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Dissecting the Energetics of Intrinsically Disordered Proteins via 
a Hybrid Experimental and Computational Approach

Junjie Zou1,2, Carlos Simmerling1,2,*, Daniel P. Raleigh1,2,*

1Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United 
States

2Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New 
York 11794-3400, United S tates

Abstract

Intrinsically disordered proteins (IDPs) play important roles in biology, but little is known about 

the energetics of their inter-residue interactions. Methods that have been successfully applied to 

analyze the energetics of globular proteins are not applicable to the fluctuating partially ordered 

ensembles populated by IDPs. A combined computational experimental strategy is introduced for 

analyzing the energetic role of individual residues in the free state of IDPs. The approach 

combines experimental measurements of the binding of wild-type and mutant IDPs to their 

partners with alchemical free energy calculations of the structured complexes. This data allows 

quantitative information to be deduced about the free state via a thermodynamic cycle. The 

approach is validated by the analysis of the effects of mutations upon the binding free energy of 

the ovomucoid inhibitor third binding domain to its partners and is applied to the C-terminal 

domain of the measles virus nucleoprotein, a 125-residue IDP involved in the RNA transcription 

and replication of measles virus. The analysis reveals significant inter-residue interactions in the 

unbound IDP and suggests a biological role for them. The work demonstrates that advances in 

force fields and computational hardware have now led to the point where it is possible to develop 

methods which integrate experimental and computational techniques to reveal insights that cannot 

be studied using either technique alone.
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Introduction

Intrinsically disordered proteins (IDPs) lack stable secondary and tertiary structure due to 

their low content of bulky hydrophobic residues and their high content of polar and charged 

residues1–2. While they do not fold into well-defined globular structures in isolation3–4, 

IDPs populate ensembles ranging from expanded states with little residual structure to 

ensembles which are more compact and contain residual secondary and tertiary interactions 

and they often fold upon binding to their partners 5–10. IDPs play important roles in biology. 

Structural characterization of IDPs in their uncomplexed state and of the denatured state of 

globular proteins show that neither are true random-coils, instead, they often contain 

transient secondary structure and long-range interactions11–20. Inter-residue interactions in 

the unbound state of IDPs could modulate their binding affinity and other interactions, and 

thus modulate their biological activity. Moreover, long-range interactions in IDPs and in 

unfolded proteins may play an important role in controlling the propensity to aggregate and 

thus preventing protein misfolding diseases12–13, 21,22. In general, conservation of IDP 

sequences is believed to be lower than for the sequences of globular proteins, suggesting that 

there may be an overall lower free-energy cost to mutations in the free state of IDPs23. 

Progress has been made in characterizing the structural properties of IDPs and in defining 

relationships between sequence and conformational properties, but much less is known 

about the energetics of inter-residue interactions in IDPs2, 24–26, and quantitative analysis of 

the inter-residue energetics of IDPs is still absent.

The contribution of a residue to the energetics of the folded state of a protein is traditionally 

obtained by mutagenesis and unfolding free energy measurements, but such a strategy 

cannot be applied to IDPs. In principle, it is also possible to estimate the energetics of a 

residue in a globular protein via molecular modelling if the structure of the protein is 

resolved in atomic level27–28. Structural ensembles of IDPs can be obtained from ensemble 

fitting using experimental observables such as Rg and NMR as constraints and the 

ensembles used as input to potential energy functions to estimate energies. However, the 

ensembles derived are not fully deterministic as the experimental observables are not 

sufficient to uniquely define highly conformationally heterogeneous IDPs and the energetics 

obtained are not always reliable. Molecular dynamics (MD) simulations are becoming 

popular for studying the structural propensities of IDPs as newly developed force fields are 

being trained not only for globular proteins, but also for IDPs29–31. While many current 

force fields have shown good performance at folding proteins32–34, their accuracy for IDPs 

are still not as well established and many force fields have had difficulty reproducing global 

properties of protein unfolded states35. Simulations of IDPs also require considerably more 

sampling than simulations of folded proteins because of their flat free energy landscape, 

increasing computational cost. Larger IDPs are currently not suitable for MD simulations in 

explicit solvent so implicit solvent models must be used, which can be less accurate. This 

inability to accurately model the disordered state of IDPs has hampered the application of 

MD to study IDP energetics.

