the other individual 

is obvious (Fig. 1B), especially when you know that individual subject A uses a stereotypically 

gendered product such as Nivea for Men, which is the source of the molecule [20].  How such 

personal lifestyle (often hygiene, health or beautification related) influences the microbiome is not 

known; it is also not known how even some basic parameters such as, skin temperature, skin pH, 

amount of sebum influences the microbial communities on the skin. Similarly, the finding that 
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samples from four individuals differ to a statistically significant extent in their levels of specific 

purines and that within an individual, such molecules are also non-randomly distributed, might 

well be an intriguing finding prompting more investigation. However, a spatial map with dense 

sampling of the same individuals (Fig. 1C) makes it obvious that the molecule is something that is 

touched and consumed, and sometimes spilled, allowing one to guess that it is probably caffeine 

and that one person likely spends time in the ocean based on the distribution of Synechococcus 

spp. (Fig. 1D) (both of which are in fact the case) [22].  
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Figure 1.3.1. Spatial analysis based on metabolomics of skin samples and a human habitat. A) Principal 
coordinates analysis (Hellinger distance) of metabolomics data of skin swabs obtained from several hundreds 
locations on the human body of four volunteers. B) The detection of lauryl sulfate (m/z 355.219) from the 
shampoo Nivea for Men on a male volunteer. C) The distribution of caffeine (m/z 195.088) on four individuals 
and office environment. D) The distribution of Synechococcus spp. on within that same office environment.  
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However, the fact remains that for most microbes and for most molecules, we have no idea 

where they are in and on the human body, in natural environments, or in human-impacted 

environments including built environments. Just as John Snow’s map of cholera instantly led to 

the hypothesis that this disease was water-borne and stemmed from the Broad Street pump, 

reinforced by the map’s revelation that the block that drank alcohol had no incidence of disease 

[25]. The power of maps in shown by the history that this visual display of disease incidences by 

street became the foundation for the science and practice of epidemiology. In an analogous manner, 

systematically collected maps of microbes and of molecules across different spatial scales will 

dramatically improve our ability to make useful inferences from this data. Integration of these 

maps with other data layers ranging from air pollution to food deserts and neighborhood 

walkability, together with zoomable user interfaces (consider the utility of Google Maps versus 

earlier fixed-scale maps on DVD), will fundamentally transform the types of questions that can be 

asked of microbiome and metabolomics data. 

The value of abstract maps, whether ordinations such as principal coordinates analysis 

(PCoA), non-metric multidimensional scaling (NMDS), t-distributed stochastic neighbor 

embedding (t-SNE), network diagrams obtained from object similarity (sequence or spectrum), or 

from co-occurrence across samples, is also considerable. In particular, when the right data frame 

and metrics are chosen, the key result is often immediately obvious. Consider, for example, the 

starting and ending time point of a fecal transplantation series [26] (Fig. 2A), where it’s obvious 

that the clusters are statistically significantly different, but it is not obvious what direction this 

difference is in or what it means. However, when we perform a meta-analysis and put these 

samples in the context of the Human Microbiome Project data [8], one of the most important 

abstract maps in human microbiome science, we see immediately that the difference between start 
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and endpoint is much greater than the difference between healthy and diseased samples, and when 

we add the intermediate timepoints we see that the transition occurs very rapidly. These types of 

examples prompt similar data collection and visualization techniques in metabolomics, in order to 

understand how we can identify a desirable metabolomic state (for example, by comparing healthy 

and sick individuals), and guide an undesirable state into a desirable one by optimizing the 

trajectory towards the desired state in a series of perturbations. Only the existence of a map can 

allow rational hypotheses about what to try, especially in the context of n=1 studies or in cases 

where response heterogeneity among individuals is extreme. 

 

1.3.3 The Need for Tools 

We have seen, quite literally, the value of maps. But how do we build them? The key to 

acquiring high-resolution data, whether spatially or temporally resolved, or dense enough in an 

abstract space, is to make sampling fast, cheap, and sufficiently precise. Unfortunately, the trade-

offs among these approaches are typically not well understood. 

In DNA sequencing, a common question is whether, given a fixed sequencing budget, it is 

better to have more sequences per sample, or more samples. In general the answer to this question 

depends on the hypothesis to be tested. But, as noted above, all too frequently the “hypothesis” is 

retrofit to an arbitrarily collected dataset. What guidelines can be provided for aspiring microbial 

cartographers? 

In our experience, for amplicon sequencing, the value of having more samples has always 

outweighed the value of having more sequences per sample, down to surprisingly low thresholds. 

For example, Fig. 3 shows the Earth Microbiome Project dataset [12] sampled at 500,000 

sequences per sample, 1000 sequences per sample, and just 200 sequences per sample. The overall 
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pattern, e.g. the host/non-host split and the saline/non-saline split, are much clearer with more 

samples than with more precision about the location of each sample in PCoA space. Multinomial 

sampling considerations make it immediately clear why this is true: with 100 sequences per 

sample, the standard error in inferring the proportion of a taxon at 5% frequency is 

~sqrt(100*.95*.05) or 2.18, or about 50% error in proportion; the standard error at a taxon at 1% 

frequency is about ±1, or about 100% error. Consequently, even low-abundance taxa are sampled 

with enough accuracy to place a sample in the context of an overall map with surprisingly few 

sequences. Logically, this must be true, or all ordination diagrams in microbial ecology before the 

advent of next-generation sequencing would have been useless, yet many revealed biologically 

interesting principles. The goal for better amplicon maps should therefore be to process vast 

numbers of additional samples inexpensively, exploiting the power of modern sequencers. 
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Figure 1.3.2. Untangling the meaning of complex microbial interactions through meta-analyses. (A) Principal 
coordinates analysis (unweighted UniFrac) of Clostridium difficile Infection subjects, before and after a fecal 
transplant, along with the fecal donor and 10 untreated subjects [26].  (B) Principal coordinates analysis 
(unweighted UniFrac) of the Human Microbiome Project (HMP) [8] combined with the data in panel A, the 
longitudinal samples for subjects 1-4 are connected as lines displaying the temporal variability and the shift from 
a disjointed untreated state of the patients vs. the healthy frame of the HMP. 
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Figure 1.3.3. Broader sampling improves maps of the microbial world, even with low resolution. All panels 
show principal coordinates analysis of unweighted UniFrac distances between samples.  (A) Samples rarefied 
to 500,000 sequences, showing only those exceeding this threshold sampling depth. (B) Samples rarefied to 1000 
sequences. (C) Samples rarefied to 200 sequences. Even with few observations per sample, the overall 
relationships among sample types are preserved; in contrast, the overall pattern is lost with too few samples no 
matter how exquisitely characterized. 
 

 



 72 

Shotgun metagenomics, however, poses a different challenge, because typically only a 

small fraction of the sequences can be confidently associated with known taxonomy or function. 

Further, the goals are often different because of the value of genome assembly in identifying 

biosynthetic pathways, allowing taxonomic resolution at the species or strain level, and generating 

high-resolution single nucleotide polymorphism (SNP) profiles to characterize novel strains and 

to confirm functional variants [27]. As a result, although the same sampling principles as for 

amplicon data apply if the goal is to provide a high-level taxonomic profile, far more sequences 

must be collected to have the same level of confidence in the result. Consequently, the most 

important areas for tool development in shotgun metagenomics are either several additional orders 

of magnitude drop in sequencing cost, reference databases that are more comprehensive and 

unbiased, and algorithms that are more efficient and accurate in read alignment, genome assembly 

and separation. In particular, methods that can identify genetic variation from lower-coverage data, 

and methods for estimating features of interest from less data or with efficient target capture, are 

of significant necessity. Another important consideration in shotgun metagenomics requires host 

DNA depletion, both experimentally and computationally, because total DNA extracts from 

biological specimens can be dominated by host DNA that is not picked up by standard PCR primers 

for bacterial/archaeal amplicon sequencing [28]. 

The challenges in metabolomics are somewhat different [29]. Sequencing has reduced in 

cost by nine orders of magnitude per data volume. In comparison, mass spectrometry, during the 

same time, has only reduced in cost of data volume collection by two orders of magnitude [29]. 

However the main limitation is the enormous diversity in chemistry. Unlike just four bases one 

has to “identify” to enable sequencing, there are hundreds to thousands of molecules that need to 

be identified from a list of millions, if the molecule is known to exist at all. The chemical diversity 
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also impacts the choice of extraction solvents during sample preparation, type of separation 

methods, type of instruments used and data analysis approaches. Further, because the multiplexing 

strategies that are successful in both amplicon- and shotgun-based sequencing approaches are not 

available in mass spectrometry, instrument time is directly proportional to the number of samples. 

Consequently, although it is easy to slip a few more samples into a mass spec run, instrument time 

is limiting for large-scale projects. As was the case  with sequencing a decade ago, the vast majority 

of molecular features that are found in a sample are currently unidentified, and many are likely 

technical artifacts of various steps in the process, e.g. adducts formed in the gas phase, solvent 

artifacts [30] and multimers of the same compound [29]. Better methods and incentives for 

aggregating community knowledge [17] (e.g. retention of knowledge of the large number of 

manual annotations performed by the community) and for automatically assigning unknown mass 

peaks and fragmentation spectra to molecules and have an estimation of error rates [31], as opposed 

to heuristics subject to personal interpretation rules [32], are urgently needed. Global Natural 

Products Social molecular networking (GNPS) [17] offers alternative solutions for  computational 

mass spectrometry infrastructure.  Spectral datasets can be publicly deposited with a unique 

identifier and transformed to “living data” as they will be continuously searched against reference 

libraries to update users on new identifications. Furthermore, annotations can also be made by the 

scientific community within GNPS and propagated to all other data sets in the public domain with 

notifying subscribers on new annotations. This living data concept is crucial way  to ensure that 

collected metabolomics data can still be useful over time. Other examples include automated 

species metabolome references [33] and the Molecular Explorer [17] for cross-searching annotated 

MS/MS spectra between datasets. Connections between several datasets, within the same 

knowledge base or between different spectral repositories such as Metabolights [34] and 
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Metabolomics Workbench [35], can be made to highlight annotated compounds found in several 

data sets  Such analysis is a trivial task in sequencing but still novel in mass spectrometry.    

Integration of taxonomic, genomic and metabolomic data remains an important unsolved 

challenge. Although genome mining is successful for identifying the sources of individual natural 

products, matching up the overall taxonomic or functional profile to a molecular profile remains 

challenging because of procedural and analytical differences in data acquisition. In particular, the 

likelihood of time lags in chemical production or in genomic response to environmental changes, 

which may appear on different timescales, make integrated analysis of snapshot data extremely 

challenging [36]. In cases where microbial and molecular composition is driven by a dominant 

effect (e.g. a dataset composed of soil  and fecal samples),  the molecular and metagenomic 

datasets will appear concordant by Procrustes analysis [37], which measures the fit of one 

ordination space to another.  It is likely that an integrated systems biology approach that maps all 

data layers onto common pathways will be needed. This task is complicated at present not only 

because most genes, pathways, and molecules are unknown (especially those involving 

biotransformations of environmental or food inputs) but also because, even for the known 

components of the system, we still lack coherent ontological conventions across databases which 

may aid in connecting these data layers. Integrating this extended universe of possible molecules 

and their transformations across space, time, and species in complex ecologies will require 

fundamentally new approaches, and orders of magnitude more computing power, than are 

available today. 
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1.3.4 The Need for Standards 

Another branch of non-hypothesis-driven research, but critically important to framing 

precise hypotheses, is the development of standards. In microbiome science these broadly take 

three tracks: procedural standards for sample collection and handling, analytical standards for 

determining the accuracy and fidelity of readouts, and annotation standards for integrating results 

across studies. 

The lack of agreed-on standards stems from the origin of much of microbiome science in 

the discipline of ecology, where the fundamental questions revolved around finding new kinds of 

organisms to fill out the phylogenetic tree of life, and around finding statistically significant 

differences in microbial diversity or composition among sets of samples within the context of an 

individual study. Because the goal was to test whether any difference existed in the microbiome 

or metabolome as a function of disease, physiological, or environmental state, biases (including 

missing taxa, or missing classes of molecules) were not terribly important as long as a difference 

could be discovered. 

However, this situation diverges radically from the present situation, where physicians and 

engineers expect to be able to measure the correct, absolute abundance of all microbes or molecules 

in a given sample simultaneously. The realities of nucleic acid or organic extraction, detection 

methods for sequences and molecules, and downstream data processing simply do not support this 

important goal. However, in general, we don’t even know how far we are from it, or what the 

specific blind spots are. Consequently, without consistent and well-defined measurements 

underpinned by a mechanistic causal model of change, the state of microbiome-based predictions 

is much more like astrology than like astronomy. 
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In order to move from pre-science to science in predicting microbiome changes, we need 

known reference standards that can be spiked into samples at different stages, from original 

specimen to DNA or molecule, that are agreed on, widely used in the field, and have an 

inexhaustible supply. Previous efforts, such as the HMP standards, have been limited by 

insufficient availability of materials, taxonomic complexity, or both. KatharoSeq in particular [38] 

benefits from having different spike-in standards at the level of the primary sample and at the level 

of DNA, allowing different sources of contamination to be tracked down. Comparable 

development in mass spectrometry, perhaps with isotope-labeled molecules or molecules 

otherwise unlikely to occur in biological specimens and that can be introduced at different steps, 

would be of tremendous value. 

Sample collection and storage can introduce biases of varying degrees in specimen readout 

[39-41], but for most sample types the precise implications of different forms of degradation are 

unknown. Consequently, the conservative recommendation is always to expensively collect 

pristine samples (e.g. flash-frozen in liquid nitrogen), even while more practical methods would 

often suffice. For a few sample types, such as amplicon processing of stool, considerable data is 

now available on a range of conditions [41-44], and researchers can make more informed decisions 

about which methods to use. However, we know much less about the implications of sample 

degradation for most other types of biospecimens, and for the implications for reading out different 

molecular fractions with mass spectrometry (although see [45]). Understanding these principles 

would greatly expand accessibility of these techniques to field, clinical, and self-collected 

specimens (by patients and citizen-scientists), as the American Gut Project is already doing for 

amplicon collection from stool. 
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Finally, integrating samples from different studies remains extremely challenging because 

of differences in annotation (often called “metadata”). For example, different studies may refer to 

“stool”, “feces”, “gut”, or other synonyms or rely on different units of measurement (e.g., Celsius 

vs. Fahrenheit). Efforts such as the Genomic Standards Consortium MIxS family of standards [46], 

the Earth Microbiome Project Ontology (EMPO) [12], and other annotation schemes assist 

considerably in these tasks, but have been applied to relatively few datasets to date. The potential 

for natural language processing (NLP) and/or data-based methods for automatically applying 

annotations, perhaps semi-supervised by human guidance, is considerable. These types of 

strategies were successful in Qiita for inferring EMPO annotations for tens of thousands of samples 

in Qiita primarily based off the researcher reported “sample_type.” Resources like Qiita, which 

allow researchers to deposit microbiome studies, provide mechanisms to help researchers use 

standard compliant metadata. However, further development is necessary to enable researchers to 

“discover” the types of variables and controlled vocabularies that are in common across the 

resource.  

 

1.3.5 Conclusions 

Although hypothesis-driven science has immense value, it depends to a considerable 

degree on a framework of maps, tools, and standards whose development often does not fit 

meaningfully into a hypothesis-driven framework and is therefore heavily criticized in settings 

such as grant review panels. However, without these types of development, hypotheses more 

explicit than “differences in the microbiome” or “elevation or depletion of specific taxa or 

molecules” cannot be tested, and completely new ideas about how to read out or control the 

microbiome will not be developed.  
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Extraordinary advances in data collection technologies leave us in a world where we 

regularly make millions of observations of organisms about which we know virtually nothing -- 

as exemplified by the recent 'discovery' of the most abundant phage in the human gut via 

metagenome mining [47]. The amount of information contained in these observations in principle 

is enough to allow us to fine-tune more labor-intensive experiments to test critical questions with 

great efficiency. In practice, though, much of this information remains inaccessible. In order to 

bring about a future of precision medicine and precision ecological remediation, where we can 

specify precise microbiome changes and bring them about through defined interventions, a vast 

amount of non-hypothesis-driven research, often dismissed as “technical work” or “fishing 

expeditions”, remains to be done. 
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Chapter 2. 
 
Technical advances for probing host-associated microbiomes 
 

An incredible amount of knowledge has been gained through the advent of next generation 

sequencing and our ability to perform taxonomic profiling via amplicon sequencing. But there are 

still many limiting factors. The bottlenecks addressed in this chapter are 1) high throughput DNA 

extraction, 2) streamlined PCR amplification for next generation sequencing library preparation, 

and 3) host DNA depletion for shotgun sequencing. Together, these advances represent detailed 

protocols that allow for scaled host-associated microbiome analyses. 

 
  



 84 

2.1   
DNA extraction for streamlined metagenomics of diverse 

environmental samples 

 
A major bottleneck for metagenomic sequencing is rapid and efficient DNA extraction. We 

compared the extraction efficiency of three magnetic bead-based platforms (KingFisher, 

epMotion, and Tecan) to a standardized column-based extraction platform across a variety of 

samples including feces, oral, skin, soil, and water. Replicate sample plates were extracted and 

prepared for 16S rRNA gene amplicon sequencing in parallel to assess extraction bias and DNA 

quality. The results found that any effect of extraction method on sequencing results was small 

compared to variability across samples and highlighted one platform for producing the largest 

number of high-quality reads in the shortest amount of time. This study thus identified an 

extraction pipeline that dramatically reduces sample processing time without sacrificing bacterial 

taxonomic or abundance information.   

 

2.1.1 Introduction 

As microbiome analyses become applicable to an increasing number of scientific areas, a 

streamlined process for efficiently extracting DNA to generate 16S rRNA gene amplicon (16S 

amplicons) or shotgun metagenomic sequencing data from a range of environmental sample types 

is increasingly important. DNA extraction is among the largest sources of experimental variability 

in 16S sequence analysis [1-3]. Complete bacterial lysis and DNA purification can be particularly 

time-consuming, and represent a significant bottleneck for high-throughput analyses. However, 

certain time-sensitive analyses with large sample sizes (e.g., clinical diagnostics or water quality 
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assessments) require expedient processing. We aimed to identify a DNA extraction method that 

yields faster results with no cost in taxonomic representation by comparing magnetic bead-based 

extraction robots with our benchmarked column-based extraction protocol.  

 

2.1.2 Results 

To compare the extraction efficiency of several automated methods, we collected 

environmental samples from a wide range of biological materials. Replicate plates were prepared 

from aliquots of identical samples for comparison of extraction efficiency among different 

platforms. In total, 48 fecal samples, 12 soil samples, 12 marine sediment samples, 6 seawater 

samples, 5 skin samples, 5 oral samples, and 6 mattress dust samples were included. Material for 

extraction was collected by swabbing each sample with Puritan wooden handle cotton swabs 

according to the Earth Microbiome Project standard protocol 

[http://www.earthmicrobiome.org/emp500/emp500-sample-submission-guide/]. Fecal samples 

were comprised of 2 mL homogenized human stool sample obtained from the Microbiome Quality 

Control Project (MBQC). Soil samples were selected from a published mouse decomposition study 

[4]. Marine sediment samples were donated by Dr. Paul Jensen and collected at a depth of either 

300 or 700 m off the coast of San Diego. Seawater samples (4 L each) were collected off the 

Scripps Pier in San Diego, CA and filtered through a 0.22 µm Sterivex cartridge; the filters were 

then cut into segments and used for extraction [5]. Oral and saliva samples were collected using 5 

swabs simultaneously (one for each extraction method) as previously described 

[http://americangut.org/how-it-works/, 6] from a total of six volunteers over three time points. 

Finally, three mattresses were vacuumed in duplicate and the resulting dust was swabbed for 

extraction. Approximately 10^6 Vibrio fischerii ES114 were used as a positive control, and one 
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blank well (no input material) was used as a negative control. Together, these samples represent a 

wide range of biological material, including some (soil and fecal samples) that had already been 

well characterized with widely accepted protocols. This diverse sample set permitted a broad 

assessment of the different extraction pipeline efficiencies.  

We adapted the MoBio PowerMag Soil DNA isolation kit (Qiagen, Carlsbad, CA, USA) 

for use with a magnetic bead plate in place of the silica membrane column. This replacement 

significantly reduces sample preparation time by eliminating the need to sequentially load the 

silicon membrane three times for each sample. Importantly, it requires appreciably less hands-on 

time, although total processing time is also reduced. Replicate plates were extracted in parallel to 

compare the standard column-based method to three magnetic bead-based nucleic acid purification 

platforms; epMotion® 5075 TMX (TMX; Eppendorf, Hamburg, Germany), KingFisher™ Flex 

Purification System (KingFisher; ThermoFisher Scientific, Waltham, MA, USA), and Tecan 

Freedom EVO® Nucleic Acid Purification (Tecan; Tecan, Morrisville, NC, USA). An additional 

KingFisher run (KF2) was included with an overnight incubation at 4°C immediately prior to 

magnetic bead clean-up to test the processing flexibility of this system. All samples were eluted in 

100 ul PCR grade H2O. DNA yield was broadly similar across extraction platforms except for the 

Tecan, which was lower (Fig. 1A). Notably, the Kingfisher extraction platform yielded the most 

gDNA from low biomass samples. DNA was prepared for 16S rRNA gene amplicon sequencing 

as previously described [7]. The demultiplexed fasta files were obtained from qiita.ucsd.edu (study 

ID 10178), and operational taxonomic units (OTUs) were detected using Deblur [8]. Raw reads 

were submitted to the European Bioinformatics Institute under accession number ERP021045.  



 87 

 

Figure 2.1.1. Inter-sample variability outweighs extraction method bias. A) Average concentration of DNA in 
ng/ul across extraction platforms. Statistics performed using non-parametric binomial two sided sign test; 
*<0.05, **<.01, ***<.001. B) Average number of quality filtered reads across extraction platforms. C) 
Unweighted principal coordinates analysis of all samples colored by sample type. Extraction method is denoted 
by shape: sphere = column-based, cube = KingFisher, cylinder = Tecan, cone = TMX D). Scatter plot showing 
taxonomic abundance differences between magnetic bead based extraction platform (y-axis) and standard 
column based extraction method (x-axis). TMX = epMotion TMX, TEC = Tecan, KF1 = KingFisher, KF2 = 
KingFisher with overnight pause. 
 

