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Induced Polarization of Clayey Rocks and Soils: Non‐Linear
Complex Conductivity Models
Youzheng Qi1 and Yuxin Wu1

1Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

Abstract The past decades have witnessed the increased applications of induced polarization (IP) method in
the critical zone studies with ubiquitous clay minerals. Although IP outperforms traditional electrical and
electromagnetic methods through its unique ability to measure quadrature conductivity, the nonlinearity that
quadrature conductivity behaves with salinities and frequencies greatly tortures IP practitioners, as (a) salinity‐
dependency makes the quadrature conductivity a varyingly unstable parameter to quantitatively estimate
hydraulic properties and clay content; (b) frequency‐dependent Cole‐Cole and Debye/Warburg decomposition
models, although mathematically sound, physically mingle the properties of pore water and clay minerals and
are empirical in nature. From basic principles, we demonstrate that quadrature conductivity remains a hybrid
property involving both clay and water, and develop relevant models to distinguish them. Our models are
validated by theories, experiments, simulations, and comparisons, all of which proclaim considerable
advantages over previous models and offer the prospect of quantitative applications.

Plain Language Summary As habitually appears in the first chapter of many geophysics textbooks,
rock and soil models (i.e., petrophysics) lay the base for geophysical applications, bridging the gap between
macro‐scale field and micro‐scale rock/soil parameters such as porosity and permeability. In contrast to “clean”
rocks and soils where Archie's law is readily used, the additional interfacial conduction and polarization arising
from the electrical double layer of “dirty” rocks and soils, especially clayey ones, greatly complicate this issue
and bring both challenges and opportunities. On the one hand, this interfacial conduction nullifies Archie's law,
making the porosity evaluation challenging, but, on the other hand, these interfacial properties provide an
opportunity to assess the pore structure and clay properties, making the permeability estimation possible.
Although IP is highly commendable to separate the interfacial attribution from the bulk water, complex
conductivity models that can both physically and mathematically explain clayey rock/soil behaviors are lacking,
which is the goal of our work. We expect our developed models to deepen the understanding of IP mechanisms
and lead to more quantitative IP applications.

1. Introduction
It has been beyond 100 years since the first IP work was pioneered by Conrad Schlumberger in the 1910s
(Schlumberger, 1920; Seigel et al., 2007), during which the IP community evolved from the initial mineral
exploration into much broader areas such as hydrological, biological, environmental, and engineering in-
vestigations (Binley & Slater, 2020; Kemna et al., 2012; Kessouri et al., 2019; Loiseau et al., 2023; Luo &
Zhang, 1998; Rubin & Hubbard, 2006; Wu et al., 2010). In the multidisciplinary and multiscale critical zone
studies, IP is surging due to its specialties over traditional electrical and electromagnetic (E&EM) methods
(Parsekian et al., 2015; Robinson et al., 2008). E&EMmethods measure how energy is lost in geomaterials, while
IP method also senses how energy is stored (Sumner, 1976). It is widely recognized that this energy storage is
implemented by the electrical double layers (EDLs) that exist at the interfaces between geomaterials and their
interstitial fluids (Winsauer & McCardell, 1953). For some geomaterials like sands and gravels, E&EM energy
mostly dissipates via the volume conduction within the pore water, such that the conventional E&EM methods
and the well‐known Archie's law are readily used (Archie, 1942). However, for some geomaterials, especially the
omnipresent clayey rocks and soils in Earth's near‐surface (Schroeder, 2018), their high surface area and net
negative surface charges make their EDLs rather forceful (Tournassat et al., 2015), such that the energy loss (i.e.,
conduction) and storage (i.e., polarization) resulting from the interfacial EDL are not inconsiderable anymore
(Tabbagh et al., 2021), where established E&EM methods and related petrophysical models begin to fall short of
expectations (Schön, 2015). By contrast, with the aforementioned unique ability, IP can not only separate the
volume and surface contributions to estimate the true formation factor and clay content (Slater & Lesmes, 2002;
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Weller et al., 2013), but also obtain the pore geometry information to assess permeability (Börner et al., 1996;
Rink & Schopper, 1974), the Holy Grail of hydrogeology, both of which are beyond the competence of E&EM
methods (Binley et al., 2015; Slater, 2007).

Despite the obvious advantages, IP faces huge challenges of establishing itself as a routine method since its
parameters, for example, quadrature conductivity σ″, surface conductivity σs, and normalized chargeability Mn,
vary in an unstable way with their causal physical properties, for example, the surface area per pore volume Spor
(Lévy et al., 2019; Weller & Slater, 2019), such variance not being explained by current models (Peshtani
et al., 2022). Given that these parameters are extracted from multi‐salinity and/or multi‐frequency measurements,
salinity‐ and frequency‐dependent responses lie at the root of IP model development. Unfortunately, these two
behaviors are highly non‐linear and there is a long‐standing debate over their underlying mechanisms. Regarding
the salinity‐dependent nonlinearity, some believe it results from the variable EDL properties (Börner, 1992; Revil
& Skold, 2011), while others ascribe this mainly to the rock/soil geometry (Niu, Revil, & Saidian, 2016; Revil
et al., 2019). The former group employ Waxman‐type models (Vinegar & Waxman, 1984; Waxman &
Smits, 1968), while the latter use Bruggeman‐Hanai‐Sen (BHS) model (Sen et al., 1981), two models differing
from each other mathematically and physically (Bussian, 1983; de Lima & Sharma, 1990; Niwas et al., 2006,
2007). Recently, Qi and Wu (2022) presents a new model that integrates Archie's law and a composite surface
conductivity to account for such a nonlinearity. Although that model is comparable with the well‐established BHS
model, it is developed conceptually and with applications to real electrical conductivity for E&EM rather than
complex electrical conductivity for IP. Meanwhile, as to the frequency‐dependent nonlinearity, it is under-
stood this stems from the EDL's leaky‐capacitor behavior, yet those to depict such low‐frequency dispersion are
Cole‐Cole and Debye/Warburg decomposition models (Nordsiek & Weller, 2008; Pelton et al., 1978) that
originally characterize high‐frequency dielectric relaxations. Although mathematically works for IP, physically
these models mingle the surface and bulk attributions and are essentially empirical models (Weigand &
Kemna, 2016b).

There is a pressing need for models that can both physically and mathematically account for these two non-
linearities, as this directly relates to how electrochemical properties are assembled into mechanistic models and
different models supply distinct petrophysical parameters to geophysicists both in laboratory and field (Cosenza
et al., 2009; Glover, 2015). To this end, we return to the basic principles behind these phenomena: electro-
chemistry and Maxwell's equations, from which we pinpoint that both surface and quadrature conductivities are
mixed properties following the same EDL‐and‐water pattern and thence develop related non‐linear models.
Theories, simulations, measurements, and comparisons all corroborate our models and exhibit their advantages
over existing models. It is expected that our models could shed new light on the IP mechanism and pave the way
for more quantitative IP applications.

