
UCSF
UC San Francisco Electronic Theses and Dissertations

Title
ADC as an early indicator of breast cancer response to neoadjuvant treatment

Permalink
https://escholarship.org/uc/item/5vj2714t

Author
Li, Elizabeth

Publication Date
2015
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5vj2714t
https://escholarship.org
http://www.cdlib.org/


ADC as an early indiaHor of response to neoadjuvant therapy 

I HhSfh 

Utbmtued in partial satisfaction of the revustrenseitis lbs' the deexee of 

MASTER OF SCIENCE 

RADUATE DIVISION 

UNIVERSITY OF CALIFORNIA, SAN FRANCISCO 



! ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



! iii 

Acknowledgement 

 

I would like to thank my advisor Dr. Nola Hylton and Dr. Ella Jones, for exposing me to 

the field of Breast MR and for their guidance and direction both professionally and 

personally.  I would like to thank Jessica Gibbs, whose attention to detail and constant 

optimism was indispensable. Thank you to Dr. David Newitt, for being generous with his 

time and helping me work through IDL issues. I am grateful to Dr. Wen Li and Dr. Lisa 

Wilmes, for sharing their knowledge and expertise with me, and for many engaging 

intellectual conversations.  

 

I would like to thank Dr. Roland Krug, Dr. Alastair Martin, and Dr. Viola Rieke for their 

guidance and time as members of my thesis committee.  

 

Lastly I would like to thank my family and friends for their support as I completed this 

work. 

 

 

 

 

 

 

 



! iv 

ADC as an early indicator of breast cancer response to neoadjuvant treatment 

Elizabeth Li 

 

Abstract  

 
Quantitative MRI can accelerate drug development by providing non-invasive methods 

to determine treatment response. The primary aim of this study is to assess the change 

in normalized apparent diffusion coefficient values (ΔADCN), derived from diffusion-

weighted MRI (DWI), as an alternative method to standard dynamic contrast-enhanced 

(DCE) MRI for assessing response of primary breast tumors to neoadjuvant 

chemotherapy. Secondary aims are to: assess the influence of image quality scoring on 

the predictive performance of ΔADCN; test correlations between ΔADCN and change in 

functional tumor volume (ΔFTV) at early (ΔFTV2) and late (ΔFTV4) time points; and 

assess ΔADCN of responders versus non-responders.   

 

Methods:  

134 patients with primary breast cancers ≥2.5 cm in diameter and high MammaPrint 

scores were included. 62 and 72 patients received standard and experimental drug 

regimens respectively. ΔADCN was determined from DW images acquired at baseline 

and three weeks into chemotherapy. FTV (70% DCE-MRI enhancement at 2.5 minutes 

post-contrast) was used as an indication of tumor response throughout treatment. 

Pathologic complete response (pCR) was determined by histopathology following 
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surgery. Whole tumor regions of interest (ROIs) and quality scoring was performed on 

126 cases, of which 102 had passing quality scores. 

  

Results:  

The area under the receiver operating characteristic (ROC) curve (AUC) for ΔADCN was 

0.653 (95% confidence interval (CI) [0.538, 0.768], p=0.00605). The estimated AUC for 

ΔFTV2 was not significantly higher than ΔADCN (mean difference: -0.011±0.086, 

p=0.896). Using a ΔFTV4 cutoff of -97.8% as a surrogate endpoint, the AUC estimates 

were not significantly greater than 0.5.  

 

Image quality did not impact the predictive ability or distribution of ΔADCN, which 

increased by 0.836% (95% CI [-0.48, 0.026], p=0.34) with quality scoring. ΔADCN was 

not very correlated with ΔFTV2 or ΔFTV4. ΔADCN increased by 9.74% (95% CI [2.24, 

17.51], p=0.012) with response in the full cohort.  

 

Summary:  

These findings suggest that ΔADCN may be similar to ΔFTV2 in predictive performance. 

While changes in ADC and FTV both reflect changes in tissue properties, they are 

indicative of independent biological processes.  DWI is a promising non-contrast 

technique that can provide additional information to better predict treatment response. 
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Introduction: 

Quantitative magnetic resonance imaging (MRI) is increasingly used in breast 

cancer screening, diagnosis and staging. Dynamic contrast-enhanced MRI (DCE-MRI) 

has unprecedented high sensitivity and resolution to delineate tissue morphology and 

tumor microvasculature in three dimensions. Comparison of DCE signal enhancement 

at sequential time points provides information, such as functional tumor volume (FTV), 

to predict treatment response earlier in treatment than other clinical assessments [1].  A 

promising technique that is still being explored is diffusion weighted imaging (DWI). DWI 

signal intensity is derived from thermal or Brownian motion of water and therefore does 

not require the use of contrast agents.  DWI measurements reflect tissue cellularity 

through apparent diffusion coefficients (ADC).  Due to the dense packing of cells in 

breast tumors, water movement is restricted and ADC values are low relative to normal 

tissues [2]. In response to chemotherapy, cell density decreases, water diffusivity 

increases and ADC increases.  DCE-MRI and DWI offer complimentary 

characterizations of breast tumors and are acquired as part of the Investigation of Serial 

Studies to Predict Your Therapeutic Response With Imaging and Molecular Analysis 2 

(I-SPY 2 Trial), a clinical trial investigating the use of MRI and biomarkers to predict 

response to chemotherapy in breast cancer [3].  

 

I-SPY 2 Trial: 

The I-SPY 2 Trial is a multi-center neoadjuvant treatment trial integrating molecular 

and imaging biomarkers for identifying promising new drugs with a high probability of 
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success in a subsequent phase III trial (figure 1).  I-SPY 2 uses an adaptive design that 

monitors the change in FTV measured by MRI at serial time points during the treatment 

so that, as the trial proceeds, randomization schema is adjusted accordingly.  Drugs are 

able to “graduate” from I-SPY 2 when the Bayesian predictive probability of achieving 

80% success in a subsequent phase III study, but can be dropped for futility if statistical 

significance is not reached after a predetermined number of patients have been 

assigned to receive that particular experimental treatment. This minimizes the risk of 

exposure to therapies deemed unfavorable to patients with certain tumor types, and 

allows for more targeted phase III trials that include fewer patients [3].  

