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INTRODUCTION & BACKGROUND 
 

Extreme heat and health 
 
Extreme heat is a major public health issue, and is in fact the leading cause of weather-

related mortality in the United States (NOAA, 2018). Exposure to extreme heat causes 
numerous health impacts, ranging from direct complications such as dehydration and heat 
stroke, to indirect impacts on other bodily systems including the cardiovascular, renal, and 
respiratory systems, especially for those with pre-existing conditions. The human body is 
healthy when internal temperatures range from 36.5–37°C (Hughes et al., 2016). When external 
temperatures become high, the body’s ability to maintain this optimal temperature can be 
affected, and heat-related illness may occur (WHO, 2018). Figure 1 summarizes some of the 
symptoms associated with heat-related illness. Moreover, not only is extreme heat associated 
with increased morbidity and hospitalizations (Vaidyanathan et al., 2019), but higher rates of 
all-cause mortality as well (Schaffer et al., 2012; Weinberger et al., 2020). 

 

 
Figure 1: How heat may affect the human body, and strategies for treatment. Image borrowed from the CDC’s report “CLIMATE 
CHANGE and EXTREME HEAT What You Can Do to Prepare” (CDC, 2016). 

 
One of the highest-risk illnesses associated with extreme heat is heat stroke, which 

occurs when body temperatures reach 40°C, often due to overexertion in high temperatures 
(Bouchama and Knochel, 2002). Heat stroke is associated with other complications, such as 

https://www.weather.gov/hazstat/
https://openresearch-repository.anu.edu.au/bitstream/1885/187127/2/01_Hughes_The_silent_killer%253A_Climate_2016.pdf
https://www.who.int/globalchange/publications/heat-and-health/en/
https://pubmed.ncbi.nlm.nih.gov/30833395/
https://link.springer.com/article/10.1186/1476-069X-11-3
https://insights.ovid.com/environmental-epidemiology/enep/2020/06/000/estimating-number-excess-deaths-attributable-heat/1/01984727
https://www.cdc.gov/climateandhealth/pubs/extreme-heat-guidebook.pdf
https://www.nejm.org/doi/full/10.1056/nejmra011089


 5 

potentially causing neurological dysfunction and failure of the body’s temperature regulatory 
system, and making an individual more susceptible to bacterial infection (Hopp et al., 2018); 
and it also has high emergency department fatality rates (Hopp et al., 2018). However, direct 
impacts of heat such as heat stroke do not provide the full picture of heat-health impacts. 
Rather, there is a wide range of indirect health impacts of heat, and it is extremely common for 
heat-health impacts to result from underlying comorbidities. In fact, most heat wave mortality 
is not caused by the direct effects of heat (Kenney et al., 2014). In the 1995 Chicago heat wave, 
for instance, only 4.7% of the excess deaths attributable to the heat wave were caused 
primarily by the heat itself, with most deaths instead being caused by underlying conditions 
that were exacerbated by the high temperatures (Kenney et al., 2014).  
 

One such comorbidity frequently associated with heat-related illness and death is 
cardiovascular disease. Heat waves have been demonstrated to result in elevated 
hospitalizations for cardiovascular disease compared to non-heat wave days (Schwartz et al., 
2004). In the 1995 Chicago heat wave, a striking 93.7% of excess deaths were found to be due 
to underlying cardiovascular causes (Kenney et al., 2014). This is particularly important in older 
adults. Compared to younger adults, older adults have a more limited cardiovascular response 
to heat (for instance, cutaneous blood flow increases in response to heat to a lesser extent in 
older adults compared to younger adults), meaning their risk of mortality during heat waves is 
much greater (Kenney et al., 2014). Extreme heat also causes increased hospitalizations for 
respiratory issues (Michelozzi et al., 2009). Although the mechanisms for how heat affects 
respiratory illnesses are not yet fully understood (Michelozzi et al., 2009), hot temperatures 
appear to exacerbate existing respiratory conditions such as asthma and chronic obtrusive 
pulmonary disease (COPD) (Michelozzi et al., 2009, British Lung Foundation, 2018). It is also 
apparent that hot temperatures are associated with elevated amounts of ground-level ozone, 
which has its own respiratory effects (Kahle et al., 2015), such as reduced lung function and 
asthma complications (Bernstein and Rice, 2013). Extreme heat also causes an increase in 
hospitalizations associated with renal failure, urinary tract infection, fluid and electrolyte 
disorders, and septicemia, particularly in older adults, who are again more likely to experience 
underlying comorbidities in these areas (Bobb et al., 2014).  
 
Heat and health in a changing climate 
 

It is evident that the public health threat posed by extreme heat is already a major issue, 
but it is only expected to get worse as a result of anthropogenic climate change. Climate models 
project an increase in the frequency of heatwaves globally, as well as an increase in intensity 
and duration of these extreme heat events through the 21st century (IPCC AR5 3.3.1, 2014; 
Coumou and Robinson, 2013). Under the “business-as-usual” climate change scenario, we can 
expect to see what is now considered a 1-in-20-year annual extreme heat day become a 1-in-2 
annual extreme in most regions globally by 2100 (IPCC, 2014). Projections show that in 
California, conditions which today would be considered heat waves may ultimately become the 
predominant summer-month conditions (Miller et al., 2008), making extreme heat one of the 
biggest challenges for the state in terms of climate change adaptation. General circulation 
models show that increases in extreme temperatures are expected to exceed the rate of 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6040588/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6040588/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4155032/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4155032/
https://www.ncbi.nlm.nih.gov/pubmed/15475726
https://www.ncbi.nlm.nih.gov/pubmed/15475726
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4155032/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4155032/
10.1164/rccm.200802-217OC
10.1164/rccm.200802-217OC
10.1164/rccm.200802-217OC
https://www.blf.org.uk/support-for-you/hot-weather
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4384199/
https://www.sciencedirect.com/science/article/pii/S0012369213603463#bib18
https://jamanetwork.com/journals/jama/article-abstract/2084889
https://iopscience.iop.org/article/10.1088/1748-9326/8/3/034018
https://journals.ametsoc.org/doi/full/10.1175/2007JAMC1480.1
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increase in mean temperature in California (Miller et al., 2008), implying that acclimation to 
warmer climates will not be enough to avoid heat health impacts. Increases in extreme heat in 
California vary somewhat geographically, with projected increases in extreme heat of 
approximately twice the present number of days for inland regions, but up to four times the 
number of extreme heat days for many coastal cities, including San Diego (Miller et al., 2008), 
making mitigation efforts particularly important in this region. On top of this, San Diego is likely 
to see a larger portion of the year during which extreme heat events may take place, expanding 
from July and August to include June and September (Messner et al., 2011). 
 

Previous studies have explored the impacts of extreme heat in the specific region of 
California. One recent study that looked at 19 heatwave events which took place over 11 years 
in California found that on peak heat-wave days hospital admissions increased by 7% on 
average, with a total of 11,000 excess hospitalizations due to heat over the period (Guirguis et 
al., 2014). They also found that the south coast (the region including San Diego) is among the 
regions in California that will face the strongest impacts, with a 5.6% increase in daily morbidity 
at heat-wave peak for the region (Guirguis et al., 2014). The differing temperature thresholds 
between regions at which health impacts occur indicates acclimation to local climatological 
conditions and the need for policies that account for this regional variation. Other research has 
attempted to understand future heat-related mortality in California using projections of climate 
change through the 21st century, finding that mortality due to heat could increase in the state 
by a factor of four under the worst-case IPCC climate change scenario (Sheridan et al., 2012). In 
the San Diego region, this estimate is much higher, with a more than seven-fold expected 
increase in heat-related mortality over the 21st century under the worst-case IPCC climate 
change scenario (Sheridan et al., 2012).  
 
Heat vulnerability factors 
 

Crucially, the public health impacts of extreme heat do not affect everyone equally. 
Rather, we see heterogeneity in the impacts of extreme heat based on demographic, 
geographic, and socioeconomic factors. One group that is particularly vulnerable to the effects 
of extreme heat is the elderly (WHO, 2018). Older adults, and similarly young children, are 
more vulnerable to the health impacts of heat due to being less able to efficiently 
thermoregulate; and older adults are also more likely to live alone or already be taking 
medications that impact fluid balance, further increasing their vulnerability (Bobb et al., 2014). 
Other populations may be more at risk of exposure as well, such as outdoor workers and the 
homeless (WHO, 2018). Individuals experiencing homelessness have limited access to services 
that provide heat relief, such as cooling stations, while simultaneously already living under 
stressful conditions, putting them at very high risk for heat impacts (Baker, 2019). Despite being 
one of the most vulnerable populations, people experiencing homelessness tend to be 
neglected in climate action plans. Another oft-overlooked sector of the population that is more 
vulnerable to heat is outdoor/manual workers, such as farm workers and construction workers, 
who in combination with spending a large amount of time in the sun, are also more likely to be 
performing intensive physical labor, exacerbating their risk for conditions such as heat stroke 

https://journals.ametsoc.org/doi/full/10.1175/2007JAMC1480.1
https://journals.ametsoc.org/doi/full/10.1175/2007JAMC1480.1
https://link.springer.com/article/10.1007/s10584-011-0316-1
https://journals.ametsoc.org/doi/pdf/10.1175/JAMC-D-13-0130.1
https://journals.ametsoc.org/doi/pdf/10.1175/JAMC-D-13-0130.1
https://journals.ametsoc.org/doi/pdf/10.1175/JAMC-D-13-0130.1
https://link.springer.com/article/10.1007/s10584-012-0437-1
https://link.springer.com/article/10.1007/s10584-012-0437-1
https://www.who.int/globalchange/publications/heat-and-health/en/
https://jamanetwork.com/journals/jama/article-abstract/2084889
https://www.who.int/globalchange/publications/heat-and-health/en/
https://escholarship.org/uc/item/3s49k58k
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(Xiang et al., 2014). In fact, US agricultural workers experience a heat-related mortality rate 20 
times larger than for other civilian workers (Xiang et al., 2014).  
 

Access to air conditioning (AC) is another social factor that impacts heat vulnerability. 
Access to AC can provide protection from the health impacts of extreme heat (Chestnut et al., 
1998), but generally speaking, access is dependent on socioeconomic factors including race and 
level of income (Guirguis et al., 2018). For instance, in San Diego County, coastal residents in 
higher income brackets are more likely to have access to AC than coastal residents in lower 
income brackets, homeowners are more likely to have access to AC than renters, and Whites 
are more likely to have access to AC than Hispanics (Guirguis et al., 2018). Additionally, San 
Diego experiences a geographical effect, in which coastal residents are more vulnerable to 
extreme heat, and experience higher mortality rates during extreme heat events than those 
who live inland due to differences in acclimation (Guirguis et al., 2018).  
 