We found that the bias introduced by extraction method is small compared to inter-sample 

variation (average distance across biological replicates, extraction method, and sample type, 

respectively; weighted UniFrac 0.11±0.001, 0.19±0.004, 0.29±0.001; unweighted UniFrac 

0.44±0.01, 0.51±0.003, 0.63±0.001; Bray-Curtis 0.22±0.02, 0.38±0.007, 0.71±0.003). Confirming 

this, principal coordinates analysis (PCoA) of unweighted UniFrac distance matrices revealed that 

sequences clustered by sample type rather than extraction platform (Fig. 1B) [9]. OTU abundance 

across the magnetic extraction platforms revealed broadly similar results to the standard column-

based protocol, even when the KingFisher extraction protocol was paused overnight before bead 

clean-up (Fig. 1C). Per sample alpha diversity levels were remarkably similar (within 2% of the 
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average across all extraction platforms) with the exception of samples extracted on the Tecan 

which produced on average 92%±2% of the average observed diversity. These results demonstrate 

that the taxonomic and community-level variation contributed by the different magnetic based 

extraction protocols was minor.  

However, the number of quality sequencing reads across all sample types was highest in 

the KingFisher-extracted samples (Fig. 2A-B). Importantly, the KingFisher protocol requires only 

a fraction of the time required by the other extraction platforms. This streamlined extraction 

pipeline saves an average of 72 h per 192 samples compared to single-tube manual extraction and 

cuts the processing time in half compared to the second fastest method (Fig. 2C).  
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Figure 2.1.2. DNA extracted on the KingFisher platform provides the highest quality reads and requires the 
least amount of processing time. A) Average number of quality filtered reads produced by DNA extracted across 
different platforms. Error bars display standard error. Statistics performed using non-parametric binomial two 
sided sign test; *<0.05, **<.01, ***<.001. B) Kaplan–Meier estimator showing fraction of samples versus 
number of quality filtered reads for all samples on each extraction platform. C) Comparison of average time to 
process 96 samples across extraction protocols. Manual extractions were performed according to the 
manufacturer’s protocol. The magnetic bead-based protocol on the KingFisher platform cuts the processing time 
in half from the second fastest platform. 
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2.1.3 Conclusion 

We prepared replicate 96-well plates loaded with swabs from a variety of sources including 

feces, skin, oral, soil, and water. The MoBio PowerMag Soil DNA isolation kit was adapted for 

comparison of three magnetic bead isolation platforms for representative 16S rRNA sequencing 

results. Ultimately, we found the KingFisher Flex Purification system was the fastest, the most 

efficient for low biomass samples, and retained the largest number of high-quality amplicon 

sequencing reads. This streamlined protocol reduces the total time of DNA extraction to one-fourth 

of the original protocol while providing comparable sequencing results.  
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2.2 
 

Triplicate PCR reactions for 16S rRNA gene amplicon sequencing 

are unnecessary 

Conventional wisdom holds that PCR amplification for sequencing should employ pooled 

replicate reactions to reduce bias due to jackpot effects and chimera formation. However, modern 

amplicon data analysis employs methods that may be less sensitive to such artifacts. Here we 

directly compare results from single vs. triplicate reactions for 16S amplicon sequencing and find 

no significant impact of adopting a less labor-intensive single reaction protocol. 

 

2.2.1 Introduction 

For decades, 16S rRNA gene sequencing has been performed by pooling replicate PCR 

reactions, usually in triplicate. The primary benefit is to reduce “jackpotting”: the stochastic nature 

of PCR means that some molecules are amplified earlier than others, and exponential amplification 

in subsequent rounds of PCR substantially distort the frequencies of different molecules in 

heterogeneous pools of target genes [1]. This phenomenon is particularly important in 

environmental DNA sequencing where the goal is an accurate, or at least consistent, readout of the 

different gene targets matching a primer set. 

However, since the guideline that PCR should be performed in triplicate was introduced 

[1], there have been substantial improvements in the processivity and fidelity of DNA 

polymerases. Therefore, triplicate PCR may no longer provide the benefits it once did, although 

performing single PCR reactions instead of triplicate would provide significant time and cost 

savings. Several studies have tested single versus triplicate PCR for 16S rRNA sequencing in 
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limited settings with a small number of input samples (e.g. 18 soil samples [2], 2 soil and 2 stool 

samples [3], 3 soil samples [4]). However, it has never been tested across the wide range of samples 

and settings that would be needed to justify a general recommendation for change in protocol. We 

used the availability of standardized sample sets such as those from MBQC, the Microbiome 

Quality Control project[5], and from our previous technology testing to answer this question 

definitively across three different laboratories. In total, we tested the effects of replicate PCR 

pooling in 3 independent experiments containing nearly 373 samples from a diverse range of 

environments. 

 

2.2.2 Results 

First, we benchmarked single versus pooled-triplicate PCR across a broad range of sample 

types. In our previous study on comparison of DNA extraction methods [6] we assembled a set of 

96 samples spanning a broad range of environments, including 48 fecal samples, 12 soil samples, 

12 marine sediment samples, 6 seawater samples, 5 skin samples, 5 oral samples, and 6 mattress 

dust samples. We used the DNA from this previous study, extracted using the Earth Microbiome 

Project protocol [7] on the Kingfisher instrument, for this study. 16S rRNA gene amplification 

was performed according to the Earth Microbiome Project (EMP) protocol and is detailed in the 

supplemental file. We quantified amplicons by PicoGreen™ and pooled 240 ng of each for 

sequencing. We ran the entire sample set four times: twice with single PCR and twice with pooled-

triplicate PCR. The pooled library was sequenced on the Illumina MiSeq sequencing platform with 

a MiSeq Reagent Kit v2 and paired-end 150 cycles. All data were processed and analyzed using 

the QIIME2 software suite [8] and Deblur [9]. Counterintuitively, single PCR reactions yielded 

significantly more reads than triplicate PCR reactions (mean ± SEM: 10,821 ± 298 versus 10,029 
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± 262, respectively, paired T-test p=0.0003), and fewer dropouts (Fig. 1A). We saw no significant 

difference in alpha diversity, regardless of environment (Fig. 1B). Beta diversity analysis with 

Unweighted UniFrac demonstrates that samples cluster by sample type and not number of PCR 

reactions (Fig. 1C). The Weighted UniFrac distances are significantly larger among samples from 

different environments than among biological replicates, and distances among biological replicates 

are significantly greater than technical replicates, with both single and triplicate PCR reactions 

(Fig. 1D). Negligible taxonomic changes between single and triplicate reactions were observed 

(97.8% shared taxonomy at the species level, genus 98.4%, and phylum 100%, Fig. S1A and Fig. 

S2).   
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Figure 2.2.1. Effect of 16S PCR reaction number across a broad range of sample types. A) The sequencing 
dropout rate of all samples run with either single or triplicate PCR reactions. B) Shannon diversity index is nearly 
identical between single and triplicate PCR reactions of the same sample. C) Unweighted UniFrac PCoA plot 
shows that samples cluster by sample type (color) and not number of PCR reactions (shape). D) Weighted 
UniFrac distance among technical replicates (same sample) run with either single or triplicate PCR reactions are 
smaller than the distance between samples of the same type (diff samples) or among samples from different 
environments (types). 
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Second, because high-level conclusions crossing environment types might obscure 

relationships in particular sample types, we tested whether the conclusions held for a separate set 

of agricultural samples. We sampled root and rhizosphere samples from 3 different sites across 2 

seasons. A variety of roots including crown, seminal, and primary roots were excavated and shaken 

for 1-2 min in 35 mL phosphate buffer and maintained on ice. In the laboratory, roots were surface 

sterilized by rinsing 30 seconds in 5.25% sodium hypochlorite + 0.01% Tween 20, followed by a 

30 seconds rinse in 70% ethanol, followed by three rinses in sterile ultrapure water. Roots were 

blotted dry on a clean paper towel, placed in a 15 mL tube, frozen at -80° C and then ground in 

liquid nitrogen prior to DNA extraction. The rhizosphere samples were filtered through a sterile 

100 µm mesh filter, pelleted at 3000 x g for 10 minutes, washed with 1.5 mL phosphate buffer, 

and re-pelleted by spinning for 5 minutes at full speed. The supernatant was drained off and the 

rhizosphere soil pellet was stored at -80° C until DNA extraction. DNA was extracted from soil, 

rhizosphere, and root samples using DNeasy PowerSoil HTP 96 Kit and quantified with the 

Quantifluor dsDNA reagent. Each sample was amplified both with a single PCR reaction and with 

pooled-triplicate reactions. The single PCR reactions yielded significantly more reads than 

triplicate PCR reactions (mean ± SEM: 3,631 ± 139 versus 3,000 ± 113, respectively, paired T-

test p<0.0001), but had a similar dropout rate (Fig. 2A). Alpha diversity was not significantly 

different with single versus triplicate PCR (Fig. 2B), and as with the cross-environment 

comparison shown in Fig. 1, Weighted UniFrac analysis shows that the primary clustering is by 

sample type and the distances among samples does not differ in single versus triplicate PCRs (Fig. 

2C,D). Negligible taxonomic changes between single and triplicate reactions were observed 

(99.3% shared taxonomy at the species level, genus 99.2%, and phylum 100%, Fig. S1B and Fig. 

S3).  
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Figure 2.2.2. Effect of 16S PCR reaction number across agricultural samples. 
A). The sequencing dropout number of all samples run with either single or triplicate PCR reactions. B) Shannon 
diversity index of each sample is similar between single and triplicate PCR reactions. C) Weighted UniFrac 
PCoA plot shows that samples cluster by sample type (color) and not number of PCR reactions (shape). D) 
Weighted Unifrac distances between single or triplicate PCR reactions of the same sample are smaller than the 
distance between different samples of the same type run with either single or triplicate PCR reactions, and both 
are smaller than the distance between samples from different environments. 
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Finally, the microbiology of the built environment has been a rapidly expanding topic of 

interest over the past decade, but poses unique challenges for molecular analysis. In particular, 

samples tend to be contaminated with high levels of human DNA and have low bacterial biomass 

[10]. We used samples from a previous study that collected 96 samples longitudinally from four 

commonly used building materials maintained at a high relative humidity (~94%) [11]. Genomic 

DNA was extracted from environmental samples using the PowerSoil DNA isolation kit as 

previously described[12], and genomic DNA was amplified using the EMP protocol as detailed in 

the supplemental file. Samples were processed both with single PCR and pooled-triplicate PCR 

reactions, and sequenced on an Illumina MiSeq sequencing platform with a MiSeq Reagent Kit v2 

and paired-end 150 cycles. Once again, yields were higher with single PCR than triplicate PCR 

(Fig. 3A), Shannon diversity was not affected by single versus triplicate PCR (Fig. 3B), and beta 

diversity was driven by biological parameters of the sample rather than by single versus triplicate 

PCR (Fig. 3C,D). Negligible taxonomic changes between single and triplicate reactions were 

observed (96.5% shared taxonomy at the species level, genus 95.8%, and phylum 100%, Fig. S1C 

and Fig. S4). All data from each of the three experiments are publicly available from the EBI under 

accession number ERP113817. 
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Figure 2.2.3. Effect of 16S PCR reaction number across building materials. 
A) The sequencing dropout number of all samples run with either single or triplicate PCR reactions. B) Shannon 
diversity index is similar between single and triplicate PCR reactions. C) Weighted UniFrac PCoA plot shows 
that samples do not cluster by number of PCR reactions (shape). D) Weighted UniFrac distances between single 
or triplicate PCR reactions of the same sample are smaller than the distance between different samples with 
either single or triplicate PCR reactions. 
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Taken together, these results demonstrate that with modern methods pooling triplicate PCR 

reactions for 16S rRNA amplicon sequencing is more expensive and does not provide 

improvement over single PCR reactions. This result was confirmed in studies spanning three 

laboratories, hundreds of samples, and numerous distinct environment types. However, although 

these results hold true for the range of conditions tested here, there are so many variations in PCR 

techniques that this type of benchmarking effort should be validated for specific sample types and 

PCR protocols before a switch from established procedure is implemented for specialized 

protocols. For the general sample types tested here, we recommend using single PCRs rather than 

triplicate PCRs. Combined with other technical improvements in miniaturizing PCR reactions[13], 

this change in protocol will substantially reduce the cost and complexity of amplicon studies. 
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2.2.4 Supplemental Figures 

 

 

Figure 2.2.S1. Taxonomic relative abundance profiles comparing single vs triplicate PCR reactions. Bar charts 
comparing genera with greater than 1% relative abundance between single and triplicate reactions across a broad 
range of sample types (A), agricultural samples (B), and built environment samples (C). 
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Figure 2.2.S2. Relative abundance between single and triplicate PCR is not biased by GC content across a 
broad range of sample types. Taxa were ranked according to their % GC content, and the highest 10% of genera 
(A) and lowest 10% of genera (B) are plotted to compare single vs triplicate PCR reactions. 
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Figure 2.2.S3. Relative abundance between single and triplicate PCR is not biased by GC content in agricultural 
samples.Taxa were ranked according to their % GC content, and the highest 10% of genera (A) and lowest 10% 
of genera (B) are plotted to compare single vs triplicate PCR reactions. 
 
 
 

 

Figure 2.2.S4 Relative abundance between single and triplicate PCR is not biased by GC content in built 
environment samples. Taxa were ranked according to their % GC content, and the highest 10% of genera (A) 
and lowest 10% of genera (B) are plotted to compare single vs triplicate PCR reactions. 
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2.3  
Improving saliva shotgun metagenomics by chemical host DNA 

depletion 

Shotgun sequencing of microbial communities provides in-depth knowledge of the 

microbiome by cataloging bacterial, fungal, and viral gene content within a sample, providing an 

advantage over amplicon sequencing approaches that assess taxonomy but not function, and are 

taxonomically limited. However, mammalian DNA can dominate host-derived samples, obscuring 

changes in microbial populations because few DNA sequence reads are from the microbial 

component. We developed and optimized a novel method for enriching microbial DNA from 

human oral samples and compared its efficiency and potential taxonomic bias with commercially 

available kits. 

 

2.3.1 Background 

In the past decade sequencing costs have plummeted, and 16S rRNA gene amplicon 

sequencing has become a nearly ubiquitous tool used to characterize bacterial populations from a 

wide range of environments and host systems [1,2]. This technique has revealed that bacteria 

inhabit a far greater range of human body sites than previously believed, including many long 

presumed to be sterile (e.g. urine [3], breast milk [4], blood [5], and atherosclerotic plaque [6]). 

However, 16S rRNA gene amplicon sequencing has several limitations. 

Taxonomic resolution is intrinsically limited in amplicon analysis and can fail to 

distinguish species and strains with distinct biological functions. Primer choice can affect the 

representation of particular clades of bacteria [7]. Eukaryotic microbes are not captured by 16S 

rRNA gene amplicon sequencing and require 18S rRNA gene, internal transcribed spacer, or 
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mitochondrial sequencing approaches; viruses are not detected by any these methods and require 

custom clade-specific primers. 

Shotgun metagenomic sequencing overcomes these hurdles because it analyzes total DNA 

extracted from a sample, and does not depend on target-specific primers. For the analysis of host-

derived samples, this advantage of shotgun sequencing is also its vulnerability. Because the human 

genome is roughly one thousand times larger than an average bacterial genome (~3x109 versus 

~3x106 bp), host DNA can quickly drown out microbial reads in samples containing even a 

relatively small number of human cells. The proportion of human cells to microbial cells varies 

widely by sampling site, and consequently the percentage of shotgun sequencing reads aligning to 

the human genome varies widely by sampling site. For example, fecal samples from healthy 

controls typically yield <10% human genome-aligned reads; but human saliva, nasal cavity, skin, 

and vaginal samples routinely contain >90% (Fig. 1). Therefore, identifying a method to 

reproducibly deplete host reads for shotgun sequencing is crucial for almost all host-derived 

microbiome studies. 
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Figure 2.3.1. Percent of shotgun metagenome sequencing reads aligning to human genome varies by sample 
type. Data from the Human Microbiome Project (HMP; black) of healthy individuals demonstrates the 
percentage of human reads by sample type. Saliva data (blue) was collected from healthy individuals in this 
study. Stool n = 249, skin n= 29, vaginal n = 103, nasal cavity n = 112, inner cheek n = 175, tongue n = 208, 
gums n = 189, saliva n = 24 (this study). 
 

Current approaches to deplete host reads can be divided into two major groups: those that 

act prior to DNA extraction (pre-extraction), and those that act on DNA after extraction (post-

extraction). Pre-extraction approaches generally follow a two step procedure. The first step is to 

selectively lyse mammalian cells, which is easy because the mammalian cell membrane is more 

fragile than most microbial membranes/cell walls. The second step removes exposed DNA 

enzymatically, leaving only the intact microbial cells for downstream analysis. These kits have 

improved microbial sequencing yield in a variety of sample types, including bronchoalveolar 

lavage fluid [8], blood [9], and sonicate fluid from prosthetic joint infections [10]. However, the 
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multiple wash steps required limit the potential of low biomass samples to be successfully treated 

[11]. Furthermore, loss of bacterial DNA and a potential bias toward Gram-positive taxa has been 

reported [12]. 

Post-extraction separation approaches avoid some of these hurdles and thus pose an 

attractive alternative. One approach targets methylated nucleotides [13], which are typically more 

frequent in eukaryotic genomes. However, a bias against microbes with AT-rich genomes has been 

reported [14] and therefore this method is not suitable for eukaryotic microorganisms with 

methylation patterns similar to the host. Another approach is targeting host-specific sequences for 

hybridization-based depletion with CRISPR/Cas9. This method has been successfully employed 

for highly repetitive rRNA sequences [15], but is not easily adapted to depletion of sequences at 

the genome scale. 

To overcome the disadvantages associated with each of the currently available host-

depletion methods, we optimized a cost-effective technique with minimal sample processing and 

hands-on time. Similar to other pre-extraction methods, it starts with selective mammalian cell 

lysis, but instead of enzymatic digestion of exposed DNA we employed propidium monoazide 

(PMA). PMA has been used extensively over the past decade for detection of live/dead cells [16]. 

Similar to propidium iodide, PMA is a cell membrane impermeable DNA intercalator. Upon 

exposure to visible light, the azide group of the PMA molecule is photolytically cleaved and 

undergoes a C-H insertion reaction to form a covalent bond with DNA [17]. It is thought that this 

reaction fragments the DNA, effectively eliminating any exposed DNA from downstream analysis 

[17,18]. Any excess PMA in the sample reacts with water and becomes inert. We induced selective 

osmotic lysis of mammalian cells by resuspension in pure water followed by treatment with PMA 
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(lyPMA). This method requires less than five minutes hands on time and involves no special 

laboratory equipment. 

To evaluate the efficiency and potential bias of the lyPMA treatment, we compared this 

protocol to raw samples and four alternative methods used for host depletion: 5 µm filtration (Fil), 

QIAamp DNA Microbiome Kit (QIA), MolYsis™ Basic (Mol), and NEBNext® Microbiome 

DNA Enrichment Kit (NEB). We chose saliva samples to compare methods of host depletion 

because it is easy to collect, has enough biomass to be divided into multiple groups per sample, 

and consistently has a high (~90%) percentage of human DNA in shotgun metagenomic 

sequencing (Fig. 1). The efficiency of host depletion and the effect on microbial community was 

assessed. 
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2.3.2 Results 
 
Differential cell size-based approaches to host DNA depletion 

One of the most obvious differences between mammalian and microbial cells is their size. 

Our preliminary attempts to reduce host DNA therefore focused on separating cells according to 

size. Because buccal epithelial cells are on average 50 µm wide, whereas a typical bacterial coccus 

is ~1 µm, we passed saliva samples across a 5 µm filter and analyzed the filtrate and residue 

compared to the raw sample. We designed a qPCR assay to evaluate the percentage of host DNA 

relative to untreated sample using a human-specific primer against the PTGER2 gene [19]. No 

significant difference across any of these three partitions was observed (Fig. S1A). To exclude the 

potential of host cell shearing during filtration, we next tried differential centrifugation to enrich 

for microbial DNA. First, a short, slow centrifugation (30 sec at 2,500 g) of human saliva was 

performed to pellet large cells [20], then the supernatant was washed with a longer, faster 

centrifugation (8 min at 10,000 g) to pellet all remaining cells. No significant difference in 

percentage of human DNA at any of these steps compared to the original raw sample was observed 

(Fig. S1B). Lastly, we attempted to take advantage of differences in forward and backward scatter 

(which canonically correlates to event size and density, respectively) using flow cytometry to 

separate microbial from human cells. Although three distinct groups of varying size were clearly 

observed (Fig. S1C), there was no significant difference in percentage of human DNA among the 

sorting gates compared to the raw sample (Fig. S1D). 

These preliminary attempts to separate mammalian from microbial cells based on cell size 

were unsuccessful in reducing the amount of host DNA. We hypothesized that there must be a 

significant amount of extracellular host DNA that is not separated by size-based approaches. 

Indeed, DNAse treatment of saliva samples after a short, slow centrifugation significantly reduced 
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the percentage of human DNA (Fig. S1E). However, enzymatic treatment can be expensive, 

sensitive, and, because it must be processed on fresh samples, difficult to scale. As an alternative 

to enzymatic digestion of extracellular DNA, we next tested the ability of PMA to remove host 

DNA. 

 

Optimization of lyPMA for host DNA removal 

To optimize the lyPMA protocol, we compared different methods of selective mammalian 

cell lysis and multiple concentrations of PMA. Quantitative polymerase chain reaction (qPCR) 

analysis of the human-specific PTGER2 gene revealed that, compared to untreated controls, PMA 

treatment reduced the percentage of human DNA following selective mammalian cell lysis by 

sonication (25.6%) and osmotic lysis with H2O (1.7%), and following mammalian cell removal 

by differential centrifugation (1.4%) (Fig. S2A). Interestingly, PMA treatment of raw saliva 

sample (without an initial selective lysis step) also reduced the percentage of human DNA (16.8%), 

suggesting that the majority of human DNA in saliva is already exposed. We also evaluated the 

effect of PMA concentration (1 µM, 10 µM, and 50 µM) on the reduction of extracellular host 

DNA following differential centrifugation. Treatment with 10 µM PMA was the optimal 

concentration to achieve host DNA reduction without compromising microbial DNA recovery, 

although the results were not highly sensitive to PMA concentration (Fig. S2B). The relative 

percentage of bacterial DNA was also evaluated by qPCR to ensure specific removal of human 

DNA. Compared to raw saliva samples, osmotic lysis (7.82 fold) and 10 µm PMA concentration 

(13.4 fold) had the greatest increase in the proportion of bacterial DNA (Fig. S2C-D). We thus 

used osmotic lysis followed by 10 µM PMA treatment for comparison of the lyPMA approach to 

commercially available alternatives. 
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Efficiency of host depletion across microbial enrichment methods 

To compare lyPMA to other methods of host DNA depletion, saliva samples were collected 

from 8 healthy participants (4 mL each). Each sample was homogenized and divided into 18 

separate 200 µl aliquots. Triplicate aliquots were processed in parallel for each of the six methods 

(i.e. untreated (raw) samples, Fil, NEB, Mol, QIA, and lyPMA, see Methods). DNA was extracted 

from all samples and shotgun DNA sequencing libraries were prepared in parallel. The 

concentration of DNA following host depletion was significantly lower in all five methods 

compared to raw samples (Fig. S3A). Samples for sequencing were pooled such that the raw 

samples had twice as many reads compared to the host-depleted samples, with the assumption that 

we could thereby increase the number of microbial reads in the raw samples to better assess 

potential taxonomic biases (Fig. S3B). Samples with less than 50,000 quality filtered microbial 

reads (n=7) were excluded from downstream analysis, leaving 137 samples to evaluate efficiency 

of host depletion and microbial community effect. 