2. Model Development and Verification
2.1. Underlying Principles

IP method can be seen as an extension of DC resistivity method where frequency‐ or time‐domain signals are
transmitted into earth and corresponding responses are measured. In view of the Fourier‐transform equivalence
(Fiandaca et al., 2012; Qi et al., 2019), IP models are always developed in frequency domain, namely spectral IP
(SIP). Figure 1 give typical conductivity curves of clayey rocks/soils at a certain frequency. Compared to ideally
“clean” rocks/soils, two distinctive features emerge (Mendieta et al., 2021; Weller, Zhang, & Slater, 2015): (a)
The real conductivity is no longer a straight line across the origin but bears an excess surface conductivity σs that
behaves non‐linearly at low/medium salinities but appears constant at high salinities. (b) It has an additional term
of quadrature conductivity σ″ that is also non‐linear at low salinity, but seems to flatten at medium salinities and
then decrease at high salinities. It is straightforward that these nonlinearities result from EDLs, otherwise it will be
an Archie‐type straight line and has no quadrature term for clean rocks/soils (Archie, 1942), where the bulk pore
water is approximately the only conductive phase. It shall be clarified here that “cleanness” or “dirtiness” is a
relative terminology that is essentially a question about the ratio between the effective EDL and pore water
conductivity (i.e., the Dukhin number. cf., Lyklema, 2002). These nonlinearities may not be a big issue for near‐
clean geomaterials, but, by contrast, they are obviously significant for those dirty clayey rocks/soils
(Schön, 2015), which makes things a bit complicated and more theoretical works are clearly needed.
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As from the model‐developing diagram of Figure 1 (Jougnot et al., 2010; Leroy & Revil, 2009), these features
result merely from two aspects: EDL properties and effective medium models, as water itself is non‐polarizable
for SIP of 1mHz‐1 kHz (Revil et al., 2023; Vinegar & Waxman, 1984). Indeed, an enduring debate does exist
between these two sources: some believe this is from EDL variation (Börner, 1992; Revil & Skold, 2011), while
others argue this is mainly from the rock/soil geometry (Bussian, 1983; Johnson & Sen, 1988). Put aside the
quadrature decrease at high salinities and focus on the non‐linear increase first. Diffuse layer polarization (DLP)
model (Börner, 1992) cannot even mathematically explain the non‐linear increase (Weller & Slater, 2012), thus is
easily excluded. Stern layer polarization (SLP) model (Skold et al., 2011) does cause a concave nonlinearity, but
this merely happens at extremely low salinity (e.g., <0.05 S/m) and cannot explain such a strong nonlinearity
(Bernabé & Revil, 1995; Niu, Revil, & Saidian, 2016), which means that SLP model may mathematically explain
measurements, but it can generate physically unreasonable parameter correlations (Weller, Zhang, &
Slater, 2015). Considering EDL variation reasoning is arguable, from Figure 1, effective medium model is the
only remaining cause.

As geophysical methods work in macro‐scale that have sensitivity but limited resolution into micro‐scale,
effective mediummodels are generally utilized to bridge the gap between micro‐ and macro‐scales and to produce
useful parameters for the composite geomaterials. Although effective medium theory (EMT) inevitably simplifies
the geometry so that analytic formulas can be developed for real‐world geomaterials, it solidly builds on the
underlying principle of Maxwell's equations. A vivid example of effective medium models is Archie's law
(Archie, 1942) that has been successfully used for more than 80 years for “clean” rocks/soils. Regarding “dirty”
ones, Figure 1 shows simplified models that mimic the geometry of consolidated rocks and unconsolidated soils
where EDL clings along the pore wall and grain surface, respectively. Given the fact that EDL size (salinity‐
dependent yet typical <40 Å) is mostly smaller than the typical pore size (>1,000 Å) (Johnson et al., 1986), the
specific EDL conductivity Σ∗

s performs as a 2D model without thickness in the unit of S rather than S/m (Dukhin
& Derjaguin, 1974; Lyklema, 1995) as

Σ∗
s = BQs + iλQs, (1)

where Qs is the charge density per unit surface, B and λ the apparent mobilities for conduction and polarization,
respectively. Here Σ∗

s is complex‐valued because EDL performs as a leaky capacitor under E&EM field, both
conducting and storing energies (Lyklema et al., 1983; Schwarz, 1962). Note that for tight rocks, EDL can be
comparable in size to the pore that leads to phenomena such as EDL interaction. To make Equation 1 applicable,
this can be overcome with equivalent potential approaches such as Donnan equilibrium (Jougnot et al., 2009).

Figure 1. Mechanistic model‐developing diagram includes the assembly of bulk water and EDL properties (leftmost) into an effective medium model (middle) that
finally produces non‐linear complex‐conductivity curves (rightmost).
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If we hypothesize that (a) There is no E&EM coupling between EDL and pore water, such that they perform as
two paralleled circuits; (b) There is a bodiless electrode connecting to the EDL during measurements, the bulk
conductivity σ∗ shall be a linear circuit model as (Dukhin et al., 2012)

σ∗ =
σw
F
+ σ∗

c

=
σw
F
+
2Σ∗

s
Λ

=
σw
F
+ Σ∗

s Spor

=
σw
F
+ (B + iλ)Qv

, (2)

where the first term is Archie's law with F = ϕ− m the intrinsic formation factor, ϕ porosity and m the cementation
exponent (Archie, 1942). σ∗

c = 2Σ∗
s /Λ denotes the equivalent volume conductivity of the solid phase (i.e.,

Effective EDL conductivity) since an insulating sphere coated with a non‐thick 2D surface conductivity Σ∗
s

behaves just as a 3D sphere with uniform conductivity 2Σ∗
s /Λ (O'Konski, 1960; Schurr, 1964), where Λ is the

radius of the sphere and, for natural rocks/soils, Λ can be linked to the characteristic pore or grain size (Johnson
et al., 1986). Spor= 2/Λ is the surface area per unit pore volume andQv=QsSpor is the ionic concentration per unit
pore volume.

Unfortunately, the aforementioned hypotheses never exist in the real world because (a) There is a direct coupling
between EDL and water, such that the existence of EDL will disturb the field in the water and vice versa (Dukhin
&Derjaguin, 1974); (b) There is no immaterial electrode and SIP electrodes are much bigger than EDL. Indeed, in
the IP realm, (a) is exploited to fulfill (b); that is, electrodes are put into water to measure the total field that

Figure 2. Simulations testify to the root cause of the salinity‐dependent nonlinearity. Panels (a, b) and (c, d) are geometry and meshes for pore‐scale rocks and grain‐scale
soils, respectively. Panels (e–h) and (i–l) are the simulated potential V and current I distributions for rocks and soils at low‐ (0.05 S/m) and high‐salinity (1 S/m),
respectively. Note that V (in color scales) and I (in black arrowed lines) bear the same information since they are perpendicular to each other.
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includes both the field of water conduction (background field) and the disturbed field from EDL (anomalous
field). Because of this coupling, Kirchhoff’s circuit laws cannot apply and Maxwell's equations, downscaled to
Poisson's equation for SIP of 1mHz‐1 kHz, must be used since clayey rocks/soils already behave as distributed
elements rather than lumped parameter system (cf., Supporting Information S1).