The micro-urban heat island effect 
 

There is also another important form of spatial heterogeneity in impacts associated with 
urban settings. Within a city, different neighborhoods may experience vastly different impacts 
due to heat. The urban heat island effect, in which cities experience much hotter temperatures 
than their more rural surroundings (with differences sometimes reaching up to 12°C (EPA, 
2020)), is a well-established phenomenon in urban settings (Rizwan et al., 2008). But within a 
city, there is further geographic variability in temperature, and some areas, called micro-urban 
heat islands, can be much hotter than other parts of the same city (Aniello et al., 1995). Micro-
urban heat islands (MUHIs) result from an energy imbalance in which artificial structures such 
as buildings and paved surfaces trap heat, and an absence of vegetation exacerbates the issue 
by depriving an area of the cooling effects associated with tree cover (Yow, 2007; Aniello et al., 
1995). MUHIs, and microclimates in a broader sense, can be measured in a variety of ways, as 
demonstrated in the literature on the subject (Schinasi et al., 2018). Though they are defined as 
areas of an urban setting that are hotter than other areas, they can be measured using more 
than just air temperature or surface temperature (though these measures are used) (Schinasi et 
al., 2018). Because MUHIs are directly dependent on factors such as allocation of green space, 
vegetation cover, and impervious surface cover, these very factors can themselves be used as 
measures of MUHIs. Schinasi et al., 2018 reviews the literature on microclimate indicators, 
finding that MUHIs can be accurately captured and predicted by visualizing the spatial 
distribution of some of these factors such as percentage tree cover, level of greenness or NDVI 
(Normalized Difference Vegetation Index), settlement density, access to open space, proximity 
to a large body of water, and more (Schinasi et al., 2018). Results of this study are summarized 
in Table 1, adapted from the paper.   
 

MUHIs are a crucial determinant of spatial vulnerability to heat. The risk of mortality on 
hot days has been found to be significantly higher for those who live in MUHIs (Smargiassi et 
al., 2009). And those living in hotter parts of a city and areas with less vegetation have a higher 
risk of morbidity and mortality related to high ambient temperatures than those who live in 
areas with lower surfaces temperatures or more vegetation (Schinasi et al., 2018). Not only is it 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4202759/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4202759/
https://www.sciencedirect.com/science/article/pii/S146290119800015X
https://www.sciencedirect.com/science/article/pii/S146290119800015X
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2017GH000127
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2017GH000127
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2017GH000127
https://www.epa.gov/heat-islands
https://www.sciencedirect.com/science/article/pii/S1001074208600194?via%3Dihub
https://www.sciencedirect.com/science/article/pii/0098300495000335
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1749-8198.2007.00063.x
https://www.sciencedirect.com/science/article/pii/0098300495000335
https://www.sciencedirect.com/science/article/pii/0098300495000335
https://www.sciencedirect.com/science/article/pii/S001393511731678X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S001393511731678X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S001393511731678X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S001393511731678X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S001393511731678X?via%3Dihub
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2701553/pdf/HZT-63-08-0659.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2701553/pdf/HZT-63-08-0659.pdf
https://www.sciencedirect.com/science/article/pii/S001393511731678X?via%3Dihub
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true that people living in neighborhoods with high settlement density, sparse vegetation, and 
low access to open space experience significantly higher ambient temperatures when 
compared to other neighborhoods; but the people who are most likely to live in these most 
vulnerable neighborhoods are people of low socioeconomic status (SES) and people of color 
(Harlan et al., 2006). Additionally, people living in these warmer neighborhoods tend to have 
fewer resources available to them to help cope with extreme heat, making them even more 
vulnerable (Harlan et al., 2006). A summary of selected epidemiological studies highlighting the 
potential role of MUHIs in modulating heat-related health impacts is presented in Table 1 
below.  
 

Paper Outcome Study Pop. Study Period Location Microclimate Indicator 

Smargiassi, 
2009 

Natural cause 
mortality 

All residents June-Aug 
1990-2003 

Montreal, 
Canada 

Land surface temperature 

Goggins, 
2012 

Natural cause 
mortality 

All residents June-Sept 
2001-2009 

Hong Kong Urban heat island index 

Goggins, 
2013 

Natural cause 
mortality 

All residents May-Oct 1999-
2008 

Kaohsiung 
City, Taiwan 

Urban climate map 

Madrigano, 
2013 

All cause 
mortality 
following acute 
MI, acute MI 

Patients ages 
25+ 
hospitalized 
with 
independently 
confirmed 
acute MI  

April-Oct 1995, 
1997, 1999, 
2001, 2003 

Worcester, 
MA 

Recreation/conservation area, having 
a large (> 100,000 m2) lake or 
reservoir within 400m of residence, 
elevation, greenness (mean NDVI), 
housing density, number of units in 
building; with all characteristics 
evaluated individually 

Xu, 2013 All cause 
mortality 

All residents May-Oct 1999-
2006 

Barcelona, 
Spain 

Percentage of residents perceiving 
little surrounding greenness, 
percentage of single dwellings (as 
opposed to apartment blocks) at 
census tract level, percent tree cover 
around residence 

Burkart et 
al., 2016 

All cause 
mortality 

Ages 65+ June-Aug 
1998-2008 

Lisbon, 
Portugal 

Spatial mean land surface 
temperature at parish level, greenness 
(NDVI) at parish level, mean distance 
to the Atlantic Ocean and Tagus 
Estuary Coast for the entire parish 

Gronlund, 
2015 

Cardiovascular 
and respiratory 
disease 
mortality 

Ages 65+ May-Sept 
1990-2007 

8 cities in 
Michigan, US 

Percent vegetation 

Gronlund, 
2016 

Emergency 
hospitalizations 
for heat, renal, 
or respiratory 
causes 

Ages 65+ May-Sept 
1992-2006 

109 US cities, 
with effect 
estimates 
combined by 
meta-analysis 

Percent vegetation 

Ho, 2016 All cause 
mortality 

All residents 1998-2014; 
restricted 
based on daily 
mean air T 
values 

Vancouver, 
Canada 

Heat exposure maps for land surface 
temperature, daily air temperature, 
maximum daily humidex 

Milojevic, 
2016 

All cause 
mortality 

All residents June-Aug 
1993-2006 

London, 
England 

Urban heat island 

Son, 2016 All cause 
mortality 
except external 
causes 

All residents May-Sept 
2000-2009 

Seoul, Korea Greenness (NDVI) at the 
administrative area converted to a 
percentage scale 

https://www.sciencedirect.com/science/article/pii/S027795360600373X
https://www.sciencedirect.com/science/article/pii/S027795360600373X


 9 

Kondo et 
al., 2020 

All cause 
mortality 

Ages 18+  2014-2025 
(projections) 

Philadelphia, 
PA 

Tree canopy cover 

Table 1: Selection of papers on the protective effects of green spaces, adapted from Tables 1 and 2 in Schinasi et al. (2018), with 
the addition of Kondo et al. This list is not exhaustive, but provides an overview of some of the previous studies in the field, and 
the microclimate indicators they used to measure MUHI.  
 

Techniques for mitigating and adapting to extreme heat 
 
Given the vast and unequal health impacts associated with extreme heat and MUHIs, 

and the fact that climate change is projected to bring increased frequency, intensity, and 
duration of extreme heat events, it is imperative that action be taken to mitigate this public 
health issue. One strategy to reduce the health threat of extreme heat is the implementation of 
extreme heat early warning systems. The National Weather Service (NWS) issues extreme heat 
alerts based on temperature thresholds chosen by its various Weather Forecast Offices across 
the nation (Vaidyanathan et al., 2019). These heat early warning systems are meant to alert the 
public of upcoming extreme temperatures and reduce risk by providing information on how to 
avoid health impacts, but data on their efficacy has been mixed, with some studies claiming 
that they decrease mortality (Ebi et al., 2004), and others claiming that there is little evidence 
that they lead to reduced mortality in the general population (Heo et al., 2019). These warning 
systems are also not without complications. There is sometimes a mismatch between the 
temperatures at which health impacts become apparent and the temperatures at which a heat 
warning is sent out, due mainly to a lack of regionally specific health data to base these alerts 
on (Vaidyanathan et al., 2019; Guirguis et al., 2018). Furthermore, while heat early warning 
systems are an important component of protecting public health during a heat wave, they are 
reactive short-term strategies rather than proactive long term solutions. A more sustainable 
policy for protecting public health during extreme heat should involve long term strategies that 
can reduce the burden of extreme heat by preventing or mitigating extreme temperatures 
through urban landscape modification. A variety of mitigation strategies exist, including 
reducing energy consumption (Yow, 2007), installing cool/green roofs, planting trees and 
vegetation, and using “cool” paving materials that increase albedo (Zhou and Shepherd, 2009). 
One strategy that seems to not only be promising in terms of mitigating the health impacts of 
heat, but is also easily actionable and comes with a plethora of beneficial side effects, is 
increasing urban green space.  
 

Urban greening (i.e. increasing the amount of trees and vegetation in a city) reduces 
ambient air temperatures through the production of shade, which blocks solar radiation from 
reaching surfaces and then transmitting that heat into the surrounding air, as well as through 
evapotranspiration from soils and plants, a process that uses surrounding heat to convert water 
into water vapor (Yow, 2007; Son et al., 2016). The cooling effects of green spaces can be quite 
strong – sometimes up to 7°C cooler than less vegetated surrounding areas – and their cooling 
impact can stretch as far as several hundred meters beyond their boundaries (Zhang et al., 
2017). This can translate directly into avoided negative health impacts when temperatures 
become extreme. Illustrating this fact, one recent meta-analysis determined that the level of 

https://www.sciencedirect.com/science/article/pii/S2542519620300589
https://pubmed.ncbi.nlm.nih.gov/30833395/
http://www1.udel.edu/SynClim/BAMS_Ebi_Kalkstein.pdf
https://journals.lww.com/environepidem/FullText/2019/10001/Efficacy_of_Heat_Wave_Warning_System_in_Reducing.886.aspx
https://pubmed.ncbi.nlm.nih.gov/30833395/
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2017GH000127
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1749-8198.2007.00063.x
https://link.springer.com/article/10.1007/s11069-009-9406-z
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1749-8198.2007.00063.x
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5071166/pdf/nihms817510.pdf
https://www.sciencedirect.com/science/article/pii/S0169204617300907
https://www.sciencedirect.com/science/article/pii/S0169204617300907
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surrounding greenness is inversely associated with all-cause mortality, concluding that green 
space management should be considered as a public health intervention (Rojas-Rueda, 2019). 
 