The percentage of shotgun metagenomic sequencing reads mapping to the human genome 

in each sample was evaluated using Bowtie 2. The average percentage of human reads in the raw 

samples (89.29 ± 0.61%) was no different than in samples filtered across a 5 µm filter (89.69 ± 

0.84%), or samples treated with the NEB kit (90.83 ± 0.77%) (Fig. 2). Treatment with Mol (62.88 

± 3.46%), QIA (29.17 ± 5.04), and lyPMA (8.53 ± 2.08%) all significantly depleted host reads 

compared to the raw samples (One-way ANOVA with Tukey's multiple comparison p<0.0001). 

These three methods were all significantly different from each other, with lyPMA performing the 

best followed by QIA and then Mol (p<0.0001). 
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Figure 2.3.2. Host DNA depletion in saliva reduces the percentage of sequencing reads aligning to the human 
genome. Saliva was collected from eight individuals and divided into triplicate aliquots for each of the processing 
methods. The fraction of quality filtered shotgun sequencing reads mapping to the human genome was assessed 
with Bowtie 2. One-way ANOVA with Tukey’s multiple comparison correction, significance p<0.0001. 

 

Effect on microbial community composition caused by host depletion methods 

Each participant had a distinct pattern of microbial genera that altered slightly upon host 

depletion (Fig. S4). In principal coordinates analyses (PCoA) [21], samples cluster by participant 

and not method of host depletion (Fig. 3A-B), suggesting that differences in the microbial 

community were driven more by biological differences among participants rather than technical 

effects from any of the host depletion methods. Indeed, Bray-Curtis (BC) dissimilarities between 
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samples from different participants processed with the same host depletion method were 

significantly greater than dissimilarities from the same participant processed with different host 

depletion methods (Fig. 3C). This held true across other beta-diversity metrics including 

phylogeny-informed weighted and unweighted UniFrac (Table 1). Furthermore, relative 

abundances of microbial taxa within participants among host depletion methods were tightly 

correlated with few obvious outliers and Spearman's rank correlation coefficient ≥ 0.75 (Fig. S5).  

 

Table 2.3.1. Adonis statistical assessment of beta diversity driven by participant or host DNA depletion 
method 

Beta-diversity 
metric variable 

Degrees of 
Freedom R2 F.model p value 

unweighted unifrac method 5 0.092 6.345 0.001 
participant 7 0.548 26.932 0.001 

weighted unifrac 
method 5 0.118 12.331 0.001 

participant 7 0.644 47.947 0.001 

Bray-curtis 
method 5 0.149 14.444 0.001 

participant 7 0.594 41.019 0.001 

Binary Jaccard 
method 5 0.168 9.537 0.001 

participant 7 0.396 16.059 0.001 
 

 
 

To evaluate whether differences in read depth affected these results, we subsampled 50,000 

non-human reads from each sample and found similar results; namely that the participant explained 

more of the variability in microbial taxa than method of host DNA depletion (Adonis of Bray-

Curtis distance R2 = 0.169 by method, 0.556 by participant, F.model = 15.152 by method, 36.614 

by participant; p value <0.001 for all). 
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Figure 2.3.3. Differences in saliva microbiome driven by participant and not method of host depletion. Microbial 
reads cluster by participant A) and not method of host depletion B) in PCoA space using Bray-Curtis distance. 
C) Pairwise Bray-Curtis dissimilarities: within participant, within method (WP-WM); within participant, 
between methods (WP-BM); between participants, within methods (BP-WM). Each category is statistically 
significantly different from each other group (Kruskal-Wallis with Benjamini and Yekutieli FDR correction 
p<0.0001). 
 

 

However, BC dissimilarities among host-depleted samples from the same participant were 

significantly higher than noise from technical replication (within raw triplicate samples), 

indicating that there is a significant effect of host depletion on microbial community composition 

(Fig. 3C). We then compared the BC dissimilarities between each method of host depletion and 

the corresponding raw samples (Fig. 4). Each of the five treatments had significantly greater BC 

dissimilarity than technical variation among raw replicates (0.115 ± 0.009; Kruskal-Wallis with 

Benjamini and Yekutieli FDR correction p<0.05). However, lyPMA (0.273 ± 0.011) and Fil (0.226 

± 0.009) were significantly more similar to raw samples than NEB (0.333 ± 0.010), Mol (0.321 ± 

0.015), and QIA (0.342 ± 0.008); Kruskal-Wallis with Benjamini and Yekutieli FDR correction 

p<0.05). There was no statistical difference observed among NEB, Mol, and QIA distance from 

corresponding raw samples. To look for bacteria affected by host DNA depletion, we performed a 
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pairwise comparison of the relative abundance of each taxon in raw versus host DNA depletion 

method for each individual using t-tests with Benjamini, Krieger and Yekutieli false discovery rate 

correction at 1%. No taxa were identified to be consistently differentially abundant across the host 

DNA depletion methods.  

 

 

Figure 2.3.4. Bray-Curtis dissimilarity between host depleted and raw sample from same participant. The 
pairwise Bray-Curtis dissimilarity value was calculated between each sample with every other sample in this 
study. The dissimilarity values between each sample and the matched participant raw sample is presented here. 
Statistical significance calculated with Kruskal-Wallis with Benjamini and Yekutieli FDR correction p<0.05. 
raw-raw n=22, raw-Fil n=66, raw-NEB n=63, raw-Mol n=63, raw-QIA n=69, raw-lyPMA n=69. 
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Evaluation of lyPMA treatment on frozen saliva samples 

Microbiome sampling often requires samples to be frozen and preserved for downstream 

processing. We therefore tested the effectiveness of lyPMA on previously frozen samples. Saliva 

samples from three participants were divided into 200 µl aliquots and either immediately stored at 

-20°C or cryopreserved by mixing with 20% glycerol prior to freezing (Fig. S6). After three days 

samples were thawed and replicate frozen and cryopreserved samples were treated with lyPMA. 

Similar to the freshly processed samples, the majority of reads from the untreated samples aligned 

to the human genome (84.73 ± 2.56%). lyPMA samples that were cryopreserved with glycerol had 

a similar reduction in host-aligned reads to the freshly processed samples (7.18 ± 3.09%). Without 

cryopreservation, lyPMA was less efficient and more variable (53.78 ± 27.43%). The BC 

dissimilarity value was similar for technical replicates of raw samples (0.146 ± 0.004) and raw 

versus matched cryopreserved lyPMA (0.276 ± 0.071) but was higher for raw versus matched non-

cryopreserved lyPMA (0.348 ± 0.002). 
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2.3.3 Discussion 

We compared the efficiency of five methods of host DNA depletion on human saliva for 

shotgun metagenomic sequencing as outlined in Figure 5. Although filtering saliva across a 5 µm 

filter excludes intact host cells, no difference was observed in the percentage of host-aligned reads 

in DNA extracted from the filtrate. This is likely due to the high amount of extracellular DNA in 

saliva and explains why preliminary experiments based on separating microbial from host cells 

based off size (i.e. 5µm-filtration and flow cytometry) were unsuccessful. 

 

Figure 2.3.5. Experimental overview. A graphical summary of the experimental design and results. 
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In our hands, immunoprecipitation of methylated eukaryotic DNA was unsuccessful at 

reducing the percentage of host-aligned sequences, as evidenced by our post-extraction processing 

of DNA with the NEBNext enrichment kit. It is important to note that this protocol recommends 

an input of high molecular weight gDNA (>15kb fragments) and our input gDNA peaked at ~10kb. 

To achieve maximal efficiency, samples should be extracted with phenol chloroform followed by 

isolation of appropriately sized DNA from a low melt agarose gel [13]. However, we extracted all 

samples in parallel using a high-throughput DNA extraction pipeline [22] to reduce any 

confounding variables from differing DNA extraction methods. 

Selective lysis of mammalian cells followed by removal of exposed DNA was a 

consistently effective method of reducing host-aligned sequencing reads. MolYsis, QIAamp, and 

lyPMA treatments all significantly improved microbial yield, with lyPMA outperforming 

alternative treatments. It is possible that increasing the enzyme concentration of the MolYsis or 

QIAamp kits would further reduce the percentage of host-aligned reads. Regardless, lyPMA 

treatment has an advantage over enzymatic degradation in that it requires fewer washing steps, 

less hands-on time, and has a fraction of the reagents costs compared to commercial alternatives 

(PMA ~0.15$/sample; QIAmp ~10$/sample; MolYsis ~7$sample; NEB ~30$/sample).  

Any method to enrich microbial sequences will invariably have some effect on the 

microbial community. However, the Bray-Curtis distance between lyPMA and matched raw 

samples was significantly smaller than for every other host depletion method. This suggests 

lyPMA treatment can be used to reduce the percentage of reads in saliva samples while minimizing 

biases in representation in the microbial community. Importantly, the distortions induced were less 

than the differences among individuals, strongly suggesting that the ability to read out clinically 

significant microbiome states would be preserved. Furthermore, the differences observed may 
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actually be biologically relevant. PMA treatment only detects intact, or live, microbial cells, which 

can have a statistically significant impact on biological interpretation, as has been shown in recent 

studies on a broad range of topics including the soil microbiome [23], spaceship clean rooms [24], 

cystic fibrosis patient samples [25], food safety [26,27], and saliva [28]. 

The lyPMA method has been optimized for saliva; however, saliva is only one of many 

sample types where microbial analysis is hampered by a large amount of host DNA. Expanding 

this technique to different sample types will require tailoring the method to account for selective 

lysis, ideal PMA concentration, and optimal temperature and duration of light exposure. 

 

2.3.4 Methods 

qPCR evaluation of human and microbial gDNA 

A total of 1 ng purified DNA from human saliva was used as a template to amplify the 

human-specific primer PTGER2: hPTGER2f (5’- GCTGCTTCTCATTGTCTCGG -3’), 

PTGER2r (5’- GCCAGGAGAATGAGGTGGTC -3’) [19], and the 16S rRNA gene: Bakt-805R 

(5’- CCTACGGGNGGCWGCAG -3’), Bakt_341f (5’- GACTACHVGGGTATCTAATCC -3’) 

[7]. All reactions were performed in triplicate. The final qPCR reaction volume totaled 10 μl 

containing 5 µl KAPA HiFi HotStart ReadyMix (2X), 1 ng DNA, 0.5 µM forward and reverse 

primer, 1x SYBR green (Life Technologies), and the remainder water. The qPCR amplification 

was carried out over 35 cycles (20 s at 98°C, 15 s at 60°C, 35 s at 72°C) with an initial 3 min hot 

start at 95°C and a final extension step (1 min at 72 °C). In each experiment a standard curve was 

included comprising known ratios (100:0, 25:75, 50:50, 75:25, and 0:100) of human gDNA 

(extracted HEK293T cells) and bacterial gDNA (extracted from E. coli) in order to extrapolate the 
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percentage of human versus microbial DNA. All samples were run in triplicate reactions and the 

error bars represent standard deviation among these technical replicates. 

Cell size-based attempts at host DNA removal 

Flow cytometry: approximately 20 mg of frozen fecal sample was homogenized with 1 mL 

sterile phosphate buffered saline (PBS) by vortexing at maximum speed for 10 minutes. The 

sample was centrifuged for 3 min at 2,000 g, diluted with an additional 2 mL PBS and filtered 

across a 35-µm filter. Triplicate 50 µl aliquots were stored for analysis of the unsorted sample, and 

the remaining sample was stained with a final concentration of 2x SYBR green I in the dark for 

15 min. The sample was diluted 1:10 in sterile PBS and run on a Sony SH800 FACS using a 100-

µm nozzle with threshold set on the forward scatter detector at 1%. Events with SYBR-specific 

fluorescence emission (520 nm) stronger than vehicle control were selected for analysis. Of these 

SYBR positive events, 3 distinct populations were gated in the forward and backward scatter axes 

(representing event size and density, respectively). 100,000 events per gate were sorted and 

centrifuged at 10,000 g for 8 min to pellet cells. DNA was extracted from the cell pellets as detailed 

below. 

Sonication: 200 µl saliva samples were sonicated in an ice bath for 15 min at 40 hz 

(Branson 2510, Marshall Scientific), which was previously shown to separate microbial biofilms 

without lysing bacteria cells [29] and then treated with PMA as detailed below. 

DNAse treatment: raw saliva samples were centrifuged for 5 min at 5,500 g and the pellet 

was resuspended in 100 µl 1x TURBO™ DNase buffer. Next, 3 units of TURBO™ DNAse I was 

added and the samples were incubated at 37°C for 20 min. The sample was washed with 500 µl 

sterile 1x PBS containing 0.1 µM EDTA to inhibit the DNAse and DNA was extracted from the 

pellet as detailed below.  
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Comparative Study Details 

Sample collection and host depletion 

Volunteers were asked to refrain from eating or drinking for one hour prior to sample 

collection. A total of 4 ml of unstimulated saliva was collected from 8 volunteers into sterile 15-

ml conical tubes. The sample was vortexed for 30 seconds and 200-µl aliquots were made for each 

method in triplicate (18 replicate samples in total per individual). The samples were immediately 

processed in parallel as described below. 

Raw (untreated): samples were kept on ice while the other samples were processed, then 

stored at -20°C. 

5 µm filtration (Fil): 200 µl of sterile, 1x PBS was added to each sample and vortexed for 

15 seconds. The diluted sample was run across a pluriStrainer® 5-µm filter (PluriSelect) by 

inducing low pressure with a 10-ml syringe on the Connector Ring. The effluent was retained and 

frozen at -20°C. 

MolYsis™ Basic kit (Mol): samples were processed according to the manufacturer’s 

instructions. After removal of MolDNase A, samples were frozen at -20°C. 

Qiagen QIAamp DNA Microbiome enrichment kit (QIA): samples were processed 

according to the manufacturer’s instructions. After proteinase K treatment samples were frozen at 

-20°C. 

PMA treatment (lyPMA): 200-µl unstimulated saliva aliquots were centrifuged at 10,000 

g for 8 min. The supernatant was discarded and the cell pellet was resuspended in 200 µl sterile 

H2O by pipetting and a brief vortex then left at room temperature for 5 min to osmotically lyse 

mammalian cells. A final concentration of 10 µm PMA (Biotium) was added (10 µl of 0.2 mM 

PMA solution added to 200 µl sample) and the sample was briefly vortexed, then incubated in the 
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dark at room temperature for 5 min. Samples were then laid horizontally on ice <20 cm [23] from 

a standard, bench top fluorescent light bulb (Philips F28T5/835 ALTO 40PK) for 25 min, with 

brief centrifugation and rotation every ~5 min. After exposure, samples were frozen at -20°C. 

NEBNext Microbiome DNA Enrichment kit (NEB): samples were treated as raw throughout 

sample collection and DNA extraction, then processed according to the manufacturer’s 

instructions. 

 

DNA extraction 

Frozen samples were thawed and transferred into 96-well plates containing garnet beads 

and extracted using Qiagen PowerSoil DNA kit adapted for magnetic bead purification as 

previously described [22]. DNA was eluted in 100 µl Qiagen elution buffer. 

 

Library generation and sequencing 

All data presented combines two independent experiments performed identically, with 

each experiment containing replicate saliva samples processed as described above for four 

individuals each. Extracted DNA was quantified via QubitTM dsDNA HS Assay (ThermoFisher 

Scientific) and 1 ng of input DNA was used in a 1:10 miniaturized Kapa HyperPlus protocol. For 

samples with less than 1 ng DNA, a maximum volume of 3.5 µl input was used. Library 

concentration was determined with triplicate readings of the Kapa Illumina Library Quantification 

Kit. 20 fmol of raw sample libraries and 10 fmol of host-depleted libraries were pooled and size 

selected for fragments between 300 and 800 bp on the Sage Science PippinHT to exclude primer 

dimers. The pooled library was sequenced as a paired-end 150-cycle run on an Illumina HiSeq2500 

v2 in Rapid Run mode at the UCSD IGM Genomics Center. 
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Sequencing data analysis 

Demultiplexed sequences were processed using an in-house modular workflow employing 

Snakemake  [30] (https://github.com/tanaes/snakemake_assemble/commits/mash, commit 

1c393f4). First, reads were trimmed and quality filtered using Atropos v 1.1.5, a fork of Cutadapt 

[31]. Reads aligning to the host genome (GRCh38.p7) were identified using Bowtie 2 v2.3.0 [32] 

with parameters set by the flag --very-sensitive-local. A total of seven samples with fewer than 

50,000 quality filtered non-human reads were excluded from downstream analysis. The host-

filtered microbial reads from the remaining 137 samples were profiled using MetaPhlAn v2.0 [33] 

with standard parameters. The MetaPhlAn taxonomic output matrix was filtered to represent only 

the relative abundance of the most specific taxonomic level. Taxa only identified in one out of the 

137 samples were excluded from analysis, resulting in 175 taxa. This filtered matrix was used for 

Bray-Curtis and Binary Jaccard beta diversity analysis using QIIME. For phylogenetic analyses 

including UniFrac [34], a tree was created using the MetaPhlAn2 taxonomy, with internal branches 

assigned a length of 1. Because some taxa could not be assigned to the tips of the tree, internal 

nodes were added as tips assigned a length of 0, allowing these taxa to contribute to the analysis. 

 

2.3.5 Conclusion 

Osmotic lysis in distilled water followed by treatment with PMA (lyPMA) is a novel 

method to significantly reduce the percentage of human DNA in shotgun metagenomic 

sequencing. The method requires only standard laboratory equipment and is suitable for any DNA 

extraction technique. lyPMA increases microbial reads in human saliva samples by an order of 

magnitude. Given a low consumables cost of around 15 cents per sample, lyPMA can therefore 

reduce the sequencing cost by an order of magnitude. 
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2.3.7 Supplemental Figures 

 

 

Figure 2.3.S1. Physical approaches to separate human from microbial cells does not reduce percentage human 
DNA. Unless otherwise stated, evaluation of size-driven host DNA depletion methods was performed by qPCR 
analysis of the human-specific PTGER2 gene normalized to raw sample. A) Raw saliva was passed across a 5-
µm filter and the original sample (raw), residue left on top of the filter (res) and filtrate (fil) were compared. B) 
The pellet of a raw saliva sample after a 30 sec centrifugation at 2,500 g (P), its supernatant (SS), the SS after 
pelleting all cells at 10,000 g for 8 min (FS), and the FS pellet washed with 1x PBS (FSW) were compared. C) 
Distinct populations of small, medium (med), and large events by flow cytometry of a human fecal sample. D) 
Percentage of human DNA by shallow shotgun sequencing normalized to raw sample of distinct FACS 
populations from C. E) The SS of a raw saliva sample after treatment with DNAse. Significance test ordinary 
one-way ANOVA with Dunnett’s multiple comparisons test p< 0.01. 
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Figure 2.3.S2. Optimization of lyPMA conditions for human DNA depletion. qPCR analysis of the relative 
abundance of the human-specific PTGER2 gene normalized to raw saliva across methods of selective 
mammalian cell lysis A) and PMA concentration B). qPCR analysis of the fold change of the bacteria-specific 
16S rRNA gene normalized to raw saliva across methods of selective mammalian cell lysis C) and PMA 
concentration D). SS = slow centrifugation (30 sec at 2,500g), son = sonication (15 min at 60 Hz), H2O = osmotic 
lysis with pure water. 
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Figure 2.3.S3. Quality control information. A) DNA quantification pre-library-prep, but post-host-DNA-
depletion. The red line indicates the concentration necessary to obtain 1 ng DNA input for library preparation 
given the volume limitations. B) Total number of quality filtered reads by processing method. Libraries were 
normalized to obtain twice as many reads for the raw samples compared to host depleted samples. C) Total 
number non-human reads after filtering using Bowtie 2. 
 

 

Figure 2.3.S4. Relative abundance of the top 15 most abundant genera assigned by MetaPhlAn2 across 
individual and host depletion method. 
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Figure 2.3.S5. Relative taxon abundance correlation between raw and host-depleted samples. Each plot 
represents data from a single participant. The x-axis represents relative abundance in the raw sample and the y-
axis represents relative abundance in the corresponding host depleted sample where each dot represents a distinct 
taxon. Error bars represent SEM across triplicate samples. The correlation values averaged across individuals 
for each method were not statistically different from each other (average Spearman's rank correlation coefficient 
± standard deviation: Fil = 0.789 ± 0.09, NEB = 0.75 ± 0.13, Mol = 0.82 ± 0.08, QIA = 0.83 ± 0.05, PMA = 0.82 
± 0.08) 

 

Figure 2.3.S6. Host depletion via PMA treatment is possible for cryo-preserved samples. Raw saliva samples 
were aliquoted and either frozen immediately at -20°C or mixed with a final concentration of 20% glycerol for  
cryopreservation. The percentage of human reads was assessed by Bowtie2, and the top 15 most abundant genera 
was assessed by MetaPhlAn2.   
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Chapter 3. 

Computational advances for analyzing microbiome 

sequencing data 

There are multiple properties inherent to data resulting from next generation sequencing 

experiments of micobial communities that complicate downstream analyses. First, this data is 

compositional, meaning that it only represents relative abundances or proportions of each detected 

microbe, and is not necessarily reflective of the number of microbes present in a given sample. 

The first section of this chapter describes this problem in detail and offers alternative ways to view 

this data to avoid making incorrect conclusions. 