Neoadjuvant chemotherapy not only reduces tumor size to conserve breast tissue, 

but it also allows for non-invasive monitoring of tumor response for the assessment of 

new drug efficacy. Not all patients are responsive to systemic chemotherapy, and they 

may be unnecessarily exposed to toxic treatment without clear clinical benefits. 

Targeted therapies based on gene expression and receptor status may be more 

effective and are increasingly being used in the customization of patient care. For 

example, luminal tumors are responsive to hormone therapy, whereas human epidermal 

growth factor receptor 2 positive (HER2+) tumors can be treated with a myriad of anti-

HER2 therapies such as Herceptin (Trastuzumab). Non-invasive imaging with MRI 

provides information to assess the efficacy of new targeted therapies and may quickly 

identify non-responders for alternative treatment. In I-SPY 2, taxane-based treatment 

(Paclitaxel) is used in combination with an experimental targeted drug, followed by 

anthracycline-based treatment (doxorubicin and cyclophosphamide, AC).  Patients who 
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are HER2+ will also receive Herceptin in addition to Paclitaxel in the first set of the 

treatment regimen (figure 1).  

 

Participants in the I-SPY 2 Trial undergo sequential DCE- and DW-MRI exams 

during the course of treatment (figure 1). MR data is acquired at baseline (MR1), 

following 3 weeks of chemotherapy (MR2), after the completion of the first regimen 

(MR3), and before surgery (MR4). Functional tumor volume (FTV), calculated based on 

DCE-MRI, is one of the biomarkers being evaluated in I-SPY 2 for prediction of 

treatment response. FTV is computed as the sum of all voxels meeting a minimum 

threshold for initial percent enhancement (PE) defined as PE (PE = 100 x (S1 - S0)/S0), 

where S0 and S1 represent the signal intensities of each voxel in the pre-contrast and 

early post-contrast images respectively. Early change in FTV is measured from baseline 

Figure 1: I-SPY 2 simplified study schema. A taxane-based compound (Paclitaxel) was administered 

sequentially with a combination of doxorubicin and cyclophosphamide (AC), anthracycline-based 

chemotherapy.  Randomization included factors such as MRI tumor volume and molecular biomarkers.  

Note: each AC cycle spanned 21 days.  
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at MR1 to MR2 (ΔFTV2), while late change in FTV is measured from MR1 to MR4 

(ΔFTV4). 

Pathologic complete response (pCR), determined histologically by the absence of 

residual tumor at the time of surgery, is used as a surrogate endpoint for response to 

therapy. As the collection of long-term survival data for I-SPY 2 participants is still 

underway, the model for pCR outcome with FTV as a predictor is used. Although the 

primary goal of each I-SPY 2 MRI exam is to obtain DCE-MRI images for FTV 

determination, the complementary DWI measurement can be added to each scan at no 

additional cost and with no added inconvenience or risk to the patient.  In fact, a sub-

study funded by the American College of Radiology Imaging Network (ACRIN) 6698 is 

being conducted under I-SPY 2 to determine whether the early change in ADC values is 

predictive of response.  

In 2013, a poly ADP ribose polymerase (PARP) inhibitor graduated from the trial. 

While the mechanism of PARP inhibition is not fully understood, PARP inhibitors have 

been shown to potentiate the cytotoxic activity of DNA alkylation by trapping PARP at 

sites of DNA damage [4].  Inhibitors of DNA repair enzymes such as PARP-1, PARP-2, 

BRCA-1 and BRCA-2 decrease the rate at which repair processes such as base 

excision repair, homologous recombination, and non-homologous end joining can occur.  

Another small-molecule dual-inhibitor of HER2 and epidermal growth factor receptor 

(EGFR) kinases also graduated from the trial in 2014. HER2-positive patients have a 2- 

to 20- fold amplification of the HER2/neu oncogene that is responsible for HER2 

production, and can be found in 30% of breast tumors [5]. Tumors with an increased 
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rate of DNA repair, or an overabundance of receptors that are associated with increased 

cell growth are susceptible to chemotherapy. Suppression of repair enzymes activities 

and inhibition of receptors such as HER2 are important strategies in the development of 

anti-cancer therapies.  

 

Diffusion Weighted Imaging: 

Various breast tumor types, both mass-like and diffuse, have been investigated and 

characterized using DWI [2,6-7]. The benefits of DWI in the breast have been observed 

clinically. In a study by Partridge et al., the complementary information provided by DWI 

in addition to DCE-MRI resulted in a 10% overall increase in the positive predictive 

value (PPV) with an ADC threshold set for maximum specificity, and a 17% increase in 

PPV for lesions 1 cm or smaller [8].  This increased diagnostic power can be especially 

useful in more complicated cases and earlier during the course of disease, where pCR 

after neoadjuvant chemotherapy can be most predictive of long-term survival [9]. 

The diffusion-weighted signal is acquired through T2-weighted single-shot spin-echo 

echo-planar sequences (SS-EPI) with diffusion-sensitizing gradients. The diffusion-

sensitizing gradients act as exponential weighting factors applied to a T2-weighted 

image, and are represented mathematically by b-values. Diffusion weighted images are 

derived using a minimum of four separate image acquisitions: three high b-value images 

and one low b-value image S0. The diffusion-weighted image Sij is determined using 

equation (1) for the ith b-value and each orthogonal gradient direction j:  

!!" = !!!!!!!"#!"!                          (1) 
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Clinically, high-end b-values range from 600 to 1500 s/mm2 [10].  The b-value is given 

by equation (2), 

where ! is the gyromagnetic ratio, G is the gradient strength, ! is the gradient duration 

and TR is the repetition time. It can be seen from equation (2) that increasing ! or G will 

most efficiently increase the resulting b-value, ultimately maximizing the sensitivity to 

smaller changes in diffusion. However, higher b-values result in lower signal intensity 

due to increased dephasing with diffusion. The signal intensity from a T2-weighted 

image lacking any weighting by motion-sensitizing gradients has a b-value of zero 

s/mm2, and is typically the low b-value, or b0 image S0.  ! is the rotationally invariant, 

geometric mean signal intensity of the three gradient directions acquired at the same b-

value.  ! can be used to determine in vivo diffusion constants termed apparent diffusion 

coefficient (ADC) values on a pixel-by-pixel basis. Collectively these values form an 