But health benefits actually go beyond avoiding heat-related mortality. Green spaces 
provide many health co-benefits, including removal of air pollutants. Trees and shrubs in urban 
settings can filter gaseous air pollutants by taking them up through their stomata, and these 
plants can also filter particulate matter by collecting it on their leaf surfaces (Nowak et al., 
2006). Green space has also been demonstrated to have positive impacts on mental health 
(Nutsford et al., 2013, Wolch et al., 2014). Studies have found that anxiety and mood disorder 
treatment counts decrease with proximity to usable green space (Nutsford et al., 2013), and 
there appears to be a strong relationship between self-reported stress, cortisol secretion, and 
quantity of nearby green space, indicating that proximity to green space may be associated 
with improved mental health (Thompson et al., 2012). Green space may also decrease general 
stress, based on findings that individuals living near more green space were less affected by 
stressful life events than those with lower access to green space (Van den Berg et al., 2010). 
Access to green space also may provide physical health benefits, as those who live closer to 
green space are more likely to achieve daily exercise recommendations of 30 minutes or more, 
and are less likely to be overweight or obese (Coombes et al., 2010). Figure 2 illustrates some of 
the positive health effects of trees, a form of green space.  

 

 
Figure 2: Trees provide health benefits by reducing temperatures through shade and filtering harmful air pollutants. Image 
source: Erica Simek Sloniker, The Nature Conservancy. 

 
On top of serving as a way to mitigate the effects of climate change (particularly 

extreme heat), urban greening also provides an opportunity to mitigate climate change itself by 
reducing atmospheric carbon dioxide through carbon sequestration (Nowak and Crane, 2002), 
and urban greening could therefore be incorporated as part of a city’s climate action and 
mitigation plans. Large green spaces with a thick soil layer, when placed strategically, also 
provide the ability to make a city more resilient to flooding (Kim et al., 2016) by acting like a 

https://www.thelancet.com/journals/lanplh/article/PIIS2542-5196(19)30215-3/fulltext
https://www.sciencedirect.com/science/article/pii/S1618866706000173
https://www.sciencedirect.com/science/article/pii/S1618866706000173
https://www.sciencedirect.com/science/article/pii/S0033350613002862
https://www.sciencedirect.com/science/article/pii/S0169204614000310#bib0180
https://www.sciencedirect.com/science/article/pii/S0033350613002862
https://www.sciencedirect.com/science/article/pii/S0169204611003665
https://www.sciencedirect.com/science/article/pii/S0277953610000675#aep-article-footnote-id3
https://www.sciencedirect.com/science/article/pii/S0277953609008156
https://www.sciencedirect.com/science/article/pii/S0269749101002147
https://www.mdpi.com/2071-1050/8/2/134
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sponge to absorb and store water following extreme precipitation events (Farrugia et al., 2013). 
Urban greening is also an appealing option for cities because it is a strategy that is easily and 
clearly actionable. Simply planting and maintaining more vegetation is fairly simple, and in 
addition to providing health co-benefits, it has an aesthetic value as well (Yow, 2007). Other 
strategies such as implementing “cool” streets that can either increase the reflectivity or 
permeability of paved roads (Zhou and Shepherd, 2009), or reducing energy consumption 
through improved building design (Yow, 2007), are good options for reducing urban heat, but 
may be more difficult to implement in an already developed urban center. Green space is just 
one part of reducing the effects of micro-urban heat islands, and as many of the above-
mentioned strategies as possible should be used in combination to effectively tackle the 
problem; but increasing a city’s green space is an actionable, effective, simple, and relatively 
inexpensive (Vieira et al., 2018) place to start.  
 
Objectives of this project  
 

This capstone project aims to understand the relationship between green spaces and 
the impacts of extreme heat on human health, and intends to quantify the health benefits 
associated with different greening scenarios, using San Diego as a case study. This approach, 
the first of its kind, is important because it goes beyond describing past heat-health impacts in 
the region and how they might have been modified by green space, and uses this data to 
directly quantify the benefits of potential future increases in green space. This Health Impact 
Assessment approach is intended to aid political decision-makers in considering appropriate 
measures for adapting to and increasing resiliency in San Diego in the face of extreme heat 
events.  

 
San Diego County as case study  
 

San Diego is a natural fit for this study because it already experiences extreme heat and 
the resulting health impacts. For instance, a recent study showed that the total number of 
hospitalizations attributable to heat from 1999–2013 in San Diego County was a staggering 
11,708 (McElroy et al., 2018). Furthermore, in the San Diego region, it is expected that climate 
change will make this extreme heat issue worse – i.e. more frequent, intense, and prolonged 
heat waves should be expected.  Evidence points to many coastal Californian cities, including 
San Diego, facing increases in extreme heat much higher than for inland Californian cities 
(Miller et al., 2008). In fact, the City’s 2015 Climate Action Plan identifies increased temperature 
and heat waves as one of seven main impacts for the city of San Diego (City of San Diego, 2015).  
 

In addition, urban settings such as San Diego frequently experience spatial inequalities, 
including in green space allocation. Accessibility of green space often decreases as the level of 
neighborhood social deprivation increases, and green spaces in more socially deprived 
neighborhoods tend to be of lower quality (Hoffimann et al., 2017). These kinds of spatial 
inequalities in green space distribution are affected by factors such as income and race (Heynen 
et al., 2006). San Diego, like a majority of urban centers, experiences spatial inequality based on 

https://www.tandfonline.com/doi/full/10.1080/21513732.2013.782342
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1749-8198.2007.00063.x
https://link.springer.com/article/10.1007/s11069-009-9406-z
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1749-8198.2007.00063.x
https://www.sciencedirect.com/science/article/pii/S0013935117316535#bib9
https://journals.ametsoc.org/doi/full/10.1175/2007JAMC1480.1
https://www.sandiego.gov/sites/default/files/final_july_2016_cap.pdf
https://www.mdpi.com/1660-4601/14/8/916
https://journals.sagepub.com/doi/pdf/10.1177/1078087406290729
https://journals.sagepub.com/doi/pdf/10.1177/1078087406290729
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socioeconomic factors, implying a possible overlap between more socially deprived 
neighborhoods and the areas which are most in need of green space. 
 

There are other spatial and demographic inequalities that make the issue of differential 
vulnerability to heat particularly notable in San Diego. San Diego has the fourth largest 
homeless population in the United States as of 2018 (Warth, 2018), and, as previously 
described, people experiencing homelessness are particularly vulnerable to the effects of 
extreme heat (Baker, 2019). San Diego’s population is also aging, and it is estimated that by 
2050 up to one quarter of San Diego’s residents will be above the age of 65 (Messner et al., 
2011), resulting in a very large sector of the population that will be at high risk of health 
complications due to heat. Additionally, as previously noted, the health impacts of extreme 
heat tend to occur on a gradient ranging from inland to coast due to the residents of these 
inland regions being more acclimated to high temperatures (Guirguis et al., 2018). All of these 
factors make San Diego of particular interest when analyzing disparities in heat-related health 
outcomes and how green spaces might act to modify them.  
 

Currently, the City of San Diego does have some programs in place to implement urban 
greening strategies. The 2015 Climate Action Plan identifies green spaces as offering 
recreational value while simultaneously serving “as a climate change adaptation resource 
where they can alleviate the heat island effect and potentially reduce the impact of flooding” 
(City of San Diego, 2015). One of the actions outlined in the City’s Climate Action Plan is the 
Urban Tree Planting Program, which aims to achieve 15% urban tree canopy coverage by 2020 
and 35% urban tree canopy coverage by 2035, which the city estimated would bring reductions 
of 43,839 MT/CO2e and 102,290 MT/CO2e for each year respectively (City of San Diego, 2015). 
The City also adopted an Urban Forestry Program five year plan in 2017 (City of San Diego, 
2017). It is evident that the City of San Diego cares about increasing green spaces in its city 
boundaries. It is my hope that my research can help provide decision makers at the City of San 
Diego with guidance on where and how to implement urban greening strategies in order to 
effectively reduce inequalities in vulnerability, as well as to provide reasoning and guidance for 
other cities and incorporated areas in San Diego County to implement equitable greening 
strategies as well.  
 
 

METHODS 
 
Study Design 
 
 This study uses a health impact assessment approach in order to explore and quantify 
the potential health benefits of multiple types of green space interventions and their ability to 
minimize the micro-urban heat island effect in San Diego County. Figure 3, below, depicts the 
three-step approach utilized in this study. 
 

https://www.sandiegouniontribune.com/news/homelessness/sd-me-homeless-report-20181217-story.html
https://escholarship.org/uc/item/3s49k58k
https://link.springer.com/article/10.1007/s10584-011-0316-1
https://link.springer.com/article/10.1007/s10584-011-0316-1
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2017GH000127
https://www.sandiego.gov/sites/default/files/final_july_2016_cap.pdf
https://www.sandiego.gov/sites/default/files/final_july_2016_cap.pdf
https://www.sandiego.gov/sites/default/files/final_adopted_urban_forestry_program_five_year_plan.pdf
https://www.sandiego.gov/sites/default/files/final_adopted_urban_forestry_program_five_year_plan.pdf


 13 

 
Figure 3: Flowchart depicting the general layout and methodology of this study.  

 
Data sources for green space proxies  
 

This project looked at five main proxies for green space, eventually choosing three as 
the main focus. These five indexes, interpolated at the zip code level, are described below and 
include NDVI, Tree Canopy, Park Access, Tree Cover, and Impervious Surface Cover. For this 
study, I will focus on Tree Canopy and Impervious Surface Cover as I found that they are the 
most important predictors of heat-related health impacts in San Diego. Furthermore, with the 
help of my capstone chair, Tarik Benmarhnia, we created a composite index incorporating all 
five indexes (see details below).  

 
NDVI (or Normalized Difference Vegetation Index) is a measure of the “greenness” of a 

given area of land, and is obtained by satellite imagery. It was ascertained per the NOAA 
Climate Data Record (CDR) NDVI remote sensing product. NDVI is calculated by taking (NIR – 
VIS)/(NIR + VIS) where NIR is the near-infrared radiation reflected by vegetation and VIS is the 
visible radiation reflected by vegetation (NASA, 2000). Values range from -1 to 1, with 1 
representing completely green, lush vegetation, values around 0 indicating dead vegetation or 
barren areas, and values near -1 usually representing surfaces such as water. The NDVI CDR 
measures and summarizes surface vegetation activity across the globe and has been used in 
several epidemiological studies (see Table 1). NDVI is calculated using the spectral bands in the 
visible and near infrared wavelengths, which are derived from the Advanced Very High 

https://earthobservatory.nasa.gov/features/MeasuringVegetation/measuring_vegetation_2.php
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Resolution Radiometer (AVHRR) on NOAA polar orbiting satellites. This NDVI CDR product 
generates daily measurements of NDVI on a 0.05°x0.05° grid from 1981 to 10 days before the 
present date with data obtained from eight orbiting satellites. The NDVI data was obtained 
from Hansen et al. (in review), in which Google Earth Engine was utilized to create an average 
annual NDVI measure for each census tract in San Diego County. This was done by filtering the 
NDVI daily images to the desired year and selecting the “NDVI” band. The reduceRegion 
command, which applies a “reducer” to all pixels in a specific region, was employed to calculate 
the mean of all pixels within a census tract, resulting in one annual mean NDVI measure per 
tract. In order for the proxy data to be consistent with the hospitalization data, I converted 
these census tract-level results to zip code level by using the results from CalEnviroScreen 3.0 
(OEHHA, 2018), which provided a corresponding census tract for each zip code in California.  