The second section summarizes three interrelated research advances that I have had the 

opportunity to contribute to. This includes a novel way to handle the inherent sparsity of 

microbiome sequencing datasets, interative visualizations for identifying differentially abundant 

microbes in compositional datasets, and an incredible, community-wide effort to consolidate 

emerging microbiome sequencing analysis tools into a single language. These tools complement 

the wet-lab advances described in Chapter 2, and together form a comprehensive view of 

microbiome sequencing dataset generation and analysis. 
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3.1 

Establishing microbial composition measurement standards with 

reference frames 

Differential abundance analysis is controversial throughout microbiome research. Current 

gold standard approaches require laborious measurements of total microbial load, or absolute 

number of microorganisms, to accurately determine taxonomic shifts among samples. Therefore, 

most studies rely on making conclusions based off changes in relative abundance. We highlight 

commonly made pitfalls in comparing relative abundance across samples and identify two 

solutions that reveal microbial changes without the need to estimate total microbial load. We define 

the notion of “reference frames”, which provide deep intuition about the compositional nature of 

microbiome data. In an oral time series experiment, reference frames alleviate false positives and 

produce consistent results on both raw and cell count normalized data. Furthermore, reference 

frames identify consistent, differentially abundant microbes previously undetected in two 

independent published datasets from subjects with atopic dermatitis. These methods allow re-

assessment of published relative abundance data to reveal reproducible microbial changes from 

standard sequencing output without the need for new molecular assays.  

 

3.1.1 Introduction 

Next-generation sequencing data used to study the microbiome is inherently compositional 

and provides information in the form of relative abundances, independent of the total microbial 

load of the original sample. Numerous analytical approaches including rarefaction [1], median [2], 

and quan- tile normalization [2,3] have been proposed for comparing compositional samples. 
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However, these analytical solutions cannot control false discovery rates [4,5], and their application 

contributes to lack of reproducibility among microbiome studies [6-8]. Here we illustrate 

mathematical challenges in analyzing compositional microbiome data from DNA sequence reads, 

and define the concept of “reference frames” for inferring changes in abundance. 

To illustrate the pitfalls of inferring changes in abundance among samples using relative 

abundance data, consider the following example (Fig. 1). Samples from a population containing 

only two taxa (orange and blue) are collected pre- and post-treatment. Before treatment, the two 

taxa occur in equal proportions. After treatment, the orange taxon is twice as abundant as the blue 

taxon. It is tempting to conclude that orange increased and blue decreased.  
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Figure 3.1.1. Illustration demonstrating statistical limitations inherent in compositional datasets. a Two 
different biological scenarios can yield the exact same proportions of taxa in samples from a population pre- and 
post-treatment. b Simulated datasets plotting the true differential obtained using absolute abundance data on the 
x-axis, versus the inferred differential obtained using relative abundance data on the y-axis. Each dot represents 
a taxon in the dataset, and the colors represent datasets with various ratios of total microbial load (K) between 
before and after samples. The red line represents the optimal scenario where the samples have equal microbial 
load. This illustrates the prevalence of either false positives (FP) or false negatives (FN) when performing 
differential abundance analysis on samples with unequal total microbial load. The presence of either FPs or FNs 
is dictated by a nonlinear function of the true differential (see online methods). c An illustration of differential 
proportions of bacterial species before and after treatment. d Same data as b but plotting the rank of the 
differentials, demonstrating that ranks are equivalent regardless of differences in microbial load.  
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However, many different scenarios could lead to the same observation. For example, the 

orange taxon could quadruple and the blue taxon only double. The orange taxon could remain 

constant, and the blue taxon halve. Or the orange taxon could halve, but the blue taxon could 

decrease four-fold. Because we only observe relative abundance data, we cannot differentiate 

among these outcomes, which have markedly different biological significance. Infinite different 

outcomes produce the same 2:1 ratio of orange to blue, greatly complicating the generation of a 

meaningful null hypothesis and therefore yielding misleading p-values, as has been previously 

established [9-11]. 

Multiple processing steps are required to generate microbiome sequencing data. Samples 

are col- lected from a much larger population (e.g. fecal material from the gut, or water sample 

from the ocean). From these samples, a subsample is used for DNA extraction (e.g. a swab from a 

fecal sample, or an aliquot of a water sample). Even if the same amount of sample is extracted 

throughout an experiment, many DNA extraction kits are optimized for efficiency and can become 

saturated, complicating direct correlations of DNA yield and microbial load. A subsample of the 

extracted DNA is then used as input for PCR, a subset of the resulting amplicon is pooled into a 

library, and a subset of the library is sequenced.  

By the time quality-filtered sequencing data is obtained, the sequences reflect only a small 

subset of the population and are not an accurate representation of the microbial load in the original 

sample [12]. Analyzing relative abundance data with inappropriate statistical tools can yield up to 

100% false discovery rates [13-14]. Therefore, in addition to relative abundance data, quantitative 

information about total microbial load is necessary to determine which microbes are changing. 

Multiple approaches at each level of sample processing have been proposed to quantify the 

total microbial load from environmental samples. Adding a known amount of reference DNA as 



 141 

an internal standard has been used to extrapolate the amount of starting nucleic material [15,16].  

Normalization by this method is complicated due to the calibration challenges of choosing the 

proper amount of internal standard [16]. At the post- extraction level, quantitative PCR (qPCR) of 

genomic DNA with universal primers against the 16S rRNA gene has been deployed to estimate 

total microbial load [17]. However, it is impossible to prevent primer bias, resulting in uneven 

amplification of rRNA genes across species, and the DNA extraction method can influence 

microbial composition [18-20]. Further, quantification by both spike-in and qPCR is performed on 

multiple subsets of the original sample.  

Quantifying microbial load by flow cytometry is performed on the original sample, and is 

agnostic to nucleotide sequences. One recent study reported that adding quantitative information 

obtained by flow cytometry dramatically improved interpretation of 16S rRNA gene amplicon 

sequencing data [12]. However, flow cytometry requires expensive, relatively low-throughput 

equipment, and often can only estimate the cell concentration rather than the total microbial load.  

The total microbial load of an environmental sample is one dimension of measurement 

among the hundreds to thousands of dimensions measured by microbial relative abundances. If the 

absolute abundance of one taxon and the relative abundance of all taxa is known, it is feasible to 

compute the absolute abundance of all taxa. As such, considerable information rests in relative 

abundances, and important insights can be gleaned without costly microbial quantification 

methods. Below we describe two methods to evaluate relative differential abundance independent 

of microbial load information.  

 

  



 142 

3.1.2 Results 

Ratios circumvent bias without microbial load quantification 

Computing changes in abundance from compositional data introduces a bias due to the lack 

of total microbial load (Fig. 1 approach#1). Simulated data in Figure 1b shows how different biases 

(i.e. ratios between total microbial loads) can cause either false positives or false negatives. By 

simply comparing the ratio of taxa between samples, the bias constant introduced by unknown 

microbial load cancels out. Taking the logarithm of this ratio (log-ratio) enforces symmetry around 

zero, giving equal weight to relative increases and relative decreases [9,10].  

 

A novel approach to rank differential abundance  

Comparing ratios of taxa can circumvent the bias introduced by unknown microbial loads. 

How- ever, choosing taxa for comparison from the thousands in a given sample set can be 

challenging. Here we provide a way to rank microbes that are changing the most relative to each 

other. The term “differential” refers to the logarithm of the fold change in abundance of a taxa 

between two conditions. With microbial load information, one can calculate absolute differentials. 

Microbiome sequencing datasets provide relative abundances, and thus can only infer relative 

differentials.  

The ranks of relative differentials are identical to the ranks of absolute differentials (Fig. 

1d). However, because of the bias described above, we cannot infer if a microbe has changed based 

on rank alone, and therefore a coefficient of zero does not imply that the microbe has not changed 

abundance.  

Relative differentials can be estimated directly using multinomial regression, which has 

been proposed previously to handle sampling zeros [21-24]. The coefficients from multinomial 
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regression analysis can be ranked to determine which taxa are changing the most between samples. 

We refer to this ranking procedure as Differential Ranking (DR).  

 

Reference frames in compositional data analysis  

Analyzing compositional data requires a choice of reference frames for inferring changes 

in abundance. By “reference frame”, we draw on the concept from physics where velocity is 

measured “relative to” another moving object. As microbial populations change, we can constrain 

our inferences to how microbial populations change relative to reference frames given by other 

microbial populations. The denominator in a log-ratio determines the reference frame for inferring 

changes. In DR, the differential abundance of each taxon serves as a reference to each other when 

they are ranked numerically. To demonstrate these principles, we confirm the utility of employing 

reference frames in biological datasets.  

 

DR reveals differentially abundant microbes in saliva 

We demonstrate the utility of DR in a sample set with dramatic differences in total 

microbial load. Unstimulated saliva samples were collected before and after brushing teeth (n=32) 

and processed in parallel for microbial load quantification with flow cytometry and 16S rRNA 

gene amplicon sequencing. Importantly, participants were asked to provide unstimulated saliva for 

exactly 5 minutes. As a result, we obtained a proxy for the total microbial load by taking into 

account salivary flow rate. As expected, the total microbial load significantly decreased after 

brushing teeth (Fig. 2a).  
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Figure 3.1.2. Analysis of salivary microbiota before and after brushing teeth. a Flow-cytometry-quantified 
microbial load in unstimulated saliva collected for 5 min normalized to before brushing teeth. Each line 
corresponds to a different volunteer. Error bars represent the standard deviation from duplicate flow-cytometry 
measurements. b Microbial ranks estimated from multinomial regression with Actinomyces and Haemophilus 
highlighted. The y-axis represents the log-fold change that is known up to some bias constant K, and the x-axis 
numerically orders the ranks of each taxa in the analysis. c A comparison of t- statistics (left) and p-values (right) 
between before and after samples where each dot is an individual taxon (top graphs) or ratio between each taxon 
to Actinomyces (bottom graphs) calculated from relative abundance data (x-axis) and absolute abundance data 
(y-axis). The 1-1 correspondence in the ratio graphs is a result of the microbial loads cancelling out, as described 
in Eq. (3). d A comparison of relative abundance vs absolute abundance data of Actinomyces, Haemophilus and 
log(Actinomyces: Haemophilus) before and after brushing teeth. Error bars represent standard error of the mean. 
e Comparison of the multinomial coefficients used for DR, ALDEx2 and ANCOM outputs. The test statistics 
generated from ALDEx2 and ANCOM are sorted in the same order as the multinomial coefficients to provide a 
consistent comparison. All taxa that passed the significance tests are highlighted in red.  
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We performed paired t-tests to evaluate the change in abundance of each taxon before and 

after brushing teeth using either relative or absolute abundance data (microbial load multiplied by 

16S copy number-corrected relative abundances) (Fig. 2c). Applying t-tests to the relative data had 

a high false-positive rate, as seen by the disagreements between the relative and absolute t-statistics 

(Spearman r=0.53). Further, there was no correlation in p-value distribution between the relative 

and absolute abundance data (Spearman r=0.09), highlighting issues when the null hypothesis is 

not consistent between the relative abundances and the absolute abundances.  

Alternatively, evaluating the ratio between Actinomyces and the remaining taxa produced 

identical t-statistics and p-values between the relative and absolute abundance data (Spearman 

r=1.0). Ratio-based analyses are unaffected by microbial load (equation 3 in methods) and result 

in identical interpretations as one obtains from costly and rate-limiting flow-cytometry 

measurements.  

From the DR analysis (Fig. 2c), we can identify which taxa are changing the most relative 

to each other). Here, we highlight Actinomyces and Haemophilus species, which have very 

different ranks. Actinomyces tend to have low ranks and Haemophilus have high ranks. The 

difference in ranks between these taxa correctly suggests that Haemophilus taxa are more prevalent 

relative to other taxa before brushing, and Actinomyces taxa are more prevalent relative to other 

taxa after brushing. From the t-test results on relative abundances it appears that Actinomyces 

significantly increased (t-statistic=3.74, p-value=0.002) after brushing teeth and that Haemophilus 

significantly decreased (t-statistic=−3.67, p-value=0.002). However, absolute abundance data 

revealed that only Haemophilus significantly decreased (t-statistic=−2.155, p-value=0.0478) (Fig. 

2d).  
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The log-ratio of Actinomyces and Haemophilus between the relative and the absolute 

abundance data is identical. While we cannot observe the decrease of Haemophilus or the 

consistency of Acti- nomyces abundance, with the log-ratio of their relative abundance we can 

observe the interaction between these two taxa and the increase of Actinomyces relative to 

Haemophilus after brushing teeth (t-statistic=5.289, p-value=9.07 × 10−5).  

These results are consistent with our knowledge about oral biogeography. Haemophilus is 

typically found on the periphery of oral biofilms and was likely removed from the biofilm during 

the brushing process, whereas Actinomyces is generally found on the surface of the tooth and acts 

as an anchor for biofilm attachment25. Importantly, this experiment demonstrates the potential 

fallibility of relying on relative abundance; it is incorrect to conclude that Actinomyces increases 

after tooth brushing despite the increase in relative abundance. As demonstrated by flow 

cytometry, total microbial load decreases, and while both Haemophilus and Actinomyces decrease, 

Haemophilus decreases more.  

To investigate how other compositional methods perform, we ran ANCOM and ALDEx2 

on the same dataset (Fig. 2e). ALDEx2 did not identify any of the microbes to be changing, which 

contradicts flow-cytometry measurements that show there is a large decrease in the microbial 

community after tooth brushing. ANCOM identified multiple significantly changing microbes. 

One of these detected microbes was Veillonella, which conflicts with absolute abundances 

suggesting that Veillonella is not significantly changing (t-statistic=1.04, p-value=0.315). The 

false positive detected by ANCOM likely arose due to their choice of reference frame. 
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Elucidating interkingdom relationships in atopic dermatitis using DR  
 

The tooth brushing example provides ground truth for using log-ratios and DR, but many 

clinically relevant microbiome questions involve less obvious differences. Using data from 

patients with atopic dermatitis (AD), an important skin disease, we demonstrate how viewing 

relative abundances alone can produce false negatives.  

AD has a complex etiology. Many microbiome studies performed using next-generation 

sequencing have focused on bacterial changes associated with AD, especially the pathogen 

Staphylococcus aureus. The yeast genus Malassezia has also been implicated in AD, although 

conflicting results have been published as to which Malassezia species are involved and whether 

they are more or less prevalent in AD [26]. A recent shotgun metagenomic study examined the 

skin microbiome over time during an AD flare and recovery. The authors observed a decrease in 

Staphylococcus aureus relative abundance in the healthy, recovered skin (non-lesioned) compared 

to AD flare (lesion), but no significant changes in the relative abundance of Malassezia species 

over time in these AD patients [27].  

Applying compositional methods to this dataset revealed new insights. Observing the DR 

results (Fig. 3a), it is apparent that, compared to lesioned skin, S. aureus is one of the taxa to 

decrease the most relative to all other microbes in the non-lesioned sites, followed by S. 

epidermidis, and M. globosa. Consistent with the analysis of relative abundance in Fig. 3b, the 

ratio of S. aureus : P. acnes was significantly increased in flare (t-statistic=3.397, p-value=3.02 × 

10−3) and correlated with SCORAD score, a clinical assessment of AD severity (Pearson=0.603, 

p- value=3.516×10−6). Contrary to previous findings, both S. epidermidis : P. acnes and M. 

globosa : P. acnes were also significantly increased in lesioned skin (t-statistic=4.2297, p-
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value=4.53×10−4, and t-statistic=4.297, p-value=3.889 × 10−4, respectively) and correlated with 

SCORAD score (Pearson r=0.464, p-value=6.975 × 10−4, and Pearson r=0.668, p-value=1.125 × 

10−7, respectively) (Fig. 3c).  

 

Figure 3.1.3. DR analysis of skin in two atopic dermatitis studies. Panels a–c represent data from Byrd et al.27, 
and panels d, e represent data from Leung et al.28. Both studies compare lesioned (L) to non-lesioned (NL) skin. 
a Microbial ranks estimated from multinomial regression applied to shotgun metagenomics from Byrd et al.27 
with key genera highlighted. The y-axis represents the log-fold change that is known up to some bias constant 
K. b Proportions of S. aureus, S. epidermidis, M. globosa, and P. acnes in lesioned (blue) and non-lesioned 
(orange) skin (left) and correlation of relative abundance with SCORAD score (right). c Log-ratios of (S. aureus: 
P. acnes), (S. epidermidis: P. acnes), and (M. globosa: P. acnes) (left) and correlation of ratio with SCORAD 
score (right). Error bars represent standard deviation across participants (n = 20). d Change in log-ratio of (M. 
globosa: P. acnes) from Leung et al. 28. e Change in relative abundance of M. globosa between lesioned and 
non-lesioned skin from Leung et al.28. Presented p-values are from paired t-test statistics. 
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To validate this observation, we analyzed shotgun data from an independent AD dataset 

[28]. In this dataset, the relative abundance of M. globosa significantly increased between lesioned 

and non-lesioned skin (Fig. 3e, t-statistic=4.135, p-value=0.0001). But the ratio of M. globosa : P. 

acnes increased even more dramatically in lesioned skin (t-statistic=7.298, p-value=9.729 × 10−9) 

(Fig. 3d). These results are congruent with a previous report that M. globosa was cultivated more 

successfully from lesioned versus non-lesioned sites in AD [29]. Thus, DR analysis can identify 

novel, clinically significant microbial changes which can be validated across cohorts by choosing 

insightful reference frames.  

 

DR across environmental gradients in the Central Park soils 

Differential ranks can also be learned for continuously valued data. We demonstrate this 

with data from the Central Parks Soil experiment [31] which contains more than 1,000 samples 

and 30,000 taxa sampled across pH and nitrogen gradients. The largest factor driving diversity was 

pH, and Washburne et al [32] showed that there were lineages of microbes associated with nitrogen 

when pH was accounted for. Here we applied multinomial linear regression to estimate microbial 

DR along both nitrogen and pH gradients (Fig. 4).  
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Figure 3.1.4. DR analysis of the Central Park dataset. a Microbes ranked with respect to their association with 
nitrogen. b Microbes ranked with respect to their association with pH. Putative hits against an acidophile, an 
ammonia oxidizer and a nitrogen reducer are highlighted.  

 

Of the top 5 and bottom 5 ranked microbes in the nitrogen and pH gradients, only 4 

microbes were annotated. The top 4th and 5th microbe that is associated with acidic environments 

was a putative match against Candidatus Solibacter and Telmatobacter, which has been found to 

grow in a pH range of 3.5-6 [33-34]. The top microbe most associated with high pH was 

Chryseolinea, which has been shown to grow between pH range of 5-10. The top third microbe 

associated with low nitrogen concentration was a putative match against Gemmatimonas, which is 

a known nitrogen reducer [35].  

The multinomial regression was able to appropriately identify which organisms were most 

associated with low pH, high pH, and nitrogen. However, even amongst the highly ranked 
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organisms there is a major lack of functional annotations. Having the appropriate rankings in place 

may pro- vide new insights into these organisms and guide experimental validation.  

 

3.1.3 Discussion 

Adding information about absolute microbial load between samples can highlight issues 

inherent in compositional data analysis. However, there are multiple practical and technical 

challenges in quantifying microbial load. For example, skin swabs are often difficult to use in flow 

cytometry due to very low microbial load and difficulty in transferring intact cells from swabs into 

liquid solution. Furthermore, skin samples are notoriously sensitive to 16S rRNA gene primer 

choice making qPCR quantification challenging35. Similarly, for historically collected samples that 

exist only as DNA in a freezer or as sequences in a database, flow cytometry approaches to 

determine absolute microbial load are not feasible.  

However, absolute abundances of a community are only one degree of freedom; in a 

community of N species, N-1 degrees of freedom exist in the relative abundances. By using flow 

cytometry to quantify total microbial load, we validated these analytical tools in 16S rRNA gene 

amplicon sequencing data from unstimulated saliva. We found evidence of false positives when 

looking exclusively at changes in relative abundance before and after brushing teeth. By evaluating 

the ratio of Actinomyces: Haemophilus, we reached an identical conclusion to our absolute 

abundance data without the need for microbial load quantification. The consistency of our results 

rests in the use of ratios defining reference frames for inferring compositional changes.  

Furthermore, we highlighted an example of a false negative in previously generated 

shotgun metagenomic data from the skin of individuals with AD. We were able to reproduce the 

findings that S. aureus, and to a lesser extent S. epidermidis, are differentially abundant in AD 
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lesions. Additionally, using log-ratios and differential ranking, we were also able to show a more 

subtle but statistically significant change in M. globosa abundance in AD lesions. This same result 

was obtained in two independent metagenomic studies of AD patients and agrees with previous 

cultivation-based work quantifying increased colony forming units of M. globosa in AD lesions.  

Consistency between inferences made based on relative and absolute abundance data is 

crucial, because in many circumstances it is not possible or practical to estimate total microbial 

load. The seeming contradictions between absolute and relative abundances does not invalidate 

data from the existing 100,000+ experiments utilizing 16S rRNA gene amplicon or metagenomic 

sequencing36,37. Importantly, these techniques are not limited to next generation microbiome 

sequencing, but can be applied to any experiments involving compositional data (e.g. 

metabolomics, proteomics, etc.).  

Although various methods of multinomial-based models have been developed [22–25], the 

interpretation of the resulting model requires care. A zero valued coefficient does not imply that 

the corresponding species abundance has not changed, due to the total microbial load bias as 

discussed in figure 1. DR provides a novel means to correctly interpret the coefficients of these 

models. By ranking the coefficients we can determine which taxa have changed the most relative 

to each other. This subtle distinction acknowledges the limits of compositional data analysis, and 

as demonstrated above can have dramatic impacts on data interpretation.  

While there are widespread misconceptions concerning how to interpret microbial 

abundances, we have shown that misinterpretations stem from a misunderstanding of the reference 

frame used in analysis. Ongoing efforts at the NIH and EMBL-EBI have already stored petabytes 

of multi-omics datasets ready to be re-analyzed, and databases, such as Qiita and gcMeta, contain 

curated data and metadata from hundreds of thousands of samples36,37. There is much promise for 
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resolving outstanding controversies by re-analyzing these datasets using reference frames to make 

stable inferences of compositional change.  

 

3.1.4. Methods 

Cancelling out bias in compositional data. 

The change between two samples containing compositions (e.g., absolute abundances of D 

microbes) A = (a1, ..., aD) and B = (b1, ..., bD), can be computed as follows: 

 

 
 
If we are only able to measure relative abundances, as is the case with next generation 

amplicon sequencing, we can only estimate the proportion ai for species i in the sample A. 

Estimating the true abundance can be done via a1 = NaPa1, where Na is the total abundance of 

sample A. To estimate the true change, 

 

    
 

To determine if species i abundance has changed between samples A and B, we test to see 

if ai/bi = 1. However, as shown above, we cannot perform this test, since the results of this test 

would be confounded by the total biomass bias NA/NB.  

In many cases the total biomass cannot be estimated, so any techniques to identify 

important species will need to alleviate this bias. One alternative is to use ratios. If we choose 

species D to be the reference species, it is clear that the total biomass cancels as follows 
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Another alternative is to use ranks. Ranks have been shown to be context of microbiome 

studies [38,39] and have been commonly employed to study species richness in the context of 

ecology [40]. Since the bias is applied uniformly across the differential, it will not affect the 

ordering of the species. Hence, ranks are agnostic to the total biomass bias. 