ADC map and can be determined using one high b-value bi and one low b-value b0 as 

shown in equation (3): 

 

When ADC values are derived from more than two b-values such as 0, 600, 800, and 

1000 s/mm2, a log-linear least-squares regression (4): 

is performed in order to utilize all available information. Though Mukherjee et al. argued 

that the use of more than two b-values might be redundant in clinical application [10], 

!! = !!!!!!!! !!"! − !!
!!                (2) 

!"# = − ln !! ̅!!!! (!! − !!!)!                   (3) 

ln(!!) = ln(!!) − !! ∙ !"#              (4) 
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this refers to MR imaging of the human brain and has not been the case for breast 

tissue. However, the benefits of multiple b-value acquisitions have not been observed 

over traditional, two b-value DWI to date in breast imaging. The incorporation of more b-

values would increase the samples obtained, theoretically increasing the accuracy of 

the ADC values obtained [11].  Because in vivo diffusion in breast tissue is more 

complicated than that in the brain, standardization of DWI in breast tissue is needed for 

future clinical use [7,11]. 

Previous work on the changes in ADC values (ΔADC) throughout the course of 

neoadjuvant chemotherapy have shown that positive ΔADC is associated with treatment 

response [12-14]. Additionally, the benefits of using normalized ΔADC (ΔADCN, where 

ADCN is the ratio of tumor ADC to ADC of normal fibroglandular tissue) rather than 

absolute ΔADC values (ΔADCA) have been demonstrated [15]. Early ΔADCN may be 

predictive of treatment response, and existing I-SPY 2 data will be used to further 

investigate these findings. 

For this study, MR images from patients in the experimental and standard of care 

cohorts were analyzed. Whole tumor ADC values were determined at baseline (MR1) 

and early in treatment (MR2).  Patients’ pCR status was the primary outcome.  

 

Specific Aims: 

Primary Aim: 

• To determine whether ΔADCN is predictive of pCR or ΔFTV4 (an alternative 

endpoint defined as ResponseFTV).  
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Secondary Aims: 

• To assess the influence of image quality scoring on the predictive performance of 

ΔADCN.  

• To determine if there is a correlation between ΔADCN and ΔFTV at both early 

(ΔFTV2) and late (ΔFTV4) time points. 

• To assess the difference in mean ΔADCN values between responders and non-

responders with pCR and ResponseFTV as outcomes.  

 

Materials and Methods:  

Patients with biopsy-confirmed invasive breast cancer of ≥2.5 cm in diameter, with 

no prior chemotherapy or radiation therapy and high MammaPrint scores were enrolled. 

Their biomarker signatures were hormone receptor positive (estrogen or progesterone 

ER+/PR+) and/or HER2+ or triple negative (ER-, PR-, and HER2-). All patients had 

given their written informed consent to participate in I-SPY 2. This trial has been open to 

enrollment since March 2010 and has a projected completion date of September 2017. 

Patient data used for the present work were acquired between April 2010 and January 

2013. FTV measurements were performed at participating sites or at the UCSF Imaging 

Core Lab using a semi-automated software system (Aegis 4D Visualization Software, 

Hologic Incorporated). 

Of 134 patients from nineteen study locations, 62 received standard neoadjuvant 

chemotherapy and 72 received the experimental drug in addition to the taxane-based 

treatment during the first set of neoadjuvant chemotherapy.  
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In ACRIN 6657, the imaging component of I-SPY 1 Trial, Hylton et al. found that 

ΔFTV is a stronger predictor of pCR than clinical assessment [1].  A 50% decrease in 

tumor volume has been associated with significant differences in recurrence free 

survival [16]. Because long-term survival information is not yet available for I-SPY 2 

patients, ΔFTV4 was used as an alternative surrogate endpoint in this study.   

 

Imaging protocol:  

Imaging was performed with patients in the prone position on either 1.5T or 3.0T 

whole body MRI scanners using dedicated breast coils. As part of the image quality 

assurance and control (QA/QC) requirements in I-SPY 2, sequential imaging exams are 

performed using the same field strength and same scanner model used in the baseline 

visit. This minimizes image quality variations between and within patients. 

DWI was acquired using a 2D diffusion-weighted SS-EPI technique. Bilateral axial 

images were acquired with minimum echo time (TE), repetition time (TR) of at least 

4,000 ms, a field of view (FOV) in the range of 26-36 cm and a matrix size of 128-192 in 

both frequency and phase directions. A minimum of 2 averages were used and a 

parallel imaging factor of at least 2 was used to achieve scan durations of approximately 

four minutes. A minimum of two b-values were used: 0 s/mm2 and either 600 or 800 

s/mm2. The slice thickness was 3-5 mm and the desired in-plane resolution was less 

than 1.9 mm. Active fat saturation techniques were implemented. DWI acquisitions were 

completed prior to any contrast-enhanced sequences.  

DCE T1-weighted images were obtained using an axial 3D gradient echo (GE) 
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sequence with minimum TE, TR of 4-10 ms, flip angle of 10-20 degrees, and a 

maximum of two repetitions. FOV was between 26-36 cm in both frequency and phase 

direction, and slice thickness was ≤2.5 mm. FOV and slice thickness were set to 

achieve complete bilateral coverage for each exam. The acquisition matrix was 384-512 

by at least 256 for a maximum in-plane resolution of 1.4 mm. At least 60 slices were 

acquired. Scan time was between 80 and 100 seconds per time point. One pre-contrast 

T1 image was acquired and checked for proper fat saturation, and post-contrast T1 

images were obtained for at least 8 minutes after the injection of an FDA-approved 

gadolinium-based contrast agent. All patients were given the same contrast agent brand 

at sequential visits. Injection was administered at a rate of 2 ml/s at a concentration of 

0.1 mmol/kg body weight and was followed by a 20 ml saline flush. Gain settings were 

held constant for pre- and post-contrast T1 images. Active fat saturation methods were 

recommended but were left at the discretion of each site.  

