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While low socioeconomic status (SES) introduces risk for developmental outcomes
among children, there are an array of proximal processes that determine the ecologies
and thus the lived experiences of children. This study examined interrelations between
22 proximal measures in the economic, psychosocial, physiological, and perinatal
ecologies of children, in association with brain structure and cognitive performance in
a diverse sample of 8,158 9–10-year-old children from the Adolescent Brain Cognitive
Development (ABCD) study. SES was measured by the income-to-needs ratio (INR),
a measure used by federal poverty guidelines. Within the ABCD study, in what is one
of the largest and most diverse cohorts of children studied in the United States, we
replicate associations of low SES with lower total cortical surface area and worse
cognitive performance. Associations between low SES (<200% INR) and measures
of development showed the steepest increases with INR, with apparent increases still
visible beyond the level of economic disadvantage in the range of 200–400% INR.
Notably, we found three latent factors encompassing positive ecologies for children
across the areas of economic, psychosocial, physiological, and perinatal well-being in
association with better cognitive performance and the higher total cortical surface area
beyond the effects of SES. Specifically, latent factors encompassing youth perceived
social support and perinatal well-being were positive predictors of developmental
measures for all children, regardless of SES. Further, we found a general latent factor
that explained relationships between 20 of the proximal measures and encompassed
a joint ecology of higher social and economic resources relative to low adversity
across psychosocial, physiological, and perinatal domains. The association between the
resource-to-adversity latent factor and cognitive performance was moderated by SES,
such that for children in higher SES households, cognitive performance progressively
increased with these latent factor scores, while for lower SES, cognitive performance
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increased only among children with the highest latent factor scores. Our findings suggest
that both positive ecologies of increased access to resources and lower adversity are
mutually critical for promoting better cognitive development in children from low SES
households. Our findings inform future studies aiming to examine positive factors that
influence healthier development in children.

Keywords: cortical surface area, cognition, SES, poverty, proximal processes, resilience

INTRODUCTION

According to the Census Bureau for 2017, 38.8% of children
in the United States experienced low socioeconomic status
(SES), living in households ranging from deep poverty to
low-income (Fontenot et al., 2018). SES is most often defined
by family income and has been reported widely in association
with outcomes in cognitive performance in children, such that
children from lower SES backgrounds perform worse compared
to peers from more economically advantaged backgrounds
(McLoyd, 1998; Evans, 2004; Farah et al., 2006; Noble et al.,
2015). Childhood low SES has also been linked to increased
risk of emergence of mental and physical health problems
in adulthood (Melchior et al., 2007; Jensen et al., 2017).
Most recently, studies have reported associations of SES
with characteristics of whole-brain and regional structure in
children (Hair et al., 2015; Noble et al., 2015; Farah, 2017;
McDermott et al., 2019). Several hypotheses about the causal
pathways by which SES influences development have been
suggested, including: (1) the indirect of effects of SES through
exposure to environmental stress that alters neural structures
important for stress regulation (the hypothalamic-pituitary-
adrenal axis); and (2) the indirect effect of SES through
ecologies of resource deprivation such as food and housing
insecurity, parental characteristics, cognitive stimulation in the
environment, and prenatal care (for reviews see Brito and Noble,
2014; Johnson et al., 2016; Farah, 2017). Thus, SES as measured
by family income is a distal measure of the proximal processes
underlying risk and resilience in developmental outcomes.
Proximal processes in the context of child development have
been defined as forms of interactions between the child and
environment thought to influence development over time
(Bronfenbrenner, 1994). To advance our understanding of the
pathways by which SES is associated with brain and cognitive
development, we must consider a bio-psycho-social-ecological
model that includes an array of proximal processes potentially
traveling with low SES and development, to then examine the
unique or joint influence they exert on development across the
economic spectrum.

Bronfenbrenner’s bio-psycho-social model suggests
that development during childhood is dependent on
reciprocal interactions that occur within the nested and
dynamic environments of children (Bronfenbrenner, 1979;
Bronfenbrenner and Morris, 2006). For low SES children,
there can be tremendous variability in the quality of these
environments (i.e., characteristics of parents, interactions with
family, community, school, and neighborhood experiences).

These transactional processes form linked social ecologies
that jointly shape risk and resilience for development during
childhood (Ungar et al., 2013). Low SES has been correlated to
various degrees with psychosocial risk (e.g., increased family
conflict) and sociodemographic risk (unplanned pregnancies
and single parent households), experiences thought to expose
children to adversity (Duncan and Brooks-Gunn, 2000; Hussey
et al., 2006; Kim et al., 2018). Studies that have examined an array
of proximal factors in relation to risk and cognitive development
suggest that it is the number of cumulative risk rather than the
specific type of risk that best predicts development (Furstenberg
et al., 2000; Zigler et al., 2011). However, low SES does not
always translate to adversity or material deprivation. In fact,
positive factors of social and community support, such as
positive parenting and positive school environments, have
been associated with better developmental outcomes among
children from low SES backgrounds (Benard, 1991; Whittle
et al., 2014). Thus, among children growing up in low SES
households, investigating how individual differences in their
ecologies exacerbate or mitigate the possible negative influences
of low SES on cognitive and brain development is complex.
To identify promotive factors for developmental outcomes for
children in low SES households, it is important to consider an
array of proximal measures encompassing the dynamic ecologies
for children.

Importantly, when considering the effects of bio-
psycho-social-ecological processes on development, we
must acknowledge that early experience, such as prenatal
exposures and early birth outcomes, influence brain
development throughout childhood. For instance, adverse
perinatal factors, such as low birth weight (Papadopoulou
et al., 2019) and maternal substance use (McLachlan et al.,
2016), have also been associated with stress dysregulation
in childhood and adolescence. These same adverse perinatal
factors are associated with cortical alterations (Hendrickson
et al., 2018; Pascoe et al., 2019). Some studies have
reported children from low SES backgrounds are at risk for
prematurity and low birth weight (Malecki and Demaray,
2006; Kelly and Li, 2019). Despite these connections, proximal
measures in the domains of adverse childhood experiences,
economic and psychosocial, physiological health, and
perinatal exposures have rarely been examined collectively
and within a single model as predictors of development
(Liaw and Brooks-Gunn, 1994).