      
Tree Canopy is,  a measure of the amount of tree canopy present in an area, specifically 

the “Population-weighted percentage of the census tract area with tree canopy” (HPI 
Documentation (Delaney et al., 2018)). This data was obtained from the California Healthy 
Places Index, which in turn obtained the data from the California Department of Public Health. 
This data was originally presented by census tract and was therefore converted to zip code level 
for this study. 

 
Park Access similarly measures “Percentage of the population living within a half-mile of 

a park, beach, or open space greater than 1 acre” (HPI Documentation (Delaney et al., 2018)). 
Data for this measure also came from the California Healthy Places Index and was converted 
from census tract to zip code level.  
 

Impervious Surface Cover measures the imperviousness of land surfaces – i.e. to what 
degree they are covered in impervious materials such as pavement. These data were obtained 
from Hansen et al. (in review), but the National Landcover Database (NLCD) is available in 
Google Earth Engine from USGS. This is a 30m resolution dataset that exists in 8 iterations from 
1992 to 2016. Hansen et al. used the 2006 image to get the imperviousness estimate, which is 
the only image in the collection containing the pertinent bands within the 2004-2013 study 
period for which hospitalization data is available. They then calculated the proportion of a given 
zip code with imperviousness land surfaces to obtain this measure.  

 
Finally, Tree Cover represents a percentage of land surface area covered by trees based 

on satellite imagery, and was also obtained from Hansen et al. (in review), using Google Earth 
Engine and the approach described above, but using the 2011 image to obtain Tree Cover.  

 
Creating a composite index for greenness in San Diego County 

 
In order to incorporate all proxies of greenspace (or lack thereof for impervious 

surfaces), capstone chair Tarik Benmarhnia created an aggregate greenness index. We used a 
principal component analysis as typically applied to such composite indexes (Joint Research 
Centre, 2008; Benmarhnia et al., 2013; Rice et al., 2014). We used the 5 different variables 
described above at the zip code level. We calculated principal components and used scores 

https://oehha.ca.gov/calenviroscreen/report/calenviroscreen-30
https://healthyplacesindex.org/wp-content/uploads/2018/07/HPI2Documentation2018-07-08-FINAL.pdf
https://healthyplacesindex.org/wp-content/uploads/2018/07/HPI2Documentation2018-07-08-FINAL.pdf
https://healthyplacesindex.org/
https://healthyplacesindex.org/
https://healthyplacesindex.org/wp-content/uploads/2018/07/HPI2Documentation2018-07-08-FINAL.pdf
https://www.oecd.org/sdd/42495745.pdf
https://www.oecd.org/sdd/42495745.pdf
https://www.liebertpub.com/doi/abs/10.1089/env.2013.0001
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4053913/
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from the first component (Overall Eigenvalue=2.78; 46% of total variance explained) for all zip 
codes. Variable-specific eigenvalues (from the first component) ranged from -0.46 for 
impervious surfaces to 0.45 for tree canopy. We then calculated a linear combination of 
variable-specific eigenvalues and each zip code specific value for the 5 variables of interest. We 
obtained a greenness index with a mean of 0 and a standard deviation of 1.60 (minimum and 
maximum index values were -2.82 and 4.63 respectively).  
 
Heat-attributable hospitalization data  

 
As the health outcome of interest, I relied on zip code estimates of heat-attributable 

hospitalization for the years 2004-2013 as estimated in Hansen et al. [in review]. Below is a 
brief description of the time-series approach adopted in that paper to estimate such heat-
attributable hospitalization at the zip code level.  

 
First, the authors defined for each zip code a heat wave day as any day where the 

maximum temperature was greater than or equal to the 95th percentile of the distribution of 
maximum temperatures across the warm season (May-September). Daily maximum 
temperature (°C) was derived from 1/16° (~6 km) gridded observed data from this dataset for 
all of California and interpolated for each zip code (Livneh et al. 2013). This method resulted in 
heat wave definitions that accounted for spatial variability by being specific to each zip code.  

 
They then collected data for hospitalizations in San Diego County for the years 2004 – 

2013 from the Office of Statewide Health Planning and Development (OSHPD). The following 
primary diagnoses were evaluated, as listed in the International Classification of Disease codes, 
9th Revision, Clinical Modification (ICD-9): acute myocardial infarction (MI) (410), acute renal 
failure (584), cardiac dysrhythmias (427), cardiovascular disease (CVD) (390–459), 
dehydration/volume depletion (276.5), essential hypertension (401), heat illness (992), 
ischemic heart disease (410–414), ischemic stroke (433–436), and all respiratory diseases (460–
519). These particular diseases were chosen because they have previously been linked to 
extreme temperature (Bunker et al, 2016; Li et al., 2015; Sherbakov et al., 2018). For this 
analysis, the authors grouped all causes of hospitalizations together. Only unscheduled 
hospitalizations were included.  Data were aggregated into daily counts for each zip code. 

 
Then, they estimated daily number of hospitalizations attributable to heat waves (using 

the definition above) for each zip code. For each heat wave (HW) day and for each zip code in 
the study period, they randomly selected 3 non-HW days that matched the HW day on month, 
weekday/weekend (binary variable), and zip code. These matched days were only included if 
they were above the 75th percentile of the warm season (May-September) distribution of daily-
maximum temperature for the zip code where the HW day is observed. Some of the heat wave 
days had only 3 matched days and thus 3 were chosen to avoid resampling of any days. This 
aimed at removing long term and seasonal trends and making HW and non-HW days as similar 
as possible regarding potential confounding variables including population size, age, 
race/ethnic composition and any other time-fixed variable at the zip code level. They then 
calculated the difference in number of hospitalizations between the HW day and the median of 

https://scholarcommons.scu.edu/cgi/viewcontent.cgi?article=1031&context=ceng
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4856745/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4454966/
https://pubmed.ncbi.nlm.nih.gov/28964966/
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the non-HW matches. Finally, they calculated the average of the contrast between all HW days 
and matched non-HW days for each zip code to obtain the count of hospital admission 
attributable to heat for each zip code. They used a bootstrap-T procedure, also known as the 
studentized bootstrap (Efron & Tibshirani, 1993; Wilcox, 2017) to obtain standard errors for 
each zip code.    

 
This quantity represents the average number of hospitalizations (for relevant ICD 

causes) for each HW day in each zip code. This quantity has been multiplied by 100 to represent 
the average number of hospitalizations for 100 heat waves (as defined above).  
 
Approach for Aim 1: Understanding the current distribution of green space in San Diego 
County 
  
 In order to understand how green space is spatially distributed across San Diego County, 
I used QGIS (version 3.10 ‘A Coruña’) for Mac to map each index at the zip code level. Tree 
cover, impervious surface cover, tree canopy, and park access were mapped as is, and NDVI 
was mapped not only for each individual year spanning from 2000-2019, but also as a 20-year 
average over this time period, and as NDVI change over time (calculated as (NDVI 2019–NDVI 
2000)/NDVI 2000). The aggregate index was also mapped. Some zip codes were excluded from 
the analysis due to incomplete data, which is why there are some empty zip codes in the 
resulting figures. Selected green space proxy maps are presented in Figure 5, with the rest 
presented in the Appendix. I also mapped three scenarios from CalEnviroScreen: Education, 
Unemployment, and Housing Burden (see Figure 6 and Appendix), which I use in Aim 3 as the 
basis for some equity-focused green space intervention scenarios.  
 
Approach for Aim 2: Understanding the heat-related health burden and its relationship to 
green space 
 

For the next part of the project, I aimed to quantify the relationship between hospital 
admissions attributable to heat and each selected greenness index of interest including Tree 
Canopy, Impervious Surface Cover and the Aggregate Index.  

 
To do this, I implemented random-effect meta-regressions in which the dependent 

variable was the zip code-specific average number of hospital admissions attributable to heat 
and the independent variables were Tree Canopy, Impervious Surface Cover and the Aggregate 
Index. The random effect meta-regression aims at quantifying the change in hospitalizations 
attributable to heat in relation to different green spaces indexes while accounting for the zip 
code statistical precision in hospitalizations. I used a separate model for each of these 3 
greenness indicators and estimated from these meta-regressions the regression coefficients 
(slope and 95% confidence interval [CI]). The slopes represent the change in hospital 
admissions attributable to heat for one unit increase in each greenness indicator. As the slope 
for Impervious Surface Cover was in the opposite direction as compared to Tree Canopy and 
the Aggregate Index, I multiplied it by -1 to represent a decrease in impervious surfaces and 
facilitate calculations and interpretations in the Aim 3 simulations. I then applied these slopes 

https://books.google.com/books/about/An_Introduction_to_the_Bootstrap.html?id=gLlpIUxRntoC
https://books.google.com/books?id=__0wDwAAQBAJ&pg=PT284&lpg=PT284&dq=wilcox+2017+bootstrap&source=bl&ots=dRqgYn-Q4I&sig=ACfU3U04T-GOFDja6kMsWepXNQRggYofDw&hl=en&sa=X&ved=2ahUKEwisxbK3z9fpAhUUFTQIHe4FCGMQ6AEwAXoECAsQAQ#v=onepage&q=wilcox%202017%20b
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to the set of scenarios in Aim 3 to simulate the expected change in hospital admissions 
attributable to heat for potential green space interventions. I conducted similar analyses for the 
other greenness indicators, the results of which are presented in the Appendix.  
 
 Additionally, I created a map of the zip code-level heat-attributable hospitalization data 
in QGIS, which is presented in Figure 7.  
 