Here, we describe a strategy to quantitatively analyze the energetic effects of mutations upon 

the free state of IDPs and to define the energetic contribution made by individual residues in 

the free state. The approach combines experimental structural and energetic information on 
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complexes of IDPs with their binding partners and alchemical free energy calculations of the 

bound state to deduce the properties of the unbound state via a thermodynamic cycle. The 

strategy is validated using mutants of the turkey ovomucoid inhibitor third binding domain 

(OMTKY3) and its binding partners and is then applied to the C-terminal domain of the 

measles virus nucleoprotein (NTAIL), a 125-residue IDP involved in the RNA transcription 

and replication of measles virus. NTAIL undergoes binding and folding upon encounter with 

the X domain (XD) of its phosphoprotein binding partner36. Residues 486 to 502 of NTAIL 

form a so-called α-helical Molecular Recognition Element (αMoRE) and fold into a stable 

helix upon binding to XD. SAXS studies have shown that NTAIL has a radius of gyration, 

Rg, of 27.5 ± 0.7 Å which is significantly less than the predicted Rg for a random coil with 

the same length as NTAIL, 35 – 38 Å37, suggesting inter-residue interactions lead to 

compaction in the free state. A recent study of the effect of the truncation of the disordered 

N-terminal region of NTAIL on the binding energetics support this hypothesis. A non-

monotonic dependence of binding strength on truncation length was observed38, indicating 

that residues in the disordered N-terminal region of NTAIL contribute to the binding affinity 

of NTAIL and XD. This work also suggested that the folding of NTAIL upon binding is 

impeded by the disordered regions flanking the αMoRE. However, the molecular basis of 

these effects is unclear and the mechanisms behind these unexplained observations cannot 

be determined using conventional methods. We quantify the effect of three mutations in the 

unbound state of NTAIL and show that the residues participate in long-range interactions in 

the unbound state and that these interactions can modulate the binding of NTAIL to its 

partner. Interactions in the free state are predicted to reduce the affinity of NTAIL for XD, 

thereby providing a mechanism for tuning binding affinity and biological function. Our 

approach allows quantitative analysis of these interactions without the need to fully model 

the IDP ensemble.

This work illustrates that, as computational results become more and more reliable due to 

advances in force fields and computing hardware, it is possible to develop accurate and 

precise hybrid methods which rely on experiments and calculations simultaneously to reveal 

insights that cannot be studied by conventional methods.

Methods

Free energy calculations were performed using non-softcore thermodynamic integration (TI) 

implemented in Amber as described in detail in the supporting information (see SI). 

Minimization and equilibration under constant pressure were conducted to heat up and relax 

the X-ray structures. Production runs were conducted using the implementation of GPU-

accelerated thermodynamic integration, pmemdGTI39–43, under constant volume (see SI). 

Details of the calculations, including the methods used to account for any changes in 

protonation state involving mutation of charged residues and details of the analysis of the 

data are provided in the supporting information.
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Results

A Thermodynamic Cycle for Analyzing the Energetics of the Free State of IDPs

We calculate the free energy changes caused by mutations in IDPs by taking a detour 

through a thermodynamic cycle (Fig. 1). The measurable binding free energy of the wild-

type and mutant IDP are combined with high-level TI calculations on the folded complexes 

to define the energetics of the free state of the IDP. The approach relies on a thermodynamic 

cycle, in which the values of three branches of the cycle define the value of the fourth (Fig. 

1). For example, the effect of changing an alanine to a glycine in the unbound state of an 

IDP, ΔGfree, can be obtained by ΔGfree = ΔGbind - ΔG’bind + ΔGcom. ΔGbind and ΔG’bind are 

the experimental binding free energies of the mutant and wildtype respectively. ΔGcom is the 

free energy change caused by mutation of Ala to Gly in the complex and is calculated using 

alchemical free energy calculations. The effect of the mutation in a capped tripeptide or a 

small fragment, in which the mutated residue is in the middle of the fragment and flanked by 

the same amino acids found next to the site in the full-length IDP, also needs to be calculated 

to provide a reference state and is denoted as ΔGfrag. The capped tripeptide is not meant to 

represent the unbound state of IDP as it ignores secondary structure and long-range 

interactions. Rather the capped tripeptide is just a necessarily bookkeeping device that 

accounts for purely local interactions and for the fact that the different sized side chains will 

make different interactions with water. It is important to reiterate that the capped tripeptide is 

not used as a model of the IDP, rather the differences in the values of ΔGfree and ΔGfrag 

denoted as ΔΔGinter, quantitatively defines the energetic effect of nonlocal interactions that 

are not present in the peptide model.

