Lawrence Berkeley National Laboratory

LBL Publications

Title

PacBio Only Assembly with Low Genomic DNA Input

Permalink

https://escholarship.org/uc/item/5vh9f32m

Authors

Zhao, Zhiying Tsai, Yu-Chih Clum, Alicia et al.

Publication Date

2013-03-26

PacBio Only Assembly with Low Genomic DNA Input

Zhiying Zhao^{1*}, Yu-Chih Tsai², Alicia Clum¹, Katherine Munson¹, Chris Daum^{1, 3}, Stephen W. Turner², Jonas Korlach², Len A. Pennacchio¹, Feng Chen¹

¹Department of Energy Joint Genome Institute // LBNL - Walnut Creek, CA

²Pacific Biosciences – Menlo Park, CA

³Lawrence Livermore National Laboratory – Livermore, CA

^aTo whom correspondence may be addressed. E-mail: ZYZhao@lbl.gov

March 25, 2013

ACKNOWLEDGMENTS:

The work conducted by the US Department of Energy (DOE) Joint Genome Institute is supported by the Office of Science of the DOE under Contract Number DE-AC02-05CH11231. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government, or any agency thereof, or the Regents of the University of California.

DISCLAIMER:

[LBNL] This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or The Regents of the University of California.

[LLNL] This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or

PacBio Only Assembly with Low Genomic DNA Input

service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

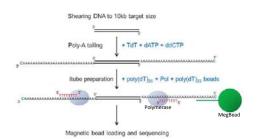
PacBio Only Assembly with Low Genomic DNA Input

Chen1

Zhiying Zhao^{1*}, Yu-Chih Tsai², Alicia Clum¹, Katherine Munson¹, Chris Daum¹, Stephen W. Turner², Jonas Korlach², Len A. Pennacchio¹, Feng Chen¹

1. Department of Energy, Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598.

2. Pacific Biosciences, 1380 Willow Rd., Menlo Park, CA, 94025


INTRODUCTION

The assembly and analysis of microbial species on earth remains a largely unexplored area of life. This is partially due to their inability to be cultured but also based on the large historic cost of drafting and finishing individual microbial species genomes.

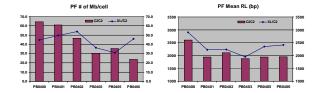
The single-molecule real-time (SMRTTM) sequencing platform developed by Pacific Biosciences (PacBio) offers several benefits including Single Molecule real-time analysis, longer read length at fast speed, low sequencing redundancy and bias. Thus, it was used at JGI as a quick-turnaround and cost-effective solution for finishing microbial genomes.

Construction of PacBio library by traditional protocol still requires micrograms of genomic DNA. In many cases, getting high quantity of genomic DNA remains as a major challenge. Recently, PacBio developed a more efficient library construction method using terminal deoxynucleotidyl transferase (TdT), which makes it possible to obtain sufficient sequencing data for assembly from significantly smaller amount of genomic DNA. We have tested and validated this newly developed method. Preliminary analysis results suggested that this technology can be used for microbial genome assembly with PacBio only data.

PRINCIPLE OF THE METHOD

LIBRARY CONSTRUCTION

Ten bacterial samples (various GC% and genome size) are selected for validation. The library creation process begins with fragmenting genomic DNA (100-200ng) to 10kb using Covaris Gtube, followed by damage repair, quick exonuclease treatment and PolyA tailing. Ampure SPRI beads are used throughout library preparation process to select and purify sample DNA. The total preparation time is shorter then standard SMRTbell library construction processes. The library could be constructed within 4hours.

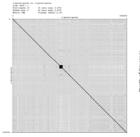

Sample Info	Input	Library Info			
Sample Name	GC%	Genome Size (MB)	ng	ng	Yield %
Tolumonas sp. BRL6-1	47	4.1	100	81	81%
Gillisia sp. JM1	34	5.4	100	72	72%
Teredinibacter sp. strain 991H.S.0a.06	50	7.2	200	160	80%
Geopsychrobacter electrodiphilus DSM 16401	53	5.0	200	136	68%
Hippea medeae KM1	43	4.7	181	123	68%
Desulfospira joergensenii DSM 10085	50	6.3	70	45	65%
Streptomyces sp. WmmB714	72	6.6	200	152	76%
Nocardia sp. BMG111209	69	9.1	200	127	63%
Nocardia sp. BMG51109	68	8.8	116	94	81%
Meiothermus ruber DSM 1279	63	3.1	100	73	73%

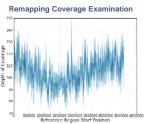
SEQUENCING RUN AND RESULTS

Sequencing run was done with Magbead loading, stage start, and 120min movies on either V2 or V3 chips, targeting 100x coverage per genome.

Sample Info	Sequencing Cher	Sequencing Results						
Sample Name	GC%	Genome Size (MB)	C2/C2	XL/C2	PF # of Reads/cel	PF Mean RL (bp)	PF # of Mb/cell	PF Mean RQ
Tolumonas sp. BRL6-1	47	4.1	12	4	10225	2950	29.9	82.5%
Gillisia sp. JM1	34	5.4	12	4	11714	2848	32.9	81.2%
Teredinibacter sp. strain 991H.S.0a.06	50	7.2	6	6	20000	2755	54.4	83.1%
Geopsychrobacter electrodiphilus DSM 16401	53	5.0	4	5	26325	2101	54.7	83.0%
Hippea medeae KM1	43	4.7	6	2	22597	2156	48.4	79.8%
Desulfospira joergensenii DSM 10085	50	6.3	6	5	17268	1911	33.0	80.1%
Nocardia sp. BMG111209	69	9.1	8	8	15729	2146	33.3	82.3%
Nocardia sp. BMG51109	68	8.8	4	8	16762	2263	38.6	82.3%
Meiothermus ruber DSM 1279	63	3.1	6	0	29513	1899	55.7	83.3%

Differences between sequencing chemistries: XL/C2 tends to give longer read length. There is no clear trend for per cell output in terms number of bases.

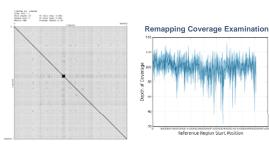



DATA ANALYSIS AND RESULTS

Data analysis with HGAP (de novo assembly using TdT read data only) and subsequent SMRT analysis for base methylation detection.

Two examples are presented here:

Tolumonas sp. BRL6-1: HGAP produced 1 contig with 3,598,394 bases.



Remapping Quality Examination

	# of Pool Piler Foods # of Mapped Seads # of Mapped Seads # of Mapped Sead (angl) With Percentile Mapped Read (angl) Maximum Mapped Read (angl)	146573 300052997 bp 2774 bp gh 6626 be	Mean Mapped Sub # of Mapped Subre # Mapped Subre Mean Mapped Su Mean Mapped Fo Mean Max Subre	reads of Bases dread Langth & Subread Langth	84.75% 146627 200619205 be 2721 be 6 be 2722 be		
	# Of Mapped Reads	Mean Mapped Read Length	# Of Stapped Subreads	# Of Mapped Subreed Base		Mean Mapper Subread Accuracy	
All Boyes	146373	2723 to	146507	298619395 hp	2729 bp	84.75%	

Gillisia sp. JM1: HGAP produced 1 contig with 4,066,858 bases.

Remapping Quality Examination

m6A methylation motifs were also detected in both genomes.