Considering one can never keep EDL a hundred percent constant in experiments, simulation is the best way to
validate whether this coupling can decisively cause the salinity‐dependent nonlinearity or not (Niu &
Zhang, 2017; Revil et al., 2018). As in Figures 2a–2d, for consolidated rock, one block (140 × 60 × 60 nm) and
another small block (50 × 60 × 20 nm) are fused to imitate a dead end, around whose sides a 1 nm layer is built to
represent EDL, while for unconsolidated soil, a block (200 × 120 × 120 nm) to represent the water cube and then
implant one sphere (radius 40 nm) bearing a shell (1 nm) to mimic the clayey grain. Since we exclude EDL
variation, EDL conductivity is set as 0.5 + 0.05i S/m (i.e., Σ∗

s = 5 × 10− 10 + 5 × 10− 11i S) and the water con-
ductivity changes at 6 variables of [0.01, 0.1, 0.5, 1, 5, 10] S/m to model multi‐salinity measurements. All outside
faces are given insulating boundary conditions except two end‐faces with current source/sink (±1 A/m2) and two
points in its middle to resemble point‐measuring electrodes (Jougnot et al., 2010). The governing equation is the
frequency‐domain Poisson's equation and the numerical method is the finite‐element method. Simulated real and
quadrature results are exemplified in Figures 2e–2l, conveying distinctive features that quadrature voltages act
with the opposite sign to real voltages and such quadrature voltages not only distribute in EDLs but also in water,
which may be surprising at first glance but is rather reasonable after contemplation. The quadrature voltage in the
water, albeit non‐polarizable by itself, is coupled by the polarized EDL. The fact remains that it is the real and
quadrature voltages in the water that we measure in SIP. Finally, voltages are extracted at two points and
calculated with currents and geometric factors to derive the simulated rock and soil conductivities in Figures 3a
and 3d, respectively, which exhibit much the same non‐linear increase as laboratory measurements. It stands to
reason that the coupling between EDL and water (aka “the EDL‐and‐water pattern”) gives rise to such salinity‐
dependent nonlinearity since in all cases EDL conductivity is set as a constant and, conceivably, salinity increase
intensifies this EDL‐and‐water coupling, such ratiocination being in line with the precedents of Bussian (1983),
Niwas et al. (2007), and Niu, Revil, and Saidian (2016) that also discover even constant EDLs still lead to the non‐
linear complex conductivity increase in the multi‐salinity situation by the calculation of the well‐established BHS
model, where their geometry attribution carries the same meaning of the EDL‐and‐water coupling herein.

2.2. Non‐Linear Salinity‐Dependent Model

It is self‐evident that the EDL‐and‐water coupling nullifies the linear model Equation 2 and non‐linear model
must be developed. Here we resort to the integral equation that is commonly used in the E&EM community
(Christensen, 1997; Zhdanov & Fang, 1996)

E(r) = Ew(r) +∫G(r,r′) · (σ∗
c − σw)E(r′) dr′, (3)

where the total field E(r) are expressed as the background field Ew(r) and the anomalous field (the second term)
where G(r, r′) is the dyadic Green function and r and r′ denote the coordinates of the background water and the
anomaly of clay, respectively. σ∗

c bears the same expression as in Equation 2

σ∗
c = (B + iλ)Qv

= (B + iλ)QsSpor

= (B + iλ)Qs
2
Λ

(4)

σ∗
c is verily what the 2D EDL (in comparison with the pore/grain, cf., Schwarz, 1962) represents itself in 3D since

real‐world measurements are all conducted in 3D. Considering the solid phase is insulating except for the surface,
surface conduction (B + iλ)Qs is equivalent to the bulk conduction of (B + iλ)Qv under the relationship of Qv/
Qs = 2/Λ, which is absolutely accurate for a spherical grain with the radius of Λ (O'Konski, 1960) or for a cy-
lindrical capillary tube with the internal radius of Λ (Dukhin et al., 2012), but 2/Λ = Spor will become effective
values for natural rocks and soils. Although σ∗

c is extensively used by many IP practitioners (e.g., Bussian, 1983;
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de Lima et al., 2005; Niu, Revil, & Saidian, 2016; Revil et al., 2019), it appears that there is not a universal name
of σ∗

c in the nomenclature of IP. For lack of a better name, σ∗
c is dubbed as the effective EDL conductivity here.

From EMT, effective bulk conductivity of rocks and soils σ* links to the total field E(r) via averaging the local
electrical energy over the total volume Vtot as (Johnson et al., 1986)

σ∗ =
∫ σ(r)|E(r)|2dVtot

∫ |E(r)|2dVtot
. (5)

Unfortunately, although Equation 3 is directly fromMaxwell's equations and thus absolutely accurate, it is hard to
derive an explicit‐form effective medium model because E(r) exists on both sides. Thanks to the much smaller
size of EDL compared to the bulk, Born approximation can be readily employed to equal the total field in the EDL
E(r′) by the background field Ew(r′) as (Christensen, 1997; Habashy et al., 1993)

E(r) = Ew(r) +∫G(r,r′) · (σ∗
c − σw)Ew(r′) dr′. (6)

With that, integrating the right side with their respective local conductivity over the pore volume Vp and then
averaging them to the total volume Vtot will derive the expression of effective bulk conductivity (Johnson
et al., 1986), where the first term will be Archie's law (Niu, Prasad, et al., 2016)

σw
F
=

∫ σw|Ew(r)|2dVp

∫ |Ew(r)|2dVtot
, (7)

yet the second term, the so‐called complex surface conductivity

Figure 3. Our non‐linear salinity‐dependent model validation. Panels (a and d) are the simulated rock and soil at 1 Hz, while (b), (c), (e), and (f) are natural samples from
sandstone E10 of Börner (1992) at 1 Hz, Portland sandstone PS1 of Niu, Revil, and Saidian (2016) at 100 Hz, sandy sediment N1‐51‐53 of Slater and Glaser (2003) at
1 Hz, and green montmorillonite MtG of Mendieta et al. (2021) at 1.46 Hz, respectively. For experimental data, salinities above 1 S/m are omitted because of obvious
high‐salinity decrease.
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σ∗
s =

∫ (σ∗
c − σw)|G(r,r′) ·Ew (r′)|2dVsld

∫ |Ew(r)|2dVtot
, (8)

is too complicated to derive because analyticG(r, r′) doesn't exist for natural clayey rocks/soils, albeit Equation 8
clearly presents itself as a composite parameter of σ∗

c and σw. Nonetheless, it is proved by Brown (1955) that
Maxwell Garnett equation (Garnett, 1904) is statistically “the best” mixing rule for any two‐phase mixture
without knowing more than their respective fractions and properties, “the best” figuratively implying its
simplicity yet broad applicability. Moreover, another specific advantage of the Maxwell Garnett equation that can
be taken is that it is an asymmetric effective medium model where one phase must be chosen as the host (i.e., the
matrix) and the other as the guest (i.e., the inclusion). From EMT, which phase is the host or guest depends on
whose role is stronger or weaker rather than their respective fractions (Sihvola, 1999). As discussed in the
preceding section, in clayey rocks/soils, water plays two roles: (a) Water conduction by itself; (b) Convey the
complex field disturbed by EDL, while EDL plays one role: Being the source of the complex field in the pore
water. It is obvious that water plays a stronger role than EDL in the bulk rock/soil conductivity σ*, but, by
contrast, in the complex surface conductivity σ∗

s , EDL plays a stronger role than water, as EDL is the source of σ∗
s ,

while σw just conveys the field, which implies that in σ∗
s , σ∗

c must be the host and σw the guest, with which we
derive

σ∗ =
σw
F
+
(2ξw + 1)σ∗

c σw + 2(1 − ξw)σ∗
c
2

(2 + ξw)σ∗
c + (1 − ξw)σw

(9)

or

σ∗ =
σw
F
+
(3 − 2ξc)σ∗

c σw + 2ξcσ∗
c
2

(3 − ξc)σ∗
c + ξcσw

, (10)

where ξw and ξc are the apparent surface fraction of water and clay in such a clay‐and‐water pattern with
ξw + ξc = 1. “Surface fraction” indicates this term provides a service for the surface rather than the bulk, while
“apparent” implies they are effective values since they compensate for other geometrical features (Brown, 1965);
that is, Equations 9/10 is not a hundred‐percent reflection of a specified clayey rock/soil, but would be accurate to
the second order (Brown, 1955). As an aside, Equation 9 is exactly the same as the model in Qi and Wu (2022)
except that theirs is real‐valued and developed conceptually, while here we abandon their schematic descriptions,
impart theoretical pedigree to this model, and extend it into the complex domain for IP. Although Equations 9/10
resembles a similar form to two parallel circuits, it is stressed that they are indeed effective medium models
derived from Maxwell's equations and have nothing to do with circuit laws. As evidenced in the simulations of
Figure 2, there are no two separate conduction paths in rocks/soils and every field there is coupled as the total field
in the pore water. Circuit laws not only cannot simulate this distributed pattern, but also cannot explain these