 

     
 
 

Because of the equivalence of ranks between absolute and relative data, it is possible to 

identify the species that are increasing or decreasing the most. This means that the following 

statements hold 

        
 

The ranks are connected to the log-ratios, the differences between ranks will yield 

differences in log-ratios given by 

               
 

These ranks are still relative; a microbe that is detected to be increasing the most could still 

be decreasing in absolute abundance. For instance, in the tooth brushing example, ranks identified 

specific genera of Actinomyces to be increasing the fastest, but all of the microbes are depleted, 

suggesting that Actinomyces is just decreasing much less than the other microbes. This differential 

is also commonly referred to as a perturbation in the context of the compositional literature [10]. 

It is important to note that this does not justify applying rank-based statistical methods, such as 
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Spearman correlation or Kruskal–Wallis, to relative abundance data since these tests do not satisfy 

scale invariance [41,42]. 

Both the log-ratios and the differential ranking techniques satisfy scale invariance, meaning 

that both of these techniques are agnostic to the total microbial load. This concept is critical when 

analyzing relative abundance data, since this is one step closer to maintaining consistent 

conclusions between the original environment and the observed sequences. 

 

False discovery rates in relative differential abundance. 

Attempting to estimate absolute log-fold differentials from relative abundances can result 

in either false positives (FP) or false-negatives (FN) depending on the distribution of true 

differential abundance. Whether FNs or FPs are observed depending on a nonlinear relationship 

involving the true (unobserved) differential abundance. To demonstrate this, let 

 

denote the absolute differential of the D species between two conditions, A and B. Further, let 

  

represent the relative differentials from compositional data. By definition, we know the following 

is true 

 

If log(NA/NB) > 0, then that will mean that for every microbe i, δi > ^δi. This implies that 

there is increased microbial load in A compared to B, and that this increase will give rise to FNs. 

This is because the overall community increase will not be captured from the relative abundance 

data. 
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In contrast, if log(NA/NB) < 0, then for every microbe i, δi < ^δi. This means that there is a 

decrease in the absolute microbial load in A compared to B. This decline in the total community 

will not be captured from the relative abundances, and some of the species will be detected to be 

increasing, giving rise to FPs. An example of this was shown in the saliva microbiota study (Fig. 

2). 

 

Multinomial regression 

To perform the differential ranking (DR) analysis, we used multinomial regression. 

Multinomial regression and related count regression models are commonly used in the context of 

microbiome analysis. Here, we use the multinomial regression model since these models can 

reliably estimate the means and can be easily reinterpreted in the context of compositional data 

analysis. Counts from the multinomial regression can be formulated using additive log-ratio 

transformation (alr) in the following generative model 

      

where Yi represents the measured microbial load for sample i. β represents the coefficients of the 

model across all measured covariates indexed by k. These coefficients can be interpreted as a 

relative differential discussed in the examples above. Xi represents the vector metadata covariates 

for sample i. These metadata covariates can represent both continuous and categorical variables, 

where categorical variables are represented as binary variables. A normal prior centered around 

zero was placed on the coefficients β to serve as regularization to combat issues associated with 

high dimensionality. The jth component of the βk coefficient vector represents the jth alr 
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coordinate, which can be interpreted as a log concentration using one of the microbes as a 

reference. It does not matter which microbe is used as a reference, since the proportions ηi will be 

identical regardless of reference microbe. The inverse alr function is commonly used in the context 

of compositional data, given as follows 

                 

This is also referred to as a degenerate softmax function, which is commonly used in the 

context of neural networks. This function is isomorphic between RD-1 and SD (the space of 

proportions), so this will ward against identifiability issues when estimating these model 

parameters. The alr function is defined as 

 

The models were estimated using a maximum a posteriori priori (MAP) estimation using 

stochastic gradient descent. Multinomial regression was implemented using Tensorflow [43] and 

can be found in https://github.com/biocore/songbird. 

 

Interpreting ranks 

Supplementary Fig. 2 outlines how to draw hypotheses using the proposed ranking 

procedure. First the relative differentials need to be computed, preferably using a count-based 

regression model such as the multinomial regression described above. As noted in the introduction, 

the coefficients can be represented as centered log ratio (clr) coordinates as follows 
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where g(x) represents the geometric mean. These coordinates are typically centered around zero, 

meaning that the chosen reference frame is the center-of-mass, or in other words the average 

microbe. This is the same reference frame that ALDEx2 and sometimes ANCOM uses. Once the 

relative differentials are estimated there are two possible analyses. It is possible to construct 

compositional biplots to visualize all of the regression coefficients and determine how microbes 

are clustered and driven by metadata covariates. This procedure is outlined in the Songbird tutorial 

on github.  

The other possibility is to identify candidate differentially abundant microbes. To this end, 

one can construct rank plots (e.g., Figs. 2b and 3a). The rank plots show the ordering of all of the 

taxa with respect to how much they are associated with a particular metadata covariate, and specific 

taxa can be highlighted to show their ranks as positions on the rank plot. From the ranks, one can 

focus on taxa that have very high ranks or very low ranks, since those are the ones that are 

increasing/decreasing the most relative to each other, and are likely to be important contributors.  

These ranks can also help inform which taxa can be used for a suitable reference frame 

since the difference between the relative differentials can approximate the effect size that those 

two microbes will have. As a result, microbes that have very different ranks can be suitable 

candidates for a log-ratio test. An ideal reference microbe is present across most samples, since 

this will allow the denominator in a log-ratio to be defined. This was one of the reasons why 

Actinomyces and P. acnes were chosen as reference microbes in the case studies. Furthermore, if 

a microbe is anticipated to be stable across experimental conditions, this could provide additional 

motivation to select that microbe as the reference microbe.  



 159 

Zeros will remain to be problematic when comparing log-ratios of taxa among 

conditions—the procedure used here was to treat zeros as missing data and drop them from the 

analysis. However, this approach may not be optimal, for instance if two microbes never occur 

together in the same sample, but one microbe has a very high rank, and the other microbe has a 

very low rank. The two microbes may have significant explanatory power, but it will not be 

possible to perform a log-ratio test without imputing the zeros. In scenarios such as this, it may be 

more appropriate to utilize presence/absence procedures.  

While the above procedures provide some recommendations on how to pick an appropriate 

reference frame, picking a reference frame for hypothesis testing is still an outstanding challenge. 

Since a reference frame can be defined as the average of a set of microbes, there are 2N possible 

reference frames for N microbes. Rivera–Pinto proposed one approach towards finding an optimal 

reference frame [44]; however, this solution maybe suboptimal. Furthermore, it is not clear what 

properties an optimal reference frame should satisfy, or how false discoveries could be controlled. 

More theoretical work will need to be done in order to understand statistical properties of these 

reference frames. 

 

Simulated benchmarks comparing ANCOM2, ALDEx2, and DR.  

We used simulated data to benchmark DR to the output of ALDEx2 [45] and ANCOM 

[46]. Details can be found in the simulation-benchmarks ipynb at https://github.com/knightlab-

analyses/reference-frames. Here, we compared the linear mixed effects model in ANCOM2, the t-

test in ALDEx2 and ranked multinomial regression coefficients in DR. ALDEx2 determined taxa 

were significant if the FDR corrected p-value fell below 0.05. A taxon was determined to be 

significant by ANCOM if it passed the 0.9 cutoff.  
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ALDEx2 and the proposed multinomial regression for DR in this paper use nearly identical 

models concerning categorical metadata. The major difference is the choice of priors; our model 

uses a normal prior whereas ALDEx2 uses a Dirichilet prior. As a result, the coefficients from 

ALDEx2 and the multinomial regression are nearly identical (Supplementary Fig. 1), suggesting 

that the same ranking procedure can also be applied to the ALDEx2 output. However, ALDEx2 

can only handle a single categorical covariate at a time, whereas the multinomial regression 

proposed can handle multiple covariates, including continuously valued covariates, as shown in 

the Central Park soils dataset (Fig. 4).  

It is important to note that the hypothesis tests that ANCOM and ALDEx2 use may not be 

consistent with the absolute differentials. Under perfect conditions when the absolute differentials 

are centered around zero (Supplementary Fig. 1a–d), both ANCOM and ALDEx2 correctly infer 

that microbes with a differential close to zero are likely not changing. However, if the center of 

mass changes and the average microbe is now decreasing on average −2 log fold (Supplementary 

Fig. 1e–h), both ALDEx2 and ANCOM will incorrectly infer that microbes changing −2 log fold 

are not changing. In this example, the center of mass reference frame is inappropriate, and leads 

to predictions that microbes are not changing when they are actually changing on an absolute scale. 

This highlights difficulties when attempting to link information from relative data to absolute data 

using hypothesis tests. The hypothesis tests that ALDEx2 and ANCOM perform here are not 

necessarily incorrect, but could be misleading in situations where microbial load differs 

dramatically among conditions. 
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Interpreting relative differentials through balances 

Balances are ratios of taxa, or groups of taxa, that were previously presented as a valid 

approach to analyzing compositional data [14]. If we examine the model parameters , 

we reinterpret the quantities given by alr−1(βk) as relative differentials as discussed in Fig. 1. It is 

also worthwhile to note the connection between βk and balances. Since βk is expressed in alr 

coordinates, there is also a direct connection to ilr coordinates, meaning that βk can also be 

transformed into balances. More explicitly, the ilr coordinates of these coefficients can be 

computed as follows 

 

The resulting coefficients are represented as coordinates given by the orthonormal basis Ψ. 

An example of such a basis can be derived from bifurcating trees discussed in Morton et al. [14], 

Silverman et al. [47], and Washburne et al. [31]. This can allow for relative changes in abundances 

as given by alr−1(βk) to inform which balances are changing in ancestral states given by the tree. 

The multinomial regression serves as an alternative means to compute regression coefficients 

discussed in PhILR, Phylofactor and Gneiss, while avoiding issues with imputation and zeros. 

 

Saliva microbiota study  

Nine volunteers provided unstimulated saliva so that salivary flow rate could be measured 

according to a standardized protocol [48]. Briefly, individuals were asked to allow saliva to flow 

for exactly five minutes through a disposable funnel (Simport, SIM F490-2) into a sterile, 15 mL 

conical tube preloaded with 2 mL sterile glycerol for bacterial preservation. Participants were 

asked to provide samples before brushing and after brushing teeth in the morning and in the 

evening. Samples were inverted several times to mix with the glycerol and stored at −20°C 
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immediately after collection. This study was approved by an Institutional Review Board (IRB# 

150275) and written informed consent was acquired before sample collection. 

Unstimulated saliva samples were thawed on ice and aliquots were diluted tenfold with 

sterile, 1x PBS. To remove human cells and salivary debris, samples were filtered using a sterile 

5 μm syringe filter (Sartorius Stedim Biotech GmbH). 5 μl 20x SYBR green (SYBRTM Green I 

Nucleic Acid Gel Stain, Invitrogen) was added to 1 mL of the microbial suspension (0.1x final 

concentration) and incubated in the dark for 15 min at 37°C. Finally, 50 μl AccuCount Fluorescent 

Particles (Spherotech, ACFP-70-10) were added for assessment of microbial load. Samples were 

processed on a SH800 Cell Sorter (Sony Biotechnology) using a 100 μm chip with the threshold 

set on FL1 at 0.06%, and gain settings as follows; FSC = 4, BSC = 25%, FL1 = 43%, FL4 = 50%. 

The gating strategy was adapted from Vandeputte et al. [12] Briefly, fluorescent microbial cells 

were gated from background on a FL1-Fl4 density plot. Aggregates were excluded by taking the 

linear fraction on a plot of FL1-height versus FL1-area as previously described [49], and remaining 

background was removed by eliminating large events detected on a FSC-BSC density plot 

(Supplementary Fig. 3). Negative controls (sterile PBS stained identically to samples) were run 

between each sample set to exclude cross contamination. Settings were identical among all 

samples. 

DNA extraction and 16S rRNA amplicon sequencing were done using Earth Microbiome 

Project (EMP) standard protocols (http://www.earthmicrobiome.org/protocols-and-

standards/16s). Five hundred microliter of unstimulated saliva was used for gDNA extraction with 

MagAttract PowerSoil DNA Kit (QIAGEN) as previously described [50]. Amplicon PCR was 

performed on the V4 region of the 16S rRNA gene using the primer pair 515f to 806r with Golay 

error-correcting barcodes on the reverse primer. Two hundred forty nanogram of each amplicon 
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was pooled and purified with the MO BIO UltraClean PCR cleanup kit and sequenced on the 

Illumina MiSeq sequencing platform.  

Demultiplexed fastq files were processed using QIIME2 (https://qiime2.org) [51]. Deblur 

was used to denoise the sequences [52]. Taxonomy was assigned and 16S rRNA gene copy 

number-corrected using RDP classifier [53] then collapsed to the genus-level. All taxa reported in 

the manuscript were validated using the NCBI BLAST database [54]. Absolute abundances were 

estimated by multiplying the total cell-count estimated by flow cytometry by the copy number-

corrected microbial proportions from sequencing as outlined above.  

For differential abundance testing (Fig. 2e), ALDEx2 determined taxa were significant if 

the FDR corrected p-value fell below 0.05. A taxon was determined to be significant by ANCOM 

if it passed the 0.6 cutoff. Songbird was used to perform multinomial regression and the repository 

can be found here: https://github.com/ mortonjt/songbird. Paired t-tests were performed to evaluate 

the differences before and after brushing teeth. All log-ratios that were evaluated to either positive 

or negative infinity were dropped prior to statistical analysis. 

 

Analyzing the Central Park soils study with reference frames 

Data from Ramirez et al. [30] were retrieved from Qiita [55] (https://qiita.ucsd.edu/study/ 

description/2104). Amplicon sequence variants that appeared in less than 24 samples were filtered 

out, reducing the number of analyzed taxa to 30, 248 taxa. This filtering criteria was chosen to 

ensure that each of the six covariates had at least four samples to fit against. The following 

multinomial linear model was estimated 
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where yi represents the microbial relative abundances in sample i, xi are the measured covariates 

for sample i, βwater are the relative differentials with regard to water content, βnitro are the relative 

differentials with regard to nitrogen concentration, βpH are the relative differentials with regard to 

pH, βcarbon are the relative differentials with regards to carbon measurements and βbiomass are the 

relative differentials with regards to measured biomass. 

 

Shotgun metagenome studies 

We used supplementary data from Byrd et al. [27] and Leung et al. [28]. The provided 

relative abundances were compared to log-ratios of given taxa from the raw count data. Paired t-

tests were performed to evaluate the differences between lesion and non-lesion skin samples. All 

log-ratios that were evaluated to either positive or negative infinity were dropped prior to statistical 

analysis. These numerical issues occur when particular microbes are not observed, and we treat 

them as missing data, respectively.  

 

Data availability 

The sequences and biom tables [56] from the saliva microbiota study can be found on 

Qiita (http://qiita.microbio.me) [55] under study ID 11896 and at EBI under ERP111447.  

 

Code availability 

All analyses can be found under https://github.com/knightlab-analyses/reference-frames 
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3.2  

Creating accessible processing tools for microbiome sequencing 

datasets 

Next generation microbiome sequencing datasets are highly complex, often containing 

information about thousands of microbial taxa. These datasets are too large be processed with 

computer programs traditionally used in the biological sciences such as Excel. In order to draw 

conclusions about the underlying biology from microbiome sequencing, some degree of 

bioinformatics is required. This chapter highlights three computational tools that I contributed to 

which both advance our ability to accurately assess microbial community data and provide 

intuitive results that are accessible for biologists with limited bioinformatics background.   

 

3.2.1 Robust, taxonomy driven beta-diversity analysis (RPCA) 

 Beta diversity is a dimensionality-reduction technique commonly used in the field of 

microbiome research. This tool was first described by the ecologist Robert Whitaker in 1960 [1] 

and is a measurement of the similarity of two environments (or samples) given all the features 

represented in those environments. This information is usually represented by Principal 

Coordinates Analysis (PCoA) which plots each sample as a point in space; the closer together two 

points are the more similar the microbial composition of those two samples. This is extremely 

useful for understanding the overall structure of a given dataset and is one of the most common 

tools used in analyzing microbiome sequencing datasets.  

 However, one major limitation of PCoA is that the axes of the plot abstractly represent 

percent variability explained, and you cannot retrieve information about which features are 
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differentiating the samples. Second, many common tools used to calculate sample similarity for 

PCoA do not take into account the inherent compositionality of a dataset (as described in detail in 

Chapter 3.1). A third obstacle to dimensionality reduction of microbiome sequencing datasets is 

sparsity, since there are usually relatively few microbial taxa found across all samples. 

 Robust Aitchison principal components analysis (RPCA) was developed in order to 

directly address these limitations [2]. This algorithm harnesses the power of previously developed 

machine learning algorithms to complete sparse matrices such as the output of microbiome 

sequencing. The similarity calculation is performed on centered-log ratio transformed data, which 

allows it to be scale invariant and account for compositionality. Importantly, this tool also allows 

for identification of the features that drive separation between sample groups. This tool has the 

ability to highlight hidden data structures not observed with traditional analyses as highlighted in 

Chapter 4.2 (Figure 4.2.1). 

 

3.2.2 Compositionally aware differential feature ranking (Qurro) 

 Identifying microbes that are differentially abundant across environments is a major goal 

of microbiome studies. As described in Chapter 3.1, given the limitations of next generation 

sequencing ouput the best way to interpret differential abundance is through ranking. Tools such 

as songbird (Chapter 3.1) and RPCA (Chapter 3.2.1) produce feature rankings that can be used to 

estimate differential abundance, however the output of these tools is neither intuitive nor easily 

accessible for efficient searching without extensive bioinformatics background.  

Qurro is a novel tool designed to provide an interactive interface through which you can view 

the output of feature ranking tools such as songbird or RPCA [3]. The output of qurro is an 

interactive HTML where users can search for specific microbial taxa and within seconds produce 
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log-ratios of microbial taxa using a differential feature rank plot to help guide microbial selection. 

The use of this tool requires no computational background and greatly reduces the barrier to 

applying state-of-the-art differential abundance tools. 

 

3.2.3 Open-source analysis software with interactive visualizations (Q2) 

Tools to analyze microbiome sequencing data are constantly evolving and adapting. These 

tools are written across a variety of programming languages and require various levels of expertise, 

which can make the analysis of these datasets daunting. Qiime2 (Q2) is an open source system for 

the reproducible analysis of microbiome sequencing data [4]. The architecture of Q2 is built around 

the concept of plugins, which allows computational tools developed by individuals across the 

world to be implemented into one standardized system to maximize accessibility to the 

microbiome community. Q2 can be used through the command line or through jupyter notebooks. 

Many of the outputs can be visualized through interactive HTML sites which generate figures that 

can be downloaded at high quality for publication.  

This system has allowed for unprecedented collaboration and has dramatically 

strengthened the accessibility of analysis tools. In less than a year, the Qiime2 publication [4] has 

over 200 citations, highlighting the importance of this system for analyzing microbiome 

sequencining data.   
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Chapter 4. 

Applying novel tools to better understand the oral 

microbiome 

The final chapter is dedicated to applying the benchtop and computational tools described 

in Chapters 2 and 3 to gain novel insight into the human oral microbiome. Both sections are 

currently under peer-review. The first section applies a novel strategy of removing dead cell signal 

with quantitative flow cytometry in order to count the number of microorganisms present in human 

saliva from healthy individuals. This first-of-its-kind study revelaed that the human oral 

microbiome is incredibly dynamic, with the number of microbes present changing by orders of 

magnitude within an individual over the course of the day, highlighting the need for scale-invariant 

analysis tools. 

The second section is an analysis of a massive dataset generated by our collaborator Dr. 

Ryan Demmer from the University of Minnesota. In this analysis we searched for early microbial 

markers of periodontitis, and their possible link to cardiometabolic health. The results presented 

were only possible with the novel analysis tools described in Chapter 3. 
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4.1  

Quantifying live microbial load in human saliva samples over time 

reveals stable composition and dynamic load 

Human saliva contains a distinct and rich community of microorganisms. While the 

microbial composition of saliva has been documented, the number of microorganisms present in 

saliva and how this number changes over time remains unclear. Furthermore, the viability of these 

microorganisms over time is also unknown. Here we present a novel method to characterize live 

microbial load in parallel with microbial community sequencing. We apply this method to 

unstimulated saliva samples collected in two distinct experiments; one collected longitudinally 

throughout the entire course of an ordinary day and the other collected across an acute perturbation.  

 

4.1.1 Background 

The human oral cavity provides a distinct microbial niche and contains a complex 

community of microorganisms. Because saliva is easy to sample and has relatively high biomass, 

it has become an increasingly popular environment to study host-microbe interactions. The 

composition of the human salivary microbiome has been shown to be stable over weeks [1] and 

months [2]. However, how the salivary microbiome is affected by the acute perturbations of daily 

life, including dental hygiene and eating habits, is less well understood. Determining these intricate 

dynamics could have major implications for cross-sectional studies that do not (or cannot) control 

for these variables.  
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While we have limited knowledge about how the microbial composition of saliva changes 

over time, it is also unknown how the number of microorganisms, i.e. the microbial load, changes. 

This is in part because it is currently relatively easy to estimate the microbial composition of a 

given sample through sequencing, but more challenging to quantify the microbial load of complex 

communities. However, elucidating the exact number of cells in and on our body is not only an 

important component for understanding host-microbe interactions, it can also affect the 

interpretation and analysis of sequencing data [3–5].  

Multiple methods have been proposed for microbial load estimation, including, but not 

limited to, quantitative sequencing spike-ins, extrapolation of cell number from 16S rRNA gene 

copy number enumeration by quantitative PCR (qPCR), and flow cytometry. Each method 

includes advantages and disadvantages as previously described in detail [3,4]. The current gold 

standard for quantifying live microbial load from complex communities is using flow cytometry 

[3–7], although it is important to keep in mind that one of the caveats to microbial load estimation 

by flow cytometry is the potential presence of bacterial aggregates which may artificially deflate 

the cell count. This method involves staining microbes with a fluorescent DNA dye and using a 

clever gating strategy to exclude background signal without relying on cell size or density [6]. 

However, not all detectable DNA comes from living organisms. In 2016 Carini et al., 

demonstrated that in soil samples an average of 40% of DNA originated from non-intact cells [8]. 