In principle, the effect of mutations on interactions in the unbound state of IDPs could be 

directly calculated using alchemical free energy calculations, but such calculations are 

practically impossible due to the dynamic nature of the free state which leads to insufficient 

sampling. The approach developed here circumvents this issue by bridging the complex state 

and the free state using the binding free energies measured by experiments such as 

isothermal titration calorimetry (ITC), differential scanning calorimetry (DSC), binding 

kinetic experiments and others. The experimental binding free energies (ΔGbind and ΔG’bind) 

provide relationships between the phase space of the bound and free state of the IDP. This 

allows the calculated free energy change in the complex state (ΔGcom) to be combined with 

experimental binding data to deduce the free energy changes in the free state (ΔGfree)

Another Interpretation of the Approach

From another perspective, this approach can be interpreted as a method which obtains the 

effects of mutations on the free state of IDPs by deconvoluting the experimentally measured 

binding free energy changes. The values of ΔGbind and ΔG’bind are the binding affinities of 

the wild-type and mutant measured experimentally using techniques such as ITC, DSC, 

binding kinetic experiments and others. The value of ΔGbind - ΔG’bind represents the effect 

of the mutation on the binding affinity of the IDP and its binding partner. However, ΔGbind - 

ΔG’bind is a convolution of the effect of the mutation on both the complex and free state of 

the IDP. This is analogous to protein folding where ΔGmutation contains contributions from 

the folded and unfolded states. If the effect of the mutation on the free state is to be 
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quantified, ΔGbind - ΔG’bind must be deconvoluted. In our approach, ΔGbind - ΔG’bind is 

deconvoluted by calculating the effect of mutation on the complex state (ΔGcom) using free 

energy calculations. The deconvolution leads to the effect of the mutation on the free state 

(ΔGfree) of the IDP via a thermodynamic cycle. The resulting value of ΔGfree is another 

convolution of the purely local and long-range interactions disrupted by the mutation. The 

calculation using the capped tripeptide (ΔGfrag), which only describes the local interactions, 

allows further deconvolution of ΔGfree so that the long-range interactions disrupted by the 

mutation (ΔΔGinter) can be quantified. One practical consideration is that some IDPs retain 

disordered tails in the bound state. If necessary, the disordered regions in the bound state can 

be truncated during the calculation of ΔGcom to increase computational efficiency provided 

that the disordered regions do not alter the conformation or energetics of the structured 

regions under investigation in the complex. This is likely to be valid for residues which are 

buried in the binding interface and sequestered from solvent since they are protected from 

transient contacts with any disordered segments.

IDP Complexes and Mutation Sites that are Suitable for the Approach

Many IDPs retain a certain degree of so-called “fuzziness” upon binding to their partners 

and are relatively dynamic even in the bound state. These IDPs may remain partially or even 

fully flexible upon binding and they can adopt multiple binding conformations44–48. Similar 

to the free state of IDPs, calculations of ΔGcom for this type of IDPs are challenging due to 

the vast conformational ensembles that need to be sampled. However, some IDPs that form a 

“fuzzy” complex with one of their partners may form a rigid complex with a different 

partner48. Since the energetics of the free state of IDPs are independent of their binding 

partners and their structures in the complex state, our approach can be applied to any IDP as 

long as it forms a rigid complex with one of its natural binding partners or an engineered 

binding partner and the binding free energies can be measured experimentally.