Approach for Aim 3: Future scenarios for increasing green space & health impact assessment 

 
To understand the effects of increasing green space I created a number of different 

scenarios that involved manipulation of the index data. 33 scenarios were considered, which 
were separated into three categories: population-based approaches, targeted approaches, and 
proportionate universalism approaches (see Table 2 and Figure 4 for a summary). These three 
categories are loosely adapted from Benach et al. (2012) and are meant to illustrate various 
types of possible policy interventions. Given that extreme heat affects different populations to 
different extents, it’s especially important that policies aimed at tackling the health impacts of 
extreme heat tackle these health inequalities as well. These three different approaches are 
intended by Benach et al. to serve as a tool that can be used to see the different impacts that 
different types of intervention can have, and to help in creating policies that aim to reduce 
health inequalities. The three approaches are described in more detail as followed: 
 

A population-based approach delivers the same intervention to the whole population 
regardless of existing health or social inequalities. This approach was represented in my green 
space scenarios as a change in value of the three indexes (Tree Canopy Cover, Impervious 
Surface Cover, and the Aggregate Index) of 15% or 35% across all zip codes. These scenarios 
were chosen specifically to align with the goals that have already been outlined by the City of 
San Diego’s own Climate Action Plan to achieve 15% urban tree canopy coverage by 2020 and 
35% urban tree canopy coverage by 2035 (City of San Diego, 2015).  

 
The targeted approach delivers interventions only to the worst-off among the 

population. Here this approach was represented in three ways. The first of the targeted 
approach sub-categories involved increasing green space only in zip codes that fell below (or 
above, in the case of imperviousness) the mean value for that index (scenarios 2a–2f). The next 
targeted approach involved increasing green space only in zip codes that fell above the county-
wide mean for heat-attributable hospitalizations for the baseline period of 2004–2013 
(scenarios 2g–2i). The last of the targeted approach scenarios involved incorporating data from 
CalEnviroScreen 3.0 (OEHHA, 2018), a project of the California Office of Environmental Health 
Hazard Assessment (OEHHA). For these scenarios (2j–2r), green space was increased only in zip 
codes that fell in the upper quintiles of the Housing Burden, Unemployment, and Education 
variables (see Table 2 caption for definitions of these variables). 

 
Finally, the proportionate universalism approach involved increasing green space for the 

entire population, but by different amounts for different zip codes based on the distribution of 
social inequality. Values of the three CalEnviroScreen variables were analyzed for San Diego 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.824.250&rep=rep1&type=pdf
https://www.sandiego.gov/sites/default/files/final_july_2016_cap.pdf
https://oehha.ca.gov/calenviroscreen/report/calenviroscreen-30
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County zip codes and then divided into quintiles. For each variable, zip codes in the upper 
quintile (i.e. the most disadvantaged zip codes) received the largest increases in green space 
(30%). Zip codes in the lowest quintile received a lesser increase in green space of only 10%. 
The three quintiles between these two ends of the spectrum received green space increases of 
25%, 20%, and 15% based on their relative social inequalities.  
 

Approach Scenario Name Scenario Description 
Population-
based 
approach 

1a: Tree Canopy: 15% 
Increase 

Increase tree canopy cover by 15% for all zip codes 

1b: Tree Canopy: 
35% Increase 

Increase tree canopy cover by 35% for all zip codes 

1c: Imperviousness: 
15% Decrease 

Decrease impervious surface cover by 15% for all zip codes 

1d: Imperviousness: 
35% Decrease 

Decrease impervious surface cover by 35% for all zip codes 

1e: Aggregate Index: 
15% Increase 

Increase aggregate index by 15% for all zip codes 

1f: Aggregate Index: 
35% Increase 

Increase aggregate index by 35% for all zip codes 

Targeted 
approach 

2a: Tree Canopy: 
Below Mean Raise to 
Mean 

In zip codes where tree canopy cover is below the mean, increase tree canopy 
cover to be equal to the mean. In zip codes where tree canopy cover is above the 
mean, leave as is. 

2b: Tree Canopy: 
Below Mean Increase 
30% 

In zip codes where tree canopy cover is below the mean, increase tree canopy 
cover by 30%. In zip codes where tree canopy cover is above the mean, leave as is. 

2c: Imperviousness: 
Above Mean Drop to 
Mean 

In zip codes where impervious surface cover is above the mean, decrease 
impervious surface cover to be equal to the mean. In zip codes where impervious 
surface cover is below the mean, leave as is. 

2d: Imperviousness: 
Above Mean 
Decrease 30% 

In zip codes where impervious surface cover is above the mean, decrease 
impervious surface cover by 30%. In zip codes where impervious surface cover is 
below the mean, leave as is. 

2e: Aggregate Index: 
Below Mean Raise to 
Mean 

In zip codes where the aggregate index is below the mean, increase the aggregate 
index to be equal to the mean. In zip codes where the aggregate index is above the 
mean, leave as is. 

2f: Aggregate Index: 
Below Mean Increase 
30% 

In zip codes where the aggregate index is below the mean, increase the aggregate 
index by 30%. In zip codes where the aggregate index is above the mean, leave as 
is. 

2g: Tree Canopy: 
Above Mean Burden 
Increase 30% 

In zip codes where the burden of heat-attributable hospitalizations is above the 
mean, increase tree canopy cover by 30%. In zip codes where the burden is below 
the mean, leave as is. 

2h: Imperviousness: 
Above Mean Burden 
Decrease 30% 

In zip codes where the burden of heat-attributable hospitalizations is above the 
mean, decrease impervious surface cover by 30%. In zip codes where the burden is 
below the mean, leave as is. 

2i: Aggregate Index: 
Above Mean Burden 
Increase 30% 

In zip codes where the burden of heat-attributable hospitalizations is above the 
mean, increase the aggregate index by 30%. In zip codes where the burden is 
below the mean, leave as is. 

2j: Tree Canopy: 
Lowest Education 
Increase 30% 

In zip codes that fall in the upper quintile for San Diego Co. of CalEnviroScreen’s 
“Education” variable*, increase tree canopy cover by 30%. Otherwise, leave as is. 

2k: Tree Canopy: 
Highest 
Unemployment 
Increase 30% 

In zip codes that fall in the upper quintile for San Diego Co. of CalEnviroScreen’s 
“Unemployment” variable**, increase tree canopy cover by 30%. Otherwise, leave 
as is. 

2l: Tree Canopy: 
Highest Housing 
Burden Increase 30% 

In zip codes that fall in the upper quintile for San Diego Co. of CalEnviroScreen’s 
“Housing Burden” variable***, increase tree canopy cover by 30%. Otherwise, 
leave as is. 
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2m: Imperviousness: 
Lowest Education 
Decrease 30% 

In zip codes that fall in the upper quintile for San Diego Co. of CalEnviroScreen’s 
“Education” variable*, decrease impervious surface cover by 30%. Otherwise, 
leave as is. 

2n: Imperviousness: 
Highest 
Unemployment 
Decrease 30% 

In zip codes that fall in the upper quintile for San Diego Co. of CalEnviroScreen’s 
“Unemployment” variable**, decrease impervious surface cover by 30%. 
Otherwise, leave as is. 

2o: Imperviousness: 
Highest Housing 
Burden Decrease 
30% 

In zip codes that fall in the upper quintile for San Diego Co. of CalEnviroScreen’s 
“Housing Burden” variable***, decrease impervious surface cover by 30%. 
Otherwise, leave as is. 

2p: Aggregate Index: 
Lowest Education 
Increase 30% 

In zip codes that fall in the upper quintile for San Diego Co. of CalEnviroScreen’s 
“Education” variable*, increase the aggregate index by 30%. Otherwise, leave as is. 

2q: Aggregate Index: 
Highest 
Unemployment 
Increase 30% 

In zip codes that fall in the upper quintile for San Diego Co. of CalEnviroScreen’s 
“Unemployment” variable**, increase the aggregate index by 30%. Otherwise, 
leave as is. 

2r: Aggregate Index: 
Highest Housing 
Burden Increase 30% 

In zip codes that fall in the upper quintile for San Diego Co. of CalEnviroScreen’s 
“Housing Burden” variable***, increase the aggregate index by 30%. Otherwise, 
leave as is. 

Proportionate 
Universalism 
approach 

3a: Tree Canopy: 
Education-based 

In zip codes that fall in the upper quintile for San Diego Co. of CalEnviroScreen’s 
“Education” variable*, increase tree canopy cover by 30%. Lower the amount by 
which tree canopy cover is increased by intervals of 5% for each of the remaining 
four quintiles, ending with the lower quintile receiving an increase in tree canopy 
cover of only 10%.  

3b: Tree Canopy: 
Unemployment-
based 

In zip codes that fall in the upper quintile for San Diego Co. of CalEnviroScreen’s 
“Unemployment” variable**, increase tree canopy cover by 30%. Lower the 
amount by which tree canopy cover is increased by intervals of 5% for each of the 
remaining four quintiles, ending with the lower quintile receiving an increase in 
tree canopy cover of only 10%.  

3c: Tree Canopy: 
Housing Burden-
based 

In zip codes that fall in the upper quintile for San Diego Co. of CalEnviroScreen’s 
“Housing Burden” variable***, increase tree canopy cover by 30%. Lower the 
amount by which tree canopy cover is increased by intervals of 5% for each of the 
remaining four quintiles, ending with the lower quintile receiving an increase in 
tree canopy cover of only 10%.  

3d: Imperviousness: 
Education-based 

In zip codes that fall in the upper quintile for San Diego Co. of CalEnviroScreen’s 
“Education” variable*, decrease impervious surface cover by 30%. Lower the 
amount by which impervious surface cover is decreased by intervals of 5% for each 
of the remaining four quintiles, ending with the lower quintile receiving a decrease 
in impervious surface cover of only 10%.  

3e: Imperviousness: 
Unemployment-
based 

In zip codes that fall in the upper quintile for San Diego Co. of CalEnviroScreen’s 
“Unemployment” variable**, decrease impervious surface cover by 30%. Lower 
the amount by which impervious surface cover is decreased by intervals of 5% for 
each of the remaining four quintiles, ending with the lower quintile receiving a 
decrease in impervious surface cover of only 10%.  

3f: Imperviousness: 
Housing Burden-
based 

In zip codes that fall in the upper quintile for San Diego Co. of CalEnviroScreen’s 
“Housing Burden” variable***, decrease impervious surface cover by 30%. Lower 
the amount by which impervious surface cover is decreased by intervals of 5% for 
each of the remaining four quintiles, ending with the lower quintile receiving a 
decrease in impervious surface cover of only 10%.  