The presence of extracellular DNA or DNA from non-intact cells, “relic DNA”, has long been 

recognized in human microbiome samples. For example, evaluating microbial load in sputum 

samples from patients with cystic fibrosis without taking viability into account resulted in 

inaccurate clinical conclusions [9]. This is due to the large amount of relic DNA in cystic fibrosis 

sputum samples [10].  
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Treating samples with propidium monoazide (PMA) enables the removal of DNA not 

protected by a cell membrane [11]. PMA, similar to propidium iodide, is a DNA intercalator that 

cannot pass intact cell membranes. Therefore, it only intercalates in relic DNA. Upon exposure to 

visible light N2 is photolytically cleaved from the PMA molecule resulting in a highly reactive 

nitrene intermediate. This reactive product quickly forms a covalent bond with the DNA to which 

it is intercalated, inducing a DNA break. Experiments from a chemical cousin of PMA, ethidium 

monoazide, demonstrated that these molecules can intercalate roughly every 10-80 base pairs [12], 

effectively excluding the resulting DNA fragments from downstream analysis (i.e. DNA 

fragmented to this size are not recovered in typical DNA extraction kits, cannot be detected with 

typical fluorescent readouts, and cannot be amplified by PCR). Importantly, any additional PMA 

not intercalated in DNA reacts with H2O and is rendered inert following light treatment. This 

method has been increasingly employed over the past few years to distinguish signal from live 

cells from relic DNA [8,9,13–19].  

Here, we optimized a technique to quantify live microbial load from saliva samples using 

PMA and flow cytometry. This technique was applied to unstimulated saliva samples collected 

throughout the course of a single day and in response to an acute perturbation in order to assess 

saliva microbial dynamics. 

 

4.1.2 Results 

 Approach to quantifying live microbial load and composition 

We developed a protocol to quantify live microbial load in unstimulated saliva by removing 

relic DNA with PMA prior to staining for flow cytometry (Fig. 1A). Validation experiments with 

Gram-positive and Gram-negative bacterial cultures demonstrated a linear relationship between 
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flow cytometry counts and classic colony-forming units (CFU) enumeration, especially when the 

sample was pre-treated with PMA to remove relic DNA (Fig 1B). The ability of PMA to remove 

dead cell signal was further validated by heat-killing a fresh culture of E.coli. Without PMA 

treatment, heat-killed cells were counted at similar levels to fresh cells by flow cytometry (Fig. 

S1). Removing relic DNA with PMA prior to flow cytometry removed detection of these dead 

cells, matching the CFU counts. 

 

Figure 4.1.1. Quantifying live microbial load and composition in human saliva. (A) Schematic illustrating how 
PMA removes DNA not protected by an intact cell membrane. (B) Flow cytometric quantification of microbial 
load matches colony-forming unit (CFU) estimation more closely when the sample is pre-treated with PMA for 
both a gram-positive bacteria, E.coli, and a gram-negative bacteria, S.aureus. Each point represents technical 
triplicates of each method with the standard deviation shown for the CFU measurement (x-axis) and flow 
cytometry measurement (y-axis). (C) Schematic of sample collection and processing allowing for measurement 
of unstimulated salivary flow rate, live and total microbial load, and live and total microbial composition. 
 

With this method, we set out to determine the microbial population dynamics in human 

saliva by quantifying live microbial load and composition throughout a single day. Specifically, 

we elucidated if daily perturbations (e.g. brushing teeth, eating a meal) induce ecological shifts 

that could negatively affect cross-sectional datasets. We collected unstimulated saliva at 9 

timepoints throughout the day and in response to an acute perturbation (see summary of participant 
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demographics in Table 1). From each sample, we measured salivary flow rate, live microbial load, 

and live microbiome composition via 16S rRNA gene amplicon sequencing (Fig. 1C).  

 

Table 4.1.1. Summarized participant demographics by study. For each experiment, the average and standard 
deviation of the age of the participants is listed, as well as the number of male and female participants and total 
number of samples collected. 
 

study treatment 
average 

age 
stdev 
age 

# 
female 

# 
male 

# samples 
per 

participant 
total # 

samples 
daily 

dynamics n/a 36.9 18.5 5 5 9 90 

acute 
perturbatio

n 

water 26.9 5.1 3 4 3 21 
antiseptic 

mouthwash 27.9 4.3 3 4 3 21 

alcohol-free 
mouthwash 32 5.2 3 4 3 21 

soda 30.1 3.9 2 5 3 21 
TOTAL / AVERAGE 30.76 7.4 16 22  174 
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Human saliva microbial load and viability  

In total, we processed 172 samples from 38 individuals across two experiments. The 

average unstimulated salivary flow rate was 0.48 mL per minute (+/- 0.03 standard error of the 

mean), and the median flow rate was 0.38 mL per minute (range 0.02 to 1.56), similar to previously 

published reports [20,21]. There was no significant difference in salivary flow rate between 

samples from males versus females (independent T-test p-value = 0.398), and there was no 

correlation of salivary flow rate with age (Pearson R correlation = -0.003, p-value = 0.964). 

Previous studies report higher unstimulated salivary flow rate in males [21], and decreasing flow 

rate with increasing age [20]. The lack of statistical significance for age and gender in this study 

may be due to the relatively low number of participants enrolled (n=38, Table 1). 

The number of live microbial cells collected in 5 minutes varied by more than 3 orders of 

magnitude across participants and timepoints (Fig. 2a). The percentage of live cells (calculated by 

dividing the number of cells obtained from the PMA-treated by raw sample) also fluctuated greatly 

throughout the day and across perturbations, ranging from <1% to 100% (Fig. 2b). Salivary flow 

rate was negatively correlated with microbial concentration in saliva (Pearson correlation 

coefficient = -0.326, p-value = 0.009) and this relationship was stronger when considering only 

live cells (Pearson correlation coefficient = -0.377, p-value = 0.003) (Fig. 2c).  
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Figure 4.1.2.  Microbial load and viability vary widely across healthy participants and is negatively correlated 
with salivary flow rate. Samples from both the daily dynamics and acute perturbation study are shown combined 
here (n=172). A) Total number of live microbial cells detected in unstimulated saliva collected for 5 minutes 
determined by PMA-treatment and flow cytometry. B) Percentage of live cells (number of cells after PMA 
treatment / number of cells detected in raw sample using flow cytometry) in saliva samples. C) Number of 
microbial cells per mL determined by flow cytometry on the y-axis by salivary flow rate in mL per minute on 
the x-axis. Statistics represent Pearson’s correlation coefficient of log-transformed microbial concentration data 
(log(number of cells per mL)) and salivary flow rate (mL per min). D) Pie chart displaying average relative 
abundance of the top 5 most abundant phyla (representing >99% of the data) and respective genera with >1% 
relative abundance (representing >90% of the data).  
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We also estimated bacterial concentration via qPCR of the 16S rRNA gene (Fig. S2) [22]. 

Quantification by flow cytometry and qPCR were significantly correlated in both the raw 

(Pearson’s r = 0.272, p=0.011) and PMA treated samples (Pearson’s r = 0.333, p=0.002) (Fig. 

S2a). These results are similar to a previous study by Vandeputte et al., when comparing flow 

cytometry to qPCR [3]. This relatively low correlation coefficient is not unexpected given that 

qPCR and flow cytometry have different biases when determining absolute quantification as 

previously discussed [3,4]. However, salivary flow rate was not significantly correlated with 16S 

rRNA gene copy number determined by qPCR in either the raw samples (p-value = 0.753) or PMA 

treated samples (p-value = 0.106) (Fig. S2b). 

Following quality control filtering, the median sequencing depth was 33,999 reads per 

sample, with a median of 147 amplicon sequence variants (ASVs) per sample. When collapsed 

across all participants, >99% of the entire dataset belonged to 5 phyla (Fig. 2d). Within these 5 

phyla, 16 genera had an average relative abundance across samples >1% and together made up 

>90% of the data. Shotgun sequencing of the daily dynamic samples (n=88) provided nearly 

identical results, where the same top 5 phyla made up >99% and the same top 16 genera made up 

89% of the taxonomic hits from Metaphlan2. These results are consistent with previous work 

looking at a range of human oral cavity sites, including tongue, mucosa, and supra- and subgingival 

plaque, corroborating the hypothesis that saliva microbial composition is a mix of dissociated cells 

across all these diverse niches of the human oral cavity [23–26]. Furthermore, this suggests that 

across orders of magnitude in biomass (Fig. 2a), saliva microbial composition is highly conserved 

across individuals and time. 
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Daily dynamics of the human saliva microbiome 

To assess the effect of daily perturbations on the saliva microbiome, we recruited 10 

individuals to collect 9 saliva samples throughout the day (summarized demographics under ‘daily 

dynamics’ study in Table 1, full demographics available online: https://github.com/knightlab-

analyses/Saliva_quantification_study/tree/master/ipynb). Participants were asked to collect 

unstimulated saliva first thing in the morning, before brushing their teeth or eating, then again after 

brushing their teeth in the morning, and then roughly every 2 hours throughout the day. We asked 

participants to report any additional oral hygiene events and what they ate and drank throughout 

the day.  

The number of live cells collected in 5 minutes changed dramatically even within a given 

individual (Fig. 3a). When normalized to the first time point, it is clear that the highest microbial 

load was obtained immediately upon waking (before brushing teeth) (Fig. 3b). Samples collected 

early in the morning (the first two timepoints collected before and after brushing teeth) tended to 

have lower salivary flow rates than samples collected later in the day (p-value = 0.015), in line 

with decades of research showing markedly lower salivary flow rates during sleep [27]. 
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Figure 4.1.3. Daily dynamics of the human saliva microbiome. A) Live microbial cells collected in unstimulated 
saliva (for 5 minutes) throughout the course of a day starting right after waking and before going to bed. B) Same 
data as A) normalized per individual to time point 1 representing 100%. C) PCoA of the Aitchison distance 
matrix reveals clustering by individual (colors) rather than treatment (shape). D) Aitchison distance across 
samples from the same individual over time. Statistical significance represents Kruskal-Wallis test between raw 
and PMA treated samples for each participant; * ≤0.05, **≤0.01, ***≤0.001. 
 

We wanted to identify potential changes in saliva samples collected after eating. We 

compared saliva samples collected after eating to all other samples and found a significant increase 

in unstimulated salivary flow rate following eating (0.537 +/- 0.039 vs 0.43 +/- 0.030 mean mL 

per minute +/- SEM; independent T-test p=0.027). However, we found no significant difference 

in the number of either live (Kruskal-Wallis p-value = 0.524) or total microbial cells (Kruskal-

Wallis p-value = 0.957) collected in 5 minutes. We also evaluated the percentage of raw 16S rRNA 

gene amplicon sequencing reads aligning to chloroplast 16S rRNA genes. Nearly half (49%) of 

the saliva samples collected after eating had chloroplast reads, compared to only 16% of the 
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remaining saliva samples. Of these chloroplast positive samples, the average relative abundance 

was 0.6% in samples collected after eating, and only 0.04% in the remaining saliva samples. 

Furthermore, there were 4 times as many raw samples containing chloroplast reads as PMA-treated 

samples (n=42 versus n=10, respectively), indicating that most of the chloroplast DNA was 

extracellular or from non-intact chloroplasts. All chloroplast reads were filtered from the table for 

downstream analysis.  

We next assessed β-diversity in the quality filtered 16S rRNA gene amplicon data using 

the Aitchison distance metric [28], which calculates distance on centered-log ratio (clr) 

transformed data making it invariant to differences in total microbial load across samples unlike 

other traditionally used β-diversity metrics. Aitchison β-diversity was mostly driven by 

participant, more than gender, processing method (i.e. raw versus PMA-treated samples), or 

whether the sample was collected after eating (Fig. 3c; PERMANOVA pseudo-F statistic by 

participant = 26.9, by gender = 13.6, by processing method = 2.9, by food intake = 1.89). 

To confirm the robustness of these results, we performed shotgun sequencing on the PMA 

treated samples since they were processed with our lyPMA protocol and were therefore depleted 

in host DNA [29]. In line with our previous host depletion experiments in saliva, the median 

percentage of shotgun sequencing reads aligned to the human genome was 9.8%. Metaphlan2 [30] 

was used to assign taxonomy to the species level, and β-diversity was assessed on the resulting 

table again using the Aitchison distance metric. As observed in the 16S rRNA gene amplicon data, 

the average distance among different individuals at the same timepoint was greater than the 

average distance within an individual across timepoints (Fig. S3 Kruskal-Wallis p-value<0.001), 

despite large changes in microbial load. We also assessed the functional pathways present across 

timepoints and participants using HUMAnN2 and the MetaCyc database [31,32]. A total of 355 
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unique pathways were identified. Once again, the Aitchison distance on the pathway table revealed 

that samples from the same participant over time are functionally more similar than samples across 

different participants collected at the same time point (Fig. S3 Kruskal-Wallis p-value<0.001). The 

distance separating samples collected from the same individual over time versus among different 

individuals was largest in the 16S rRNA gene amplicon data (at the amplicon sequence variant 

level), smaller in the MetaPhlAn2 data (at the species level), and smallest in the HUMAnN2 data 

(at the functional pathway level) (Fig. S3). This finding is in line with the ecological theory of 

functional equivalence (or functional redundancy) underpinning a stable ecosystem. The microbial 

community in saliva is remarkably stable across daily perturbations and massive changes in 

microbial load, and the exact organisms in the population fluctuate more than the functional 

capabilities of the entire ecosystem.  

We next sought to determine how removing relic DNA with PMA affected β-diversity 

using the 16S rRNA gene amplicon sequencing data (since only PMA treated samples were used 

for shotgun sequencing). We found that raw and PMA-treated samples from the same saliva 

sample were more similar than samples from the same person processed the same way over time 

(Kruskal Wallis p<0.001), indicating the relatively subtle effects of relic DNA removal. However, 

we also found that samples collected from the same individual over time were more dissimilar 

when relic DNA was removed with PMA compared to the raw samples (Fig. 3D). This mirrors 

recent findings from Carini et al., who found that relic DNA removal with PMA enhanced their 

ability to distinguish longitudinally collected soil microbial communities [33]. These findings 

suggest that relic DNA removal can improve resolution of longitudinally collected microbial 

communities across a wide range of environments. 
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Effect of acute perturbation on saliva microbial load and composition 

To assess the effect of a controlled, acute perturbation on the saliva microbiome, we 

recruited 28 healthy individuals and randomly assigned them to 4 groups (summarized 

demographics under ‘acute perturbation’ study in Table 1, full demographics available online). 

Each group was asked to either swish for 30 seconds with water, antiseptic mouthwash, or alcohol-

free mouthwash, or to drink a can of soda. Live microbial load and composition was assessed 

before (timepoint 1), 15 minutes after (timepoint 2), and 2 hours after (timepoint 3) the assigned 

perturbation. 

To identify the effects of each treatment on microbial load, we calculated the number of 

non-intact (‘dead’) cells in each sample by subtracting the number of PMA-treated (‘live’) cells 

from the number of untreated total cells detected by flow cytometry (Fig. 4A). The group that 

swished with water and the group that drank a soda had no significant change in microbial load 

across any of the timepoints (one-way ANOVA with Tukey's multiple comparisons test on zero-

centered (log transformed) data p-value > 0.05). In the group that swished with antiseptic 

mouthwash, there was significantly more dead microbial cells at timepoint 3 compared to live 

microbial cells at timepoint 2 (p-value = 0.044). The strongest effect was in the group that swished 

with alcohol-free mouthwash where there was an insignificant trend towards increased dead 

microbial load (p-value = 0.156) and a significant reduction in the number of live microbial cells 

directly after treatment (p-value = 0.001). Strikingly, live microbial load returned to baseline levels 

within 2 hours (Fig 4A). 
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Figure 4.1.4. The effect of acute perturbation on live and dead microbial load and composition. A) Change in 
microbial load following treatment over time. The y-axis shows percentage of live (green) and dead (yellow) 
microbial number detected by flow cytometry normalized per-individual to the first time point (n=7 per group). 
Significance represents one-way ANOVA with Tukey’s multiple comparison test; *p ≤ 0.05, **p ≤ 0.01, ***p 
≤ 0.001. B) Each dot represents a saliva sample processed with (green) or without (yellow) PMA to remove relic 
DNA (revealing live and total microbial populations, respectively). The y-axis is Faith’s phylogenetic diversity 
rarefied to 10,000 sequences, and the x-axis is the number of microbial cells collected in 5 min unstimulated 
saliva detected by flow cytometry (Pearson’s correlation coefficient for both live and total populations p-value 
>0.05). C) Aitchison distance on 16S rRNA gene amplicon sequencing data between samples from the same 
individual over time plotted by treatment group. Overall, distance among samples treated with PMA (‘live’, 
green, bottom graph) were more dissimilar than the distances between the same samples not treated with PMA 
(‘total’, yellow, top graph) (bootstrapped Kruskal-Wallis p-value ≤ 0.001). In the raw samples, there was no 
significant difference among the treatment groups (bootstrapped Kruskal-wallis p ≥ 0.05). In the PMA-treated 
samples, participants that swished with alcohol-free mouthwash or drank a soda had significantly greater 
variation over time compared to the group that swished with water (bootstrapped Kruskal-Wallis *p ≤ 0.05, **p 
≤ 0.01, ***p ≤ 0.001). 
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(Pearson R > 0.2 for both live and total cell counts), again suggesting that although there are major 

fluctuations in microbial load, the overall saliva microbial composition is relatively stable (Fig 

4B).  

This finding is supported by the fact that β-diversity was largely driven by participant 

(Aitchison distance matrix PERMANOVA pseudo-F statistic by participant = 9.1, by gender = 3.6, 

by processing method = 4.5, by timepoint=0.851). We were interested to see if any of the four 

treatments groups caused changes in bacterial composition. To assess this, we calculated the 

average β-diversity (Aitchison distance) among samples collected from a single participant. In the 

untreated samples, there was no difference in β-diversity across the four treatment groups (Fig 

4C). However, when relic DNA was first removed with PMA, there was significantly higher β-

diversity distances  across samples from participants who swished with alcohol-free mouthwash 

(one-way ANOVA with Tukey's multiple comparisons test p=0.007) or drank a soda (p=0.042) 

compared to the group that swished with water (Fig. 4C). Further, mirroring our observation that 

microbial load returns to baseline levels within 2 hours, we found that in the group that swished 

with alcohol-free mouthwash live microbial composition at timepoint 1 was more similar to 

timepoint 3 than to timepoint 2 (p-value = 0.017) (Fig. S4). This suggests that both microbial load 

and microbial composition are recovered within 2 hours following a major perturbation in 

microbial load. 
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4.1.3 Discussion 

Here we present a method to perform parallel live microbial load quantification and 

sequencing. This method combines two established protocols; PMA-treatment to remove relic 

DNA and microbial flow cytometric quantification. PMA-treatment can be performed without any 

specialty lab equipment, and the flow cytometry protocol requires a standard flow cytometer 

equipped with a 488 nm laser and standard detectors. We applied this method to unstimulated 

saliva samples collected longitudinally. 

To our knowledge, this represents the first longitudinal human microbiome dataset with 

matched 16S rRNA gene amplicon sequencing and flow cytometry quantification, each with total 

and live (intact) cell evaluation. In addition to providing unprecedented information about the 

dynamics of the human saliva microbiome, we expect that this dataset will be useful to the 

community for evaluating novel algorithms [4,7,34,35] to describe and predict ecological shifts in 

human microbiome samples.  

Using this dataset, we demonstrated an inverse relationship between salivary flow rate and 

microbial load. This could help explain why decreased salivary flow rate is often associated with 

microbial-derived periodontal diseases, such as caries and gingivitis [36–39]. Interestingly, 

microbial concentration is also negatively correlated with water content in stool samples [3]. 

Together, these findings demonstrate the ability of the human body to modulate microbial 

concentration at mucosal sites. 

We found that live microbial load in saliva fluctuates by orders of magnitude throughout a 

typical day. Despite this fluctuation, taxonomic composition is remarkably consistent across time 

and within individuals, with more than 90% of all 16S rRNA gene sequences coming from 16 

genera across 5 phyla, similar to findings from previous studies [23–26].  
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The compositional effects of removing relic DNA with PMA were relatively subtle, as this 

processing step affected taxonomic composition much less than the effects of time or different 

individuals. However, we did find that PMA treatment revealed greater dissimilarity among 

samples collected longitudinally from the same participant. Furthermore, we found a clear example 

(alcohol-free mouthwash) where the assumption that all DNA comes from living organisms can 

lead to false conclusions; without taking relic DNA into account it would appear that microbial 

load increases after alcohol-free mouthwash, although this treatment decimated the microbial cell 

population in saliva. This suggests that while PMA treatment may not greatly influence the results 

of cross-sectional oral microbiome datasets, it could add greater resolution to longitudinal studies 

and potentially reveal patterns only detectable in the absence of relic DNA. Interestingly, these 

findings mirror recent results in a soil microbiome dataset. Carini et al., found that relic DNA 

removal improved their ability to detect changes in underground microbial community over time 

[33]. Together these findings highlight how relic DNA can obscure changes in community 

composition across a broad range of microbial environments. 

Participants in saliva microbiome experiments are often asked to avoid eating or oral 

hygiene anywhere from 2 hours to 24 hours before sampling, based on the assumption that these 

daily perturbations could influence the oral microbiome. Because of the detailed metadata 

collected in our longitudinal experiment, we were able to determine the effect of eating and oral 

hygiene on the saliva microbial load and composition as detailed below. 

Salivary flow rate was significantly higher in samples collected after eating, but the total 

number of cells detected in 5 minutes remained unchanged. We also found an increase in the 

presence and abundance of chloroplast sequences in saliva samples collected after eating, which 

are presumably from food sources. Chloroplast and mitochondrial reads are typically filtered out 
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of 16S rRNA gene amplicon datasets from human microbiomes, and after removing these 

sequences we found no detectable alteration in the salivary microbiome composition after eating. 

This suggests that the acute effect of eating has a minimal impact on the saliva microbiome. 

While oral hygiene significantly reduced microbial load, the composition remained 

unperturbed when using analytical tools that account for compositional bias [4]. The decrease in 

microbial load was detectable after brushing teeth in both the raw and PMA treated samples, 

suggesting the physical removal or bacterial cells. In contrast, swishing with alcohol-free 

mouthwash permeabilized cells but did not physically remove them, since the decrease in 

microbial load was only detectable after removing dead cell signal with PMA. We were surprised 

that the alcohol-free mouthwash had such a dramatic effect on microbial viability, but not 

antiseptic mouthwash. This may be due to the presence of natural and artificial compounds with 

antimicrobial activity found in the alcohol-free mouthwash used in this study (e.g. poloxamer 407, 

thymol, eucalyptol, menthol, salicylate, lauryl sulfate). This finding highlights the utility of using 

PMA to remove dead cell signal. 