For IDPs that form both structured and disordered regions upon binding, it is easiest to study 

the residues that belong to the structured regions since large segments of disordered regions 

are too computationally expensive to model directly. Thus, truncated IDP complexes, with 

only the structured region, may be used during the calculation of ΔGcom provided certain 

conditions are met. This approximation requires that the disordered regions do not form 

strong interactions with the structured regions and do not alter the conformations of the 

structured regions of the complexes. Moreover, analysis of surface mutations should be 

avoided if using truncated IDP complexes as they may form transient contacts with the 

disordered regions in experiments that will be missing during the calculations of ΔGcom 

using truncated models. There is a significantly smaller possibility of forming direct contacts 

between buried residues and residues in the disordered regions, so the effect of transient 

interactions with the disordered regions on these buried residues can be more safely ignored. 

For the example of the NTAIL/XD complex studied here, residues 486 to 502 of NTAIL 

form the αMoRE and fold into a stable helix upon binding to XD, but the regions preceding 

(401–485) and following (503–525) the αMoRE remain disordered upon binding, do not 

contact the structured region and make at most a small contribution to binding 

enerergetics5, 36, 49–54.
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Ovomucoid Inhibitor Protease Interactions Provide an Excellent System to Validate the 
Approach

The accurate estimation of ΔGinter depends on precise and accurate free energy calculations 

since they are combined with experimental binding affinities to make predictions about the 

free state. Thus, it is necessary to evaluate critically the accuracy of alchemical free energy 

calculations and define their limitations. In a previous study, we successfully reproduced the 

experimentally measured effects of Gly-to-D-Ala substitutions on the unfolding free energy 

changes in eight proteins using TI calculations with a root-mean-square error of 0.23 

kcal/mol28. In this study, using the same force field and solvent model, we further validated 

the accuracy of our free energy calculations on a more relevant system involving 

calculations of protein-protein binding energetics. We tested the ability of our protocol to 

reproduce the experimental binding free energy of OMTKY3 to its target proteases using TI 

calculations (Fig. 2). This is an excellent model system: high-resolution structures of the free 

and bound states are available and precise thermodynamic binding data has been reported for 

multiple mutations55–57. For the complexes between OMTKY3 and Streptomyces griseus 
proteinase B (SGPB) (Fig. 2), high-resolution crystal structures for all substitutions at 

position 18 of OMTKY3 have been reported except Met18 and Cys1856–57. The 

perturbations to the structures of the complexes caused by mutation at position 18 of 

OMTKY3 are minimal. For the 10 variants studied here (OMTKY3/Leu18, Ala18, Gly18, 

Asn18, Asp18, Val18, Thr18, Ser18, Phe18 and Tyr18), the root-mean-square deviations for 

the backbone coordinates are at most 0.158 Å (PDB codes listed in SI). The small 

differences in structures minimize the complexity of the free energy calculations on the 

bound state of the SGPB/OMTKY3 complex. Furthermore, the mutation site is only 

partially buried in the complex interface which allows the efficient exchange of water around 

the side chain during the free energy calculations of complexes. This avoids any 

complications that might arise from having different numbers of waters in the interface for 

different side chains. In the unbound state, OMTKY3 is highly stable and the mutation site 

is located in a short loop with the side chain fully exposed to solvent. These factors make 

SGPB/OMTKY3 an ideal system for testing the accuracy of free energy calculations. 

Calculations were also conducted on a Leu-to-Ala mutation in the complex of a different 

protease, subtilisin Carlsberg (CARL), with OMTKY3 to check if the calculation is sensitive 

enough to reproduce context-dependent ΔΔG values (reported experimental values of 2.95 

kcal/mol for SGPB/OMTKY3 and 0.33 kcal/mol for CARL/OMTKY3) for Leu-to-Ala 

mutations58. This is important because it provides a significant test of context depend effects 

and because free energy changes for two Leu-to-Ala mutations in NTAIL are studied later. 

The difference between ΔΔGexp = (ΔGbind - ΔG’bind) and ΔΔGcalc = (ΔGfree - ΔGcom), see 

free energy cycle in Fig. 2, provides a rigorous test of the accuracy of the free energy 

calculations.

The Amber force field ff14SB59 and the TIP3P60 water model were used for the TI 

calculations61–62, with the implementation of GPU-accelerated thermodynamic integration, 

using pmemdGTI39. In order to test the convergence of the TI calculations, two independent 

TI calculations were carried out for each X-to-Y substitution in the SGPB/OMTKY3 

complex. One calculation started with the structure of SGPB/OMTKY3-X18, and the other 
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calculation started with the structure of SGPB/OMTKY3-Y18. A total of 22 independent TI 

calculations were carried out.