Across the SES spectrum, including children from low
SES households, there is tremendous variability in the quality
and experience of such bio-psycho-social ecologies. Some
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children from low SES households may likely experience
positive ecologies, however, it is unknown to what extent
these positive ecologies promote healthier development
within a low SES context compared a higher SES context.
In this study, we examine the large and diverse typically
developing sample of the Adolescent Brain Cognitive
Development (ABCD) study, to first test replication of
SES associations with developmental measures of cognitive
performance and total cortical surface area. We then go
beyond associations of SES and leverage the bio-psycho-
social-ecological model by utilizing 22 proximal measures
of economic, social, physiological, and perinatal ecologies
to accelerate our understanding of how these contexts
uniquely influence cognitive and brain development. We
implemented a Group Factor Analysis (GFA), a multivariate
approach which allowed for the examination of relationships
among the 22 proximal measures to identify latent factors
descriptive of ecologies among children. We hypothesized latent
factors for positive bio-psycho-social-ecologies encompassing
economic, psychosocial, physiological, and perinatal health
would predict better developmental outcomes beyond
the variability explained by SES. Further, we considered
whether the associations between positive ecologies and
developmental measures could be moderated by SES, such
that the positive ecologies could relate to the developmental
measures differentially for children in low SES households
relative to children in higher SES households. Findings from
our large sample study can inform future smaller scale studies
of risk and resilience for cognitive and brain development
with children growing up low SES, as well across the
SES spectrum.

MATERIALS AND METHODS

Participants
Data were obtained from the ABCD Study. The ABCD 2.0.1 data
release was downloaded from the NIMH Data Archive ABCD
Collection (10.15154/1504041) and contained baseline data
for a total of N = 11,875 children ages 9–10 years old.
Demographics of the sample are described in Table 1. Baseline
data that passed quality assurance (N = 462 excluded) and had
complete cases for FreeSurfer imaging data (N = 341 missing),
demographic measures (household income: N = 1,018 missing;
Sex:N = 4missing), and the 22 proximal measures, were included
in the analyses for a total of N = 8,158.

The recruitment strategy has been described in detail
previously (Garavan et al., 2018). Children were recruited from
22 study sites and ABCD is following children at 21 study sites
across the United States. A school-based recruitment strategy
was developed to achieve a cohort of families that was diverse
in income, race-ethnicity, and cultural background and has
been described in detail by Garavan et al. (2018). Demographic
information for age, sex (female: 1, male: 0), and race-ethnicity
were examined. Race-ethnicity was recoded to include five
categories: Hispanic, and non-Hispanic White, Black, Asian, and
more than one race.

SES: Income-to-Needs Ratio
SES was estimated using the income-to-needs ratio (INR). The
INR was calculated by dividing reported household income
by the federal poverty threshold for a given household size.
A lower INR ratio indicated higher SES. Gross household
income and the number of household members were reported
by the participants’ caregiver in the Parent Demographics
Survey. Income was reported in bins and was adjusted to
the median for each income bin. We used the 2017 federal
poverty level for the corresponding household sizes from the
poverty guidelines updated periodically in the Federal Register
by the United States (U.S.) Department of Health and Human
Services under the authority of 42 U.S.C. 9902(2). The federal
poverty level (i.e., 100% INR) is the necessary income needed
for a family of a given size (e.g., $24,600 for a family of 4)
to meet the cost of living, including shelter, food, clothing,
transportation, and other necessities and determines eligibility
for federal government benefit programs. The federal poverty
guidelines also specify a threshold for low SES households
(<200% INR) and these are subdivided into: deep poverty
(<50% INR), poverty (50–100% INR), and near poverty
(100–200% INR).

Proximal Measures for Bio-Psycho-Social
Ecologies
We examined 22 proximal measures thought to encompass
bio-psycho-social ecologies hypothesized to be associated with
cognitive performance and brain structure based on previous
literature (Bronfenbrenner and Morris, 2006; Zigler et al., 2011;
Ungar et al., 2013; Pepper and Nettle, 2017; Farah, 2018).
We grouped the 22 measures into six groups thought to
encompass ecologies of economic, psychosocial, physiological
and perinatal ecologies: (1) economic security (i.e., food,
housing, bills, and medical); psychosocial ecologies: (2) parental
characteristics (i.e., education, dual parent households, parental
monitoring, and caregiver warmth); (3) school/community
environment; (4) risk for adverse childhood experiences
(ACEs); (5) physiological health; and (6) perinatal well-
being. Table 2 shows a list of variables examined within
each group and detailed descriptions for each variable are
available in Supplementary Table 1. Previous studies have
shown that measures of economic security often travel together,
such as food and housing insecurity (Njai et al., 2017).
Economic security was measured by a set of questions that
determined food security, housing security, ability to pay
bills, and access to medical or dental care. Risk for adverse
childhood experiences, including history of traumatic events,
family conflict, parent psychopathology have been shown to be
correlated (Hussey et al., 2006). Parental psychopathology was
the average z-score of Adult Self-Report scores and parental
history of conduct problems (unable to hold down a job, gets
into fights, et cetera). Parental ecologies which are comprised
of characteristics of the parent, including parental education,
parental monitoring and caregiver acceptance (i.e., warmth
and responsiveness) were grouped together, while measures of
school and community environments were grouped together,
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TABLE 1 | Distributions for cognition scores, total cortical surface area (SA), age, sex, and race-ethnicity are shown for the overall sample and each income-to-need
group as defined by the federal poverty level.