 

Processing of DWI data: 

 An in-house software tool using the environment of Interactive Data Language (IDL, 

Research Systems) was used for image analysis. ADC maps (figure 2B) were 

generated using DWI data for MR1 and MR2. When two b-values were acquired, 

equation (3) was used to produce the ADC map. When greater than two b-values were 

available, least-squares regression for the natural log of the signal versus b-value was 

determined, which resulted in a slope of negative ADC (4). The post-contrast DCE 

subtraction images (figure 2C) were used to determine the location of the tumor. Whole-
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tumor regions of interest (ROIs) were manually drawn on the ADC maps to include 

enhancing regions on the subtraction image (figure 2C) and DWI images (figure 2A) 

while isolating the same darker regions on the ADC maps. In general, higher b-value 

DWI images were used for determining areas of lowest diffusivity for ROI inclusion.  

ROIs were delineated to include as much solid tumor as possible on contiguous slices 

while avoiding fat and non-malignant fibroglandular tissue to eliminate partial volume 

averaging effects. Regions of necrosis and susceptibility artifacts from biopsy clips were 

excluded.  

 

A baseline level of enhancement from normal fibroglandular tissue was determined 

to account for normal variability between patients [11].  Normal tissue ROIs were 

delineated in an area of normal-appearing tissue in the contralateral breast on the ADC 

map (figure 3B). DWI images and pre-contrast images were taken into account to 

exclude areas of fat, since DWI slices were roughly twice as thick as DCE images. 

Figure 2: Diffusion processing example. DWI b=800 s/mm2 (A), ADC map (B), DCE subtraction image (C). 

Whole-tumor ROIs were drawn manually on (B), while taking into account (A) and (C) to avoid areas of low 

diffusivity, susceptibility artifacts, and non-enhancing areas. Edges of tumors were also disregarded as to 

avoid partial-volume averaging. 

A B C 
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Mean ADC values were calculated for all normal tissues.  In order to obtain a 

representative sample of normal fibroglandular tissue, circular ROIs with a diameter of 

at least 6.0 mm were drawn on a minimum of four contiguous ADC map slices.  ROIs 

were drawn in similar anatomical regions on the contralateral breast whenever image 

quality was sufficient.  

 

Mean ADC of each malignant lesion was divided by the corresponding mean ADC of 

fibroglandular tissue to obtain normalized ADC values (ADCN = ADCTumor / 

ADCFibroglandular). ADCN for each visit was then used to determine the percent change in 

normalized ADC between visits (ΔADCN = 100 x [(ADCN_MR2 / ADCN_MR1)  - 1]). ΔADCN 

was used for analyses unless stated otherwise.  

Figure 3: Ideal case for ROI delineation. The high b-value diffusion image series, where b=800 s/mm2 (A, D), 

was taken into account as ROI delineation occurred on the ADC map (B, E). The pre-contrast DCE image (C) 

was referenced to determine optimal normal tissue ROI placement, which was overlaid in a similar 

anatomical location in the contralateral breast. Whole tumor ROIs were drawn with regard to a subtraction 

image (F) created using two early time points of the DCE series to better visualize enhancing tissue. 

A B C 

D E F 
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An image quality scoring system was implemented to differentiate high quality 

images from lower quality images. The scoring system evaluated the quality of fat 

suppression (figure 4A), the presence of artifacts (displacement (figure 4B,C), ghosts, or 

warping), and signal-to-noise ratio (SNR) as these impact lesion conspicuity and ROI 

set confidence, which was also scored. This scoring system was used to provide a 

quality threshold for inclusion in analyses (figure 5). Quality scores for fat saturation, 

appearance of artifacts, and SNR were assigned separately, though double penalization 

was avoided. ROI confidence was scored per exam. Individual visits and ROIs were 

scored separately and combined to determine whether a patient was included in the 

final analyses.  

 Figure 4: Common DWI artifacts. Failure of fat suppression techniques can be seen in the diffusion image 

(A). Here, breast density is also low and very little fibroglandular tissue is observed. Patient motion 

between acquisitions (B, C) was common. (B) and (C) depict the same ROI overlaid on b=800 s/mm2 

diffusion images from two orthogonal gradient directions. The final diffusion image is the geometric mean 

of the three gradient directions as described by equation (1). 

A C B 
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Processing of DCE data: 

Contrast enhancement was calculated on a voxel-by-voxel basis (figure 6) by using 

the signal enhancement ratio (SER) method, which compares early and late percent 

enhancement (PE; SER = PEearly/PElate) as a measure of tumor vascularity and therefore 

function [17]. FTV was determined by summing voxel volumes meeting a threshold of 

Figure 5: Quality scoring example. Bilateral view b= 800 s/mm2 DW image (A), ADC map (B), and subtraction 

image(C) from MR1 and ipsilateral view of b= 800 s/mm2 DW image (D), ADC map (E), and subtraction image 

(F) from MR2 for a single patient. The quality scoring results of (A) and (D) were used to assess inclusion of 

ΔADCN obtained from the corresponding ADC maps (B) and (E). To assess the appearance of ghosting, 

phase artifacts, motion between b-value acquisitions (figure 4B, C) or warping, all b-value images were 

considered. To assess the efficacy of fat saturation (figure 4A) and signal to noise ratio (SNR), the b0 image 

was compared to the pre-contrast DCE-MRI (figure 3C). As a quality-scoring example, (A) was of reasonable 

quality in terms of fat suppression, artifacts, and SNR. (D) had poor fat saturation and extensive artifacts but 

had reasonable SNR. Confidence in the ROI sets for MR1 and MR2 were medium and low respectively. 

Though the quality of MR1 was reasonable, the quality of MR2 and low confidence in the ROI set resulted in 

the exclusion of this case. 