The calculations show excellent agreement with experiments. All numerical values are 

provided in Table S2. The mutation involving Asp18 require proper accounting of any 

changes in the pKa of Asp18 in the complex and free states. The free state pKa is available 

from NMR measurements43 and the bound state pKa has been estimated from experimental 

pKa dependent binding free energies63. Details are provided in the SI. The root-mean-square 

error between ΔΔGcalc and ΔΔGexp for all mutations was 0.86 kcal/mol (Fig. 3). V-to-A, Y-

to-F and S-to-C have more significant errors, with deviations of 1.30 ~ 2.11 kcal/mol 

respectively from the experimental results, while all other mutations have errors below 0.45 

kcal/mol. The probable causes of the larger errors in V-to-A, S-to-C and Y-to-F mutations 

are discussed in detail in the SI. Briefly, the issue with the S-to-C mutation is likely due to 

the Lennard-Jones parameters used for sulfur in Amber ff14SB force field. The issue with Y-

to-F mutation may be due to a bound water. The V-to-A mutation is an example of a β-

branched residue being changed to a non β-branched residue. We have observed problems 

with other substitutions of this type and believe it may reflect poor transferability between β-

branched residue and non β-branched residue in the force field. Excluding these three 

apparent outliers reduces the root-mean-square error to only 0.27 kcal/mol and gives an even 

stronger correlation between ΔΔGcalc and ΔΔGexp with slope = 1.00 and R2 = 0.98, p < 

10-13.

The precision of the method was tested by carrying out two independent calculations using 

different starting structures for each mutation (except L-to-A in CARL/OMTKY3 and C-to-

S in SGPB/OMTKY3, see caption of Fig. 3). ΔΔGcalc values were essentially identical with 

an average absolute difference of 0.25 kcal/mol, indicating high precision and good 

convergence of the calculations. The ΔGfree values estimated by ΔGfree = ΔGbind - ΔG’bind + 

ΔGcom and the ΔGfree values directly calculated by TI calculations are compared in Table 

S3. Overall, the results demonstrate that the TI calculations are accurate and precise enough 

to be combined with experimental binding free energies as outlined in Fig. 1 with the 

exception of the mutations which lead to the outliers.

Application to the NTAIL Domain: Identification of Long-range Interactions

Having validated the approach, we next applied the strategy to the NTAIL domain. Residues 

486 to 502 of NTAIL, form the so called α-helical Molecular Recognition Element 

(αMoRE), and fold into a stable helix upon binding to the XD, thereby forming an 

intermolecular four-helix bundle complex (Fig. 4)36, 49–50. The αMoRE of NTAIL has 

residual helicity in the unbound state, but the regions preceding (401–485) and following 

(503–525) αMoRE have much less residual structure5, 49, 51–54. The regions preceding 

(401–485) and following (503–525) the αMoRE remain disordered in the bound state and 

experimental data indicates that they do not form direct contacts with XD in the complex 
5, 36, 49–54. In addition, ITC and surface plasmon resonance experiments indicate that the 

regions following the αMoRE of NTAIL make only minimal contributions to the binding 

between NTAIL and XD64–65. This data suggests that the disordered regions of NTAIL/XD 

complex do not alter the conformations of the structured region formed by the αMoRE and 
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XD. Mutations of three residues which are buried in the complex, A494G, L495A and 

L498A, are examined in this study. A494, L495 and L498 are within the αMoRE region of 

NTAIL and located in the interface of NTAIL/XD complex (Fig. 4). Since A494, L495 and 

L498 are buried in the interface of NTAIL/XD complex, it is unlikely that the truncated 

disordered regions make contact with these residues in the complex.