Deep
poverty <50%

Poverty
50–<100%

Near poverty
100–<200%

Mid income
200–<400%

High income
≥400%

Total sample

Cognition scores mean (SD) 78.9 (9.2) 81.5 (8.1) 84.5 (8.6) 87.3 (8.1) 89.9 (7.7) 87.1 (8.8)
Total cortical SA (mm2)
Mean (SD)

1.77e5 (1.78e4) 1.82e5 (1.79e4) 1.83e5 (1.72e4) 1.87e5 (1.78e4) 1.9e5 (1.76e4) 1.9e5 (1.8e4)

Age Mean (SD) 9.83 (0.61) 9.87 (0.61) 9.92 (0.63) 9.90 (0.63) 9.94 (0.62) 9.91 (0.62)
Sex N (%)
Female 303 (49.0) 225 (46.2) 628 (48.4) 981 (48.0) 1,776 (47.8) 3,913 (48.0)
Male 315 (51.0) 262 (53.8) 670 (51.6) 1,061 (52.0) 1,937 (52.1) 4,245 (52.0)
Race-ethnicity N (%)
Whitea 92 (14.9) 126 (25.9) 515 (39.7) 1,215 (59.5) 2,772 (74.7) 4,720 (57.9)
Hispanic 178 (28.8) 181 (37.2) 362 (27.9) 433 (21.2) 362 (9.7) 1,516 (18.6)
Blacka 276 (44.7) 133 (27.3) 266 (20.5) 200 (9.8) 116 (3.1) 991 (12.1)
Asiana 4 (0.6) 4 (0.8) 13 (1.0) 18 (0.9) 91 (2.5) 130 (1.6)
Othera 68 (11.0) 43 (8.8) 142 (10.9) 176 (8.6) 372 (10.0) 801 (9.8)
Total sample N (%) 618 (7.6) 487 (6.0) 1,298 (15.9) 2,042 (25.0) 3,713 (45.5) 8,158 (100)
U.S. Population >18 years
(%)b

8.0 9.5 21.3 28.9 32.3 -

aNon-Hispanic; bU.S. Census Bureau, Current Population Survey, 2018 Annual Social and Economic Supplement.

TABLE 2 | List of grouped measures entered into the Group Factor Analysis (GFA) encompassing economic security, psychosocial ecologies (parental, ACEs, and
school/community), physiological and perinatal domains, across parent report and youth (Y) report.

GFA groups Measures

Economic Food security Housing security Ability to pay bills Access to
medical/dental

Parental Parental education Total caregiver
warmth (Y)

Parental monitoring (Y) Dual parent
households

ACEs Family conflict (Y) History of a traumatic
event

Parent
psychopathology

School/community Neighborhood
safety (Y)

Positive school
environment (Y)

School engagement (Y)

Physiological Sleep hours BMIz

Perinatal Total prenatal
conditions

Planned pregnancy Maternal
age at birth

History of prenatal
substance use

Gestational age
(weeks)

Birth weight (kg)

i.e., school engagement, school positive environment and
neighborhood safety (Collishaw et al., 2009). Importantly,
dual parent household was defined by the study caregiver
report of whether he/she had a partner who was involved
in at least 40% or more of the daily activities of the child.
Highest parental education was from parent report of highest
education attained among both caregivers when available.
Measures of physiological health, specifically BMIz and sleep
hours have been closely liked and were grouped together
(Carter et al., 2011; Golley et al., 2013), while measures of
perinatal health, including birth weight, prematurity and prenatal
drug use have also been closely linked together (Malecki
and Demaray, 2006; Kelly and Li, 2019). Body Mass Index
z-scores (BMIz) were calculated using the SAS Program for the
2000 CDC Growth Charts (Centers for Disease and Control
and Prevention n.d.) using height (cm), weight (kg), age,
and sex. Two participants with implausible birth weights for
gestational age were excluded (>4.98 kg at 35 weeks). For

BMIz scores, N = 46 participants had implausible scores
(>4) and were thus excluded. A detailed description of
the ABCD baseline protocol, including a description of the
variables used have been reported previously (Barch et al., 2018;
Zucker et al., 2018).

Cognitive Performance
The NIH Toolboxr cognition battery was administered as
part of the ABCD study baseline neurocognition protocol
(Luciana et al., 2018). The Toolboxr provides composite derived
T-Scores for each participant, summarizing performance
across seven cognitive tasks in the domains of language
(reading and vocabulary) and executive function related skills
(i.e., working memory, processing speed, cognitive flexibility,
episodic memory, attention/inhibition). The composite
derived T-Scores are fully corrected standardized scores
that account for demographic characteristics, including gender,
education and race/ethnicity (Luciana et al., 2018). Studies
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have reported extensively on associations of SES with cognitive
skills encompassing both language and executive function
domains (Ursache and Noble, 2016; Merz et al., 2019). Thus,
the total composite cognition score, which encompasses both
language and executive function domains, was used as the
summary measure of cognitive performance (Bleck et al., 2013;
Gershon et al., 2013).

Cortical Surface Area
The imaging procedures for ABCD imaging acquisition and
preprocessing have been described previously (Hagler et al.,
2019). Each site applied a standardized structural magnetic
resonance imaging (sMRI) protocol that included a T1 weighted
scan among other imaging modalities. All imaging data
was processed using FreeSurfer pipelines and procedures by
the ABCD Data Informatics and Resource Center. Quality
control details are described in depth in Hagler et al.
(2019). Briefly, sMRI data underwent distortion and motion
correction, and cortical surface area reconstruction was derived
using T1 weighted images. Trained technicians manually
reviewed sMRI data pre and post processing pipelines to
evaluate integrity of the images across five artifact categories:
intensity inhomogeneity, underestimation of white matter,
pial overestimation, and magnetic susceptibility artifact. Each
quality control category was assigned a rating of either absent,
mild, moderate, or severe. In addition, the trained quality
control technicians assigned an overall quality control score,
with a score of 1 indicating a passing score and that the
cortical surface area reconstruction as usable, or a score of
0 recommending the data be excluded. A rating of severe on
any of the five categories was recommended as exclusionary.
Imaging data with an overall quality control score of passing
were used.

Cortical surface area, in contrast to other morphological
measures of brain structure, increases across cortical regions
during childhood, while during early adolescence, regions
across the cortex begin to shift to a pattern of reduction
(Lebel and Beaulieu, 2011; Raznahan et al., 2011; Wierenga
et al., 2014). At age 9–10 years, it was expected there
would be relatively low variability in total cortical surface
area attributable to age, with higher total cortical surface
area thought to reflect a more mature child brain. Thus
given that previous studies have reported higher total cortical
surface area in association with higher SES across a wider
age range of individuals (Noble et al., 2015; McDermott
et al., 2019b), we identified total cortical surface area as an
appropriate measure to examine associations between proximal
measures of children’s ecologies and brain structure at age
9–10 years.

