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Molecular force fields have been approaching a generational transition over the past several years,

moving away from well-established and well-tuned, but intrinsically limited,  fixed point charge

models towards more intricate and expensive polarizable models that should allow more accurate

description of  molecular  properties.  The recently introduced AMOEBA force field is  a  leading

publicly  available  example  of  this  next  generation  of  theoretical  model,  but  to  date  has  only

received relatively limited validation, which we address here. We show that the AMOEBA force

field is in fact a significant improvement over fixed charge models for small molecule structural and

thermodynamic  observables  in  particular,  although  further  fine-tuning  is  necessary  to  describe

solvation  free  energies  of  drug-like  small  molecules,  dynamical  properties  away  from ambient

conditions, and possible improvements in aromatic interactions. State of the art electronic structure

calculations reveal generally very good agreement with AMOEBA for demanding problems such as

relative conformational energies of the alanine tetrapeptide and isomers of water sulfate complexes.

AMOEBA is shown to be especially successful on protein-ligand binding and computational X-ray

crystallography where polarization and accurate electrostatics are critical.
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INTRODUCTION

Molecular  simulation  is  now an  accepted  and  integral  part  of  contemporary  chemistry,

biology, and material science. The allure of molecular simulation is that most if not all relevant

structural, kinetic, and thermodynamic observables of a chemical system can be calculated at one

time,  in  the  context  of  a  molecular  model  that  can  provide  insight  and  new hypotheses.  The

predictive quality of these observables depends on the accuracy of the potential energy surface and

the ability to characterize it through effective sampling of configurations or phase space. Over the

last two decades, the field of molecular simulation has been dominated by research problems such

as  protein  folding  where  dynamical  timescales  or  configurational  sampling  are  the  biggest

bottlenecks  to  reaching  testable  hypotheses  or  comparisons  to  experimental  results.  Given  the

demands of sampling over so many degrees of freedom to convergence, potential energy surfaces

for molecular simulations rely on approximations and empirical input in order to formulate tractable

descriptions of the (bio)material in a realistic chemical environment. 

Non-polarizable (fixed charge)  models provide an inexpensive description or “effective”

potential  with  approximations  that  cannot  fully  capture  many-body  effects  such  as  electronic

polarization. Fixed charge protein and water models went through an extensive period of validation

for several decades after they were introduced.1 The consensus of a number of validation studies is

that while fixed charge models offer tractable descriptions and are robust for equilibrium properties

for  homogeneous  systems,  evident  discrepancies  were  identified  between  simulations  and

experiments  away  from  ambient  conditions,  for  dynamical  properties,  and  for  heterogeneous

chemical systems in general.1,2 Polarizable empirical force fields, which offer a clear and systematic

improvement in functional form by including many body effects, have been introduced into the

chemical and biochemical simulation community over the past two decades, and only recently for

biomolecular  simulation.1,3-12 The  question  in  molecular  computation  currently  is  whether  new

polarizable force field parameterizations have successfully reached a new level of predictive power

over their non-polarizable predecessors.

Demonstrable testing of empirical biomolecular and water force fields is something that the

simulation community requires since so many academic and industry researchers use molecular

mechanics  and  molecular  dynamics  methodology  to  tackle  biological,  chemical  and  material

science problems of interest. For example, the TINKER software program for molecular mechanics

and  dynamics  simulation13 has  been  downloaded  by  close  to  60,000  separate  external  users,

including  essentially  every  major  research  University  and  many  biotech  and  pharmaceutical
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companies, and even greater numbers are expected for other simulation software packages such as

Amber,14 CHARMM,15 GROMACS,16 and  NAMD.17 Force  field  validation  and  subsequent

improvement has been the admirable history of the large community effort on fixed charge force

fields  led  by  developers  of  the  Amber,18-20 CHARMM,21 GROMOS,22,23 and  OPLS24-26 potential

energy models over many decades. In this feature article, we hope to continue that tradition by

summarizing  some  important  early  validation  tests  by  a  consortium  of  research  groups  at

Washington  University  St.  Louis,  University  of  Texas  at  Austin,  UC  Berkeley  and  Stanford

University conducted on the general purpose polarizable force field, AMOEBA (Atomic Multipole

Optimized Energetics for Biomolecular Applications) developed by Ponder and co-workers.27-31

The first level of comprehensive testing of any force field will include predictions made by

that potential against the best experiments and theoretical calculations available on a wide array of

small  molecule  data  in  both gas  phase  and condensed phase  environments.  In  fact,  AMOEBA

belongs to the class of molecular mechanics force fields that aims for high fidelity to  ab initio

calculations  but  at  a  computational  cost  that  makes  it  suited  for  both  small  molecule  and

biomolecule  condensed  phase  studies  where  statistical  mechanical  sampling  is  necessary.  In

practical  terms,  AMOEBA  is  intermediate  in  computational  cost  between  other  transferable

polarizable force fields such as SIBFA (Sum of Interactions Between Fragments Ab initio),32 NEMO

(Non-Empirical  Molecular  Orbital),33 and  QM/MM approaches  such  as  DRF34 and  inexpensive

polarizable  biomolecular  force  fields  from  the  Amber,11 CHARMM7,8,10 and  OPLS/PFF

consortiums.6,9 In  this paper we review the AMOEBA model and its performance in several areas

including gas phase properties against  state-of-the-art  quantum mechanical calculations, aqueous

peptide  solvation,  structure  and  dynamics,  solvation  free  energies  of  small  molecule  protein

analogues and drug-like molecules with high precision, early structural stability studies of aqueous

solvated proteins, computational X-ray crystallography, and protein-ligand binding. 