A B C 

D E F
C 
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70% PE at 2.5 minutes post-contrast injection 

over baseline [16,18].    Change in FTV (ΔFTV) 

was determined in a similar manner to ΔADCN 

(ΔFTV  = 100 x [(FTVMRn / FTVMR1 ) – 1]), where 

n is equal to 2 for early  ΔFTV (ΔFTV2) or is 

equal to 4 for late ΔFTV (ΔFTV4).  

 

Statistical Methods:   

The full cohort was analyzed in subsets of 

responders and non-responders. Subsets of 

patients with and without pCR receiving 

standard of care or experimental drug 

treatments were also analyzed.  

A test of normality was performed using the 

Shapiro-Wilk method. Non-parameterized ROC 

analysis was used to explore ΔADCN thresholds that maximized both sensitivity and 

specificity using 2000 bootstrap replicates with pCR as the outcome [19].  ROC analysis 

based on DeLong’s method [20] was used to compare AUC curves of ΔFTV2 and 

ΔADCN as predictors of pCR. A threshold ΔADCN of 18.18% and a ΔFTV2 cutoff of -

68.77% were established through ROC analysis for maximum sensitivity and specificity. 

The optimal threshold for ΔFTV4 as an alternative outcome within these subsets was 

also analyzed and was defined as ResponseFTV. A ΔFTV4 cutoff of -97.80% was 

Figure 6: Volumetric analysis.  DCE post- 

contrast 2.5 minutes (A), tumor volume 

calculations that meet at least 70% 

enhancement (B). Percent enhancement was 

defined as PE = 100 x (S1 - S0)/S0, where S0 

and S1 were the signal intensities of each 

voxel in the pre-contrast and 2.5 minutes 

post-contrast images respectively. 

A 

B 
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determined through ROC analysis for maximum specificity and sensitivity. Since FTV is 

expected to decrease over the course of treatment, ΔFTV4 of less than this value was 

defined as a responder. ROC analysis was repeated using ResponseFTV as the 

outcome. A threshold ΔADCN of 9.652% was established based on maximizing 

sensitivity and specificity of ROC analysis with ResponseFTV as a surrogate endpoint.  

In order to ensure image quality scoring standards were appropriate, density plots 

were determined for the subset used for analyses as well as all fully processed scans 

regardless of quality. 

Correlation between ΔADCN and ΔFTV2 as well as ΔFTV4 was calculated using 

Spearman’s rank correlation (ρ), or Kendall’s rank correlation (τb) when ties occurred in 

the dataset. Statistical analyses were performed using ΔADCN as a predictor. Absolute 

ΔADC values (ΔADCA) were also assessed in correlations with ΔFTV.  

To test the significance of the difference in ΔADCN between responders and non-

responders in regards to both pCR and ResponseFTV, a two-tailed Mann-Whitney U test 

was performed. The sensitivity and specificity of significant shifts in ΔADCN were 

extracted from the corresponding ROC curve.  

All statistical analysis was performed using R (R Development Core Team (2013).  

R: A language and environment for statistical computing.  R Foundation for Statistical 

Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/).  95% 

confidence intervals were used. A p value of less than or equal to 0.05 was considered 

statistically significant.  
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Results and discussion: 

Study population:  

Of the 134 patients enrolled, 2 patients did 

not complete one or more of the relevant 

exams, 6 patients were excluded due to 

corrupted data or poor image quality. Once 

DWI quality scoring was employed, 24 cases 

failed to meet the quality standards, including 

1 case with no contralateral breast image 

(table 1). The final cohort of 102 patients had 

reasonable image quality at MR1 and MR2.  

 

Patient characteristics: 

Patients’ tumor characteristics are listed in table 2. Their hormone receptor (HR) and 

HER2 statuses as well as risk of recurrence [21-22] as reflected by ultra high 

MammaPrint scores [23], were recorded (table 2). In the full cohort, 49 (48.04%) were 

HR+, 14 (13.73%) were HER2+, 16 (15.69%) were triple negative, and 43 (42.16%) had 

ultra high MammaPrint scores.  

Enrollment (n = 134)
• 2 Patients withdrew from study

DWI Processing (n = 132) 
• 6 Unable to analyze further

Quality Assessment (n = 126)
• 24 Failed quality scoring 
• 1 No contralateral 

Statistical Analysis (n = 102)

Table 1:  Study workflow. Reasons for 

exclusions were based on availability of 

exam and image quality. 
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Summary statistics: 

Four combinations of b-values were used for DWI acquisition. 95 (93%) of the 

patients included in the analysis were the result of using b-values of 0 and 800 s/mm2 

for both MR1 and MR2 exams.  Other combinations included: 0 and 600 s/mm2 (2 

cases); 0, 100, 600, and 800 s/mm2 (3 cases); 0, 100, 600, 800, and 1000 s/mm2 (9 

cases). 

 

Summary statistics of ΔADCN using pCR as an outcome: 

Across the full cohort the mean ΔADCN was 18.03 ± 19.81%. Mean ΔADCN was 

25.71 ± 22.81% for patients that exhibited pCR and was 14.19 ± 17.04% for non-pCR 

patients from the full cohort (figure 7).  

Patients that received the standard treatment exhibited a mean ΔADCN of 12.66 ± 

14.86%. The mean ΔADCN was 20.51 ± 16.01% for pCR and was 10.75 ± 14.30% non-

pCR standard treatment groups respectively. Patients that received the experimental 

drug exhibited a mean ΔADCN of  21.65 ± 21.87%. Mean ΔADCN was 27.31 ± 24.57% 

 Full cohort 
(n=102) (%) 

Standard  
(n=41) (%) 

Experimental 
(n=61) (%) 

HR+ 49 (48.04) 23 (56.10) 26 (42.62) 
HER2+ 14 (13.73) 14 (34.15) - 
Triple Negative 16 (15.69) 9 (21.95) 7 (11.48) 
Ultra High MP  43 (42.16) 6 (14.63) 37 (60.66) 
pCR 34 (33.33) 8 (19.51) 26 (42.62) 
non-pCR 68 (66.67) 33 (80.49) 35 (57.38) 

Table 2: Patient characteristics. Enrolled individuals and a variety of subsets included in analysis are 

displayed. * Missing data includes patients with exams not included in analysis. 
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with pCR and was 17.88 ± 21.45% for non-pCR for patients of the experimental cohort. 