3g: Aggregate Index: 
Education-based 

In zip codes that fall in the upper quintile for San Diego Co. of CalEnviroScreen’s 
“Education” variable*, increase the aggregate index by 30%. Lower the amount by 
which the aggregate index is increased by intervals of 5% for each of the remaining 
four quintiles, ending with the lower quintile receiving an increase in the aggregate 
index of only 10%.  
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3h: Aggregate Index: 
Unemployment-
based 

In zip codes that fall in the upper quintile for San Diego Co. of CalEnviroScreen’s 
“Unemployment” variable**, increase the aggregate index by 30%. Lower the 
amount by which the aggregate index is increased by intervals of 5% for each of 
the remaining four quintiles, ending with the lower quintile receiving an increase 
in the aggregate index of only 10%.  

3i: Aggregate Index: 
Housing Burden-
based 

In zip codes that fall in the upper quintile for San Diego Co. of CalEnviroScreen’s 
“Housing Burden” variable***, increase the aggregate index by 30%. Lower the 
amount by which the aggregate index is increased by intervals of 5% for each of 
the remaining four quintiles, ending with the lower quintile receiving an increase 
in the aggregate index of only 10%.  

Table 2: Definitions for green space intervention scenarios. Each scenario is categorized into one of three main approach types, 
loosely based on Benach et al. (2012).  
*CalEnviroScreen 3.0 defines the “Education” variable as “Percent of population over 25 with less than a high school education” 
(OEHHA, 2018). 
**CalEnviroScreen 3.0 defines the “Unemployment” variable as “Percent of the population over the age of 16 that is 
unemployed and eligible for the labor force”(OEHHA, 2018). 
***CalEnviroScreen 3.0 defines the “Housing Burden” variable as “Percent housing burdened low income households,” where 
housing burdened refers to being “highly burdened by housings costs” (OEHHA, 2018; OEHHA, n.d.). 
 
 

 
Figure 4: Outline of the three types of intervention approaches adapted from Benach et al. (2012). 
 

Calculations for each scenario were performed in Microsoft Excel (version 15.30), with 
the proportionate universalism scenarios being calculated in Google Sheets. The strategy 
involved calculating for each zip code a value that represented the amount by which the given 
green space index would be increased by. For instance, if tree canopy cover in a given zip code 
had a value of 10 and the scenario being tested was an increase in green space of 15%, I 
multiplied 10 by 0.15 to get 1.5. This value represented the amount by which that index would 
be increased, and was then multiplied by the slopes obtained in Aim 2 between the selected 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.824.250&rep=rep1&type=pdf
https://oehha.ca.gov/calenviroscreen/report/calenviroscreen-30
https://oehha.ca.gov/calenviroscreen/report/calenviroscreen-30
https://oehha.ca.gov/calenviroscreen/report/calenviroscreen-30
https://oehha.ca.gov/calenviroscreen/indicator/housing-burden
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.824.250&rep=rep1&type=pdf
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index and the hospitalizations attributable to heat. This gave the value of heat-attributable 
hospitalizations that would be avoided when the given green space index is increased by a 
given amount for each scenario (in this example by 15%). A “new burden” was then calculated 
by subtracting this value from the original burden of heat-attributable hospitalizations 
associated with the zip code.  

 
Finally, a relative change in burden was calculated as a percent by subtracting this new 

burden from the original burden and diving by the original burden. It must be noted that when 
performing calculations on the Aggregate Index, a transformation needed to be performed, as 
some zip codes had negative values. For this reason, in scenarios that involved the Aggregate 
Index, a value of 3 was added to each zip code’s value to bring everything above 0 before 
performing the calculations described above.  

 
I then used QGIS to create maps of each of these 33 greening scenarios in order to 

visualize how their effects differed. For each scenario, I created a map representing the 
differential burden (i.e. the number of avoided heat-attributable hospitalizations) associated 
with the greening scenario. I also created maps for each scenario that represented the relative 
change in burden (compared to the baseline no-intervention hospitalization data) associated 
with that scenario, for a total of 66 maps (presented in Figure 8 and the Appendix). 

 
 

RESULTS 
  
Aim 1: Understanding the current distribution of green space in San Diego County 
 
 Figure 5 depicts the existing allocation of three proxies for green space: Tree Canopy 
Cover, Impervious Surface Cover, and the Aggregate Index. Maps of the remaining indexes 
(NDVI, Park Access and Tree Cover (non-HPI)) are presented in the Appendix. If each of the 
various indexes used here are thought of as proxies representing green space allocation, then 
these maps demonstrate a fairly consistent and expected trend of low levels green space in the 
most densely urbanized areas of San Diego County. We can also see a general trend of green 
space increasing as one moves inland and northward.  
  
 Of course, all of these indexes are variable in their distribution, and no index perfectly 
matches another. This is to be expected, as each index is only a proxy of green space – 
something that represents green space more-or-less but is not an exact measure of it. This is 
part of the motivation behind including an Aggregate Index, which incorporates data from all of 
the various proxies. For instance, Impervious Surface Cover does not perfectly map to tree 
canopy cover (or other proxies). Unlike the other indexes, Impervious Surface Cover is 
distributed in a much smoother gradient, with high levels of imperviousness near the coast and 
successively lower levels as you move inland. However, Tree Canopy is much more scattered 
relative to Impervious Surface Cover. How could two proxy measures of green space look so 
different? The reason is likely that some of the more inland zip codes with very low levels of 
imperviousness almost exclusively contain natural landscapes such as desert and chaparral, 
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which could be considered green space, but do not actually contain trees, yet they will show up 
more intensely than city parks that are located in otherwise urbanized zip codes.  
  

 
Figure 5: Maps of three selected green space proxy indexes. Clockwise from upper left: Tree Canopy Cover, Impervious Surface 
Cover, and the Aggregate Index. Dark green represents the zip codes with higher levels of Tree Canopy Cover and Aggregate 
Index values, but colors are inverted in the map of Impervious Surface Cover, with dark green representing areas with the least 
impervious surfaces. Some zip codes are missing as a result of incomplete data.  

 

 
Figure 6: Distribution of housing burden in San Diego County. Dark red indicates the highest housing burdened zip codes. 
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 Figure 6 depicts the distribution of housing burdened households across San Diego 
County, and represents one of the three equity-related variables that I used later (in Aim 3) as a 
basis for some of my green space intervention scenarios (maps of the Education and 
Unemployment variables can be found in the Appendix.). The distribution of housing burden 
(and similarly the two other CalEnviroScreen variables) is somewhat similar to the distribution 
of green space. That is, areas that have lower amounts of green space (AKA the proxies shown 
in Figures 5 and 6) tend to also have higher levels of unemployment, or tend to be more 
socially disadvantaged.  
 

Aim 2: Understanding the heat-related health burden and its relationship to green space 
  

Data for heat-attributable hospitalizations were mapped (Figure 7) in order to 
understand the current distribution of the heat-health burden and so this distribution could 
then be compared to the distributions of green space. There is a general trend of higher levels 
of hospitalization towards the coast, and lower levels more inland, which is likely due in part to 
the population being mainly located towards the coast, and partially as a result of the trend 
described in Guirguis et al. (2018), in which coastal residents are more vulnerable to heat than 
those who live inland. There are also notable hot spots of high levels of hospitalization, 
especially in and around downtown San Diego, in areas such as Chula Vista and El Cajon, and in 
some parts of northern San Diego County. These hotspots roughly match with the areas that 
have the least green space as well as the more socially deprived parts of the county (see maps 
in Aim 1). 

 
Meta-regressions between each of the various green space indexes and heat-

attributable hospitalizations were performed in order to gain an understanding not just of how 
green space and heat-health impacts are related, but which indexes represent this relationship 
well in San Diego specifically. All of these factors were chosen because it is already known that 
they have the potential to reduce MUHIs. Those indexes that represented this already-
established feature of urban landscapes well were the indexes that were chosen for the next 
part of the project. Relevant statistics are presented in Table 3 and the Appendix. The crucial 
value here is the slope, which represents this relationship, and provides a value by which heat-
attributable hospitalizations would change if the given green space index were to be adjusted 
by one unit. 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2017GH000127
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Figure 7: Heat-attributable hospitalizations by zip code from the period 2004-2013 (data from Hansen et al. (in review.). Values 
are presented as hospitalizations per 100 heat wave days. Areas of dark red experience the highest burden of hospitalizations.   

 
Regression Intercept Slope Std. Error Lower 95% Upper 95% 

Hospitalizations vs. Imperv. 0.1941 
 

0.003415 
 

0.0009606 
 

0.001509 
 

0.005321 
 

Hospitalizations vs Tree Canopy (HPI) 0.4969 
 

-0.0317 
 

0.01184 
 

-0.05523 
 

-0.008163 
 

Table 3: Results of the linear regressions between heat-attributable hospitalization and two green space proxies: Impervious 
Surface Cover and Tree Canopy. This table only includes results for the indexes used in Aim 3; the remaining regressions 
involving the other indexes (Tree Cover, NDVI, and Park Access) can be found in the Appendix.  

 
Aim 3: Future scenarios for increasing green space & health impact assessment 
 
 Results for all 33 scenarios can be found in Table 4 and their distribution is depicted in 
Figure 9. The scenarios produced a wide range of results in terms of “Total Benefits,” which is 
defined as the total avoided heat-hospitalizations for a given scenario. Total benefits ranged 
from a minimum of 39.14 avoided hospitalizations (scenario 2q) to a maximum of 472.9 
avoided hospitalizations (scenario 1b) per 100 heat wave days, with an average of 176.4 across 
all scenarios. These avoided hospitalizations when compared to the original hospitalization data 
for a zip code provide a percentage change in hospitalization (“Average Relative Change”). The 
minimum relative change was 1.31% (scenario 2q) and the maximum was 28.4% (scenario 1b), 
with an average relative change of 9.54%. Maps of some selected scenarios are included in 
Figure 8 (maps for all remaining scenarios can be found in the Appendix).  
 