THE AMOEBA FORCE FIELD

The AMOEBA force field has the following general functional form for the interactions

among atoms 



U = Ubond +Uangle +Ubθ +Uoop +Utorsion +UvdW +Uele
perm +Uele

ind (1)

where  the  first  five  terms describe  the  short-range  valence  interactions  (bond stretching,  angle

bending, bond-angle cross term, and out-of-plane bending, and torsional rotation), and the last three

terms are  the  nonbonded vdW and electrostatic  contributions.  AMOEBA  contains a  number of
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differences  from  “traditional”  biomolecular  potentials  such  as  the  current  Amber  ff99SB,20

CHARMM27,21 OPLS-AA,25,26 and  GROMOS 53A623 in  the  use  of  bond-angle  cross  terms,  a

formal  Wilson-Decius-Cross  decomposition  of  angle  bending  into  in-plane  and  out-of-plane

components, and a “softer” buffered 14-7 vdW form. However, the major difference is replacement

of  the  fixed  partial  charge  model  with  polarizable  atomic  multipoles  through  the  quadrupole

moments.  One  advantage  of  the  AMOEBA model  is  its  emphasis  on  replication  of  molecular

polarizabilities  and  electrostatic  potentials,  instead  of  just  interaction  energies.  The  use  of

permanent  dipoles  and  quadrupoles  allows  accurate  reproduction  of  molecular  electrostatic

potentials, and fine-tuning of subtle directional effects in hydrogen bonding and other interactions.

The inclusion of explicit dipole polarization allows the AMOEBA model to respond to changing or

heterogeneous  molecular  environments,  and  allows  direct  parameterization  against  gas  phase

experimental data and high-level quantum mechanical results. The AMOEBA model also presents a

consistent treatment of intra- and intermolecular polarization that is achieved through a physically

motivated damping scheme for local polarization effects.35,36 A further attractive aspect of AMOEBA

is  its  use  of  multipole  moments  derived  directly  from  ab  initio quantum  mechanical  electron

densities for small molecules and molecular fragments. The design goal for AMOEBA has been to

achieve  “chemical  accuracy”  of  0.5  kcal/mol  or  better  for  small  molecule  and  protein-ligand

interactions. We describe the functional form of the AMOEBA force field below and provide the

current  standard  parameter  set  for small  molecules and proteins in the  supplementary material,

while further details of its parameterization are given in references [27-31].

Short-ranged valence interactions

The AMOEBA model includes full intramolecular flexibility. For atoms directly bonded (1-

2) and separated by two bonds (1-3), the covalent energy is represented by empirical functions of

bond lengths and angles. The functional forms for bond stretching (Eq. 2), angle bending (Eq. 3),

and the coupling between the stretching and bending (Eq. 4), are those of the MM3 force field,37 and

include an accounting of anharmonicity through the use of higher-order deviations from ideal bond

lengths (b0) and angles (0):



Ubond = Kb (b − b0 )2 1 − 2.55(b − b0 ) + (7 / 12)2.55(b − b0 )2[ ] (2)



Uangle = Kθ (θ −θ0 )2 1− 0.014(θ −θ0 ) + 5.6 × 10−5 (θ −θ0 )2
[

−7.0 × 10−7 (θ −θ0 )3 + 2.2 × 10−8 (θ −θ0 )4
] (3)
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Ubθ = Kbθ (b − b0 ) + (b'−b'0 )[ ](θ −θ0 ) (4)



Uoop = Kχ χ 2
(5)

where the bond length,  b or b’, and bond angle,  ,  and energies are in units of Å, degrees, and

kcal/mole, with the force constants,  K given in corresponding units. In addition, a Wilson-Decius-

Cross function is used at sp2-hybridized trigonal centers to restrain the out-of-plane bending (Eq.

5),38 where for sequentially bonded centers i, j, k, and l,  refers to the angle between the jl vector

and the ijk plane.

A traditional  Fourier  expansion  (a  1-fold  through  6-fold  trigonometric  form)  torsional

functional 



U torsion = Knφ 1+ cos nφ ± δ( )[ ]
n

∑  (6)

is  used  to  aid  in  merging  the  short  range  “valence”  terms  with  the  long-range  “nonbonded”

interactions. For dihedral angles involving two joined trigonal centers, such as the amide bond of

the protein backbone, a Bell torsion39 functional is applied in addition to the regular torsional terms,

where  used in equation 6 is the dihedral angle computed from the p-orbital directions at the two

trigonal centers, rather than from the usual bond vectors. The rotational barrier around the amide

bond is much higher than for a single covalent bond, and the bigger barrier is largely due to the

double bond nature originating in the overlap of the adjacent  p-orbitals.  Use of the Bell torsion

allows  appropriately  increased  flexibility  of  atoms  bonded  to  trigonal  centers  (e.g. aromatic

hydrogen  atoms).40 The  torsional  parameters  are  refined  after the  nonbonded  parameters  are

determined with the hope that the improved AMOEBA intramolecular electrostatic model will lead

to a more “physical” balance between the local (vdW+ electrostatic + torsional) and long-range

(vdW + electrostatic) interactions in the conformational energy.