Together, these results showcase the remarkable resilience of the salivary microbiome and 

highlight the potential of the human salivary microbiome as an easily accessible model to probe 

complex community organization and response. Despite dramatic perturbations in the number of 

microbes in saliva, taxonomic compositions remain relatively stable and are strongly host-specific, 

which lends credence to cross-sectional saliva microbiome studies when samples are collected at 

different times of day. 
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4.1.4 Conclusion 

Here we present a novel method to assess live microbial composition and load. We 

identified a negative correlation between salivary flow rate and microbial load, which has 

implications for oral health. The numbers of microbes in human saliva varied by orders of 

magnitude throughout a single day and in response to daily perturbations. Furthermore, by 

removing relic DNA signal with PMA treatment prior to quantification we were able to identify 

the antimicrobial effect of alcohol-free mouthwash which was missed when quantifying the raw 

sample. These findings highlight the importance of using analytical tools that account for 

compositional bias, which is exacerbated by comparing samples with different microbial loads [3–

5, 40, 41]. Despite these changes in absolute abundance, we found that microbial composition is 

extremely stable and host-specific, and not significantly affected by meals or oral hygiene. These 

results highlight the importance of using scale-invariant tools in the analysis of cross-sectional 

datasets and demonstrate the ability of relic DNA removal to increase resolution of longitudinal 

studies. 

 

4.1.5 Methods and Materials 

Participant Recruitment and Saliva Collection  

Self-described healthy volunteers were recruited in accordance with IRB 150275. 

Participant demographics are detailed in the supplementary metadata files and summarized in 

Table 1. 

Each participant was given a kit with a funnel (Simport, catalog# F490-2) and 15 mL 

collection tube (Corning, catalog#  352057) loaded with 2 mL 40% sterile glycerol for each 

timepoint to be collected. Glycerol was used to preserve the bacterial cells from freezing for 
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downstream PMA treatment [29]. The final concentration of glycerol varied from 8% to 38%, but 

this did not correlate with microbial viability (Fig. S5, Pearson R = 0.36), suggesting that 

variability in final glycerol concentration did not influence our ability to detect live cells in 

cryopreserved samples. The instructions for unstimulated saliva collection and salivary flow 

measurement were adapted from Navesh et al. [42]. Briefly, participants were asked to find a 

comfortable seat, set a timer for 5 minutes, swallow and start the timer. With the head tilted down 

slightly and lips against the edge of a food-grade funnel, they were asked to relax the jaw, mouth 

and tongue allowing saliva to pool and eventually drain into the tube. Participants were asked not 

to swallow during the 5-minute collection. After collection, the lids of the tubes were closed, and 

the funnel was disposed. The tubes were gently inverted ten times to mix the saliva and glycerol 

and placed at -20. Samples were brought to the lab the following day on wet ice and stored at -20 

until further processing. 

In the daily dynamics experiment, 10 individuals were recruited to collect unstimulated 

saliva throughout a single day. Participants were asked to collect saliva on their own (as detailed 

above) at 9 time points throughout the day; immediately upon waking (before eating or brushing 

teeth), soon after brushing teeth, and roughly every 2-3 hours throughout the day. Participants were 

asked to record the time of each saliva collection and whether they ate or performed oral hygiene 

since the last sample collection. Of the 90 samples, two were excluded because of missing sample 

collections, totaling 88 samples.  

In the acute perturbation experiment, 28 individuals were recruited to collect unstimulated 

saliva before, 15 minutes after, and 2 hours after an acute treatment. Participants were asked not 

to eat or drink (except water) for one hour prior to the first collection. Each participant was blindly 

assigned to one of 4 groups; rinsing with bottled water (Simple Truth water, Kroger, pH 7.6), 
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rinsing with mouthwash (Listerine Antiseptic Cool Mint), rinsing with alcohol-free mouthwash 

(Listerine Zero Alcohol Cool Mint), or drinking a 12 oz. can of Coca-Cola soda. For the rinsing 

samples, participants were asked to swish 20 mL solution in their mouths for exactly 30 seconds, 

and to refrain from gargling in the back of their mouths. For the soda samples, participants were 

asked to drink the 12 oz can within 10 minutes.  

 

Bacterial culturing for proof of concept experiments 

Escherichia coli and Staphylococcus epidermidis cultures were used for proof of concept 

experiments to validate the quantitative flow cytometry protocol. Cultures of S. epidermidis or E. 

coli were grown overnight in Tryptic Soy Broth (TSB) at 37°C. Bacterial cultures were pelleted 

by centrifugation at 8,000 g for 5 minutes and resuspended in 1x sterile phosphate-buffered saline 

(PBS). Resuspended cultures were run across 5 µm syringe filters (Sartorius Stedim Biotech 

GmbH) and diluted between 100x – 10,000x fold in PBS. Samples treated with PMA were mixed 

with 10 µM PMA, vortexed briefly, incubated at room temperature protected from light for 5 

minutes, then exposed to light by laying on ice <20 cm from a benchtop fluorescent light bulb for 

25 minutes. Both raw and PMA samples were stained with 0.1X SYBR green (SYBR™ Green I 

Nucleic Acid Gel Stain, Invitrogen) and incubated in the dark for 15 minutes at 37°C. Flow 

cytometry was performed using the Sony SH800 and AccuCount Fluorescent Particles as 

described below. Colony forming unit (CFU) measurements were performed by plating triplicate 

10 µl drops of 10-fold serial dilutions of the bacterial culture on TSB agar plates and incubating at 

37°C overnight. The following day dilutions containing between 10 – 50 colonies per drop were 

counted. For the heat-killed experiment (Fig. S1), overnight E.coli cultures were heated to 65°C 

for 10 minutes and analyzed as described above. 



 196 

Flow cytometry 

Cryopreserved, unstimulated saliva samples were thawed on ice and centrifuged at 3,000g 

for 1 min to remove any bubbles and allow for accurate volume assessment. The volume (to the 

closest 0.1 mL) and the weight of each sample was recorded.  

Unstimulated saliva samples were diluted tenfold with sterile, 1x PBS. To remove human 

cells and salivary debris, samples were filtered using a sterile 5 µm syringe filter (Sartorius Stedim 

Biotech GmbH). Relic DNA was removed from an aliquot of each sample; A final concentration 

of 10 µM PMA (Biotium) was added to one mL of diluted saliva, vortexed briefly, and incubated 

at room temperature protected from light for 5 minutes. Samples were lain horizontally on ice <20 

cm away from a benchtop fluorescent light bulb for at least 25 minutes, and vortexed briefly every 

~5-10 minutes.  

An aliquot of diluted, filtered saliva (raw) and the PMA-treated aliquot were then stained 

in parallel with SYBR green for detection by flow cytometry. 5 µl 20x SYBR green (SYBR™ 

Green I Nucleic Acid Gel Stain, Invitrogen) was added to 1 mL of the microbial suspension (0.1x 

final concentration) and incubated in the dark for 15 minutes at 37°C. Finally, 50 µl AccuCount 

Fluorescent Particles (Spherotech, ACFP-70-10) were added for quantification of microbial load. 

Samples were processed on a SH800 Cell Sorter (Sony Biotechnology) using a 100 µm chip with 

the threshold set on FL1 at 0.06%, and gain settings as follows; FSC=4, BSC=25%, FL1=43%, 

FL4=50%. For the acute perturbation experiment, the threshold was increased to FL1 0.58% to 

reduce the background signal that was observed in a small number of samples. The gating strategy 

was adapted from Props et al. [6] and an example is shown in supplementary figure S6. Briefly, 

fluorescent microbial cells were gated from background on a FL1-FL4 density plot. Aggregates 

were excluded by taking the linear fraction on a graph of height versus width of the FL1 signal 
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and remaining background was removed by eliminating large events detected on a forward scatter 

vs backward scatter density plot. Negative controls (sterile PBS stained identically to samples) 

were run between each sample set to exclude cross-contamination. The final calculation of cells 

per µl was performed per the manufacturer’s instructions of the AccuCount counting beads and 

taking into account the dilution factor from the glycerol preservative. 

 

Microbial load estimation with qPCR 

To create a standard ladder for 16S rRNA gene copy number extrapolation, gDNA from 

Escherichia coli was amplified with the KAPA HiFi HotStart ReadyMixPCR Kit (cat# KK2602) 

using the Bakt 341F-805R 16S rRNA gene amplicon primers [43] (Bakt_341f: 5’-

CCTACGGGNGGCWGCAG-3’, and Bakt_805R 5’-GACTACHVGGGTATCTAATCC-3’). 

Amplification was performed in triplicate 20 µl reactions containing 10 µl KAPA Readymix, 1 µl 

primer mix containing 5 µM forward and reverse primers, 2 µl gDNA, and 7 µl H2O. The PCR 

mix was cycled through the following temperatures on a BioRad CFX instrument: 95 for 5 min, 

30 cycles of 95°C for 30 sec and 60°C for 30 sec, then 4°C hold. The PCR product was run on a 

1.5% agarose gel and the band was excised and purified using the QIAquick Gel Extraction Kit. 

Amplicon concentration was quantified in triplicate using Thermo Fisher Qubit Fluorometric 

Quantitation. 

To estimate microbial load, sample gDNA extracted from 200 µl saliva was evaluated in 

triplicate with KAPA Universal qPCR Master Mix (cat# KK4828) using the Bakt 341F-805R 

primers listed above. Amplification was performed in triplicate 10 µl reactions each containing 5 

µl KAPA MasterMix, 0.5 µl primer mix containing 5 µM forward and reverse primers, 2 µl gDNA, 

and 2.5 µl H2O. The PCR mix was cycled through the following temperatures on a Roche 



 198 

LightCycler® 480 instrument: 95 for 5 min, 40 cycles of 95°C for 30 sec and 60°C for 30 sec, then 

4°C hold. Triplicate, ten-fold serial dilutions of the standard ladder described above ranging from 

1.3 to 1.3E+07 copies were run in parallel and used to extrapolate the number of 16S rRNA gene 

copies in the saliva samples [22]. 

 

PMA treatment and DNA extraction 

For the daily dynamics cycle experiment, 500 µl aliquots of each saliva sample was set 

aside for standard DNA extraction. 1 mL aliquots were used for lyPMA treatment, which depletes 

human DNA and dead microbial signal [29]; samples were centrifuged at 10,000g for 8 minutes. 

The supernatant was removed and the cell pellet was resuspended in 200 µl sterile, pure, H2O and 

allowed to sit at room temperature for 5 minutes to selectively lyse human cells. PMA was added 

to a final concentration of 10 µM, vortexed, and left in the dark at room temperature for 5 minutes. 

Samples were lain horizontally on ice <20 cm away from a benchtop fluorescent light bulb for at 

least 25 minutes, and vortexed briefly every ~5-10 minutes. The raw and PMA treated aliquots 

were frozen at 20°C until DNA extraction with the QIAGEN PowerSoil MagAttract DNA kit as 

previously described [44]. A subset of lyPMA samples with low microbial load failed in 

sequencing, and the PMA treatment was repeated on samples with up to 1.5 mL of unstimulated 

saliva. Quality control analysis of the sequencing data showed that these reprocessed samples were 

similar to the matched raw samples, and this higher volume was used in the follow-up acute 

perturbation experiment.  

For the acute perturbation experiment, samples were processed in a high throughput 

manner. First, samples were vortexed thoroughly (15 seconds) and 1.5 mL was transferred into a 

96 deep-well plate. Cells were pelleted by centrifugation at 3,200g for 15 minutes. 1 mL 
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supernatant was removed with a multichannel pipette, then a single channel pipette was used to 

remove the remaining supernatant. Pellets were resuspended in 200 µl sterile, DNAse free H2O by 

pipetting up and down ~12 times and left to sit at room temperature for 5 min to allow for selective 

lysis of mammalian cells. The plate was then briefly centrifuged (~1,000 g for 1 minute) and 200 

µL of each sample was transferred to a 96 well round-bottom plate (Greiner Bio-one cat# 650101). 

2 µL of 1 mM propidium monoazide (PMA) was added to each sample for a final concentration 

of 10 µM. The plate was covered with a transparent seal (Bio-rad Microseal ‘B’ Seal cat# 

B0443499), vortexed briefly, and left to sit at room temperature in the dark for 5 minutes. The 

plate was then placed on ice <20 cm away from a fluorescent bulb light source. Light exposure 

took place for ~30 minutes with vortexing every ~5-10 minutes. Immediately after light exposure, 

the samples were briefly centrifuged (~1,000 g for 1 minute) and transferred to a QIAGEN 

Magattract 96 well plate and extracted as previously described [45]. 

 

16S rRNA gene amplicon sequencing and analysis 

Sequencing: gDNA was processed for 16S rRNA gene amplicon sequencing using primers 

against the V4 region of the 16S rRNA gene 515F-806R according to the Earth Microbiome 

Project protocol [46]. The pooled library was sequenced on the Illumina MiSeq with a paired-end 

150 V2 kit.  

Quality-control: Data was processed using qiime2 [47]. Demultiplexed sequences were 

quality filtered for q-score with default settings and processed with deblur [48]  trimmed to 150 

bp. Samples with less than 1,000 quality-filtered sequences were dropped from downstream 

analysis. Following quality control, 6 samples dropped out of the acute perturbation experiment 

(n=78). In order to remove mitochondrial and chloroplast reads, sequences were aligned to the 
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GreenGenes database [49] and all sequences aligning to mitochondrial and chloroplast reads were 

filtered out using using the taxonomy-based filtering command ‘qiime taxa filter-table’.  

Taxonomic assignment: Microbial taxonomy was assigned to the quality filtered sequences using 

the Human Oral Microbiome Database database v15.1 (HOMD) [50] with the ‘qiime feature-

classifier classify-sklearn’ command on a scikit-learn classifier created from the HOMD [51].  

α and β-diversity analysis: Qiime2 was used to calculate α and β-diversity using the ‘qiime 

diversity’ commands. For α-diversity, an α-rarefaction curve was generated to determine the 

appropriate subsampling sequencing depth (Fig. S7). 

 

Shotgun sequencing and analysis 

For the daily dynamics study, gDNA from lyPMA treated samples [29] was quantified with 

Quant-iT™ PicoGreen™ dsDNA Assay Kit (ThermoFisher Scientific), and 1 ng of input DNA 

was used in a 1:10 miniaturized Kapa HyperPlus protocol. For samples with less than 1 ng DNA, 

a maximum volume of 3.5 μl input was used. Equimolar amounts of each sample was pooled and 

the library was size selected for fragments between 300 and 700 bp on the Sage Science PippinHT. 

The pooled library was sequenced as a paired-end 150-cycle run on an Illumina HiSeq2500 v2 run 

at the UCSD IGM Genomics Center. Demultiplexed reads were quality filtered with TrimGalore 

v0.4.2 [52]. Reads aligning to the host genome (GRCh38.p7) were identified using Bowtie 2 v2.3.0 

[53] with parameters set by the flag -very-sensitive-local and removed from the analysis (median 

percent of host aligned reads 9.8%, similar to previously reported numbers using the lyPMA 

method [29]). Samples with less than 10,000 microbial reads were excluded from the analysis, 

leaving a total of 71 samples with a median of 348,242 quality-filtered microbial reads per sample. 
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Taxonomic assignment was performed with MetaPhlAn v2.0 [30] using the default parameters. 

Functional assignment was performed with HUMAnN2 [31] using the default parameters. 

 

Statistical analyses 

All quality filtered tables and the code written to produce the figures and statistical tests 

presented in this manuscript can be viewed and reproduced using Jupyter iPython Notebooks 

through github at: https://github.com/lisa55asil/Saliva_quantification_studies. 

For significance testing based on distances from sequencing data, a permutation test was used 

(perm_test.py in github repository). This was chosen since univariate statistical tests often assume 

that observations are independently and identically distributed, which is not the case with distance 

calculations. Similar to PERMANOVA, the group labels were shuffled, and a Kruskal-Wallis test 

was applied.  P-values were calculated by (#(K > Kp) + 1) / (number of permutations + 1) where 

K is the kruskal-wallis statistic on the original statistic and Kp is the Kruskal-Wallis statistic 

computed from the permuted grouping. 1000 permutations were used for the permutation test. 
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4.1.8 Supplemental Figures 
 

 

 

Figure 4.1.S1. PMA removes dead cell signal from flow cytometry. An overnight culture of E.coli was divided 
into 2 aliquots and either left untreated (A) or heated to 65°C for 10 minutes (B). The aliquots were serially 
diluted and quantified by CFU counts on an agar plate (blue star) and by flow cytometry both without (orange) 
and after PMA treatment (red).  
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Figure 4.1.S2. Correlation between microbial load quantification with qPCR and flow cytometry, and 
correlation with salivary flow rate. (A) 16S rRNA gene copies per 2 ul sample determined by qPCR (a-axis) 
versus microbial cell count determined by flow cytometry (y-axis). Samples treated with PMA are in blue 
(Pearson’s r = 0.314, p=0.003) and raw samples are in orange (Pearson’s r = 0.287, p=0.007). (B) 16S rRNA 
gene copies per 2 ul sample determined by qPCR (a-axis) does not correlate with salivary flow rate (mL per 
minute). Samples treated with PMA are in blue (Pearson’s r = -.176, p=0.107) and raw samples are in orange 
(Pearson’s r = 0.036, p=0.742). 
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Figure 4.1.S3. Aitchison distance within participants over time versus between participants across multiple 
sequencing outputs. Saliva samples from the daily dynamics experiment were processed for both 16S rRNA 
gene amplicon sequencing and shotgun metagenomic sequencing (n=88). Aitchison distance was calculated 
between all samples in each dataset. The average distance among samples from the same individual over time 
(gray) were significantly smaller than the average distance among different participants collected at the same 
timepoint (pink) in Deblur output from 16S rRNA gene amplicon data at the amplicon sequence variant level 
(left), MetaPhlAn2 shotgun metagenomic data at the species level (middle), and HUMAnN2 shotgun 
metagenomic data at the pathway level (right). Statistical significance assessed with bootstrapped Kruskal-
Wallis and p-value <0.001 for all datasets. 
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Figure 4.1.S4. Aitchison distance within participants in the acute perturbation study. Only Aitchison distances 
among samples collected from the same participant were used for this analysis.  The average distance between 
samples collected at timepoints 1 versus 2, timepoints 1 versus 3, and timepoints 2 versus 3 were calculated for 
each treatment group and statistical significance between timepoint comparisons was assessed with bootstrapped 
Kruskal-Wallis on each treatment group. The only statistically significant difference was that samples collected 
directly following alcohol-free mouthwash treatment were more dissimilar than samples collected 2 hours later 
compared to the baseline timepoint (p=0.009). 
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Figure 4.1.S5. Effect of sample preservation on viability. Participants were asked to passively drool on top of 2 
mL 40% glycerol; because the salivary flow rate differed among individuals and across time points the final 
percentage of glycerol before freezing varied. However, the final percentage of glycerol had no correlation with 
the percentage of live cells in the sample (Pearson correlation coefficient R = 0.071, p=0.359) suggesting that 
final glycerol percentage did not influence viability 
 

 

Figure 4.1.S6. Flow cytometry gating strategy adapted from Props et al [Props 2016]. Unstimulated saliva 
samples were diluted ten-fold in sterile PBS, filtered across a 5µm filter to remove human cells, stained with 
SYBR green, and processed on a Sony SH800 with Spherotech counting beads. The threshold was set on the 
FL1 detector. (A) The first gate selects for events with enhanced 525 nm specific emission to select DNA positive 
events. (B) Doublets were excluded by selecting only events following a linear trend between FL1 height and 
area. (C) Human cells are excluded by their large size on forward (FSC-A) and side (SSC-A) scatter area.  
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Figure 4.1.S7. Faith’s phylogenetic diversity alpha rarefaction curve by participant. Qiime2 was used to 
generate and visualize an alpha-diversity rarefaction plot; 1 to 20,000 reads from each sample were randomly 
selected and Faith’s PD was calculated on ten iterations of each sequencing depth (20 steps total) and plotted 
with the standard error of the mean.   
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4.2 

Early microbial markers of periodontitis in the Oral Infections 

Glucose Intolerance and Insulin Resistance Study (ORIGINS) 

 Nearly 50% of Americans suffer from periodontitis, and 10% are diagnosed with diabetes. 

The high-comorbidity rate of these diseases suggests a shared etiology, at least in part. Changes in 

oral microbial communities have been documented in the context of severe periodontitis and 

diabetes, both independently and together. However, much less is known about the early microbial 

markers of these diseases. We used a subset of the ORIGINS project dataset, which collected 

detailed periodontal and cardiometabolic information from 787 healthy individuals, to identify 

early microbial markers of periodontitis and its association with markers of cardiometabolic health. 

Using state-of-the-art compositional data analysis tools, we identified the log ratio of Treponema 

to Corynebacterium bacteria to be a novel Microbial Indicator of Periodontitis (MIP), and found 

that this MIP correlates with poor periodontal health and cardiometabolic markers in both 

subgingival plaque and saliva.  

 

4.2.1 Introduction 

The human oral cavity hosts hundreds of unique microbial taxa. Within the oral cavity, 

there are multiple distinct niches that contain different compositions of microbial taxa. For 

example the supra- and subgingival tooth surface, tongue, cheek, and roof of mouth each have 

reproducibly distinct microbial communities [1]. In the context of severe periodontal disease, the 

composition of microbial taxa in the supra and subgingival plaque (SubP) undergo dramatic 

changes [2–4]. Periodontitis-associated subgingival biofilms often contain a climax community 
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dominated by Porphyromonas gingivalis,Treponema denticola, and Tannerella forsythia, referred 

to as the ‘red complex’ [5]. The red complex has been studied in depth for its ability to negatively 

affect host physiology through virulence factors and expedite gingival deterioration in severe 

disease. However less is known about the early microbial markers of periodontitis, or when 

compositional changes in plaque biofilms occur relative to disease onset.  

There is strong evidence for a link between oral health and cardiometabolic health [6]. 

While it has long been recognized that individuals with diabetes are at higher risk for periodontitis, 

less is known about the etiology of these diseases and their interplay during the early stages of 

disease onset. 

Next-generation sequencing has enabled the high-throughput collection of detailed 

microbial information from thousands of samples. However, this data is inherently compositional, 

and care must be taken to draw reproducible conclusions from these datasets [7]. In this analysis, 

we use a suite of recently developed compositional data analysis tools to identify differentially 

abundant bacteria in the early stages of periodontitis and cardiometabolic disease. 