Approach Scenario Total Benefits per 
100 HW Days (SE) 

Average 
Relative Change 

(SE) 

Population-based 
approach 

1a: Tree Canopy: 15% Increase 202.7 (0.09752) 12.2% (1.72%) 

1b: Tree Canopy: 35% Increase 472.9 (0.2276) 28.4% (4.00%) 

1c: Imperviousness: 15% Decrease 159.4 (0.1126) 8.70% (2.28%) 

1d: Imperviousness: 35% Decrease 371.9 (0.2628) 20.3% (5.33%) 

1e: Aggregate Index: 15% Increase 128.8 (0.08458) 8.43% (1.56%) 
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1f: Aggregate Index: 35% Increase 300.5 (0.1973) 19.7% (3.65%) 

Targeted 
approach 

2a: Tree Canopy: Below Mean Raise to Mean 218.0 (0.3168) 9.62% (1.96%) 

2b: Tree Canopy: Below Mean Increase 30% 177.1 (0.1960) 8.61% (2.28%) 

2c: Imperviousness: Above Mean Drop to Mean 335.4 (0.4084) 16.4% (6.12%) 

2d: Imperviousness: Above Mean Decrease 30% 259.4 (0.2665) 13.0% (4.50%) 

2e: Aggregate Index: Below Mean Raise to Mean 174.7 (0.2940) 6.91% (1.34%) 

2f: Aggregate Index: Below Mean Increase 30% 80.68 (0.1148) 3.63% (0.77%) 

2g: Tree Canopy: Above Mean Burden Increase 30% 193.3 (0.2468) 5.09% (0.60%) 

2h: Imperviousness: Above Mean Burden Decrease 30% 181.7 (0.2335) 4.11% (0.51%) 
2i: Aggregate Index: Above Mean Burden Increase 30% 119.8 (0.1782) 3.16% (0.42%) 

2j: Tree Canopy: Lowest Education Increase 30% 59.06 (0.1467) 1.76% (0.41%) 

2k: Tree Canopy: Highest Unemployment Increase 30% 58.95 (0.1592) 5.30% (2.45%) 

2l: Tree Canopy: Highest Housing Burden Increase 30% 68.16 (0.1760) 4.97% (2.36%) 

2m: Imperviousness: Lowest Education Decrease 30% 81.41 (0.2051) 6.43% (4.73%) 

2n: Imperviousness: Highest Unemployment Decrease 30% 83.04 (0.2146) 7.75% (4.85%) 

2o: Imperviousness: Highest Housing Burden Decrease 30% 100.8 (0.2341) 8.25% (4.85%) 

2p: Aggregate Index: Lowest Education Increase 30% 40.87 (0.1194) 1.31% (0.36%) 

2q: Aggregate Index: Highest Unemployment Increase 30% 39.14 (0.1244) 4.86% (2.80%) 

2r: Aggregate Index: Highest Housing Burden Increase 30% 39.54 (0.1220) 4.37% (2.75%) 

Proportionate 
Universalism 
approach 

3a: Tree Canopy: Education-based 258.0 (0.1248) 14.3% (1.80%) 

3b: Tree Canopy: Unemployment-based 245.4 (0.1190) 14.9% (2.68%) 

3c: Tree Canopy: Housing Burden-based 248.6 (0.1462) 14.7% (2.48%) 

3d: Imperviousness: Education-based 202.2 (0.1916) 7.97% (0.94%) 

3e: Imperviousness: Unemployment-based 208.9 (0.2068) 8.80% (1.35%) 

3f: Imperviousness: Housing Burden-based 225.7 (0.2213) 9.61% (1.45%) 

3g: Aggregate Index: Education-based 170.6 (0.1359) 10.0% (1.48%) 

3h: Aggregate Index: Unemployment-based 159.9 (0.1305) 11.0% (2.86%) 
3i: Aggregate Index: Housing Burden-based 153.6 (0.1155) 10.4% (2.74%) 

Table 4: Summary of results for each green space intervention scenario, broken down into the three approaches adapted from 
Benach et al. (2012). Total Benefits are defined as the avoided hospitalizations across all zip codes associated with each scenario 
and are represented here as the number of avoided hospitalizations per 100 heat wave days. The column Average Relative 
Change represents the average change in hospitalizations across all zip codes for each scenario when compared to the baseline 
pre-intervention hospitalization data. Standard errors are included in parentheses. The highlighted rows indicate the scenarios 
represented in Figure 8, which include three scenarios from each approach, covering each of the three chosen indexes per 
approach. This choice attempts to capture a range of different results while keeping the number of maps presented in the main 
text at a minimum – the remaining rows are presented as maps in the Appendix.  

 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.824.250&rep=rep1&type=pdf
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Figure 8: Selection of 9 maps representing the total benefits associated with various scenarios of green space intervention 
strategies. I included three maps for each intervention approach (population-based, targeted, and proportionate universalism), 
with a representative from each index for each of these approaches in order to cover a range of different results. The remaining 
figures for all other scenarios can be found in the Appendix.  
 
 

 
Figure 9: This figure illustrates the distribution of the results for each of the 33 scenarios broken down by approach type.  
 

 

DISCUSSION 
 
Summary of main findings 
 
 This project aimed to understand the relationship between heat, health, and green 
space allocation in San Diego County, and to quantify the potential benefits of various greening 
strategies. I found that both green space and the health burden associated with extreme heat 
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are unevenly distributed across San Diego County, and that these two factors are associated 
such that areas with less green space will have higher levels of heat-related hospitalizations – as 
has already been established in other studies from around the world (see Table 1). My novel 
finding is that a wide range of intervention strategies focused on greening demonstrate 
quantitatively that greening does reduce the health burden associated with heat, and that this 
impact varies depending on the type of intervention strategy used.  
 
Significance of this study 
 
 This research is set apart from previous studies in the field in that it is the first effort to 
actually quantify the total benefits associated with multiple greening strategies and indexes at 
such a fine scale in relation to heat-related health impacts specifically. This study goes beyond 
previous research, which has established this link between green space and health and even 
provided estimates of total benefits, by incorporating zip code level data and a wide variety of 
scenarios. Because the dose-response function derived in Aim 2 was specific to the zip code 
level in San Diego, it results in data that is more sound for the purposes of informing policy in 
San Diego. Furthermore, this study incorporated a variety of indexes/proxies for green space 
that go beyond the usual index of choice in similar studies, NDVI (see Table 1). One of these 
indexes was a unique aggregate index created specifically for this project that incorporated all 
five of the included proxies for green space. Finally, this research goes beyond simply 
understanding the protective role of green space indexes to actually creating 33 different 
evidence-based greening scenarios that allow us to compare and contrast the benefits 
associated with these different strategies.  
 
Detailed discussion of results 
 
 In general terms, I found that the population-based and proportionate universalism 
approaches resulted in higher benefits on both absolute (total burden) and relative (change in 
burden) scales when compared to targeted approaches (see Figure 9). As hypothesized, 
targeted approaches by definition only include a subsection of the population, though this 
subsection generally includes those who are most disadvantaged and therefore most in need of 
the intervention. The average total benefits across scenarios broken down by approach are: 
272.7 avoided hospitalizations per 100 HW days on average for the population based 
approaches, 128.4 for the targeted approaches, and 208.1 for the proportionate universalism 
approaches. However, there are some exceptions, and many of the scenarios included in the 
targeted approach category do result in total benefits that are on par with the population-
based and proportionate universalism approaches.  
 
 Taking a closer look within the targeted approach category, we can see that the 
scenarios that result in the highest total benefits are those that either involve i) increasing 
green space in the zip codes that have the lowest levels of green space (roughly scenarios 2a–
2f), or ii) increasing green space in the zip codes that have the highest pre-existing health 
burden (i.e. those that have the largest numbers of hospitalizations attributable to heat before 
intervention; scenarios 2g–2i). The scenarios that involve increasing green space in zip codes 
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that score highly in the 3 CalEnviroScreen measures (Education, Unemployment, and Housing 
Burden) (scenarios 2j–2r) result in fewer total benefits; however, it should be noted that 
scenarios 2j–2r are fundamentally different from scenarios 2a–2i in that they involve changing 
green space levels in a much smaller amount of zip codes. Scenarios 2j–2r increase green space 
only in the zip codes that score in the upper quintile for the various CalEnviroScreen measures, 
whereas scenarios 2a–2i involve adjusting green space in zip codes that are either above or 
below the mean of some measure.  
 
 Comparing scenarios based on the index used (Tree Canopy, Imperviousness, or the 
Aggregate Index) is also insightful. When narrowing in on the proportionate universalism 
approach, it is apparent that results tend to vary not based on the CalEnviroScreen measure 
used, but rather most variability in total benefits depends on the green space index used. 
Apparently, within the proportionate universalism approach, scenarios that involve increasing 
Tree Cover (scenarios 3a–3c) resulted in the highest total benefits on average, followed by 
scenarios that involve decreasing Imperviousness (scenarios 3d–3f), then by scenarios that 
involve increasing the Aggregate Index (scenarios 3g–3i). This trend seems to be consistent over 
for the population-based approaches as well, in which scenarios that focus on Tree Canopy 
again result in the highest levels of total benefits, with those that focus on the Aggregate Index 
resulting in the lowest levels of total benefits. However, the trend does not seem to persist 
within the targeted approach strategies.  
 
 It is worth noting that these results likely represent an underestimate of total health 
benefits. This study exclusively considered hospitalization data, which represents only the tip of 
the iceberg. There are likely to be many people who experience negative health impacts related 
to heat but who do not seek medical care. These people would not have been considered in the 
original data pertaining to hospitalizations attributable to heat, off of which this entire study 
was based. Therefore, they are not included in this study’s results even though green space 
interventions would help them as well. It is also safe to assume that if green space intervention 
can lead to decreased hospitalizations for heat-related morbidity, it would also lead to 
decreased heat mortality, another facet that this study did not consider. 
 
Project limitations  
 
 Though this project provides compelling quantitative evidence to support the use of 
green space to mitigate the micro-urban heat island effect, it is not without its limitations. To 
start, because of the nature of the hospitalization data, my analysis essentially assumes that all 
hospitalizations occur in the same zip codes where the heat exposure occurred, which is almost 
definitely not the case. In reality, it’s likely that at least some people must travel across zip 
codes to reach a hospital, and there is therefore some level of error in these calculations as I 
cannot account for this fact. 

 Another limitation to this study is that some of the values of total benefit and average 
relative change for the different green space scenarios represent extremes that may not be 
feasible in reality. For instance, while my results show that scenario 1b could prevent 472.9 
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heat-attributable hospitalizations per 100 heatwave days, it’s likely impossible to actually 
increase green space by 35% in all zip codes across the county, especially because this study 
does not account for the wide variety of climates and ecosystems that exist across the county. 
It is also likely unreasonable, for instance, to increase tree cover in some of the more arid or 
desert-like parts of the county. Similarly, impervious surface cover was used as a proxy of green 
space in this analysis with the intention of understanding how having less of it could be 
beneficial in terms of health, but it is probably not feasible to actually remove surfaces such as 
pavement and cement on a large scale. Policymakers should therefore interpret these 
imperviousness results to simply mean that keeping some parts of an urban environment 
reserved for natural landscapes can be immensely beneficial.  

 It must also be noted that while I worked with the data that was most readily available 
to me, some of it is not as recent as would have been ideal. For instance, the Impervious 
Surface Cover measure obtained from Google Earth Engine dates back to 2006. I therefore am 
relying on data that could be outdated, as impervious surface cover has almost certainly 
changed to some extent in San Diego County in the past 14 years.  
 