Van der Waals interactions

The pairwise additive van der Waals (vdW) interaction in AMOEBA adopts the buffered 14-

7 functional form41

7

7
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( ) 2

0.07 0.12vdw ij
ij ij

U ij 
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where  ij in kcal/mole is the potential well depth, and 
0/ ijijij RR  where  ijR  in angstrom is the

actual separation between i and j, and 0
ijR  is the minimum energy distance. For heterogeneous atom

pairs, the combination rules are given by
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 . (8)

The buffered 14-7 function yields a slightly “softer” repulsive region than the Lennard-Jones 6-12

function,  but  achieves  a  steeper  repulsion  at  very  short  range  than  typical  Buckingham exp-6

formulations. The buffered 14-7 form was considered superior as it provides a better fit to gas phase

ab initio results and liquid properties of noble gases.41 The AMOEBA van der Waals parameters are

derived by fitting to both gas phase and bulk phase experimental properties.

Each atom in AMOEBA possesses a vdW site. For non-hydrogen atoms, the site is located at

the position of the atomic nucleus. For a hydrogen atom connected to an atom X, it is placed along

the H-X bond such that the distance between the atom X and the vdW site of H is a percentage of

the  full  bond  length,  namely  the  “reduction  factor”.  Application  of  reduction  factors  to  shift

hydrogen sites  off  of the  nuclear  centers dates  from early  work by Stewart,  et  al.42 and X-ray

structural analyses of glycylglycine and sulfamic acid also support this view.43 A similar approach is

used in MM3 and other force fields from the Allinger group.37 The use of a reduction factor was

found to simultaneously improve the fit to accurate QM water dimer structures and energies for

several configurations.

Permanent electrostatic interactions

The  electrostatic  energy  in  AMOBEA includes  contributions  from both  permanent  and

induced multipoles.  The permanent atomic multipoles (PAM) at each atomic center include the

monopole (charge), dipole and quadrupole moments



M i = qi,μ ix,μ iy ,μ iz,Qixx,Qixy,Qixz,...Qizz[ ]
t
 (9)

where qi is the point charge located at the center of atom i,  is the dipole and Q is the quadrupole,

all in Cartesian representation, and t is the transpose. In the Cartesian Polytensor formalism,44,45 the

interaction energy between atoms i and j separated by rji is represented as 



Uelec
perm rij( ) = M i

TTij M j , or

in expanded form
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(10)

There are typically five independent quadrupole components due to symmetry (Qαβ  = Qβα) and the

use of traceless moments (ΣQαα = 0). Furthermore, the y, Qxy, and Qyz components are zero except

for chiral atoms such as the backbone C in amino acids. Therefore most nonchiral atoms will carry

six unique, permanent electrostatic multipole parameters. 

As previously  described for  the  AMOEBA water  model,  the  dipole  and quadrupole  are

defined with respect to a local reference frame defined by neighboring atoms.28 A new “z-then-

bisector” local frame definition has been developed for atoms with single lone pairs such as the sp 3

nitrogen. An example of this new frame is given for the N atom in methylamine in Figure 1. In

principle, the choice of frame should respect local symmetry such that axes are placed along major

chemical determinants. As the molecules vibrate, rotate and diffuse over the course of a dynamic

simulation, the atomic multipoles remain constant with respect to the local frame definition.

Atomic multipole moments in this study are derived from ab initio calculations of the small

molecules  using  Stone’s  distributed  multipole  analysis  (DMA).46,47 Convergence  to  reasonable

chemical accuracy goals of 0.5 kcal/mol requires inclusion of terms through quadrupole moments.

Alternative approaches, such as electrostatic potential fitting and electron density partitioning, have

also been explored.27 For molecules such as alanine dipeptide that possess conformational degrees

of freedom, an extra step is necessary to obtain the conformation-independent PAM, as will be

discussed in the intramolecular polarization section below. The original DMA-derived multipoles46

are converted to the final electrostatic parameters in the corresponding local frame for each atom

type:



M local =ℜ−1M (11)

where   is the rotation matrix transforming the local into the global reference frame.48
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Electronic Polarization 

Electronic polarization refers to the distortion of electron density under the influence of an

external field. It represents a major contribution to the overall many-body energetic description of

molecular clusters and condensed phases, even though there are situations where other contributions

related  to  dispersion  and  repulsion  are  not  negligible.49 In  AMOEBA,  a  classical  point  dipole

moment is induced at each polarizable atomic site according to the electric field felt by that site.

Molecular  polarization  is  achieved  via  an  interactive  induction  model  with  distributed  atomic

polarizabilities based on Thole’s damped interaction method.35 This interactive or mutual induction

scheme requires that an induced dipole produced at any site i will further polarize all other sites, and

such mutual induction will continue until the induced dipoles at each site reach convergence. One

key aspect of Thole’s approach is damping of the polarization interaction at very short range to

avoid the so-called polarization catastrophe, a well-known artifact of point polarizability models.