Boxplot summary statistics for groups involved in analyses are in tables 3A and 3B.  

 

Figure 7: Boxplots of ΔADCN by response and treatment type. Shown in blue are responders and in red, 

non-responders. Corresponding mean and median for each cohort are listed in table 3.  

       Full Cohort                  Standard               Experimental                   ResponseFTV 

Δ
AD

C N
 (%

) 

Non-response 
Response 

Table 3A  Full Cohort 
(n=102) 

Standard 
(n=41) 

Experimental 
(n=61) 

ResponseFTV 
(n=30) 

Non-
ResponseFTV 

(n=72) 
Mean 18.03 12.66 21.66 18.50 17.84 
Median 15.55 11.19 17.39 17.44 15.23 

      

Table 3B Full Cohort 
(n=102) 

Standard 
(n=41) 

Experimental 
(n=61) 

 pCR Non-
pCR 

pCR Non-
pCR 

pCR Non-
pCR 

Mean 25.71 14.19 20.51 10.75 27.31 17.44 
Median 19.49 12.91 19.49 9.73 20.63 15.81 
!Table 3A/B: Summary statistics. Boxplot summary statistics of ΔADCN for groups included in analyses 

(A) and by presence of pCR (B). ResponseFTV and non-ResponseFTV groups statistics were included in 

table 3A. 
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Summary statistics of ΔFTV and ResponseFTV as an outcome: 

For the full cohort, mean ΔFTV2 was -33.82 ± 60.11% and -87.44 ± 17.91% 

respectively. For all patients with pCR, mean ΔFTV2 was -43.87 ± 70.81% and for non-

pCR, it was -28.78 ± 51.66%.  For patients who received the standard of care, mean 

ΔFTV2 was -25.65 ± 60.71%. Mean ΔFTV2 of the standard treatment group was -45.61 

± 41.99% when pCR was exhibited and was -20.81 ± 64.01% without pCR. For patients 

of the experimental drug group, mean ΔFTV2 was -39.32 ± 59.57%. Mean ΔFTV2 for 

patients who received the experimental treatment was -43.41 ± 82.16% with pCR and 

was -36.29 ± 35.82% without pCR. 

Mean ΔFTV4 was -87.44 ± 17.91%, -91.08 ± 18.47, and -85.53 ± 17.46% for the full 

cohort, for all pCR patients and for all non-pCR patients respectively. Mean ΔFTV4 of 

patients who received the standard treatment was -85.36 ± 18.17%. For patients of the 

standard of care group, mean ΔFTV4 was -90.13 ± 17.93% with pCR and was -84.08 

±18.33% without pCR. For all patients that received the experimental treatment, mean 

ΔFTV4 was -88.80 ± 17.76%. Mean ΔFTV4 was -91.38 ± 19.00% and was -86.85 ± 

16.80% for patients of the experimental arm that exhibited and did not exhibit pCR 

respectively.  

ROC analysis using ΔFTV2 as a predictor of pCR resulted in an AUC estimate of 

0.664 (95% CI [0.541, 0.787], p=0.00353) at a ΔFTV2 threshold of -68.77% based on 

the maximization of specificity and sensitivity. From the ROC curve using ΔFTV4for the 

prediction of pCR (AUC 0.696, 95% CI [0.578, 0.814], p=0.000846), a threshold ΔFTV4 

of -97.80% was used as the cutoff for the alternative endpoint, ResponseFTV. Using this 
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premise for the full cohort, mean ΔADCN was 18.50 ± 17.38% for responders and 17.84 

± 20.85% for non-responders (table 3A).  A boxplot with ResponseFTV as an outcome 

was also included in figure 7.  

 

Primary Aim: ΔADCN and prediction of pCR and ResponseFTV  

The Shapiro-Wilk test was used to test the sample distribution for non-normality prior 

to further analysis (p < 0.00001). Non-parameterized ROC analysis of ΔADCN for the full 

cohort resulted in an AUC estimate of 0.653 (95% CI, [0.538, 0.768], p=0.00605) (table 

4) with a specificity of 0.662 and a sensitivity of 0.618 (figure 8A).  Using the AUC 

estimates for ΔADCN and ΔFTV2, DeLong’s test to compare non-parameterized ROC 

curves revealed that the difference between the ROC curves for �ADCN and for �FTV2 

was not significant, with a mean AUC difference of -0.011 ± 0.086 (p=0.896).  

When interrogating the standard (figure 8B) and experimental (figure 8C) therapy 

groups, AUC estimates were not significantly greater than 0.5 since the 95% confidence 

intervals included 0.5 (table 4).  

Using a ΔFTV4 cutoff of -97.80% as an alternative outcome, (ResponseFTV, figure 

8D), the AUC was estimated at 0.533 (95% CI [0.411, 0.656], p=0.30). This resulted in a 

maximum specificity of 0.698 and maximum sensitivity of 0.424, at a threshold ΔADCN 

of 9.652%. AUC estimates were also determined for experimental and standard 

treatment groups using ResponseFTV, but were less than 0.5 (table 4).   
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AUC for ΔADCN by response metric 
AUC ([95% CI], p) pCR  ResponseFTV  

Full Cohort (n=102) 0.653 ([0.538, 0.768], 0.00605) 0.533 ([0.411, 0.656], 0.300) 
Experimental (n=61) 0.614 ([0.468, 0.760], 0.0659) 0.497 ([0.329, 0.666], 0.574) 

Standard (n=41) 0.689 ([0.464, 0.915], 0.0521) 0.441 ([0.202, 0.681], 0.188) 

Table 4: AUC estimates for ΔADCN by response metric: pathologic complete response (pCR) or 

response based on threshold ΔFTV4 (ResponseFTV). 95% confidence interval was used, and groups 

were separated by treatment type. 