Table 1
Petrophysical Properties of Tested Samples and Our Model‐Fitted Parameters

Sample ID in
Figure 3

Sample ID in
literature

Consolidation
type Specification

Porosity
ϕ (− )

Spor
(μm− 1)

F′ (− ) in
literature

F
(− )

ξw
(%)

σc′
(S/m) σc″ (S/m)

3a – Rock Simulation – – – 1.3 48 0.003 0.0006

3b E10 Rock Sandstone 0.2238 41.6 17 21.4 46 0.0062 0.0002

3c PS1 Rock Portland sandstone 0.194 38.424 37.26 28.4 27 0.0095 0.0005

3d – Soil Simulation – – – 1.2 89 0.0005 2.3 × 10− 5

3e N1 51‐53 Soil Sandy sediment 0.41 3.775 5.35 8 61 0.0033 8.6 × 10− 6

3f MtG Soil Green montmorillonite 0.68 92.52 3.6 8 46 0.47 0.0028

Note. Spor of PS1, N1‐51‐53, and MtG shown here are calculated from their specific surface area per unit mass (Sm) via Spor= Smρg(1 − ϕ)/ϕ (Weller et al., 2010) with an
assumed density of ρg = 2,650 kg/m3.
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coupling phenomena, let alone develop effective medium models. In fact, most effective medium models, such as
Archie's law (Archie, 1942), BHS (Sen et al., 1981), and Kozeny–Carman model (Carman, 1937), all bear this
genre of simple formulas because simple geometries, such as spherical grains and capillary bundles, are normally
employed in EMT. Although simple, effective medium models are of paramount importance to petrophysics
because of their compactivity to reproduce the measured response with only a few effective parameters, from
which petrophysical properties can be estimated.

To validate Equation 9, it is tested on both simulated and independently measured rocks and soils in Figure 3 with
the model‐fitted parameters in Table 1, where our model succeeds in capturing these non‐linear conductivities
with coefficient R2 > 0.97. It is emphasized that here the used optimization algorithm is the complex‐valued non‐
linear least‐squares method where real and quadrature conductivities must be weighted to the same level
(Weigand & Kemna, 2016a), otherwise one may find only the real part well‐fitted. In Table 1, for the formation
factor F, the simulated rock and soil have a rather low F just because rather simple geometries with very small
solid phase are constructed in our simulated rock and soil, which is reasonable to deviate from real‐world rocks
and soils. An interesting phenomenon shown for those formation factors is that our F is mostly bigger than those
F′ in the literature except for Niu, Revil, and Saidian (2016). This is mainly because here we use the non‐linear
complex conductivity model of Equation 9, while those in the literature use the linear model (i.e., σ = σw/F + σs)
that treats the surface conductivity σs as a constant. Such a difference strongly demonstrates the importance of
employing a non‐linear complex conductivity model because: (a) Using the linear equation with constant surface
conductivity to model‐fit the bulk conductivity of clayey samples tends to underestimate its formation factor F
because data belonging to the non‐linear portion are easily contained in such a linear model‐fitting (Qi &
Wu, 2022); (b) Using the linear model to obtain Fmeans neglecting quadrature conductivity. It is known that real
and quadrature parts of a complex function follow the Kramers–Kronig relation (i.e., Hilbert transform) (Pelton
et al., 1983; Shuey & Johnson, 1973), and thus neglecting quadrature part means abandoning valuable information
therein. As to the bigger F′ from the BHSmodel employed by Niu, Revil, and Saidian (2016), it should result from
the intrinsic difference of the cementation exponent m between Archie's law and BHS model (de Lima
et al., 2005). Assuming an Archie's cementation factor ofm= 2 for the sandstone would derive a formation factor
of 26.6 which is in line with our value of 28.4.

Regarding those ξw values in Table 1, they are rather stable between 0% and 100% during our model‐fitting. Given
the fact that σ∗

s is definitely a composite parameter between σ∗
c and σw in physics, it is with ease that ξw never reach

0 or 1 in applications. It is underlined that ξw is a servant factor for surface properties that distinguishes the
contributions between σ∗

c and σw, which is labeled as surface fraction and should not be confused with the volume
fraction of bulk water, the latter being contained in F rather than σ∗

s . As to σ∗
c , from Equation 4, it holds a linear

relationship with Qv and such a linear relationship should cross the origin of coordinates. Although Qv may be
roughly estimated from Spor through a presumed Qs, unfortunately, these Spor values here are all measured by
nitrogen adsorption Brunauer‐Emmett‐Teller (BET) method that is rough for illite and especially unacceptable for
smectite clays because of its inability to sense interlayers (Tournassat et al., 2013; Weller, Slater, et al., 2015).
Thus, instead of testing such a linear causal relationship here, it will be validated on another independently
measured data from Waxman and Smits (1968) in the following section where our model is compared with other
models, For the data of Waxman and Smits (1968), wet‐state titration method is employed to acquireQv in a more
reliable way where our model does output a pretty good linear causal relationship that is consistent with the well‐
established BHS model.

Despite the good performance, Equations 9/10 cannot explain the high‐salinity decrease of quadrature conduc-
tivity but predicts a high‐salinity plateau. Similar to the increase, this decrease sparks widespread debate that
argues membrane polarization (Hördt et al., 2016), ionic mobility (Lesmes & Frye, 2001), or clay aggregation
(Mendieta et al., 2021) may be the cause. Since our work here focuses on the critical zone under freshwater
conditions, we exclude this phenomenon in our model and appraise this as an open question for the community.

2.3. Non‐Linear Frequency‐Dependent Model

Besides the salinity‐dependent nonlinearity, clayey rocks/soils manifest strong frequency‐dependent nonlinearity
(Mendieta et al., 2021; Niu, Revil, & Saidian, 2016; cf., Figure 4). In contrast to the former, there is a consensus
that the latter results from the leaky‐capacitor behavior of EDLs whose ions move backwards and forwards
around rock pores and soil grains under multi‐frequency field which usually causes a peak in the quadrature
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conductivity at one critical frequency (Lyklema et al., 1983; Schwarz, 1962). Considering this low‐frequency
EDL polarization is, albeit physically distinct, mathematically similar to the high‐frequency dielectric polari-
zation, models from the latter can be smoothly introduced to the former, meaning that we can use Debye/Warburg
decomposition or, the most popular, Cole‐Cole model to parameterize Σ∗

s or σ∗
c (Leroy & Revil, 2009; Leroy

et al., 2008). However, it is found these models can not only describe the micro‐scale EDL, but also the macro‐
scale clayey rocks/soils (Tarasov & Titov, 2013;Weller & Slater, 2022), which is quite surprising because all said
models are developed from circuit laws that is justifiable for micro‐scale dielectrics (e.g., molecules) and EDLs
that have much smaller size than the excitation field, thus behaving as resistor‐capacitor elements all by them-
selves, while macro‐scale clayey rocks/soils are evidently distributed parameter systems (cf., Supporting In-
formation S1). Thanks to Soininen (1984) and Luo and Zhang (1998) that unravel this paradox with the proof that
the response of a Cole‐Cole anomaly in an unpolarizable background still performs like a Cole‐Cole model. That
means, the occurrence that rocks and soils behave as a Cole‐Cole model results from the fact that their EDLs
themselves perform in the Cole‐Cole way. In point of fact, this attribution is underpinned by the colloid science
community where Schwarz (1962) and Lyklema et al. (1983) theoretically prove that the EDL of a spherical
colloid displays a Debye‐type polarization under low‐frequency electric field. With the distribution of counterion
activation energies in the EDL and the distribution of grain sizes, those colloidal EDLs will disperse to perform as
a Cole‐Cole model in practice (Lyklema et al., 1986; Schwarz, 1962).