The damping is effectively achieved by smearing one of the atomic multipole moments in each pair

of interaction sites (the result is independent of which one is smeared). 50 The smearing function for

charges adopted by AMOEBA has the functional form



  3a
4π

exp(−au3 ) (12)

where  u  =  rij  /(ij)1/6 is  the  effective distance  as  a  function of  linear  separation  rij and atomic

polarizabilities of sites  i (i) and j (j). The factor “a” is a dimensionless width parameter of the

smeared charge distribution, and effectively controls the damping strength. Corresponding damping

functions  for  charge,  dipole  and quadrupole  interactions  were  derived through  their  chain  rule

relationships.28

The Thole model has the advantages of simplicity and transferability, as evidenced by the

fact that it reasonably reproduces the molecular polarizability tensor of numerous small molecules

using just one isotropic atomic polarizability for each element, plus a universal damping factor. 35

However, there has been controversy as to whether polarizability decreases, and if so to what extent,

when  a  molecule  moves  from  gas  to  condensed  phase.  Morita  recently  estimated  that  water

polarizability  decreases  by  7-9%,51 reduced  from  13-18%  reported  in  an  earlier  publication.52

Mennuci et al. showed that the effect of Pauli exclusion is to reduce the dipole polarizability of a

solute by 2%. In contrast, Gubskaya and Kusilik suggested an increase of the polarizability of water

in condensed phases.53 In light of uncertainty in theoretical estimates of liquid polarizability, we

have chosen to use the same atomic polarizability values for both gas and condensed-phase. The
9



resulting  average  dipole  moment  of  AMOEBA  liquid  water,  using  a  constant  gas  phase

polarizability  value,  is  2.8D,  only  slightly  lower  than  recent  quantum mechanical  estimates  of

2.95D.54,55 Furthermore, in the AMOEBA polarization model, the damping factor provides another

control over the ability of an atom to polarize; the universal damping factor adopted by AMOEBA

is a = 0.39, which effectively leads to a stronger damping and less short-range polarization than the

original value of 0.572 suggested by Thole. We have kept the same atomic polarizabilities (Å 3)

given by Thole, i.e. 1.334 for carbon, 0.496 for hydrogen, 1.073 for nitrogen and 0.837 for oxygen.

The only  exception is  for carbon and hydrogen in  aromatic  rings,  where we found the  use  of

somewhat  larger  values  greatly  improves  the  molecular  polarizability  tensor  of  benzene  and

polycyclic aromatics.

VALIDATION STUDIES AGAINST ELECTRONIC STRUCTURE CALCULATIONS

A necessary, if not sufficient condition for robust performance of a force field is its ability to

reproduce or predict relative conformational energies of model systems complex enough to contain

realistic features, but simple enough to be treated by electronic structure methods56 that can yield

reliable benchmark results. First principles electronic structure calculations can provide benchmarks

of uncompromising accuracy for relative energies of molecules in different conformations, since

quantum mechanics provides an essentially exact description of the behavior of electrons in small

molecules.57 However, in practice, approximate electronic structure calculations for larger molecules

suffer from errors associated with the imperfect treatment of electron correlations and the use of

incomplete atomic orbital basis sets, which can render the results too inaccurate to be useful, or

even worse, potentially misleading. Incomplete treatments of electron correlation such as commonly

used density functional theory (DFT) methods omit dispersion interactions that are very important

in biological macromolecules, while incomplete basis sets give rise to, for example, intramolecular

basis set superposition error (BSSE), which favors compact relative to extended conformations.

In the work summarized here, we cannot claim to have completely eliminated either of these

problems,  but  we  have  certainly  reduced  some  limitations  of  earlier  calculations,  using  new

algorithms and faster computers.  With respect to electron correlation, we have used the second

order Møller-Plesset  (MP2) method,  which includes long-range electron correlation effects  in a

reasonably accurate manner, and then tested for remaining errors by using local coupled cluster

theory with a smaller basis set. With respect to basis set errors, we have performed calculations with

the Dunning augmented correlation consistent basis sets up to the aug-cc-pVQZ level, which we
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used with aug-cc-pVTZ results  to perform an extrapolation to  the complete basis set limit  (TQ

extrapolation). Comparisons against smaller basis sets show that this level of theory is required to

obtain  reasonable  convergence  of  MP2  relative  energies.  Based  on  these  quantum  mechanical

benchmarks,  we  evaluate  the  AMOEBA  performance  on  nanosolvation  and  conformational

energetics of the alanine tetrapeptide. 

Conformational searching for global and low-lying energy minima for water cluster systems 

Nanodroplets and nanosolvation are interesting and demanding test cases for modeling water

via  polarizable  force  fields,  because  they  contain  water  molecules  in  different  extremes  of

environment,  ranging  from  surface  molecules  exposed  to  vacuum  to  buried  molecules  that

experience bulk-like environment. Beyond direct use as a “stress test” for polarizable force fields,

the science of nanodroplets  is interesting in itself,  since these species are  intermediate  between

small  clusters  (20  to  30  molecules  and  below)  that  are  currently  intensively  studied  by  high-

accuracy electronic structure theory as well as beam experiments, and solvation in the bulk liquid

solvent. They will have some of the features of water in confined regions, and may well exhibit

interesting structural motifs that lie in between small  cluster building blocks and the hydrogen-

bonding patterns of the bulk.  The behavior of a solute  in these clusters in terms of whether it

appears on the surface or in the interior,  may have similarities to  the partitioning of solutes at

interfaces. 