Group Factor Analysis
A Group Factory Analysis (GFA; Klami et al., 2015) was
applied to extract latent factors from our 22 proximal measures.
One of the strengths of the GFA approach is that it allows
for assignment of variables to a specific group. The GFA
approach then accounts for the covariances between variables
within each group while identifying orthogonal linear latent

factors that encompass relationships across all variables. GFA is
similar to a Bayesian exploratory factor analysis, except unique
to the GFA approach is the implementation of a structural
sparsity prior that allows modeling of the dependencies between
groups, where each group contains a set of related variables.
Thus the GFA approach is appropriate for examining relations
across a set of variables, while accounting for more nuanced
relations within each group. All 22 proximal measures were
assigned to a category (economic security, parental ecology,
school/community environment, ACEs, physiological health,
and perinatal well-being) and entered into the GFA (listed in
Table 2). To test the stability and robustness of the latent
factors, we completed 10 different iterations of the GFA. Robust
latent factors were chosen based on latent factor loadings that
met a 0.9 correlation threshold across all 10 iterations. Robust
factor loadings across all 10 GFA iterations were averaged.
Separate robust GFAs were examined in split-half samples to
test replication of the latent factor loadings. Robust GFA latent
factors accounting for more than 5% of the GFA variance
were chosen.

Analytic Strategy
All statistical analyses were done using open source software
from the Comprehensive R Archive Network (version
3.4.4; R Development Core Team, 2018). All R code to
replicate the analyses, including the GFA, is available at:
https://github.com/ABCD-STUDY/gfa_ses. Generalized
Additive Mixed-Effect Models (GAMMs) were fitted using
the R-package gamm4 (Wood, 2017) to construct additive
mixed-effect models. Continuous measures were standardized to
a zero mean and unit variance. All models included demographic
covariates of age, sex, race/ethnicity as fixed effects, and random
effects of site and family identification. First, using separate
mixed effect models, we tested whether cognitive performance
and total cortical surface area was each predicted by the INR.
Second, results from the GFA were interpreted to identify latent
factors that described patterns of relations among measures
hypothesized a priori as proximal measures of economic,
psychosocial, physiological, and perinatal ecologies across the
entire economic spectrum. We then tested whether the INR
was associated with each latent factor in separate mixed effect
models by entering the INR and the demographic covariates,
including random effects of site and family, as predictors of each
latent factor. Third, we tested the associations between each
latent factor and total cortical surface area and cognition scores
in models that included the INR as a covariate, as well as the
demographic covariates and random effects of site and family.
To determine the variance statistically attributable to each
latent factor, we examined models in which each latent factor
was entered individually as a predictor, including the INR and
covariates, for each developmental measure. To then examine
the additive variance statistically attributable to all latent factors
together, we tested a model in which all latent factors were
entered together, including the INR and covariates, as predictors
of each developmental measure. Last, we examined interactions
between the INR and latent factors on total cortical surface
area and total cognition scores using the INR thresholds
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corresponding to the five income categories for federal
guidelines: deep poverty, poverty, near poverty, mid-income,
and high-income range. We tested the smooth transformation,
which allows for non-linear relationships, of the INR and each
latent factor in association with cognitive performance and
total cortical surface area using a loglikelihood ratio test with
the R ‘‘anova’’ function. Models including the smooth term,
compared to models including the linear term, with significant
chi-square statistics of p < 0.001 were determined to be the best
fitting model.

To determine the significance of our models, we compared
our full model (predictors + covariates) with a reduced model
(covariates only). Reduced GAMMs for each dependentmeasure,
i.e., total cortical surface area and total cognition scores, were
constructed with only covariates (fixed effects: age + sex + race-
ethnicity; random effects: scanner identification number and
family membership). Effect sizes, i.e., the variance statistically
attributable by each model, were evaluated as the change in R2

between a full model (predictors + covariates) and a reduced
model (covariates only). The significance of the effect size was
determined using the log-likelihood test with the R ‘‘ANOVA’’
function, comparing the full model to the reduced model,
and the significance of the chi-square statistic was examined.
Effect sizes with chi-square statistic values of p < 0.001 were
determined significant.

Mass Univariate Effect Size Estimation for
Cortical Surface Area
Vertexwise imaging data were obtained from the ABCD
2.0.1 fixed release and was available for 11,536 participants.
Imaging data that did not pass quality assurance were
excluded from our analyses using the FreeSurfer quality
control variable for the ABCD baseline tabulated dataset. A
total of 8,158 participants who had complete vertexwise data
and complete data on all other behavioral measures were
included in the vertexwise surface area analyses. Vertexwise
data for all subjects for the surface area were concatenated
into matrices in MATLAB R2017a. To measure the vertexwise
effects of the INR, we conducted a general linear model
at every vertex predicting the INR from the surface area.
The following fixed effects were included as covariates of no
interest: age, sex, scanner identification number, and race-
ethnicity. To determine the vertexwise effects uniquely predicted
by each latent factor from the GFA we conducted the same
mass univariate vertexwise analysis including additional fixed
effects of the INR and the other respective latent factors.
To account for the genetic relatedness across the sample, we
selected at random only one member from each family to
be included in the analysis. This created an N of 6,954. All
behavioral and imaging variables were standardized with zero
mean and unit variance before analysis. Cortical maps were
smoothed using a Gaussian kernel of 20 mm full-width half
maximum (FWHM) and mapped into standardized spherical
atlas space. All estimated effect size maps show the mass
univariate standardized beta coefficients. Additional maps were
created showing the distribution of mass univariate p-values
across the scalp adjusted for a false discovery rate (FDR)

of 5% using the Benjamini-Hochberg procedure implemented
in MATLAB 2017a using the ‘‘mafdr’’ function. All p-value
maps were thresholded based on an alpha level of adj-
p< 0.05.

RESULTS

SES Associated With Total Cortical Surface
Area and Cognition
In a very large sample of children 9- to 10-years of age from
diverse socioeconomic and cultural backgrounds, we tested
associations between our SESmeasure (INR) with developmental
outcomes. The smooth transformation, which allows for the
modeling of non-linear associations, was the best fit for
these associations (cortical surface area: χ2

(2,N = 8,158) = 120.66,
p < 0.001; cognition: χ2

(2,N = 8,158) = 557.57, p < 0.001)
and thus the smooth INR term was used in all models.
We observed a significant non-linear association between
the INR and each developmental measure, such that both
total cortical surface area and cognition scores were more
strongly related to the INR among children near poverty and
below, i.e., <200% of the federal poverty level (Figure 1).
The greatest differences in total cortical surface area and
cognition scores for the INR appeared to be approximately
below 400% of the federal poverty level (i.e., 98,400 for a
family of 4), seen clearly in Figure 1. Coefficient values and
model fits are shown in Supplementary Table 3 for total
cognition scores and Supplementary Table 4 for total cortical
surface area.