Although Cole‐Cole model

σ∗ = σ∞ +
σ0 − σ∞

1 + (iωτ)c
, (11)

where σ0 and σ∞ are the low‐ and high‐frequency asymptotic conductivities, respectively, τ the characteristic
relaxation time and c the Cole‐Cole exponent, can describe clayey rocks/soils mathematically, physically it has
the drawback of mingling bulk and surface properties together, σ0 and σ∞ including the contributions both from

Figure 4. Our non‐linear frequency‐dependent model validation. Panels (a, b) and (c, d) are complex conductivities of the Portland sandstone PS1 of Niu, Revil, and
Saidian (2016) and the green montmorillonite MtG of Mendieta et al. (2021), respectively. Note that extremely low‐ and high‐frequency data are omitted because of
their strong artifacts.
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pore water and EDL, which restricts its usage in quantitative estimations. Given the fact the Cole‐Cole is a micro‐
scale model for σ∗

c , we combine Equation 9 and the micro‐scale Equation 11 to derive the salinity‐ and frequency‐
dependent model as

σ∗ =
σw
F
+
(2ξw + 1)σ∗

c σw + 2(1 − ξw)σ∗
c
2

(2 + ξw)σ∗
c + (1 − ξw)σw

, σ∗
c = σ∞

c +
σ0c − σ∞

c
1 + (iωτc)cc

, (12)

where the parameters σ∗
c ,σ0c ,σ∞

c ,τc,and cc signify literally the same properties as in Equation 11 but now for EDLs
rather than the whole rock/soil, and, as from Soininen (1984), although σ0c ≠ σ0 and σ∞

c ≠ σ∞, mostly τc ≈ τ
and cc ≈ c.

Figures 4a–4d exhibit the non‐linear frequency‐dependent SIP responses of a clayey rock and a clayey soil sample
that are exactly the same samples employed in the preceding salinity‐dependent model validations, that is, the
Portland sandstone PS1 from Niu, Revil, and Saidian (2016) and the green montmorillonite MtG from Mendieta
et al. (2021), respectively. Before conducting any model tests, as readily seen in Figure 4, the anomalous
quadrature responses that surge up at 100 Hz and dominate above 1,000 Hz must be dealt with. Although some
may attribute this to Maxwell‐Wagner polarization and use an additional high‐frequency permittivity iωε∞ or
another high‐frequency Cole‐Cole model to describe this, it has been rigorously proved that this anomaly results
chiefly from E&EM coupling (Breede et al., 2012; Zimmermann et al., 2008), more specifically, mainly from the
coupling between the heterogenous contact impedance of electrodes and the input capacitance of the instrument
(Huisman et al., 2016; Wang & Slater, 2019; Zimmermann & Huisman, 2024). That is, above 100 Hz, the
response contains two contributions: (a) Inevitable E&EM coupling noises, no matter non‐polarizable or retracted
electrodes are used; (b) Maxwell‐Wagner polarization, mostly the former being comparable with or larger than
the latter unless some sophisticated coupling removal tactics are conducted (Huisman et al., 2016; Wang &
Slater, 2019). This statement also gets support from the various model investigation of Kruschwitz et al. (2010)
where they find that just one Cole‐Cole model with the term iωε∞ cannot explain the data, while two Cole‐Cole
models are not recommended because of insufficient parameter sensitivity (i.e., for lack of another peak at high
frequencies). In contrast, Kruschwitz et al. (2010) introduces a combination of the asymmetric Cole‐Davidson
model (Davidson & Cole, 1951; Pelton et al., 1983) and the term iωε∞ to provide a good fit to all the data
therein, albeit they restate that this model lacks theoretical basis and is essentially a phenomenological one.

It appears that there is neither well‐grounded approaches to exclude nor well‐established models to include such a
high‐frequency anomaly in the IP community. Here we resort to the community of colloid science, where
Fricke (1932) and Fricke and Curtis (1937) discover that a wedge term of A(iω)k (i.e., the Kth power rule) can
satisfactorily explain both the contact coupling effects and the Maxwell‐Wagner polarization of many colloids
and suspensions such as starch, cellulose, and kaolin, following which Hanai (1968) confirms that bentonite also
follows this wedge‐type behavior at these frequencies and its total multi‐frequency response can be readily
explained via overlapping such a wedge‐type term with a Cole‐Cole model. Given those theoretical basis and
experimental evidence from that community, here we add this wedge‐type term to our model Equation 12 to
exclude both the E&EM coupling and the Maxwell‐Wagner polarization. As the model‐fitted curves and

Table 2
Our Frequency‐Dependent Model Validation on Samples and Its Model‐Fitted Parameters

Sample ID in Figure 4 Sample ID in literature Consolidation type Salinity (S/m or M) σ∞
c (S/m) σ0c (S/m) τc (s) cc (− ) A (μF) K (− )

4a and 4b PS1 Rock 0.105 0.0082 0.0062 0.0012 0.49 1.57 0.55

4a and 4b PS1 Rock 0.235 0.0093 0.0072 0.0014 0.52 1.04 0.63

4a and 4b PS1 Rock 0.494 0.0115 0.0091 0.0016 0.59 1.23 0.63

4c and 4d MtG Soil 0.00139 0.5647 0.5544 0.0106 0.51 402.6 0.33

4c and 4d MtG Soil 0.0153 0.5137 0.5032 0.0114 0.57 504.1 0.33

4c and 4d MtG Soil 0.146 0.4791 0.4646 0.0130 0.54 295.4 0.42

Note. Salinities of PS1 are expressed by S/m, while salinities for MtG are in M. These two samples are exactly the same sample as in Table 1 where their effective
medium model parameters can be found.
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parameters are respectively demonstrated in Figure 4 and Table 2, our model works on these measurements very
well with coefficient R2 > 0.99.