Studies of the properties of the nanodroplets require an effective sampling technique due to

the exponentially fast rise in the number of minima with cluster size. In hybrid energy approaches, a

cheap energy function is used to provide configurations for the sampling of an expensive ab initio

energy  function.  The  primary  problem  in  using  hybrid  energy schemes  is  that  we  have  no

knowledge or guarantee that  the distribution of configurations generated with the lower quality

energy function overlaps sufficiently with the higher quality energy function. However, we have

found AMOEBA to be a reliable generator of viable minima with sound energy ordering when

benchmarked against a reliable  ab initio theoretical model. In a recent study on n = 3, 4, and 5

water-sulfate anion clusters (H2O)nSO4
2-, we used replica exchange simulations over the temperature

range from 140K to 500K using the AMOEBA model, and all samples collected every 0.5 ps at

every temperature were energy minimized using the BFGS local optimization algorithm. Sampling

for all cluster sizes considered appeared to be exhaustive since all of the 10,000 structures collected

for each cluster size reduced to a smaller set of up to 200 local minima. 
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Figure 2a shows that the quantitative correlation between AMOEBA and the ab initio theory

is very good (correlation coefficient, r2~0.9) while the qualitative comparison is excellent given the

agreement  on  the  global  minimum  structure  for  n  =  3  and  4  that  will  likely  dominate  the

nanosolvation properties of this system size, and very competitive low lying minima for n = 5. The

lowest minimum energy structures determined from the empirical polarizable model were in turn

energy minimized by the RI-MP2 level of theory using an augmented cc-pVDZ basis set. Figure 2b

shows that for minimized MP2 structures the quantitative correlation between AMOEBA single

point  energies  and  the  ab  initio theory  is  still  very  good  (r2~0.8),  showing  that  AMOEBA

geometries are in very good agreement with the benchmark calculation.

For the smaller n = 3 clusters we can benchmark against high-level QM results. Table 1

shows the relative energies for the 8 lowest-lying configurations. The RIMP2+CC(T) reference

energies were obtained at the RI-MP2/aug-cc-pVQZ level of theory, which were corrected at the

CCSD(T)/6-31+G* level for higher-order correlation effects. Comparing the RIMP2/aug-cc-pVDZ

and RIMP2/aug-cc-pVQZ results,  we find basis  set  effects  of up to  0.4 kcal/mol.  Higher-order

correlation  effects  are  on  the  order  of  up  to  0.3  kcal/mol,  as  seen  by  comparing  RIMP2  and

RIMP2+CC(T) results.  This emphasizes the importance of both effects,  given that  the energy

differences between most low-lying isomers are on the same order of magnitude. We see that the

AMOEBA force field has quite good energy ordering of the isomers relative to the highest level of

theory- results  showing its  validity  outside the quantum chemistry levels of theory used in the

parameterization scheme reported in [24].

Electronic structure calculations of conformational energies of the alanine tetrapeptide. 

Alanine tetrapeptide is a system which has at least several dozen low-lying conformational

minima ranging from globular to extended, and includes hydrogen bonding and packing interactions

that make it quite a rich biochemical system even in the gas phase. For this reason, benchmark

calculations on alanine tetrapeptide first appeared roughly a dozen years ago.58 In this section we

summarize,  and in  some instances  extend,  recent  calculations59,60 that  significantly  improve the

accuracy and reliability of the earlier benchmarks. Table 2 contains relative energies calculated with

different popular electronic structure methods all using geometries optimized at the same Hartree-

Fock level of theory with the 6-31G** basis set, for 27 conformations of alanine tetrapeptide using

the labels reported in [58]. Our best (benchmark) level of theory (MP2 with TQ extrapolation) as

well as the MP2 theory with a less complete basis  set  (DT extrapolation are beyond originally
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published benchmarks at the lower double zeta level of quality).58 The comparison of the first two

columns of Table 2 indicates how troublesome obtaining fully converged results is using an electron

correlation  method  such  as  MP2.  The  DT  level  of  theory  is  already  beyond  most  literature

calculations, yet in some cases is not converged to within 1 kcal/mol of the larger TQ results. One

must also assume that there would be a further shift on the order of perhaps up to 0.1 kcal/mol upon

further improvement of the basis set beyond the TQ extrapolation.

The second comparison of importance in Table 2 is with standard DFT and the widely used

B3LYP functional, using a very large cc-pVQZ basis set. While DFT calculations cannot be soundly

extrapolated to the complete basis set limit, they also converge more rapidly with basis set size than

MP2 theory,  so  we can  consider  these  results  to  be  quite  well-converged.  However,  B3LYP is

known to perform fairly poorly for intermolecular interactions (and hence conformational energies),

as  a  result  of  limitations  in  its  exchange  and  correlation  functionals  (for  instance  it  neglects

dispersion interactions).  Indeed this causes serious discrepancies relative to the best MP2 results.

The  overall  energy  ranking  of  conformers  is  quite  poor  using  this  conventional  DFT method,

emphasizing its lack of suitability as sources of benchmark conformational energies. 

The  development  of  new  functionals  that  improve  exchange  functionals  and  include

empirical van der Waals corrections is likely to  yield significantly improved performance.   We

assess the role of improved exchange with the range-separated B97 and B97X functionals,61 and

the additional effect of dispersion with the recently proposed B97X-D functional.62 Table 2 shows

conformer energies for the  B97,  B97X and B97X-D long-range corrected functionals. All of

them yield a significant improvement over B3LYP and exhibit  an excellent agreement with the

benchmark energies (correlation coefficients of 0.910, 0.932 and 0.908, respectively). Interestingly,

however, the dispersion correction in B97X-D does not improve the performance of the functional

in  the  present  test  case,  suggesting  that  intramolecular  dispersion  effects  may  be  adequately

captured by other parts of the functional.