Latent Ecologies: Resource-to-Adversity,
Social Support, and Perinatal Health
We implemented a (GFA; Klami et al., 2015) to better
understand the distinct connections among our 22 proximal
measures encompassing economic, psychosocial, physiological,
and perinatal ecologies of children. The correlation structure
across all 22 measures is provided in Supplementary Figure
1. We found 19 of the proximal measures had significant
associations with the INR (Supplementary Figure 2). There was
consistent replication across factor loading values for separate
GFAs implemented with two split-half samples, for the GFA
with a sample with singleton participants only, for the GFA with
a sample randomly assigned only one participant per family,
and for the GFA implemented with the residuals for each
variable after adjusting for fixed covariates (age, sex, and race-
ethnicity) and random effects (scanner identification number
and family). GFA replications are shown in Supplementary
Table 2.

Latent factor 1 (LF1) explained 13.68% of the variance
across all proximal measures and described latent ecologies
indicative of higher access to social and economic resources,
relative to a lower endorsement of adversity across perinatal,
psychosocial, and physiological domains (Figure 2). Higher
LF1 scores indicated more access to social and economic
resources, i.e., food security, ability to pay bills, housing
security, access tomedical/dental care, higher parental education,
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FIGURE 1 | Plots showing the non-linear relationship between socioeconomic status (SES) as measured by the INR (A) total cortical surface area and (B) total
cognition scores. Increases in each developmental measure were steepest for children from lower SES households (near poverty and below, i.e., <200% of the
federal poverty level).

FIGURE 2 | Group factor analysis (GFA) median value loadings (with 95% confidence intervals) for each of the 22 measures for (A) latent factor 1:
resources-to-adversity (13.68% variance explained); (B) latent factor 2: youth perceived social support (6.5% variance explained); and (C) latent factor 3: perinatal
well-being (5.91% variance explained).

dual-parent households, older maternal age at birth, and planned
pregnancies. Higher LF1 scores jointly indicated less prenatal
conditions and lower endorsement of history of prenatal
substance use, suggesting less perinatal adversity from teratogens
for in utero development. Higher LF1 scores also indicated
less exposure to social adversity, i.e., lower ACEs, lower parent
psychopathology scores, less endorsement of history of one
or more traumatic events, and lower family conflict. Last,
higher LF1 scores also jointly indicated less physiological
adversity, including sleep hours and lower body-mass-index
(BMI) z-scores.

Latent factor 2 (LF2) explained 6.5% of the variance
across all measures and higher scores indicated more youth
perceived social support, loading highly on higher parental
monitoring, caregiver acceptance, school engagement, and a
more positive school environment, relative to less family
conflict. Interestingly, higher LF2 scores, to a moderate extent,
also jointly indicated less access to resources, i.e., lower
maternal age at birth, unplanned pregnancies, and less
endorsement in the ability to pay bills, food, and housing
security (Figure 2). Latent factor 3 (LF3) explained 5.91% of
the variance and described indices of perinatal health, with
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higher LF3 scores indicating higher birth weight and longer
gestational age, relative to lower total prenatal conditions
(Figure 2).

Latent Ecologies Positively Associated
With Total Cortical Surface Area and Total
Cognition Scores
Figure 3 shows the conceptual model in which latent factors
were derived from proximal measures hypothesized to be
related to the INR, to then examine the unique associations
between these latent factors with total cognition scores and
total cortical surface area. Among the three latent factors, LF1
(resource-to-adversity), was strongly and positively associated
with the INR (F = 399.7, edf = 7.18, p < 0.001), families
with higher economic advantage had more access to resources
relative to less adversity across psychosocial, physiological, and
perinatal ecologies. The INR was not significantly associated
with LF2 of youth perceived social support (p = 0.97), nor
for LF3 for perinatal well-being (p = 0.90). For the association
between LF1 and total cognition scores, the smooth term of
the LF1 was the best fit (X2

(2,N = 8,158) = 18.4, p < 0.001).
In models adjusting for s(INR), fixed covariates of age, sex,
parent-reported race-ethnicity, and random effects of scanner
identification number and family, each latent factor was
positively associated with both total cognition scores and total
cortical surface area such that increases in each latent factor
score predicted higher total cognition scores and higher total
cortical surface area (Table 3). Associations between each latent
factor and the developmental measure were consistent for
models in which each latent factor was entered individually,
including the INR and covariates as predictors, as well as in
models in which all three latent factors were entered together
as predictors, including the INR and covariates. Summary
coefficients for the full model that included all three latent
factors together as predictors, controlling for the INR and
covariates, are shown in Table 3. Detailed model results
for each model tested, including coefficient and confidence
intervals, are shown in Supplementary Table 3 for total
cognition scores and Supplementary Table 4 for total cortical
surface area. The individual variance statistically attributable
to each latent factor (Models 2, 3, and 4) and the additive
variance of all latent factors in comparison to the INR (Model
5) are shown in Figure 4. Importantly, these associations
were significant when including INR in the models, which
demonstrates that variability in individual differences in the
developmental measures was statistically attributable to these
proximal measures above and beyond SES. In a post hoc
analysis, we examined individual associations of each proximal
measure with both total cognition scores and total cortical
surface area to evaluate the contribution of each measure. We
found that proximal measures encompassing the latent factors,
including measures of economic security, parental ecologies
(i.e., parent highest education and psychopathology), and ACEs
(i.e., family conflict) were associated with total cognition scores,
while similarly, economic security, parental ecologies, and
importantly, perinatal heath were associated with total cortical

surface area (Supplementary Figure 3). These patterns of the
strength of these post hoc associations were consistent with the
magnitude of the loadings of the proximal measures within each
latent factor.