To demonstrate the physical difference between the empirical macro‐scale Cole‐Cole model and our model (i.e.,
the developed effective medium model with theoretical micro‐scale Cole‐Cole model), the wedge term A(iω)k is
also added to the conventional Cole‐Cole model of Equation 11 and tested on these measurements with their
curves and parameters shown in Figure 5 and Table 3, respectively. As expected, Figures 4 and 5 are almost twins
with an indiscernible difference since both models can explain these measurements in mathematics, but, by
contrast, they yield these results with different parameters in physics. As clearly compared in Tables 2 and 3,
σ0c ≠ σ0 and σ∞

c ≠ σ∞, but τc ≈ τ and cc ≈ c, which is completely in accordance with the theory of Soininen (1984).
As stressed in the preceding theoretical analysis, Cole‐Cole model is essentially a micro‐scale model for EDLs,
thus, if Cole‐Cole model is empirically applied to macro‐scale rock/soil, its parameter σ∞ and σ0 will be
contributed by both the bulk and EDLs and consequently differ from the effective EDL conductivity σ∞

c and σ0c ,
while τc ≈ τ and cc ≈ c are just a physical blessing because pore water itself is almost non‐polarizable at those low

Figure 5. Conventional Cole‐Cole model test on the same rock and soil data as in Figure 4, panels (a, b) and (c, d) being the complex conductivities of the Portland
sandstone PS1 of Niu, Revil, and Saidian (2016) and the green montmorillonite MtG of Mendieta et al. (2021), respectively. Note that the only difference between here
and Figure 4 is that the empirical macro‐scale Cole‐Cole model is used herein.

Table 3
Empirical Macro‐Scale Cole‐Cole Model Test on Samples and Its Model‐Fitted Parameters

Sample ID in Figure 5 Sample ID in literature Consolidation type Salinity (S/m or M) σ∞ (S/m) σ0 (S/m) τ (s) c (− ) A (μF) K (− )

5a and 5b PS1 Rock 0.105 0.0185 0.0153 0.0013 0.49 1.54 0.55

5a and 5b PS1 Rock 0.235 0.0261 0.0223 0.0015 0.52 1.10 0.62

5a and 5b PS1 Rock 0.494 0.0402 0.0356 0.0017 0.59 1.26 0.63

5c and 5d MtG Soil 0.00139 0.2614 0.2568 0.0106 0.51 402.6 0.33

5c and 5d MtG Soil 0.0153 0.3515 0.3468 0.0115 0.58 513.7 0.33

5c and 5d MtG Soil 0.146 0.8889 0.8766 0.0129 0.54 288.9 0.42

Note. Salinities of Sample PS1 are expressed by S/m, while salinities of MtG are in M.
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frequencies (Luo & Zhang, 1998). To dissect the SIP responses of composite clayey rocks/soils with the aim of
acquiring the intrinsic EDL properties, a theoretical‐based effective medium model must be utilized and this is
indeed how our presented model works.

More corroboration can be found if the two samples' model‐fitted parameters are compared with their source
literature. Niu, Revil, and Saidian (2016) employs another theoretical‐based model of BHS to model‐fit these
clayey rock data and obtain σc = 0.0113 S/m during their multi‐salinity analysis and confirms that this σc value is
consistent with their improved SLP model for EDLs, which is not only comparable with our σc = 0.0095 S/m in
our previous multi‐salinity analysis, but also commensurate with our σ∞

c and σ0c here at three different salinities in
Table 3. The increase of σ∞

c and σ0c with salinities also coincides with their SLP theory that salinity does increase
the effective EDL conductivity, albeit this is not the dominant cause of the salinity‐dependent nonlinearity of
clayey rocks/soils (Niu, Revil, & Saidian, 2016). As to the characteristic relaxation time τ, Warburg decompo-
sition assisted by polynomials are used therein to capture these relaxation times at different salinities, whose
values are in line with ours in Table 3 as well. Both ours and their relaxation times manifest a weak but visible
increase under these intermediate salinities (e.g., between 0.05 S/m and 1 S/m). Given the generally accepted
relationship of τ=Λ2/2D, where Λ is the characteristic pore/grain radius andD is the diffusion coefficient for ions
in the EDL, and the fact that no appreciable forces change Λ under these intermediate salinities, such an increase
of relaxation time with salinities should result from the change of diffusion coefficient D with salinities, such as
the shrinkage of diffuse layer and its influences to Stern layer, that is, the integrated influences of DLP and SLP
(Lyklema et al., 1983; Niu, Revil, & Saidian, 2016).

As to the clayey soil data analysis by Mendieta et al. (2021), we find that our σ0 values from conventional Cole‐
Cole model (Table 3 herein) are exactly the same as their σ0 values (Table 4 therein), but these relaxation time τ
values are different. This is reasonable because double‐Pelton model (the same as double‐Cole‐Cole model if
works on complex resistivity rather than complex conductivity data, cf., Macnae, 2015) is employed therein. As
discussed by Kruschwitz et al. (2010), double‐Cole‐Cole model is not suggested because there is not enough
information to model‐fit the high‐frequency Cole‐Cole one for lack of another peak in mathematics. In reality,
from the colloid science community (Fricke & Curtis, 1937; Hanai, 1968), such a high‐frequency peak doesn't
exist but behaves as a wedge shape in physics. That means, with the double‐Cole‐Cole model, the high‐frequency
Cole‐Cole model will influence the low‐frequency Cole‐Cole model‐fitting in an unpredictable way. Considering
the information of σ0 is mainly at the lowest frequencies so that its influence is negligible, we get the same σ0

values as theirs. However, the relaxation time τ is rather sensitive to this influence such that the indeterminate
high‐frequency Cole‐Cole model drags the low‐frequency peak into a higher frequency, which makes their
relaxation time τ smaller than ours. Nonetheless, both ours and theirs reveal a weak but non‐neglectable increase
of relaxation times with growing salinities, which is in accord with the above analysis of the sandstone sample
PS1. Another apparent feature of our σ∞

c and σ0c is that, different to the clayey rock PS1, they obviously decrease
with salinities. This phenomenon is rather rational if we keep in mind that this clayey soil sample MtG is green
montmorillonite with a high purity of 90%. For such pure clays, as evidenced in Palomino and Santamarina (2005)
and also Mendieta et al. (2021), clay aggregation actively occurs with the increase of salinities (e.g., edge‐to‐face
aggregation at intermediate salinities), which inevitably decreases the effective EDL conductivities σ∞

c and σ0c .
Indeed, this strongly exhibits the advantage of our model because, as from Tables 2 and 3, empirically using
macro‐scale Cole‐Cole model always obtain an increase of σ∞ and σ0 with increasing salinities no matter how
EDLs change, as the bulk water conductivity σw dominates this term, but, by contrast, our model has the ability to
extract decreasing effective EDL conductivities σ∞

c and σ0c from increasing salinities, as our developed effective
medium model completely separates EDLs from the bulk water.

Although in our aforementioned analysis, micro‐scale Cole‐Cole model is employed for EDLs. In much the same
vein, we can fuse micro‐scale Debye/Warburg decomposition into Equations 9/10, which would be advantageous
when grain/pore sizes don't distribute in a log‐normal way that Cole‐Cole model presumes (Cole & Cole, 1941).
Note that, granted, Equations 9–12 are novel for their first appearance, but such a micro‐to‐macro upscaling
philosophy by means of an effective medium model exists elsewhere, for example, Leroy et al. (2017), Lesmes
and Morgan (2001), and Niu, Revil, and Saidian (2016) integrate Debye/Warburg decomposition into the BHS
model (Sen et al., 1981) to implement this upscaling. BHS model is a well‐established effective medium model
that has its roots in the differential effective medium (DEM) theory. That being said, as it turns out in the
following section, BHS bears several disadvantages as an effective medium model for IP.
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3. Comparisons With Other Models
Comparisons with 12 existing models, including BHS and three‐resistor models, exhibit the mathematical and
physical advantages of Equation 9 in the real domain (Qi &Wu, 2022). Here we proceed to corroborate that such
advantages still hold in the complex domain.