Experimental ~ pCR Standard ~ pCR Full cohort ~ pCR 

Full cohort ~ ResponseFTV 

A B C 

D 

Figure 8: ROC curves of ΔADCN and prediction of response. AUC estimates were plotted for the full 

cohort (A), patients who received the standard (B) and experimental (C) therapies using pCR as an 

outcome and with ResponseFTV was used as an outcome (D). 
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Figure 9: Density curve of ΔADCN. (A) and ROC curves based on quality scoring (B). Quality 

scoring (A, blue) resulted in a similar distribution of ΔADCN to the distribution when all processed 

cases are included (B, red). Quality scoring had little impact on the AUC estimate (B, blue) as 

compared to the full cohort prior to quality scoring implementation (B, red).  

ΔADCN Distribution by Quality 

All processed 
cases 
AUC 0.657  
(0.552, 0.763)  
Full cohort: 
passing quality 
AUC 0.653  
(0.538, 0.768)   

ROC curves of ΔADCN based on 
quality scoring 

A B 

ΔADCN (%)!

All processed cases 
Full cohort: passing 
quality 
 

Secondary Aim 1: Influence of quality scoring on ΔADCN for prediction of pCR 

The distributions of ΔADCN of processed cases with passing quality scores (n=102), 

failing quality scores (n=23) and of all processed cases regardless of quality scores 

(n=126) were compared (figure 9A). The distribution of ΔADCN with and without quality 

control remained unchanged and resulted in an estimated mean difference of 0.836% 

(95% CI [-0.48, 0.026], p=0.34). However, there was greater variation in ΔADCN in the 

cases excluded due to failing quality (n=23), with a standard deviation of ± 30.62% 

compared to a standard deviation of ± 19.81% from cases with passing image quality 

(n=102). ROC curves with and without quality scoring were compared by DeLong’s test 

which resulted in a mean difference and standard deviation of -0.0042 ± 0.079 

(p=0.958) (figure 9B) [20].  

 



! 24 

 Secondary Aim 2: Correlation of ΔADCN and ΔFTV 

For the full cohort, there were no significant correlations between ΔADCN and ΔFTV2 

for all cases (ρ=-0.12, p=0.23), for those with pCR (ρ=0.03, p=0.87), or for cases 

without pCR (ρ=-0.11, p=0.37). In patients that received the standard treatment, ΔADCN 

was not correlated with ΔFTV2 (ρ=0.12, p=0.43). There was a statistically significant 

positive correlation between ΔFTV2 and ΔADCN in the standard treatment group that 

exhibited pCR (ρ=0.81, 95% CI [0.22, 1.00], p=0.022, n=8). For patients that received 

standard treatment who did not exhibit pCR, ΔADCN was not correlated with ΔFTV2 

(ρ=0.03, p=0.89). In patients who received the experimental drug, a negative correlation 

of ΔADCN and ΔFTV2 was trending toward significance (ρ=-0.25, 95% CI [-0.47, -0.01], 

p=0.054). ΔADCN for patients of the experimental drug group did not correlate with 

ΔFTV2 with (ρ=-0.14, p=0.49) or without (ρ=-0.25, p=0.14) pCR.   

The correlation between ΔADCN and ΔFTV4 was not significant for the full cohort 

(ρ=-0.02, p=0.80), the full cohort with pCR (ρ=0.11, p=0.39), or the full cohort without 

pCR (ρ=0.01, p=0.86). ΔADCN did not correlate significantly with ΔFTV4 for all patients 

in the standard treatment group (ρ=-0.12, p=0.94), for those with pCR (ρ=-0.07, 

p=0.88), or for those without pCR (ρ=0.04, p=0.83). Similarly, ΔADCN did not correlate 

significantly with ΔFTV4 for all patients in the experimental treatment group (τb=-0.02, 

p=0.86), for those with pCR (τb=0.10, p=0.47), or for those without pCR (τb=0.01, 

p=0.94).  

Absolute change in ADC (ΔADCA) for the full cohort did not correlate with ΔFTV2 

(ρ=0.03, p=0.84), nor was there a correlation in the full cohort when pCR was (ρ=0.19, 
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p=0.27) or was not (ρ=-0.12, p=0.34) observed. ΔADCA and ΔFTV2 were not correlated 

for patients of the standard drug arm (ρ=0.03, p=0.84). A trend for significant correlation 

was found between ΔADCA and ΔFTV2 (ρ=0.69, p=0.07) when considering patients 

who received the standard treatment with pCR (n=8), where a strong correlation was 

found for ΔADCN. This correlation was not significant for patients of the standard drug 

arm without pCR (ρ=-0.10, p=0.58). ΔADCA and ΔFTV2 were not correlated for those 

that received the experimental drug (ρ=-0.07, p=0.61), or for patients with (ρ=0.14, 

p=0.48) or without (ρ=-0.16, p=0.35) pCR that received the experimental drug.   

The correlation of ΔADCA with ΔFTV4 was not significant for the full cohort (τb=0.08, 

p=0.27). For patients from the full cohort that exhibited pCR (n=34), there was a mild but 

significant correlation of ΔADCA and ΔFTV4 (τb=0.25, 95% CI [0.06, 0.44], p=0.044), 

that was not significant when pCR was not observed (τb=0.05, p=0.59). ΔADCA was not 

significantly correlated with ΔFTV4 in patients who received the standard therapy 

(τb=0.03, p=0.78), and was not correlated in patients of the standard therapy group with 

(τb=0.07, p=0.90) or without (τb=0.02, p=0.86) pCR. For those that received the 

experimental drug (n=61), there was a trend for slight correlation between ΔADCA and 

ΔFTV4 (τb=0.16, p=0.08). Those that received the experimental therapy and exhibited 

pCR (n=26) also demonstrated a significant correlation (τb=0.479, 95% CI [0.10, 0.53], 

p=0.015) between ΔADCA and ΔFTV4 that was not observed without pCR (τb=0.11, 

p=0.38). 
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Secondary Aim 3: ΔADCN in responders and non-responders  

In the full cohort, the Mann-Whitney U test showed a significant mean difference in 

ΔADCN at 9.74% (95% CI [2.24, 17.513], p=0.012) in responders compared to non-

responders (figure 7). Though the mean ΔADCN differences between responders and 

non-responders in the standard (11.43%, 95% CI [-1.35, 23.38], p=0.10) and 

experimental (7.88%, 95% CI [-2.70, 18.33], p=0.13) treatment groups were not 

statistically significant, higher ΔADCN was observed in the responder groups with p 

values approaching 0.05.  