SES Moderated Associations Between
Latent Resource-to-Adversity and
Cognitive Performance
To determine if there were interactions between SES and the
latent factors predicting total cortical surface area and total
cognition scores, we generated a grouped INR variable based on
U.S. federal guidelines for poverty levels (deep poverty: <50%;
poverty: 50–<100%; near poverty: 100–<200%; mid-income:
200–<400%; higher-income: ≥400%). There was a significant
interaction of the INR by LF1 scores on total cognition scores
such that the association between LF1 and cognition scores
differed for deep poverty and poverty compared to higher
income groups (deep poverty: F = 6.86 (3.1), p < 0.001; near
poverty: F = 10.2 (2.4), p < 0.001; near poverty: F = 2.0 (2.3),
p = 0.18; mid-income: F = 1.8 (4.2), p = 0.16). To interpret
the interaction, we plotted LF1 scores predicting total cognition
scores by INR groups (Figure 5). The interaction plot shows
that among children with high SES, cognitive performance
increased steadily with LF1 scores, while for children from low
SES households, cognitive performance showed a protracted
increase with LF1 scores such that cognitive performance was
comparable to their higher-income peers only at the highest
LF1 scores. This suggests that for children in the lowest SES
households (ranging from poverty to deep poverty), having
both increased access to resources and lower endorsement of
psychosocial, physiological, and perinatal adversity could be
joint and equally promotive ecologies for cognitive performance.
There was no significant interaction for LF1 with the INR groups
on total cortical surface area (χ2

(4,N = 8,158) = 3.76, p = 0.44),
nor any significant interactions of LF2 or LF3 with the INR
groups on total cortical surface area (χ2

(4,N = 8,158) < = 5.66,
ps > 0.22) or on total cognition scores (χ2

(4,N = 8,158)) < = 4.13,
ps> 0.39).

Cortical Surface Area Effect Size Maps
A vertex-wise mass univariate analysis across the surface of the
cortex was conducted to visualize the effect of the INR and each
of the latent factors on surface area (Figure 6). Figure 6A shows
the vertex-wise association between the INR (non-transformed)
and surface area. Figures 6B–D show the vertex-wise association
between each latent factor and surface area (in separate models)
all including the INR and the other latent factors as covariates.
They, therefore, display the unique variance in the surface area
predicted by each latent factor independent of the INR and
the other orthogonal latent factors. The maximum vertex-wise
beta coefficients for each predictor were β = 0.10 for the INR,
β = 0.093 for LF1, β = 0.051 for LF2 and β = 0.16 for LF3. INR,
LF1, and LF3 showed significant distributed effects across the
cortex. INR and LF1 showed very similar effect size maps with
the strongest associations on the medial frontal surface, although
there is no evidence for strong localization effects. LF3 showed
a unique pattern of effects, not explained by INR or the other
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FIGURE 3 | Conceptual model showing that while the INR is associated with proximal measures across ecologies of economic, psychosocial, physiological, and
perinatal well-being, three latent factors were derived from the proximal measures to examine associations between each latent factor and cognition scores and total
cortical surface area, beyond the INR.

LFs, with the largest effects in the medial orbitofrontal, fusiform
and insular cortices as well as along the temporal lobe. Given that
these LFs were included in the same model, this suggests that the
associations between these LFs and total surface area may have
been driven by effects in different regions of the brain; however,
we did not conduct any statistical analyses to specifically test for
differences in the localization of effects across these measures.
Interestingly, despite being significantly associated with total
SA, LF2 did not show any significant vertexwise effects when
the other LFs were included in the model, which suggests that
LF2 was not associated with any unique variability in cortical SA
above and beyond that already explained by the other LFs and
INR, which were included in the model. Maps with thresholded
vertexwise p-values, adjusted for a FDR of 5% are shown in
Supplementary Figure 4.

DISCUSSION

SES has long been known to impact cognitive development
and school performance, with more recent research relating to
low SES with differences in brain structure thought to reflect a

negative effect on brain development (Hair et al., 2015; Noble
et al., 2015; Lawson et al., 2017). In this larger and more
diverse cohort of children, we replicated previous findings of
a continuous association between the INR and developmental
measures, with the strongest associations among children from
low SES households (Hair et al., 2015; Noble et al., 2015).
Methodologically, this study advanced our understanding of
the associations between proximal measures of the ecologies of
children and cognitive and brain development by: (a) utilizing
a large demographically diverse cohort; (b) utilizing proximal
measures of the environment of children that more closely reflect
the lived experiences of participants; and (c) expanding the
scope of developmental ecologies integrated with measures of
cognitive and brain development. Within the expanded scope
of the 22 proximal measures examined, a GFA identified three
latent factors that overall explained 26% of the variability across
these measures among individuals aged 9–10 years. The three
latent factors were strongly driven by distinct sub-groupings
of proximal measures, the first generally encompassing higher
access to resources relative to lower adversity in the areas of
economic, psychosocial, physiological, and perinatal health, the

TABLE 3 | Standard beta coefficient values and 95% confidence intervals are shown for each latent factor, while for the smooth terms of the INR and LF1 (cognition
model only) the F(edf) values are shown, for models in which the INR and latent factors were entered together as predictors of total cognition scores and total cortical
surface area. The additional variance statistically attributable to this full model compared to a reduced model (covariates only) is shown as ∆R2.

Total cognition Total cortical surface area

R2 0.30 0.30
∆R2

(Full—Reduced) 0.09 0.03
Chi-square 740.7∗∗ 282.5∗∗

s(INR) 36.9(6.18)± 13.91(3.10)±

LF 1: Resource-to-adversity 38.6(3.4)± 0.081(0.055, 0.107)
LF 2: Youth perceived social support 0.042(0.02, 0.063) 0.027(0.007, 0.047)
LF 3: Perinatal health 0.073(0.051, 0.096) 0.121(0.099, 0.143)

∗∗p < 0.001. ±F (edf) statistics for smooth terms.
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FIGURE 4 | For each developmental measure (A) total cortical surface area and (B) total cognition scores, effect sizes are shown as the percent of variance
statistically attributable to the INR only, each latent factor, and to the additive effect of the INR and all latent factors combined. Change in adjusted R2 was calculated
by comparing each separate model to the null model (fixed effects of covariates and random effects only).

second youth perceived social support, and the third perinatal
well-being. The three latent factors each positive predicted
cognitive performance and total cortical surface area at ages
9–10 years beyond economic advantage.