The binding free energy changes (ΔGbind - ΔG’bind) caused by the A494G, L495A and 

L498A mutations have been reported66. The free energy changes caused by the mutations 

(ΔGcom) in the NTAIL/XD complex were calculated using the X-ray structure (PDB code 

1T6O) and the protocol that we validated with the SGPB/OMTKY3 complexes. In order to 

check the convergence of the calculations of ΔGcom, two independent TI calculations for 

each mutation were conducted. One started with the X-ray structure which is the structure of 

the wild-type NTAIL/XD complex and proceeded toward the mutant. Only the structure of 

the wild-type NTAIL/XD complex is available, so the second starting structure was a model 

of the mutant complex. In silico mutations of A494G, L495A and L498A were applied to 

the X-ray structure of NTAIL/XD complex and a 100ns MD simulation for each mutant was 

conducted to relax any perturbation caused by the mutations. The TI calculations were 

performed starting with the structure from the last frame of the MD simulation of the mutant 

complex and proceeded in reverse to the wild-type complex. The forward and reverse 

calculations were in excellent agreement with differences ranging from only 0.06 to 0.36 

kcal/mol (Table 1).

The free energy changes caused by the mutations in the free state of NTAIL (ΔGfree) are all 

significantly higher than the free energy changes in the capped tripeptide reference state 

(ΔGfrag) with differences ranging from 0.8 to 3.8 kcal/mol (Table 1). This indicates that the 

residues are involved in interactions in the free state which are not captured by the capped 

tripeptide reference state. In other words, these residues are involved in secondary structure 

or long-range interactions, or both in the free state.

Because the αMoREs region was experimentally found to have residual helicity in the free 

state of NTAIL5, 49, 51–54, we also examined whether the difference between ΔGfree and 

ΔGfrag could be explained by helicity rather than long-range interactions in the unbound 

(IDP) state. TI calculations were repeated using a fully helical conformation of unbound 

NTAIL (486–504) monomer (ΔGhelix). The structure was adopted from the PDB code 1T6O 

by deleting the XD domain and the artificial linker. If the contributions from the long-range 

interactions are negligible, then the free energy changes caused by the mutations in the free 

state of NTAIL (ΔGfree) should be between those of ΔGfrag and ΔGhelix depending on the 

fraction of helicity adopted in the free IDP. However, we found that ΔGfree values are still 

higher than the ΔGhelix values, especially for the L495A mutations. This argues that any 

propensity to adopt helical structure cannot explain the ΔGfree values, and that A494, L495 

and L498 are all involved in favorable long-range interactions in the free state of NTAIL. 

This is especially notable at position 495, where the long-range interactions favor leucine 

over alanine.
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Discussion

In this work, we have validated a hybrid strategy to measure quantitatively the free energy 

changes caused by mutations in the free state of IDPs, which cannot be measured directly 

using conventional experimental or computational techniques. A possible limitation of the 

strategy is that the IDP must form a structured complex with its receptor and many IDPs 

remain “fuzzy” upon binding44–48. However, since the energetics of the free state of an IDP 

are independent of its binding partner, this approach can still be applied to the IDP if it folds 

upon binding to one a different natural binding partner or an engineered molecule. Another 

potential limitation is that for IDPs that remain partly disordered upon binding, the 

truncation of the disordered regions, which is ideal for the calculations of ΔGcom, is only 

rigorous if the disordered regions have minimal interactions with the structured regions. 

Ideally, the residues of interest will be buried in the complex to avoid transient long-range 

interactions with disordered regions of the bound complex that complicate the modeling. 

Fortunately, residues in the binding interface are usually buried and these are often of major 

interest since residues in the interface normally contribute the most to the binding affinity of 

a complex. Studying their interactions in the unbound IDP can provide quantitative 

information about the properties at the free state and about the possible roles of any free 

state interactions in the regulation of biological activity.

Our free energy calculations on SGPB/OMTKY3 complexes show that the free energy 

changes caused by most mutations can be reproduced with high precession and within a 

small error. Although the outliers V-to-A, C-to-S and Y-to-F were identified in our 

calculations, the validation included L, I, F, and A, which are the four most commonly 

observed amino acids in the binding interface between IDPs and their binding partners67–69. 

On average, about 40% of the residues in the binding interface are one of these four 

residues69. This indicates that the approach should be broadly applicable to folding upon 

binding IDPs. Since the approach relies on accurate calculations of free energy, the sampling 

convergence of the free energy calculations must be considered carefully70. For example, 

buried mutations may cause displacement of interior water which usually has a slow 

relaxation beyond the timescale of MD simulations71. However, new algorithms have been 

developed to address the limitations of sampling in free energy calculations72–74. We believe 

that as the reliability of these calculations continues to improve, the impact of our approach 

will increase.