Finally we report the original LMP2 results but using more tightly converged geometries

than  reported  originally,58 as  well  as  the  AMOEBA results  which  used  LMP2  conformational

energies of the alanine dipeptide as part of the parameterization of the AMOEBA protein model. It

is  interesting  to  see  that  AMOEBA (using  AMOEBA relaxed  geometries)  gives  a  competitive

energy  ranking  over  all  the  conformations  compared  to  the  RI-MP2  benchmark  (r2~0.88),

comparable to that exhibited by the LMP2 level of theory (r2~0.95), and far better than conventional

DFT (r2~0.46).  AMEOBA is essentially competitive with the new generation density functionals,
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B97,  B97X  and  B97X-D,  which  illustrates  that  it  is  very  well  balanced  for  polypeptide

conformation energies.

From  a  biophysical  viewpoint,  one  of  the  most  important  comparisons  is  between  the

extended conformation (conformer 1) and a compact globular conformation with a tight hairpin turn

(conformer 3).  This type  of energy difference is  particularly  sensitive to  basis  set  convergence

problems because limitations of the basis set will favor the globular conformation, where atoms in

non-bonded contact can artificially lower their energy by making fractional use of the functions on

their non-bonded neighbors. This intramolecular basis set superposition error is essentially absent in

the extended conformation. As a result the benchmark extended-globular energy gap,  Egap  = 3.56

kcal/mol,  is  overestimated by ~1.3 kcal/mol at  the  DT extrapolated level.  This emphasizes  the

importance of carrying out the calculations to the largest feasible basis set size. Errors associated

with  neglect  of  dispersion  interactions,  which  are  relatively  non-specific,  can  sometimes

approximately cancel out for conformations of approximately similar compactness. However, the

energy difference between extended and globular conformations is quite sensitive to the neglect of

dispersion,  resulting  in  a  calculated  B3LYP  Egap  = -0.51,  a  large  error  that  underestimates  the

benchmark  calculation  by  roughly  4  kcal/mol.  The  corresponding  gap  measured  by  LMP2  is

underestimated by ~1.1kcal/mol, likely due to basis set size limitations and the local approximation

of the model. AMOEBA performs the best on this benchmark, overshooting the RI-MP2/TQ result

by only ~0.6 kcal/mol (close to the AMOEBA chemical accuracy goal of 0.5 kcal/mol), although

again it is based on a comparison using AMOEBA relaxed geometries and not the HF/6-31G**

geometries.

The effect of geometry optimization on the extended-globular gap is probed further with the

calculations shown in Table 3, where large basis set geometry optimizations at the MP2, DFT, and

HF levels are compared via single point energy calculations using the 3 different sets of structures.

While it has been shown that the MP2 geometries are superior to HF geometries, it is commonly

assumed (generally for good reason) that DFT or HF structures are adequate,  because errors in

electron correlation treatment cancel for small displacements of the geometry. However, there are

significant  shifts  in  relative  conformational  energy at  the  highest  level  of  theory  (RI-MP2/TQ)

depending upon the geometry that is used, with a new benchmark value of  Egap=4.994 kcal/mol.

There is a shift of over 2 kcal/mol between HF and MP2 geometries, with the DFT geometry in

much closer  agreement  (0.65  kcal/mol)  with RI-MP2.  Even between small  basis  HF (Table  1)

versus the larger basis results shown in Table 2, there is a shift of roughly 0.7 kcal/mol. Against the
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new  MP2  geometry  benchmark,  Egap  is  overestimated  by  ~1.7  kcal/mol  at  the  RI-MP2/DT

extrapolated level,  while DFT underestimates the gap by now roughly 6 kcal/mol.  By contrast,

AMOEBA now  undershoots  the  benchmark  result  by  ~0.9  kcal/mol,  showing  that  AMOEBA

geometries are the most robust when compared to the RI-MP2 geometries and energies.

VALIDATION AGAINST SOLVATION FREE ENERGIES

The evaluation of solvation free energies is a natural test of any force

field,  since  it  incorporates  many  challenging  aspects  of  a  heterogeneous

chemical  environment  that  are  not involved  in  the  parameterization  of  the

protein fragments or water force fields by themselves.63 The  AMOEBA solvation

free energies were computed using a free energy perturbation procedure based on three thermocycle

steps and processed with a Bennett Acceptance Ratio (BAR) method.64,65 For each small molecule,

the  thermodynamic  cycle  corresponded to  first  solute  discharging  in  vacuum over  7  windows,

followed by a  soft  core  modification  of  Eq.  (7)  to  introduce  the  solute-solvent  van  der  Waals

coupling over 16 windows, and finally solute recharging in water over 7 windows. The statistical

samples of the first thermocycle step in vacuum were collected every 0.5 ps from a 10 ns stochastic

dynamics simulation with an integration time step of 0.1fs,  while  the thermocycle steps in the

condensed phase were run for 1ns in the NVT ensemble with density fixed at 1.000 g cm -3. Induced

dipoles were converged to 10-5 D per step per atom for simulations in vacuum, and 10-2 D in the

liquid during the trajectory, and the energies of the condensed phase snapshots (saved every 0.5 ps)

were reevaluated with the induced dipole converged to 10-5 D. BAR was then used to estimate the

free energy between the neighboring steps, and the final free energy was taken as the sum over all

windows.