While studies in children often index SES using measures of
family income, each proximal measure studied here is thought to
represent components of economic, psychosocial, physiological,
and perinatal ecologies that are often studied in isolation in
association with development (Braveman et al., 2005). Given
the complexity of the relations among measures of risk and
resilience for children grouping up low SES, it has been difficult
to understand how such associations between various economic,
psychosocial, physiological, and perinatal factors contribute
individually or multiplicatively in explaining differences in
developmental outcomes (Guo and Mullan Harris, 2000;
Hackman and Farah, 2009; Whittle et al., 2017). Here, using a
multidimensional analysis, we identified three latent factors that
each describe key relationships between 22 proximal measures
that encompass distinct ecologies of the lived experiences of
children, with each contributing positively to developmental
outcomes. Specifically, LF1 shows interrelations between 20 of

the proximal measures such that higher LF1 scores indicate
more access to social and economic resources (i.e., higher
parental education, economic security, higher maternal age at
birth, planned pregnancy, dual-parent households) relative to
lower adversity for psychosocial, physiological and perinatal
health (lower prenatal substance exposures, and less prenatal
conditions, lower family conflict, lower endorsement of
traumatic events, lower parent psychopathology, more parental
monitoring, safer neighborhood, and lower BMI and better
sleep). Higher LF1 scores predicter better cognitive performance
and higher total cortical surface area, suggesting that more
access to resources relative to lower perinatal, psychosocial and
physiological adversity was associated with better cognitive
performance across the INR spectrum. Although, LF1 scores
did benefit higher-income families more strongly than lower-
income families, children from lower income households
with the highest LF1 scores showed comparable cognitive
performance to their higher-income peers. This suggests
that having high access to resources and low exposure to
perinatal, psychosocial and physiological adversity were optimal
ecological environments that contributed to better cognitive
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FIGURE 5 | The plot of the interaction of the INR by LF1 scores in
association with total cognition scores shows differences in total cognition
scores between income-to-need groups varied as a function of LF1 scores.
While total cognition scores steadily increased with higher LF1 scores for
children with higher SES (mid to high income), total cognition scores for
children in poverty and deep poverty showed a protracted shift in scores,
revealing an advantage in total cognition scores for children from higher SES
households in the middle-range of LF1 scores. Importantly, the gap in total
cognition scores between low SES and higher SES narrowed for children at
two intersections with latent factor scores: those with higher (approx. +2)
scores (i.e., a higher endorsement of access to resources relative to the lower
endorsement of adversity) and those with lower (approx. −3) scores
(i.e., fewer resources relative to higher adversity).

performance for children in lower-income households (ranging
from deep poverty to near-poverty). Economic deprivation and
psychosocial adversity have been previously described in the
literature as poverty-related stress and have been associated with
poor mental and physical health (Wadsworth and Berger, 2006;
Wadsworth et al., 2008). Thus poverty-related stress may be
one overt-stress pathway by which SES has an indirect negative
effect on development in children. Also, low SES increases
exposure to other risk factors (not captured by LF1 scores,
i.e., more pollution and environmental toxins), and it is plausible
that these risk factors may exacerbate the negative impact of
low-SES on development and attenuate the benefit to cognitive
performance and brain development, in particular among
children in lower-income households with moderate to low
latent factor 1 scores. Increasing resources relative to decreasing
adversity, as suggested by LF1, may be important ecologies
that promote healthier cognitive outcomes among youth and
especially among youth with poverty/deep poverty. This is
especially critical for low SES youth, who were more likely
to have less resources relative to higher adversity (i.e., lower
LF1 scores), and highlights the need to implement public policies
that target systemic inequities for youth in poverty/deep poverty
by increasing resources and decreasing adversity to promote
healthier cognitive outcomes.

While the associations between LF2, youth perceived
social support, and each developmental measure were
moderate, our findings suggest that having a positive family

and community environment is associated with positive
developmental outcomes, even though co-occurring with
other risk factors, i.e., young maternal age at birth, unplanned
pregnancies, lower endorsement of ability to pay bills and
food and housing security. Given that LF2 did not show
specific associations with the INR, this suggests that higher
LF2 or increased youth perceived social support can benefit
all children regardless of economic status. LF3 loaded most
strongly on perinatal factors that align with the concept of
developmental origins of health and disease (DOHaD), which
postulate that birth factors (e.g., shorter gestational age, lower
birth weight, and more prenatal conditions) are both an
outcome and predictor of health and disease (Silveira et al.,
2007). Specifically, several prenatal adversities can result in this
collection of birth outcomes, and subsequently, this collection
of birth outcomes is predictive of increased risk for a sequela
of disease outcomes in adulthood. Importantly, we found that
LF3 scores benefit children the same across the economic
spectrum, suggesting that there was no specific risk captured
by the proximal measures in LF3 for children from lower or
higher SES.

Previous studies reporting on the association between family
income and cortical surface area have suggested the effects of SES
on brain structure are stronger in specific regions (Hair et al.,
2015; Noble et al., 2015; Kim et al., 2018; McDermott et al.,
2019). However, in the present study, with increased sample size
and power for detection, we found that the vertex-wise cortical
surface area associations for the INR appeared continuous and
distributed across the cortex, and while the strongest associations
were on the medial frontal surface, we did not find evidence for
strong localization effects. From a developmental perspective, the
whole-brain cortical surface area increases throughout childhood
and begins to show regional decreases in early adolescence
(Raznahan et al., 2011; Wierenga et al., 2014). We examined
a narrow age group of 9–10 years of age, and it is plausible
that associations between SES and regional specificity in brain
structure may change with developmental age (Noble et al., 2012;
Piccolo et al., 2016; Farah, 2018). Differences in patterns of
associations across regions in the brain between the latent factors
encompassing distinct aspects of bio-social-ecological systems
would be suggestive of differences in underlying mechanisms
by which the INR and the latent factors associated with the
total cortical surface area. Interestingly, we found that the
distribution of effect sizes across the cortex for surface area
appeared to be most similar between the INR and LF1 (resource-
to-adversity), suggesting that there may be shared pathways by
which these ecologies are associated with the cortical surface
area. Some studies have suggested regional specificity of the
effects of SES in limbic brain structures, including frontal lobe
regions, the amygdala, and hippocampus (for a review see Farah,
2017). Our findings suggest that the effect of SES as measured
by the INR is much more distributed across the brain for
the cortical surface area at age 9–10 years of age. While the
visual comparison of the effect size maps between the INR
and LF3 (perinatal well-being) shows an apparent qualitative
difference, we cannot infer regional differences from these
post hoc exploratory effect size maps. Instead, these qualitative
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FIGURE 6 | Mass univariate vertex-wise estimated effect size maps predicting surface area from each independent variable, (A) the INR, (B) latent factor 1, (C)
latent factor 2, and (D) latent factor 3, were created using general linear models at each vertex controlling for age, sex, race/ethnicity, and scanner ID. Maps b–d also
included the INR and the other latent factors as additional covariates such that these maps show the unique contribution of each latent factor predicting surface
area. The maps show unthresholded standardized beta coefficients. All of the independent variables showed positive effects with the surface area.