Our analysis shows that A494, L495 and L498, which form part of the binding interface of 

NTAIL and XD, participate in favorable long-range interactions in the free state of NTAIL 

that modulate the binding affinity of NTAIL to XD. The strength of the long-range 

interactions made by A494 and L498 in the free state of NTAIL range from 0.3 to 1.6 

kcal/mol depending on the helicity of A494 and L498. If NTAIL were to exist as a true 

random coil in its free state, then L495 would be 4.9 kcal/mol more favorable than A495 in 

the complex of NTAIL/XD. Even if L495 is in a fully helical structure in the free state of 

NTAIL, L495 is predicted to be > 4.1 kcal/mol more favorable than A495 in the complex 

state. However, the experimentally measured binding free energy change indicates that L495 

is only 1.1 kcal/mol more favored than A495 in the complex. The difference can be 

explained by favorable long-range interactions experienced by L495 in the free state of 
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NTAIL, which compete with the binding interactions involving L495. Stated differently, the 

interactions in the free state modulate the binding energetics and are predicted to reduce 

affinity. This provides an important mechanism for tuning binding affinity. The insights 

revealed by our approach correlate well with prior observations on NTAIL and illustrate that 

long-range interactions between the flanking disordered regions and the αMoRE can 

modulate the overall dimensions of NTAIL and the NTAIL/XD binding free energy.

It may be surprising that the interactions in NTAIL appear to favor L495 more than A495 by 

as much as 3.0 ~ 3.8 kcal/mol. However, if such interactions are responsible for inhibiting 

the aggregation of proteins22, 75, then they should be reasonably strong. In addition, the full 

free energy contribution is very unlikely to arise from a pairwise interaction, instead it is 

highly likely that the residue in question makes interactions with more than one other 

residue in the free state, or that the mutation alters the unfolded state and thereby modulates 

multiple other interactions.

The identified long-range interactions identified in NTAIL may play a biological role. 

Dynamic binding and breaking of the nucleocapsid and polymerase are necessary to ensure 

the transcription and replication of the RNA encapsulated by nucleocapsids and the affinity 

needs to be tuned for optimal activity. Increasing and decreasing the binding affinity of 

NTAIL/XD both lead to a reduction in transcription activity and viral growth76–77, so a 

balanced interaction between NTAIL and XD is crucial. The long-range interactions 

involving A494, L495 and L498 in the free state attenuate the binding affinity to reach an 

optimal efficiency of transcription and replication. This provides a clear example of how 

interactions within the free state of an IDP can tune biological activities.

Conclusions

This work offers a general methodology for assessing the energetic contributions of 

individual residues in IDPs to the energetics of the free state of IDPs. The approach allows 

the identification of residues that participate in long-range interactions and thus may 

modulate binding affinity, but avoids the difficulties associated with MD simulations of free 

IDPs. The approach described here is complimentary to methods that generate ensemble 

level descriptions of residual structure and transient contacts in the free state of IDPs as it 

provides information about the energetics of specific residues in the free state. Combining 

energetic information with structural descriptions will provide more insight into the 

properties of IDPs.

Many IDPs become structured upon binding78–79, thus the strategy is expected to be broadly 

applicable and will become even easier to apply as computing power continues to increase. 

The work with the OMTKY3 and its binding partners also provides a rigorous evaluation of 

the accuracy and precision of TI calculations performed using the Amber ff14SB force field. 

The work also illustrates how IT calculations can be used to help validate force fields. This 

work demonstrates that advances in force fields and computing hardware have now led to the 

point where it is possible to develop novel methods which integrate experimental and 

computational techniques to reveal insights that cannot be studied by using either technique 
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alone. The interactions and effects revealed by the analysis presented here could not be 

deduced from experiment and computation in isolation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Illustration of the approach used to deduce the energetics of the free IDP. The 

thermodynamic cycle describes the binding of a wild-type IDP and a mutant IDP to its 

partner. The capped tripeptide has the same residues adjacent to the mutation site as found in 

the full protein. ΔGbind and ΔG’bind are the binding free energies measured by experiment 

for wildtype and mutant respectively (red text). ΔGcom and ΔGfrag are calculated using 

alchemical free energy calculations (blue text). The value for ΔGfree is obtained from ΔGfree 