We applied these tools to a subset of data collected through the ORIGINS project (Oral 

Infections, Glucose Intolerance and Insulin Resistance Study) [8]. This dataset contains 

information from a large group of healthy individuals including a comprehensive periodontal 

examination, quantitative cardiometabolic markers, as well as 16S rRNA gene amplicon 

sequencing from saliva and SubP from both healthy and diseased sites, processed separately, which 

allowed us to look for site specific microbial markers. 
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4.2.2 Results 

Overview of the cohort 

Wave2 of the ORIGINS project recruited 787 healthy volunteers. Each participant 

underwent extensive periodontal examination and metabolic measurements as previously 

described [8]. Subgingival plaque (SubP) was collected from healthy and diseased sites (as 

applicable) following a standardized protocol totaling 1,107 samples (Fig 1). Saliva samples were 

collected in parallel and processed for a subset of 282 participants. Both saliva and SubP samples 

were processed for 16S rRNA gene amplicon sequencing.  

 

 

Figure 4.2.1. Experimental design. 787 healthy volunteers were recruited to participate in the ORIGINS project. 
Each participant underwent an extensive periodontal examination, metabolic assessment, and completed a 
detailed questionnaire including demographic and risk factor information. SubP samples were collected from 
teeth with periodontal pockets <4mm depth (healthy) and teeth with periodontal pockets >4mm depth (diseased) 
where applicable. In parallel, unstimulated saliva was collected and processed for a subset of individuals. In 
total, 16S rRNA gene amplicon sequencing data from 1,107 SubP samples and 282 saliva samples was generated 
for analysis.  
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Periodontal pocket depth drives microbial diversity 

 We used the robust Aitchison Principal Components Analysis (RPCA) method [9] to assess 

beta-diversity across SubP samples. The first axis of separation showed distinct clusters of SubP 

collected from shallow versus deep periodontal pockets (Fig 2A). Surprisingly, the distance 

between healthy and diseased samples from the same individual were larger than the distance 

between healthy samples from different people or diseased samples from different people (Fig 

2B). This finding was only identified using RPCA, which accounts for the inherent sparsity and 

compositionality of next-generation sequencing experiments [7,9]. 

We performed an effect size redundancy analysis (RDA) to determine which factors 

explained the variation in microbial composition across samples [10]. Thirteen factors were 

included in the RDA including six periodontal metrics (shallow or deep periodontal pocket depth, 

percent of sites bleeding on probing, whole mouth periodontal score, average whole mouth pocket 

depth, average whole mouth attachment loss, and percent of sites with attachment loss greater than 

3), three demographic factors (participant, sex, and age), three metabolic factors (fasting insulin, 

prediabetes status, and average systolic blood pressure) and one lifestyle factor (tobacco smoking 

status). Of these thirteen factors, eight were found to have a significant effect size (p-value <0.05).  

By far, the factor which explained the most variation was whether the plaque sample came 

from a deep or shallow periodontal pocket (Fig 2C). Overall, periodontal metrics accounted for 

most of the explained variance (20%) followed by demographic factors (1.7%) and lastly 

metabolic factors (0.6%). Tobacco smoking did not have a significant effect on SubP microbial 

composition in this analysis. 
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Figure 4.2.2. Beta-diversity and redundancy analysis in subgingival plaque. A) RPCA colored by periodontal 
pocket depth. Permanova pseudo-F statistic = 397.062, p-value<0.001. B) RPCA distance among pairwise 
samples; healthy samples from different people (n=308,505), diseased samples from different people 
(n=54,285), healthy versus disease samples from the same person (n=322), healthy versus disease samples from 
different people (n=259,058). Each group is significantly different from all other groups (one-way ANOVA with 
Tukey’s multiple corrections, p<0.05). C) Redundancy analysis (RDA) estimates the percent microbial diversity 
explained by each variable. Inset donut chart sums effect sizes by category; periodontal variables explained the 
majority of microbial variation (20.0%), followed by demographic variables (1.7%) and metabolic variables 
(0.6%). 
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Identifying an early microbial indicator of periodontitis in subgingival plaque 

Differential ranking [11] was used to identify differentially abundant microbes in shallow 

versus deep periodontal pockets. Amplicon sequence variants (ASVs) aligned to the genus 

Treponema were more associated with deep periodontal pockets, whereas ASVs aligned to the 

genus Corynebacterium were more associated with shallow periodontal pockets (Fig 3A). To 

generate a microbial indicator of periodontitis (MIP), we used Corynebacterium as a ‘reference 

frame’ and calculated the log-ratio of all Treponema counts to all Corynebacterium counts. This 

MIP was significantly higher in deep compared to shallow periodontal pockets (paired T-test 

<0.0001) and revealed that the ratio of Treponema to Corynebacterium is roughly even in deep 

periodontal pockets, whereas the ratio in shallow periodontal pockets is heavily skewed towards 

Corynebacterium (Fig 3B). Importantly, because this is relative abundance data we cannot 

conclude whether this finding is due to an increase in Treponema or a decrease in 

Corynebacterium, but the ratio of these two organisms is a consistent biomarker of periodontal 

health. 

To validate the robustness of the MIP, we tested the ability of the MIP to classify samples 

from shallow versus deep periodontal pockets. When using the entire dataset (1,832 ASVs) 

samples were classified with an accuracy of 0.89 +/- 0.04. When using just the subset of data used 

to generate the MIP (164 ASVs, or less than 10% of the total data) samples were classified with 

an accuracy of 0.84 +/- 0.05% (Fig 3C), supporting the ability of the MIP to predict which samples 

will develop periodontitis. 

Interestingly, even in SubP samples from shallow sites (n=779), the MIP was significantly 

associated with the percent of sites bleeding on probing across the whole mouth (Pearson 
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correlation = 0.243, p-value = 8.06e-12) (Fig 3D). This indicates that even before the detection of 

disease, there are microbial changes in the SubP.  

 

                     

 

Figure 4.2.3. The ratio of Treponema:Corynebacteria is an early Microbial Indicator of Periodontitis (MIP) in 
subgingival plaque. A) Differential ranking with Songbird revealed that Treponema sequences were associated 
with deep SubP, whereas Corynebacterium sequences were associated with shallow SubP. B) The log ratio of 
Treponema:Corynebacterium significantly distinguishes shallow from deep periodontal pockets and is used as 
a Microbial Indicator of Periodontitis (MIP). C) ROC curve displaying the accuracy of a Random Forest 
classifier trained on the full dataset (blue) versus trained only on Treponema and Corynebacterium sequences 
and log-ratio (green) shows similar accuracy at predicting shallow versus deep periodontal pocket depth. D) In 
plaque collected from shallow (healthy) subgingival pockets (n=779), MIP was positively correlated with the 
percent of sites bleeding on probing (Pearson correlation = 0.243, p-value = 8.06e-12), indicating that microbial 
changes occur in plaque before clinically detectable disease.  
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Evaluating the microbial indicator of periodontitis in saliva 

 Collection of SubP is not trivial and requires clinically trained professionals. Saliva is much 

easier and economical to collect. We performed 16S rRNA gene amplicon sequencing on a subset 

of saliva samples (n=282) from the same cohort. Because the saliva and SubP samples were 

processed with different sequencing strategies at different institutions, we first assigned taxonomy 

to the Human Oral Microbiome Database (HOMD), a well-curated database of full-length 16S 

rRNA gene amplicon sequences found in the human oral cavity [12]. We collapsed the SubP and 

saliva datasets to the species level and merged together. Beta-diversity analysis of the merged table 

revealed that saliva and SubP had compositionally distinct microbial communities (Fig 4A). The 

majority of microbial taxa in the merged table were found in both SubP and saliva, although each 

niche also contained distinct microbiota, with SubP being more diverse than saliva (Fig 4B). 

 Effect size analysis using RDA of just the saliva table revealed different factors drive 

microbial diversity in saliva compared to SubP (Fig 4C). Eight factors were included in the RDA 

including two demographic factors (participant and age), three metabolic factors (mean systolic 

blood pressure, BMI, and prediabetes status), two periodontal factors (average whole-mouth 

attachment loss and average whole-mouth periodontal pocket depth) and one lifestyle factor 

(tobacco-smoking status). Overall, the percent explained was much lower in saliva compared to 

SubP (5.8% versus 22.3%, respectively). The only significant factors in the saliva RDA were 

smoking-status and participant (Fig 4C). However, despite clear differences in microbial 

community composition between saliva and SubP, the MIP was significantly correlated (Pearson 

R = 0.387, p-value = 3.97E-11) (Fig 4D). 
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Figure 4.2.4. Plaque and saliva are compositionally distinct but have correlated MIP. A) Beta-diversity analysis 
with RPCA show distinct clustering of saliva vs subgingival plaque samples (PERMANOVA<0.001). B) Venn 
diagram of 16S rRNA gene amplicon sequencing data collapsed to the species level shows a majority of 
microbial species were identified in both saliva and SubP, and that SubP was more diverse. C) Redundancy 
analysis (RDA) estimates the percent microbial diversity explained by each variable. Inset donut chart sums 
effect sizes by category; unlike SubP, saliva microbial diversity is driven by lifestyle or demographic variables 
and is not significantly explained by metabolic or periodontal metrics. D) Microbial indicator of periodontitis 
(MIP) was significantly correlated between SubP and saliva samples, despite having been processed at different 
institutes with different sequencing parameters and being driven by different variables (Pearson R = 0.387, p-
value = 3.97E-11).  
 

Microbial Indicator of Periodontitis Correlates with Periodontal Metrics 

 We assessed the correlation of the MIP with various whole-mouth periodontal metrics 

(Table 1). We found that SubP MIP was positively, significantly correlated with the percent of 

sites bleeding on probing, average pocket depth, and average attachment loss. SubP MIP was also 
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accounts for phylogenetic relatedness [13]. All of these correlations held true when looking at only 

healthy participant SubP, again suggesting that microbial changes precede detectable disease. 

 Saliva MIP was significantly correlated with the percent of sites bleeding on probing and 

average pocket depth, but not attachment loss. This held true when looking only at participants 

with moderate or severe periodontitis, but not healthy participants, suggesting that microbial 

changes in the subgingival pocket precede microbial changes in saliva. Saliva MIP was also 

strongly correlated with Faith’s phylogenetic diversity in all patients regardless of periodontal 

status. 

 
 
Table 4.2.1. Microbial Indicator of Periodontitis (MIP) is correlated with multiple metrics of periodontal 
disease in both saliva and subgingival plaque. Perbop = percent of sites bleeding on probing; meanpd = average 
periodontal pocket depth; meanaloss = average attachment loss; faith_pd = Faith’s phylogenetic diversity. 
Bolded values represent statistically significant Pearson correlations (p<0.05). 
 

 

 

 

Microbial Indicator of Periodontitis Correlates with Metabolic Metrics 

 The overarching goal of the ORIGINS project is to identify associations between oral 

microbes, oral health and cardiometabolic health. To this end we evaluated the correlation of the 

MIP with various cardiometabolic health metrics (Table 2). SubP MIP was positively, significantly 

correlated with body mass index (BMI), average systolic and diastolic blood pressure, fasting 

glucose levels and fasting insulin levels. When taking into account only healthy participants, SubP 

was also correlated with hemoglobin A1c, but not fasting glucose. When taking into account 

participants with moderate or severe periodontitis, only BMI and systolic/diastolic blood pressure 

Pearson r p-value n Pearson r p-value n Pearson r p-value n Pearson r p-value n Pearson r p-value n Pearson r p-value n
0.193 1.21E-10 1096 0.140 1.52E-04 728 0.235 5.01E-06 368 perbop 0.150 1.26E-02 276 0.078 2.96E-01 183 0.229 2.76E-02 93
0.251 3.19E-17 1097 0.151 4.32E-05 729 0.295 8.31E-09 368 meanpd 0.250 2.66E-05 276 0.085 2.55E-01 183 0.405 5.56E-05 93
0.175 5.32E-09 1097 0.088 1.74E-02 729 0.179 5.48E-04 368 meanaloss 0.049 4.17E-01 276 -0.095 1.99E-01 183 0.059 5.77E-01 93
0.703 1.25E-165 1107 0.671 1.25E-96 729 0.744 5.75E-66 368 faith_pd 0.462 5.22E-16 276 0.374 2.74E-07 178 0.650 2.37E-12 92

saliva
no periodontitis moderate to severe periomoderate to severe periono periodontitisall samples all samples

subgingival plaque
covariate
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were significantly correlated with SubP MIP. Together these results suggest that the microbial 

changes underlying periodontal health are also influencing cardiometabolic health. 

 Saliva MIP was positively, significantly correlated with BMI and systolic blood pressure, 

but this correlation did not hold true when subsetting out healthy participants or participants with 

moderate to severe periodontitis. This lends further support to the hypothesis that microbial 

changes originating in the SubP are only later detectable in saliva.  

 

Table 4.2.2. Microbial Indicator of Periodontitis (MIP) is correlated with multiple markers of cardiometabolic 
health in both saliva and subgingival plaque. HbA1C = hemoglobin A1c; bmi = body mass index; meansbp = 
mean systolic blood pressure; meandbp = mean diastolic blood pressure; glucosecrc = fasting glucose; hsinsulin 
= fasting insulin. Bolded values represent statistically significant Pearson correlations (p<0.05). 

 

 

 

 

4.2.3 Methods 

 

Sample collection  

ORIGINS is an occupation-based cohort study among members of the Service Employees 

International Union 1199 designed to investigate the relationship between oral microbial 

community composition and glucose metabolism. Periodontal examination, subgingival plaque 

and saliva collection were performed as previously described [8]. In summary, 1,188 subgingival 

plaque samples (4 samples from 297 participants) were collected from the most posterior tooth per 

Pearson r p-value n Pearson r p-value n Pearson r p-value n Pearson r p-value n Pearson r p-value n Pearson r p-value n
0.040 1.82E-01 1107 0.134 2.82E-04 729 -0.085 1.05E-01 368 HbA1c 0.023 7.04E-01 276 0.087 2.42E-01 183 -0.064 5.45E-01 93
0.163 6.25E-08 1086 0.143 1.28E-04 713 0.129 1.42E-02 363 bmi 0.120 4.89E-02 271 0.100 1.83E-01 180 0.081 4.45E-01 91
0.145 1.28E-06 1101 0.125 7.83E-04 723 0.126 1.55E-02 368 meansbp 0.121 4.43E-02 276 0.143 5.40E-02 183 0.056 5.92E-01 93
0.150 5.70E-07 1101 0.106 4.39E-03 723 0.168 1.18E-03 368 meandbp 0.109 7.00E-02 276 0.110 1.39E-01 183 0.072 4.94E-01 93
0.079 8.97E-03 1104 0.064 8.40E-02 726 0.031 5.48E-01 368 glucosecrc 0.081 1.84E-01 274 0.071 3.44E-01 181 -0.002 9.87E-01 93
0.133 8.61E-06 1107 0.132 3.70E-04 729 0.088 9.05E-02 368 hsinsulin 0.097 1.08E-01 276 0.101 1.72E-01 183 0.028 7.90E-01 93

subgingival plaque saliva
covariateall samples no periodontitis moderate to severe perio all samples no periodontitis moderate to severe perio
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quadrant (excluding third molars) via sterile curettes after removal of the supragingival plaque 

[18]. Unstimulated saliva was collected from each participant in parallel. 

 

DNA extraction and 16S rRNA gene sequencing 

DNA was extracted from subgingival plaque and saliva samples by The Forsyth Institute. 

16S rRNA gene amplicon sequencing was performed on subgingival plaque samples by The 

Forsyth Institute using primers targeting variable region 4; Forward- CCTACGGGAGGCAGCAG 

and Reverse- CAAGCAGAAGACGGCATACGAGAT. Sequencing was performed on a MiSeq 

using a Paired End 250 cycle kit. 

16S rRNA gene amplicon sequencing libraries on DNA extracted from saliva was 

performed at UC San Diego using the Earth Microbiome Project protocol [19,20]. Sequencing was 

performed on a MiSeq using a Paired End 150 cycle kit. 

 

 

 

Sequence analysis 

Raw reads were analyzed with QIIME2 [21]. Demultiplexed sequences were quality 

filtered with default parameters in qiime quality-filter q-score, namely, reads were trimmed after 

the first appearance of 3 basecalls with a PHRED score of 4 or less, and the entire read was 

removed if the read was truncated to less than 75% of the input sequence. Quality filtered forward-

read sequences were denoised using Deblur [22] with the default parameters. Samples with less 

than 1,000 quality filtered reads were removed from downstream analysis. In order to remove reads 

aligned to chloroplast or mitochondrial genes, sequences were aligned using a classifier pretrained 
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on the GreenGenes v13_8 database with 99% sequence homology using sklearn [23]. Sequences 

aligned to mitochondria or chloroplast were removed using filter-table --p-exclude (0.005% of the 

entire dataset). A phylogenetic tree was created using fragment insertion via SEPP [24]. Taxonomy 

was assigned using sklearn [23] against the HOMD database version 15.1 [12]. All features not 

present in at least 1% of samples were excluded from downstream analysis. 

The final quality-filtered subgingival plaque table contained 43,709,128 reads across 1,107 

samples with a total of 1,832 amplicon sequence variants (ASV). The final quality-filtered saliva 

table contained 4,892,251 reads across 282 samples with a total of 859 ASVs.  

 

Differential Abundance Testing 

To determine which taxa are associated with which phenotypes in our dataset, we used the 

concept of Reference Frames [11]. This tool accounts for the compositional nature of next-

generation sequencing experiments [7]. In brief, comparing relative abundances among sample 

groups can be misleading when the total microbial load is unknown, as is the case in this dataset. 

To avoid these pitfalls, we used the machine learning tool Songbird 

(https://github.com/biocore/songbird) to perform multinomial regression and then ranked each 

ASV by it’s coefficient in the regression model to determine each taxon’s relative differential 

across a given phenotype. Periodontal pocket depth was used as the formula in the model. The 

number of random test samples held back for validation in the model was 111 (10%). We used a 

batch size of 10 with 500 epochs (number of passes through the entire dataset to train the model), 

a learning rate of 0.001 and a differential prior of 10. The resulting ranks (differentials.qza) were 

visualized with Qurro [25] and allowed us to prioritize which taxa were most associated with a 

given phenotype.  
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To identify taxa associated with shallow versus deep periodontal pockets, we browsed the 

highest and lowest ranked microbes in this category using Qurro [25]. ASVs assigned to the genus 

Corynebacterium were mostly associated with shallow pockets, whereas ASVs assigned to the 

genus Treponema were mostly associated with deep pockets. To generate a microbial indicator of 

periodontitis (MIP), we used Corynebacterium as a ‘reference frame’ and calculated the log-ratio 

of all Treponema counts to all Corynebacterium counts.  

 

Classification 

A Random Forests (RF) [26] model was trained to predict disease status based on shallow 

versus deep periodontal pockets. The RF model was trained using a Stratified K-Folds cross-

validation (CV) with 10-Fold CV splits. On each CV split a RF model with 500 estimators was 

trained and RF probability-predictions were compared to the test set using the Receiver Operating 

Characteristic (ROC). The mean and standard deviation from the mean were calculated for the 

area under the Area Under the Curve (AUC) across the 10-fold CV. This classification was 

performed on the whole ASV level data table and compared to the table filtered for only members 

of Treponema and Corynebacterium concatenated with the log-ratio of Treponema to 

Corynebacterium. All classification was performed through Scikit-learn (v. 0.22.2) [23]. 
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4.2.4 Discussion 

 In a cohort of 787 healthy individuals we were able to identify early microbial markers of 

periodontitis. Microbial diversity in SubP was most strongly explained by periodontal metrics such 

as subgingival pocket depth and percent of sites bleeding on probing. RPCA beta-diversity analysis 

revealed that periodontal niche (i.e. whether the sample was obtained from a shallow versus deep 

periodontal pocket) was a more important indicator of microbial composition than individual 

variation. This was not confirmed by metrics that do not account for compositionality (e.g. 

UniFrac, Bray-Curtis), which can be greatly affected by microbial load [Morton 2019]. Since 

previous studies have shown increased microbial burden in subgingival pockets with periodontitis, 

it is likely that microbial load varied greatly across the samples in this dataset and therefore it is 

crucial to use scale-invariant analyses. 

Redundancy analysis (RDA) revealed that saliva microbial communities were influenced 

by different factors compared to SubP. For instance, while tobacco smoking did not have a 

significant effect size in SubP microbial composition it had the biggest effect size in saliva 

microbial composition. This is in line with previous reports showing that microbial composition 

in oral washes was affected by smoking status [14], while SubP is not greatly affected by smoking 

status [15]. This finding highlights that saliva and SubP microbial communities are driven by 

different environmental factors.  

We used the factor with the highest effect size on microbial diversity in SubP, whether the 

sample came from a deep or shallow pocket, to identify a microbial indicator of early periodontal 

disease. Using reference frames, we calculated the log-ratio of Treponema:Corynebacterium and 

found that it significantly differentiated healthy from diseased periodontal pocket sites. This log-

ratio was used as a Microbial Indicator of Periodontitis (MIP). SubP MIP was significantly 
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correlated with poor periodontal health across a wide range of metrics when only looking at healthy 

plaque samples, suggesting that microbial communities change before disease is clinically 

detectable. Red complex organisms canonically associated with periodontitis in the literature were 

also positively correlated with periodontal disease status, but they were not as widely prevalent 

across samples which complicates scale-invariant analyses. 

Despite the fact that saliva has a compositionally distinct microbiome compared to SubP, 

is driven by different metadata variables, and was sequenced independently with different 

parameters, we found that the MIP was significantly correlated between plaque and saliva. Saliva 

MIP was also correlated with poor periodontal health, and a subset of cardiometabolic markers. 

Remarkably, phylogenetically-informed alpha diversity was strongly correlated with MIP 

in both saliva and SubP across all periodontal status categories. Both Treponema and 

Corynebacterium species have been identified as microbial scaffolds in plaque biofilms. In the 

context of healthy periodontal plaque, reproducible biofilms with a specific taxonomic 

organization, referred to as ‘hedgehog’ biofilms, are widely prevalent [16]. In the context of severe 

periodontitis, Treponema taxa have been found in the deepest sections of the periodontal pocket, 

and form close associations with diverse rod-like bacteria [17]. In light of our finding that the ratio 

of Treponema to Corynebacterium increases in periodontal disease, this suggests that the biofilm 

structure shifts from being scaffolded primarily by Corynebacterium to Treponema, where 

Treponema biofilms are more phylogenetically diverse than Corynebacterium biofilms.  

Importantly, these microbial community composition transitions appear to occur early in 

disease, before periodontitis can be diagnosed. The results from this analysis also suggest that 

these microbial changes occur first in plaque, and as disease progresses can be identified in saliva. 

Future longitudinal sampling will allow us to more definitively determine if the 
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Treponema:Corynebacterium ratio increase precedes periodontitis, and this MIP could be used as 

an early marker of periodontitis that could help guide therapy to prevent periodontal deterioration.  
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