differences between these maps can guide future studies and
hypotheses about the differential pathways by which these
ecologies associate with the regional cortical surface area. Also,
future studies can examine whether the distribution of SES effects
on cortical surface area changes over time during adolescence
and whether they shift from global distribution to a pattern that
suggests regional specificity.

Further, while we cannot infer any causality or directionality
from the observational associations reported here, we found
LF1 captured specific relationships between the proximal
measures that were indicative of higher access to social and
economic resources and lower exposure to adversity, and this
was closely linked with SES. This suggests that in our large
and diverse sample, increases in family income, in general, were
associated with increases in access to resources and decreases
in exposure to adversity. Previous studies have attempted
small scale interventions in which the household income of
families is supplemented and found relative improvement
in the allocation and use of economic resources (Rojas
et al., 2020; for a review see Barrientos and DeJong, 2006).
We found that income was closely tied to other proximal
measures that also showed their unique associations with
measures of development. While supplementing the income

for low-SES households may improve economic resources,
it is difficult to know whether this would also generalize
to positive changes across other joint social processes that
also influence development, i.e., decreased exposure to social
and environmental adversity, as well as to better outcomes
in development.

LIMITATIONS AND STRENGTHS

Understanding the proximal measures that describe the ecology
of a child’s environment is important for the investigation of
developmental outcomes, as they better assess the compilation
of the common daily experience influenced by economic
status and subsequently impact development. To best inform
interventions or policy reform, we need to better capture
the most prominent constellations of experiences that drive
brain and cognitive development. To this end, we believe the
present findings serve only as an intermediate step towards
understanding the incredibly rich proximal and proximal factors
that shape America’s youth, as our proximal measures only
begin to push the needle towards diving deeper into patterns of
daily experiences important for adolescent development. Future
studies should strive to capture measures that are even more
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proximal, and that would ultimately make the present proximal
measures appear distal in comparison.

In this study, we have only examined the total cortical
surface area as one measure of maturation of brain structure.
There are various other measures of brain development that
we do not examine that have been reported in association with
SES, including cortical thickness, cortical volume, and white
matter microstructure (for a review see Farah, 2018). The age
at which surface area peaks during childhood is uncertain and
studies suggest that there is likely individual variability in the
chronological age at which surface area peaks (Raznahan et al.,
2011; Shaw et al., 2012; Wierenga et al., 2014; Jernigan et al.,
2016). While there were no significant effects of age on the
total cortical surface area in our narrow age range of 9–10 year-
olds, our cross-sectional analysis cannot determine whether the
total cortical surface area in our cohort has yet peaked at age
9–10 years of age. Future longitudinal studies can examine
age-related changes in total surface area in association with
SES. Further, the relative effect sizes are small, although this is
perhaps to be expected from studies examining behavioral and
brain outcomes with large samples, given the heterogeneity in
individual differences in the population being studied as well as
the wide range of factors that could influence development.

Although the composition of the study sample analyzed is
overrepresented in the number of households in the higher
income range relative to the population income distribution
in the United States, our study sample includes a larger
representation of children from low SES households than
previous studies (Compton et al., 2019). The duration and
extent under which children in this cohort have experienced
economic and social adversity during their early childhood
are not yet known. While it is challenging to differentiate
between transitory poverty and chronic poverty, previous
literature suggests that even children who have experienced
transitory poverty have poorer outcomes compared to children
who never experienced poverty (Smith et al., 1995; Duncan
and Brooks-Gunn, 2000). Many other risk factors are closely
related to low SES not directly examined in this study,
such as the child’s mental health and environmental toxins
(Evans, 2004; Marshall et al., 2020). Also, many other
experiences may contribute to resilience in developmental
outcomes for children from low SES backgrounds, including
participation in enriching activities like art, music, and sports,
that were not considered in our analysis. Although parental
education may be conceptualized as a distal factor, it is
considered here as a proximal measure that encompasses
potential differences in the environment for children across
the economic spectrum. For instance, it may be that higher
parental education affords children with more opportunities
for enriching learning and recreational activities, such as
participating in music or sports (Guo and Mullan Harris,
2000; Bradley et al., 2001). Future studies should examine
whether there are measurable differences in the quality
and access of enriching activities that stimulate learning at
all levels of parental education and whether participation
in enriching activities for children among lower educated
parents can be linked to positive developmental outcomes.

However, there is likely not one single factor that will
apply to all children with economic disadvantage in the
same way. Thus, looking at the constellation of factors
traveling with low SES helps identify malleable experiences
that should be targeted synchronously by interventions. Last,
cognitive and brain development is an on-going process and
occurs reciprocally with many environmental proximal factors.
The present cross-sectional study is unable to advance our
understanding of this bi-directional process and warrants future
longitudinal investigation.

CONCLUSION

Within the large sample of children in the ABCD study, we
conducted a descriptive investigation of 22 proximal measures
of the lived experiences of children in association with SES
and development. While our findings suggest that SES is
an important determinant of developmental outcomes at age
9–10 years, in future studies within the ABCD cohort, we will
be able to continue to examine the association of SES and
proximal measures of the environment with brain development
throughout adolescence. Beyond SES associations, we can
examine the longitudinal influences of these latent ecologies
and whether different patterns of relations among proximal
measures emerge as stronger predictors during different stages
of adolescence, i.e., will social support emerge as a stronger
predictor of development in mid-adolescence?
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