3.1. Weller‐Slater and Three‐Resistor Models

Weller and Slater (2012) generalize from the SLP model of Skold et al. (2011) to develop the quadrature con-
ductivity model as

σ′′ = cs + (as
σw

bs + σw
), (13)

where as, bs, and cs are fitting parameters, which explain measurements excellently. Although Skold et al. (2011)
declare cs (proton hopping process) is important merely at low pH and only as relates to Spor, it is found that cs is
mandatory in model‐fitting (Weller & Slater, 2012) and, surprisingly, as, bs, and cs all linearly relates to Spor
(Weller, Zhang, & Slater, 2015). Such a paradox can be perfectly explained via the comparison with the second
term of Equation 9 as

as =
9ξw

(2 + ξw) (1 − ξw)
σ∗
c , bs =

2 + ξw
1 − ξw

σ∗
c , and cs =

2(1 − ξw)
2 + ξw

σ∗
c , (14)

where all three parameters are functions of σ∗
c and thus Spor. Considering the striking evidence that the SLP model

of Skold et al. (2011) cannot explain its generalized Well‐Slater model but our model explains it so well, it is
legitimate to deduce that the non‐linear increase in quadrature conductivity is caused by the composite geometry
(i.e., effective medium models) rather than the EDL variation, as it is almost impossible that all these things
happen by accident.

Furthermore, if we recall the three‐resistor model for the real conductivity (Lévy et al., 2018; Wyllie &
Southwick, 1954)

σ′ =
σw
F
+
( y + z)σcσw + xσ2c

xzσc + yzσw
, (15)

where x, y, and z are empirical factors. It can be easily tested that the second term of three‐resistor model equals
Weller‐Salter model, which are the real (Qi &Wu, 2022) and quadrature parts of Equation 9, respectively. It is not
surprising that three‐resistor and Weller‐Slater models work so well for SIP since our model reconciles these two
models with the fact that surface and quadrature conductivities follow the same EDL‐and‐water pattern as in
Equation 9, such similarity being phenomenologically discovered by Börner (1992) and confirmed by Weller
et al. (2013) and Lévy et al. (2019).

3.2. Waxman‐Smits and Vinegar‐Waxman Models

Through massive experiments, Waxman and Smits (1968) empirically develop an electrical conductivity model
and Vinegar and Waxman (1984) extend it into IP as

σ∗ =
σw
F
+
BQv
F

+ i
λQv
Fϕ

, (16)

where Fϕ is the so‐called electrical tortuosity. To make it non‐linear, they postulate that B and λ increase
exponentially with salinity, which conflicts with electrochemistry (Johnson & Sen, 1988). Although some
(Johnson et al., 1986; Revil, 2013) attempt to theoretically re‐derive Equation 16, coupling between EDL and
water is neglected, which opposes Maxwell's equations. Surprisingly, despite these drawbacks, Equation 16
dominates the community as the most popular model.
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True formation factor F is a parameter characterizing the pore‐water topology and, for clayey rocks/soils, F is
notionally the value if clays were replaced by a geometrically identical but insulating matrix (Worthington, 1985),
which makes it hard to credit that F or Fϕ is entangled in σs. To show how Equation 16 disguises the fact, ex-
periments from Waxman and Smits (1968) are employed to compare Equations 9 and 16 in Figures 6a–6c.
Although our model performs the best with the largest R2, apparently all manifest linear features with Qv.
However, “Correlation does not imply causation.” Such correlation cannot confirm adding F or Fϕ is physically
tenable since σs itself already holds a pseudo‐linear correlation with Qv. As a matter of fact, when these data of
Waxman and Smits (1968) are model‐fitted with the well‐established BHS model, its causal relationship ratio of
σc − Qv is around 0.9 (cf., Figure 8 in Bussian, 1983; Figure 5 in de Lima& Sharma, 1990), which coincides pretty
well with our model (Figure 6c) but differs vastly from Waxman models (Figures 6a and 6b). Thus, although
adding F or Fϕ in σs may make such a pseudo‐linear correlation seemingly coherent, this is just a mathematical
coincidence that leads to this phenomenon, as at high‐salinity, our model becomes

σ∗ =
σw
F
+
2ξw + 1
1 − ξw

σ∗
c , (17)

where (2ξw + 1)/(1 − ξw) falls into the same order of magnitude as F or Fϕ (Figure 6d).

3.3. Bruggeman‐Hanai‐Sen (BHS) Model and Dukhin Number

BHS model (Bruggeman, 1935; Hanai, 1960; Sen et al., 1981)

σ∗ = σwϕm(
1 − σ∗

c/σw
1 − σ∗

c/σ∗)

m

(18)

is an exceptional precedent that can both explain real and quadrature nonlinearities concurrently, and it down-
scales to Archie's law when in the one‐phase situation. Compared to such an eminent model, as discussed in Qi

Figure 6. Comparisons with other models. Panels (a–c) are parametric correlations of Waxman‐Smits (R2 = 0.93), Vinegar‐Waxman (R2 = 0.95), and ours (R2 = 0.97)
on the Lower Tertiary shaly samples fromWaxman and Smits (1968), where shaded bands represent the 95% confidence intervals. Panel (d) is the variation of our high‐
salinity coefficient σs/σc. Panels (e and f) manifest the consistency between BHS (ϕ = 0.4, m = 1.6, and σc = 0.018 + 0.01i S/m) and ours (F = 4.3, ξw = 18%, and
σc = 0.015 + 0.0074i S/m), while (g) and (h) shows surface and quadrature conductivities of diluted suspensions with a constant EDL (p = 0.05, F = 1 + 1.5p = 1.075,
Λ = 10− 8 m, and Σ∗

s = 10− 9 + 10− 10i S), respectively.
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and Wu (2022), Equation 9 bears the advantages of mathematical simplicity and parametric consistency with
Archie's law. The former is because BHS is an implicit function with σ* on both sides that needs complicated
methods to solve (Glover et al., 2010; Lesmes &Morgan, 2001), while the latter results from its parameterm links
to both bulk and surface continuity (de Lima et al., 2005; Niwas et al., 2006, 2007). It is deduced that these
disadvantages make BHS not as popular as Waxman‐type models. Nonetheless, the physical basis of BHS is
similar to ours that both attributes such salinity‐dependent nonlinearity to the composite geometry. To confirm
such consistency, simulated SIP curves of BHS and ours are comparably shown in Figures 6e and 6f where both
models corroborate constant EDL can cause such nonlinearity via the similar parameter σ∗

c , which is in accord
with the above‐mentioned fact that these two models obtain similar causal ratios of σc − Qv from the same data of
Waxman and Smits (1968).

To provide more evidence, it is worth quoting Stanislav Dukhin, the introducer of Dukhin number Du, a
dimensionless number quantifying the relative importance of surface conduction (Lyklema, 1995, 2002).
Although some write Du as σs/σw, this contradicts Dukhin's own definition

Du =
Σs

Λσw
. (19)

In the landmark work of Dukhin and Derjaguin (1974), obviously they sensed σs is a mixed parameter involving
both EDL and water. To refute Waxman‐type models, they even derived analytic expressions for several ex-
amples such as dilute spherical suspensions

σ =
σw
F
+
9σw
2
p

Du
1 + Du

, (20)

where p is the volume fraction of suspended spheres, which clearly evidences that F or Fϕ doesn't participate in σs
and constant EDL can generate such non‐linear increases for both surface and quadrature conductivities
(Figures 6g and 6h). Unfortunately, this seemed to receive little attention from the IP community.