Table 4 reports  the AMOEBA solvation free energies of  common small

molecules  found  in  biochemistry,  including  common  amino  acid  side  chain

analogues, with corresponding statistical uncertainties obtained via a block averaging

applied to each simulation step, and the final statistical error bar is a sum of the uncertainties over

all steps. When compared to the experimental results, the RMS error for AMOEBA

solvation free energies is 0.68 kcal/mol,  with a mean signed error of +0.14

kcal/mol. Calculated solvation free energies using traditional fixed charge force

fields typically have an average RMS error of 1.0-1.25 kcal/mol compared to

available  experiments  for  similar  sets  of  molecules  and  a  general  shift  in
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solvation  free  energy  with  a  mean  error  of  approximately  1  kcal/mol,63

demonstrating  that  for  chemical  spaces  similar  to  proteins,  AMOEBA offers

significant improvement over corresponding fixed charge force fields. 

Prediction  of  solvation  free  energies  for  2009  OpenEye  SAMPL

competition 

The  Statistical  Assessment  of  the  Modeling  of  Proteins  and  Ligands

(SAMPL) blind challenge is an assessment of force fields and sampling methods

for protein and ligand modeling. One prediction aspect highlighted in the first

SAMPL  contest  in  2008  consisted  of  predicting  sixty-three  vacuum-water

transfer energies. A number of research groups using fixed charge force field

models  with  water  represented  explicitly  calculated  solvation  free  energies

using standard free energy perturbation MD calculations, and ultimately their

blind  prediction  results  were  compared  to  available  experimental  literature

numbers. The overall performance of these approaches gave an RMS error of

over 3 kcal/mol compared to the SAMPL reported experimental data.66 The goal of these

blind assessment approaches is to not criticize the underperformance of fixed charge force fields,

but to  better  understand when they do well,  and when additional physics of the computational

model is needed for predicting more challenging classes of compounds.

The AMOEBA force field was used to predict vacuum-to-water solvation free energies of 43

drug-like and other organic molecules for the 2009 SAMPL exercise (http://sampl.eyesopen.com/).

Alchemical hydration free energy calculations to compute the transfer free energy from 1 M gas-

phase to 1 M aqueous solution were carried out in a manner similar to that described in [ 67] using a

preview  release  of  Tinker  5  modified  to  add  a  numerically-computed  analytical  long-range

dispersion  correction68,  soft-core forms of  the  Halgren  potential,  and the  ability  to  periodically

evaluate  potential  energies  at  all  alchemical  intermediates.  In  vacuum  and  solvent,  seven

discharging  intermediate  states  were  used  to  scale  charges,  multipoles,  and  polarizabilities  by

factors lambda,  crudely optimized to reflect the quadratic dependence of charging self-energies,

while torsional barriers were correspondingly scaled by linear factors.  In solvent, a decoupling

parameter  h was used to modify the Halgren potential shift constants and well depth to mimic a

soft-core potential  at  intermediate  values of  h.  Vacuum simulations (discharging only)  at  each

alchemical intermediate were run for 5 ns using Langevin dynamics with a collision rate of 5/ps,
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with energies at all alchemical states written every 10 ps. Solvated simulations (discharging and

decoupling) for each alchemical intermediate were run for 300-600ps using the Berendsen weak-

coupling algorithm69 for both thermal  (coupling time 0.1 ps)  and volume (coupling time 2 ps)

control  which  are  available  in  Tinker,  though  the  distribution  generated  by  Berendsen  should

approach the correct NPT ensemble in the thermodynamic limit.  Potential energies from solvated

simulations were computed at all alchemical intermediates and stored every 0.5 ps. Particle Mesh

Ewald  was  employed with  a  real-space  cutoff  of  7  A,  interpolation  order  of  5,  and  a  grid  of

42x42x42 points. Dynamics were integrated using the 'better Beeman' algorithm with a timestep of

1 fs

Correlation  times  were  computed  for  the  potential  energy  history  and  the  trajectories

subsampled to produce a set of uncorrelated samples. All recorded samples were processed with the

multistate Bennett acceptance ratio (MBAR)70 to estimate free energies and uncertainties for each

leg of the thermodynamic cycle corresponding to transfer from 1 M gas to 1 M aqueous solution:

discharging in vacuum, decoupling in water, and discharging in water.  The first 1 ns of vacuum

simulations and 50 ps of solvated simulations were discarded to equilibration, and the remainder (up

to 4 ns for vacuum simulations) analyzed with MBAR; each leg of the thermodynamic cycle was

processed individually,  but all  simulations within the leg were used together to obtain the most

accurate estimates of free energies and their uncertainties.

Figure  3  shows  the AMOEBA prediction  against  the  OpenEye  reported  experimental

literature values for a few classes of compounds, while Table 5 reports all of the results submitted to

SAMPL2009.  It  is  evident  from  Table  5  that  AMOEBA did  especially  well  in  areas  where

traditional force fields failed, especially for very soluble molecules such as d-xylose and d-glucose.

In  addition,  the  2009  SAMPL  data  set  appears  to  have  included  compounds  with  suspect

experimental values for solvation free energies, notably for glycerol and cyanuric acid, while other

compounds  such as  the  uracils,  parabens,  and NSAIDs  have  a  range  of  reported  experimental

values.  For  example,  the  AMOEBA  predictions  for  the  uracils  are  between  the  SAMPL

experimental values (taken from Cabani, et al.71) and other more recently reported experimental

values, suggesting that experimental uncertainty is much greater than the SAMPL error bars that are

typically reported to be below 1 kcal/mol.