= ΔGbind - ΔG’bind + ΔGcom. The effect of secondary structure and long-range interactions 

on the mutations is obtained from ΔΔGinter = ΔGfree - ΔGfrg. ΔΔGinter and ΔGfree (green text) 

cannot be measured by either experiments or calculations alone but can be obtained by 

combining the experimental and computational measurements.
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Figure 2. 
Free energy cycle of L-to-A mutations in the binding of SGPB and OMTKY3. Ribbon 

structures represent SGPB (pink), OMTKY3 (blue) and the SGPB/OMTKY3 complex. 

Leu18 (top) and Ala18 (bottom) of OMTKY3 are shown in stick format. ΔG values in red 

are binding free energies measured by experiment55. ΔG values in blue are free energies 

calculated using TI.
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Figure 3. 
Scatter plot of experimental (ΔΔGexp) and calculated (ΔΔGcalc) ΔΔG values for the binding 

of SGPB with different OMTKY3 variants. ΔΔGexp = ΔGbind -ΔG’bind. ΔΔGcalc = ΔGfree - 

ΔGcom. The point labeled CARL is for the binding of subtilisin Carlsberg with OMTKY3 

variants. Blue and orange dots indicate calculated ΔΔG values calculated using different 

starting structures. For example, the value for the blue dot for A to G was calculated using 

the structure of SGPB/OMTKY3-Ala18 (PDB code 1SGP) and the value for the orange dot 

for A to G was calculated using the structure of SGPB/OMTKY3-Gly18 (PDB code 1SGQ). 

There is no structure for subtilisin Carlsberg/OMTKY3-Ala18 so only one ΔΔG values using 

the structure of subtilisin Carlsberg/OMTKY3-Leu18 (PDB code 1R0R) was calculated. 

Similarly, only one ΔΔG value for S-to-C mutation in SGPB/OMTKY3 was calculated. 

Three outliers, V-to-A, S-to-C and Y-to-F are labeled as crosses. The solid line represents 

ΔΔGexp = ΔΔGcalc. The dashed red line indicates the results of the linear regression of the 

data (y=0.86x+0.31, R2=0.82 p<10−9).
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Figure 4. 
Ribbon representation of the NTAIL (486–504)/XD (458–506) complex from the X-ray 

structure (PDB code 1T6O). The X-ray structure includes the region shown in ribbons, and 

an artificial linker which was deleted in simulations and is not shown in this figure. Residue 

A494, L495 and L498 are shown in stick format. The disordered N and C-terminal regions 

of NTAIL were not included in the X-ray structure and MD simulations and are depicted 

schematically as thin lines.

Zou et al. Page 19

J Phys Chem B. Author manuscript; available in PMC 2020 December 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zou et al. Page 20

Table 1.

Free energy changes (kcal/mol) calculated for A494G, L495A and L498A mutations in the complex, free, 

capped tripeptide fragment and fully helical state of NTAIL. The calculated ΔG values are referenced to the 

values of their corresponding ΔGfrag. The original values are listed in the parenthesis. The original ΔG values 

have no physical meaning because they contain a force field dependent baseline. The referenced ΔG does have 

physical meanings as the force field dependent baseline effect is canceled.

Forward ΔGcom Backward ΔGcom ΔGinter 
1

ΔGfrag 
2

ΔGhelix 
2

A494G 2.36
(−6.87)

2.22
(−7.01)

1.59±0.13
(−7.64±0.12)

0
(−9.23±0.04)

1.22±0.08
(−8.01±0.07)

L495A 5.09
(23.75)

4.73
(23.39)

3.81±0.21
(22.47±0.21)

0
(18.66±0.04)

0.81±0.16
(19.47±0.15)

L498A 2.26
(20.05)

2.09
(19.87)

0.77±0.16
(18.56±0.13)

0
(17.79±0.09)

0.42±0.10
(18.21±0.05)

1.
The uncertainties are calculated by combining the standard deviation of ΔGcom with the published standard deviation of (ΔGbind - ΔG’bind)66.

2.
The uncertainties are the standard deviation of three independent runs of MD simulations with different starting velocities.
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