4. Discussions and Conclusions
Here we discuss and conclude with three points as follows.

4.1. Definition of Complex Surface Conductivity

Complex surface conductivity σ∗
s , real part normally being called surface conductivity σs and imaginary part being

quadrature conductivity σ″, is the remaining complex conductivity when subtracting the bulk water conductivity
(i.e., Archie's law σw/F) from the bulk complex conductivity of clayey rocks/soils σ*. The discovery of this
remaining term can be traced back to Patnode and Wyllie (1950), and it has been generally accepted that such a
remaining complex conductivity σ∗

s is caused by the EDL at the interface between the solid phase and fluid since
the first‐ever EDL ascription by Winsauer and McCardell (1953). However, the fact that EDL is the source of σ∗

s
by no means implies that σ∗

s would be an exclusive parameter merely linked to EDL property because, as evi-
denced in the preceding sections, the existence of EDL disturbs the normal field in water and thus, the most
important, it is essentially the total field in water that is measured for IP, which consists of the normal field (i.e.,
bulk water conductivity being expressed by Archie's law) and the abnormal field (i.e., complex surface con-
ductivity being expressed by Maxwell Garnett equation). Given that σ∗

s is a composite parameter under the
interplay of EDL and water is dictated by the underlying principle of Maxwell's equations and is validated through
theories, simulations, experiments, and comparisons (i.e., the four ways to substantiate a new model in science),
which shall be solid and convincing.

Previous complex conductivity models for clayey rocks and soils mostly either exclusively ascribe σ∗
s to the sole

EDL (e.g., Waxman‐type models) or empirically express σ∗
s with redundancy parameters (e.g., three‐resistor

model), among which, BHS model stands out as an excellent model with roots in the DEM theory and works
pretty well in practice. In fact, both BHS and ours ascribe the salinity‐dependent nonlinearity mainly to the
geometry and both employ the Maxwell Garnett equation in their effective medium model development yet in
slightly different ways. Sen et al. (1981) use Maxwell Garnett equation (i.e., Equation 12 therein) as the basic
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equation to describe a grain coated with a water shell (water being the host and solid being the guest) and then
infinitely add such a grain‐with‐shell in a differential form (i.e., DEM) to finally develop the exceptional BHS
model, while we choose another avenue of first subtracting the bulk water conduction (i.e., Archie's law) and then
only adopting Maxwell Garnett equation (solid being the host and water being the guest, as previously discussed)
to adequately express the remaining complex surface conductivity σ∗

s , with which we separate the bulk and
surface properties explicitly in physics and make our model simple in mathematics. By and large, our model
supports the well‐established BHS model and provides a viable alternative for such a prominent model.

4.2. Importance of the Nonlinearity

Although rather simple non‐linear models are presented, such nonlinearity is more important than it seems. As is
known, one main reason for conducting IP rather than E&EM methods is the aspiration to separate bulk and
interface properties, such as to assess the porosity and permeability, the former being assessed through the
formation factor F and the latter being estimated via Spor or Λ within σ∗

c . Unfortunately, as evidenced in Equa-
tions 9/10, F and σ∗

c cannot be accurately model‐fitted without the non‐linear portion. One may argue that, since
the non‐linear model approximates the linear model of Equation 17 at relatively high salinity, simpler linear
model with linear‐portion data works as well. Unfortunately, two problems immediately emerge from such a
treatment: (a) The transition from non‐linear portion to linear portion is difficult to discern such that including any
data in the non‐linear portion during a linear model‐fitting will lead to an apparent formation factor F′ that is
always smaller than the true formation factor F (Qi & Wu, 2022); (b) It is impossible to extract the parameter ξw
by a linear model‐fitting with the linear‐portion data because the information of ξw is intrinsically contained in the
non‐linear portion.

Fortunately, the attention to such nonlinearity doesn't increase the workload considerably, as even for the con-
ventional linear model‐fitting, multi‐salinity measurements are still mandatory to get the formation factor F,
otherwise F has to be estimated empirically. Taking the nonlinearity into consideration doesn't change anything of
the routine multi‐salinity measurement except that the salinities shall include some relatively lower ones such that
the non‐linear portion can be acquired, one caveat being that those salinities shall be chosen neither too low nor
too high, as at extremely low salinity (e.g., <0.05 S/m) EDL varies violently and at exceedingly high salinity (e.g.,
>1 S/m) a strong decrease of σ∗

s occurs.

4.3. Application of Our Models

EDL almost exists at the interface between any material and interstitial fluid, even for silica (Hao et al., 2015;
Peruzzo et al., 2018). Although our non‐linear models are presented for clayey rocks and soils, it stands to reason
that they also apply to other ionically conductive materials in the IP realm as long as the EDL and geometry
change negligibly. For example, carbonates are another group of rocks and soils that are being extensively
investigated by IP practitioners for karst aquifers of groundwater (Bücker et al., 2021; Šumi, 1965), carbonate
reservoirs of oil (Deng et al., 2022; Schmutz et al., 2012), enhanced calcite precipitation (Saneiyan et al., 2021;
Wu et al., 2011), and carbon dioxide sequestration (Börner et al., 2017; Kremer et al., 2016), to name but a few.
Likewise, salinity‐dependent nonlinearity has also been observed for carbonates (Panwar et al., 2021; Saner &
Akbar, 2010). Given the fact that such nonlinearity is a natural consequence of the EDL‐and‐water coupling, this
nonlinearity of carbonates should also result mainly from the geometry (effective medium model), albeit EDL
varies to some degree.

Besides rocks and soils, biological application is an emerging area in the IP community (Atekwana &
Slater, 2009; Ehosioke et al., 2020; Loiseau et al., 2023; Peruzzo et al., 2021; Song et al., 2022; Zhang
et al., 2014). Although we believe that for those micro‐organisms and plant roots, the EDL‐and‐water pattern still
holds on condition that there are no electronically conductive materials (e.g., pyrite, metals, and some carbon
allotropes), our model application becomes more complicated in this scenario, as multi‐salinity experiments are
impractical to realize for living organisms. One may argue that multi‐frequency measurement is sufficient in its
own right, but as illustrated in the previous sections, without the employment of an effective medium model,
purely fitting multi‐frequency data alone output parameters that mingle bulk and interface together, as Cole‐Cole
and Debye/Warburg decomposition models are indeed the genuine relaxation models for micro‐scale EDLs rather
than macro‐scale materials. To substitute for the multi‐salinity measurement, some empirical or semi‐empirical
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approaches, such as computer simulations (Bücker et al., 2019; Niu, 2023; Tsukanov & Schwartz, 2021), may be
practical alternatives.

In conclusion, from basic principles, we prove that surface and quadrature conductivities of clayey rocks and soils
are composite properties under the interplay of EDL and water, to separate which, we develop salinity‐ and
frequency‐dependent non‐linear models that are substantiated through theories, experiments, simulations, and
comparisons. Given that such nonlinearity is an inevitable corollary of Maxwell's equations, our non‐linear
models may also apply to other EDL‐bearing electrolytic materials, providing that EDL variation and geome-
try change are negligibly small. We expect our models could improve the comprehension of IP mechanisms and
shape the future quantitative IP applications.

Data Availability Statement
Data used in this study can be found in the previously published literature of Börner (1992), Niu, Revil, and
Saidian (2016), Slater and Glaser (2003), Mendieta et al. (2021), andWaxman and Smits (1968). Materials for the
models and results presented in this paper are available in Qi and Wu (2023).
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