Using ResponseFTV as an outcome, no significant differences in ΔADCN were 

observed to distinguish responders and non-responders in the full cohort (2.28%, 95% 

CI [-5.66, 9.87], p=0.60), standard (-2.18%, 95% CI [-17.83, 11.39], p=0.76), and 

experimental (4.13%, [-5.98, 13.94], p=0.41) treatment groups. 

 

Discussion:  

Results of this study showed that ΔADCN and ΔFTV2 had similar predictive 

performance. Though FTV over the course of treatment is one of the current standard 

metrics for prediction of recurrence free survival, ΔADCN may add value as a covariate 

with ΔFTV2 for prediction of treatment response.  Although ΔFTV4 was not a 

satisfactory alternative outcome in this population, FTV has been utilized as a surrogate 

endpoint in larger patient populations and with multiple chemotherapy combinations.  

Further investigation of this phenomenon is needed.  

Although the overall distribution of ΔADCN in this cohort was not substantially 
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affected by the quality scoring, better control of ROI delineation, fat suppression, SNR 

and susceptibility of artifacts would further limit the variation of ADC values in individual 

patients.   More stringent quality scoring measures may be implemented to further 

reduce the variation in image quality and to further understand both the limitations of 

quality scoring via visual examination and the benefits of the methods of ΔADCN 

derivation used in this study.  

Though ΔADCN strongly correlated with ΔFTV4 in patients who received the 

standard treatment and exhibited pCR, the small sample size (n=8) and wide 

confidence interval (95% CI [0.22, 1.00]) indicate that this result is likely clinically 

insignificant. The overall lack of correlation between ΔADCN and ΔFTV at both early and 

late time points and presence of correlations between ΔADCA and ΔFTV4 that are only 

significant in populations with pCR indicate that ADC and FTV may account for distinct 

physiological processes that provide complementary information. Therefore, the 

diffusivity information obtained from DWI can be combined with volumetric data from 

DCE-MRI, ultimately increasing the ability to predict response earlier in treatment.  

A possible limitation of this study is the use of SS-EPI acquisition methods. EPI 

techniques used most likely increased the variation of ADC values, as they result in 

lower spatial resolution, ghosting artifacts, susceptibility artifacts and lower signal 

intensity due to T2 and T2* decay. Since a minimum of four image series are required 

for DWI, the effect of respiratory and other physiologic motion can be amplified. The 

averaging of the signal intensities from each of the gradient directions (figure 4B, C), 

can cause blurring, ultimately diminishing image quality. However, the incorporation of 
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EPI increases the speed of acquisition and reduces the impact of these artifacts. The 

use of parallel imaging further advantages in terms of SNR and speed, despite a loss in 

signal intensity, that allows SS-EPI to be an efficient DWI acquisition method [24]. While 

the I-SPY 2 imaging protocol is meant to minimize differences in MRI acquisition, it is 

likely that some of the variation in ADC values can be attributed to EPI techniques. 

The predictive ability of ADC measurements or change in ADC has been explored in 

previous studies. However, small sample sizes [6,12-13,25] and low prevalence of pCR 

[25] limit their utility. I-SPY 2 is a large multisite trial that implemented strict and 

structured protocols to provide complete FTV data with standardized treatment and 

pathologic endpoints. With an increase in sample size an implementation of image 

quality control, the benefits of DWI can be more accurately assessed.  

Since metrics such as categorical quality scoring and the benefits of ADC value 

derivation based on more than two prescribed b-values have not been fully vetted, the 

most pressing priority will be to assess the availability of these extra DWI scans and 

standardize the protocol. The lack of standardization for acquired b-values will affect the 

noise level of the DWI, and consequently will alter the accuracy of the derived ADC 

maps.  Though determination of the distribution of the b-values in the dataset used in 

this project may prove useful in the optimization of this value, only 7% of exams 

acquired b-values other than 0 and 800 s/mm2.  

ACRIN 6698, a sub study of I-SPY 2 aimed at assessing the prediction of response 

using four b-values in the measurement of ADC values at each MR exam, began 

enrolling patients shortly after the completion of the MR2 exams from this study in late 
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August 2012. The ACRIN 6698 sub study also incorporated DWI quality control 

measures such as protocol compliance monitoring 

(https://www.acrin.org/6698_protocol.aspx) and quality scoring. The optimal ROI 

delineation, for malignant and normal tissue alike, is still under investigation, and ACRIN 

6698 aims to develop ROI methodologies and determine the optimal b-values for ADC 

mapping.  

 

Conclusion: 

DWI is a non-contrast alternative to DCE for the visualization of treatment response.  

It is a promising technique that provides complementary tumor information regarding 

cell density and diffusivity. These findings suggest that ΔADCN may be more sensitive 

to the early effects of neoadjuvant treatment than DCE, the standard imaging biomarker 

that reflects tumor permeability. ΔADCN was also robust to variability in DWI quality, 

indicating that the derivation of ΔADCN in this case can be implemented without regards 

to image quality. While there was a lack of correlation with ΔFTV2 or ΔFTV4, ΔADCA 

correlated with ΔFTV4 for responders in particular. These results suggest that further 

study of the clinical benefits of DWI and the standardization of b-value prescription is 

warranted. Areas for further study include investigation based on subtypes, the study of 

image quality scoring benefits, comparison of normal and tumor ADC values in the 

ipsilateral breast alone, and establishing objective, automated techniques for obtaining 

tumor ADC values for clinical purposes.  
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