 My research also used only one definition for a heat wave day – this definition being 
“any day above the 95th maximum temperature zip code specific distribution during the warm 
season,” adapted from Hansen et al. (in review). However, a plethora of heat wave definitions 
exist and will likely provide differing results from what I found. Future research may therefore 
want to consider different definitions of heat waves, as well as other climatological factors such 
as humidity and wind, which were left out of this study.  
 
 Finally, this study looked at green space (and imperviousness) specifically, but these are 
only one facet of the micro-urban heat island effect, and many other mitigation strategies exist. 
Though green space expansion is effective, it should be incorporated as one part of a broader 
strategy to reduce the health effects of MUHIs. On top of this, it may not be feasible to increase 
green space as much as desired in parts of a city that are already highly developed. City 
planners should also keep in mind that trees can take up to 10-30 years to mature to the point 
that their positive effects are realized (Health Canada, 2020). Other measures that can be used 
to help minimize the effects of MUHIs aside from expanding green space and vegetation 
include: “climate-sensitive” urban design strategies, such as increasing the surface albedo or 
reflectivity of roads and buildings; integrating water features (natural or man-made) into urban 
designs; implementing natural ventilation features in new developments; and reducing energy 
usage via energy retrofits, implementation of energy-efficient design, and more (Health 
Canada, 2020).  

A note on the potential negative impacts of increasing green space 

 Though increasing green space seems like a win-win strategy, municipal officials must 
take extra care in how they implement green space interventions across neighborhoods, as 
increasing green space can also come with unintended negative side effects. Efforts to 
implement green space improvements in low-income or socially deprived neighborhoods, while 

https://www.canada.ca/content/dam/hc-sc/documents/services/health/publications/healthy-living/reducing-urban-heat-islands-protect-health-canada/Reducing-Urban-Heat-EN.pdf
https://www.canada.ca/content/dam/hc-sc/documents/services/health/publications/healthy-living/reducing-urban-heat-islands-protect-health-canada/Reducing-Urban-Heat-EN.pdf
https://www.canada.ca/content/dam/hc-sc/documents/services/health/publications/healthy-living/reducing-urban-heat-islands-protect-health-canada/Reducing-Urban-Heat-EN.pdf
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well-intentioned, can sometimes hasten gentrification (Cole et al., 2017). This is particularly 
important to keep in mind when creating a greening strategy that emphasizes social equity, as 
uncareful planning may result in an outcome that is antithetical to the desired goals.  

To avoid these unintended effects, local governments should work in tandem with 
residents to understand their needs and desires and to create strategies that are “just green 
enough” so that they can improve health outcomes while avoiding skyrocketing property values 
(Wolch et al., 2014). Increasing green space while simultaneously avoiding the threat of 
gentrification may involve implementing smaller scale green spaces, and green spaces that are 
more scattered, as opposed to large parks (Wolch et al., 2014). Governments can also place an 
emphasis on planting street trees in at-risk neighborhoods. Though planting street trees may be 
relatively expensive and labor-intensive (compared to planting trees in existing parks) (Garrison, 
2017), the investment may be necessary if a city’s goal involves decreasing health inequality. 
Additionally, the city could explore options such as providing financial assistance to 
individuals/families in more socially deprived communities who plant trees on their private 
property. 

Green space implementation has incredible potential to provide positive outcomes, 
especially to socially deprived groups. As discussed in the introduction, green spaces not only 
provide health benefits in terms of mitigating extreme heat, but also provide a number of other 
societal and health benefits ranging from opportunities for recreation, physical health, mental 
health, enhancing social ties, and even aesthetic enjoyment (Zhou and Rana, 2012). For this 
reason, it’s important that this possibility of gentrification is not used as an excuse to avoid the 
use of greening strategies, but is instead met head on and considered thoroughly in urban 
planning projects that emphasize equity. 

Heat and health in the context of COVID-19 

 The upcoming summer season is anticipated to pose a unique threat when it comes to 
heat waves and health due to the ongoing outbreak of the 2019 Novel Coronavirus (COVID-19). 
Stay at home orders across the country are requiring people to stay indoors, limiting access to 
normally available cooling stations as well as access to public parks and other green space. 
Because many of the people who are most vulnerable to the health impacts of extreme heat 
are people who may lack access to AC, or elderly folks who may live alone, and these folks will 
be required to stay home as much as possible this summer, it’s critical that municipalities plan 
to accommodate these people in the midst of the ongoing COVID-19 outbreak, especially as 
temperatures this summer are expected to break records (City of New York, 2020). Some cities, 
such as New York, are already acting to adapt to these new circumstances. New York City is 
planning to distribute over 74,000 air conditioning units to some of its most vulnerable 
residents, low-income seniors, in preparation for extreme summer temperatures (City of New 
York, 2020). The city is also planning to continue offering cooling centers this summer with new 
adjustments to uphold social distancing, and is petitioning the New York Public Service 
Commission for $72 million to help 450,000 low-income New Yorkers afford to keep their AC 
running over the hot summer months (City of New York, 2020).  

https://pubmed.ncbi.nlm.nih.gov/28822977/
http://ced.berkeley.edu/downloads/research/LUP.parks.pdf
http://ced.berkeley.edu/downloads/research/LUP.parks.pdf
https://journals.sagepub.com/doi/abs/10.1177/2399808317737071
https://journals.sagepub.com/doi/abs/10.1177/2399808317737071
https://www.emerald.com/insight/content/doi/10.1108/14777831211204921/full/html
https://www1.nyc.gov/office-of-the-mayor/news/350-20/mayor-de-blasio-covid-19-heat-wave-plan-protect-vulnerable-new-yorkers
https://www1.nyc.gov/office-of-the-mayor/news/350-20/mayor-de-blasio-covid-19-heat-wave-plan-protect-vulnerable-new-yorkers
https://www1.nyc.gov/office-of-the-mayor/news/350-20/mayor-de-blasio-covid-19-heat-wave-plan-protect-vulnerable-new-yorkers
https://www1.nyc.gov/office-of-the-mayor/news/350-20/mayor-de-blasio-covid-19-heat-wave-plan-protect-vulnerable-new-yorkers
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 New York is setting an example, but all municipalities need to create plans for protecting 
the vulnerable during this pandemic. And there are many other potential threats associated 
with extreme heat and COVID-19 transmission that must be taken into account. For instance, 
heat early warning system efficacy may be lessened due to the steady influx of COVID-19-
related health warnings, and the threat of extreme heat may not be taken as seriously in the 
midst of a pandemic (Martinez et al., 2020). Additionally, the co-morbidities related to heat 
that were discussed at the beginning of this paper (cardiovascular, respiratory, and renal 
diseases) are largely the same co-morbidities associated with COVID-19 (Martinez et al., 2020). 
Now, more than ever, cities must plan to protect the vulnerable from the impacts of extreme 
heat. 
 
 

CONCLUSIONS 
 
  The demonstrated ability of extreme heat to lead to adverse health outcomes and even 
death, coupled with the looming threat of rising temperatures brought on by climate change, 
together represent a dire need for cities and municipalities to adopt extreme heat adaptation 
strategies. In this study, I found that the use of green space as a heat-wave adaptation strategy 
shows promise in terms of reducing hospitalizations attributable to heat in 33 different 
greening scenarios in San Diego County, California.  
 
 My findings illustrate that out of a wide range of greening approaches, almost all had a 
strong impact in terms of reduced hospitalizations, with the strongest benefits in the 
population-based and proportionate universalism approaches. These results exemplify that 
there is no one-size-fits-all approach to greening strategies. Rather, there are numerous ways 
they can be implemented with positive results. Legislators should therefore consider the many 
different options that exist and find the approach that is best suited for the needs of their given 
city. It is my hope that this research can demonstrate to local governments – especially those in 
large urban centers where heat-health impacts are compounded by the micro-urban heat island 
effect – that not only do greening strategies work, but they are an actionable choice, and there 
are many options for how to implement them.  
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APPENDIX 
 

I. Remaining Green Space Index Maps 
 
 

Figure A 1: Maps of NDVI in San Diego County over the years 2000-2019. The map on the left depicts the average value for each 
zip code over this 20-year period. The map on the right depicts the change in NDVI over this time period, with negative values 
representing a decrease in NDVI and positive values representing an increase. 

 
 

 
Figure A 2: Map of Park Access in San Diego, where Park Access is defined as “Percentage of the population living within a half-
mile of a park, beach, or open space greater than 1 acre” (HPI Documentation). 

https://healthyplacesindex.org/wp-content/uploads/2018/07/HPI2Documentation2018-07-08-FINAL.pdf
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Figure A 3: Map of Tree Cover, defined as percentage of land surface area covered by trees; based on satellite imagery from 
2011. Data obtained from Hansen et al. (in review), originally from Google Earth Engine. 

 
 

II. Remaining CalEnviroScreen Variable Maps 
 

 
Figure A 4: Map of the distribution of education level in San Diego County. Dark red indicates zip codes with the highest 
percentage of people over 25 with less than a high school education.  
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Figure A 5: Map of the distribution of unemployment in San Diego County. Dark red indicates zip codes with the highest percent 
of unemployed people over the age of 16.  

 
 

III. Full Regression Results 
 

Regression Intercept Slope Std Error Lower 95% Upper 95% 

Hospitalizations vs. Tree 
Cover 0.331121 -0.005725 0.009557047 -0.024683449 0.013233772 

Hospitalizations vs. Imperv 0.1941413 0.0034151 0.000960623 0.001509437 0.005320672 

Hospitalizations vs. NDVI 
Avg 0.4812 -0.3124 0.40603265 -1.119200511 0.494355942 

Hospitalizations vs. NDVI 
Change 0.32968 0.0482 0.177836298 -0.305155158 0.401558714 

Hospitalizations vs. Tree 
Canopy (HPI) 0.49688 -0.0317 0.011836929 -0.05523336 -0.008163389 

Hospitalizations vs. Park 
Access (HPI) 0.236883 0.0013436 0.000991564 -0.000627942 0.003315049 

Table A 1: Results of the linear regressions between heat-attributable hospitalization and each of the six green space 
indexes/proxies that were used in this study and in the calculation for the Aggregate Index.  
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IV. All Greening Scenario Maps 

 
a. Population-based Approach Maps 
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Figure A 6 – Figure A 11: Maps representing the total benefits (avoided hospitalizations) and relative change in hospitalizations 
associated with scenarios 1a –1f. 
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b. Targeted Approach Maps 
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Figure A 12 – 29: Maps representing the total benefits (avoided hospitalizations) and relative change in hospitalizations 
associated with scenarios 2a –2r. 
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c. Proportionate Universalism Approach Maps 
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Figure A 30 – 38: Maps representing the total benefits (avoided hospitalizations) and relative change in hospitalizations 
associated with scenarios 3a – 3i. 

 