It  is noteworthy that AMOEBA tended to do poorly on the polyhalogenated compounds,

which  typically  have  large  atomic  polarizabilities  on  the  halogen  atoms,  values  that  were  not

derived in the original work by Thole. The AMOEBA force field derived the atomic polarizabilities
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for the halogens by fitting to just a couple of monohalogenated organic liquids. The results suggest

that the reason AMOEBA underestimates the solvation free energy is that the atomic polarizabilities

need to increase. The nitro compounds were also a challenge, with some evidence of large bond

length changes between gas phase and liquid (as there are for amides!), as well as more complicated

"push-pull" polarization that is not fully captured by the current "simple" polarization model.

CONDENSED PHASE STRUCTURE AND DYNAMICS

We have completed molecular dynamics simulations using non-polarizable and polarizable

protein force fields to contrast the water dynamics near hydrophilic, N-acetyl-glycine-methylamide

(NAGMA), and amphiphilic,  N-acetyl-leucine-methylamide (NALMA) peptides as a function of

temperature,  as  models  for  understanding  temperature  dependent  hydration  dynamics  near

chemically  heterogeneous  protein  surfaces72-76.  These  simulations  are  tightly  coupled  to  X-ray

diffraction and quasi-elastic  neutron scattering (QENS) perfomed on these same systems at  the

same concentrations. Unlike a majority of macromolecular simulations that model a single solvated

protein, these studies included ~30 to 50 individual peptides that can interact with one another as

well as the water molecules. The ability to accurately model the interactions of individual peptide

fragments in a crowded solution is important for eventual studies of protein-ligand binding and

protein-protein interactions,  wherein the proteins can form temporary and reversible complexes.

Hence these peptide simulation studies represent an important biological environment with which to

test any force field.

For  the  fixed  charge  case,  we used the  AMBER ff0319 all-atom protein  force field and

potential parameters to model the NALMA and NAGMA solutes, and the rigid,  non-polarizable

TIP4P-Ew model77 for the water. We have chosen a non-standard protein-water model combination

because  we know that  transport  properties of TIP4P-Ew are excellent over  a  large  temperature

range, unlike the default TIP3P model typically used with biomolecular solutes. Unfortunately, we

found that  the  simulated solution structure  with non-polarizable  force fields  predicts  too  much

aggregation of both the hydrophobic and hydrophilic peptide solutes (Figure 4), in disagreement

with our liquid diffraction experiments. This in turn frees up too much bulk-like water, so as to yield

water  diffusion  constants  that  are  faster  and  with  an  Arrhenius  temperature  dependence,

contradicting our quasi-elastic neutron scattering experiments. However when we fix the solutes to

remain  solvent-separated  as  that  determined  from the  structural  experiments,  we  find  that  the

simulated hydration dynamics with the non-polarizable force fields are close to quantitative with
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respect  to  the  experimental  dynamical  trends  with  temperature  for  NAGMA (Figure  5a)  and

NALMA. It is clear that reparameterization of a biomolecular force field such as Amber ff03 (or

other fixed charge force fields) to improve solvation properties using TIP4P-Ew is an important

direction for future non-polarizable force field efforts. 

Due to the unphysical perturbation introduced by fixing the solutes, we also performed the

same  simulations  with  the  AMOEBA polarizable  force  field.28 In  contrast  to  the  fixed-charge

simulations, the polarizable force field nicely reproduces a non-aggregated, uniform distribution of

solutes  throughout  the  volume (Figure  4).  It  appears  from these  results  that  the  ability  of  the

peptides to respond dynamically to their electrostatic environment via polarization is important for

reproducing a correct uniform mixture of peptides in water. Given the qualitative improvement in

solution structure using the AMOEBA model, we also compared the changes in water dynamics as a

function of temperature against  our experimental data.  Based on quasi-elastic neutron scattering

(QENS)  experiments,  the  amphiphilic  NALMA  peptide  solution  exhibits  two  translational

relaxations at  low temperatures,  while the hydrophilic peptide shows only a single translational

process, with transport properties of water near both peptide chemistries being very suppressed with

respect  to  bulk  dynamics.75,76 This  is  a  real  stress  test  for  any  force  field  given  the  range  of

dynamical trends that depend on amino acid chemistry and temperature. We note that we converged

the induced dipoles very tightly in order to ensure energy conservation in the NVE ensemble under

which we collected time correlation functions for calculating the diffusion coefficients.

AMOEBA provides  reasonable  agreement  with  the  experimental  temperature  trends  in

regards to translational diffusion for the glycine peptide (Figure 5b), although the dynamics are far

too slow at the lowest temperatures for the amphiphilic NALMA peptide. Even so, calculations of

the intermediate scattering function (ISF)



FT
H Q,t( ) = exp iQ ⋅ rH t( ) − rH 0( )[ ]{ }                                          (13)

using the  AMOEBA model  showed that  the  fits  to  its  decay at  low temperatures required two

relaxation timescales for NALMA, while the same quantity calculated for NAGMA decayed with a

single relaxation process. This reproduced the experimental trends observed in the QENS data with

respect to peptide chemistry. What the AMOEBA simulations revealed is that the inner hydration

layer nearest the amphiphilic solute relaxed on a much slower timescale than the outer hydration

layers, while the hydrophilic peptide showed no differences in relaxation times in the two regions.

Given that water dynamics for the amphiphilic peptide system reproduces all known rotational and
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translational hydration dynamical anomalies exhibited by hydration water near protein surfaces, our

analysis using the AMOEBA model provided the critical evidence that hydration dynamics near

biological interfaces is induced by chemical heterogeneity, as opposed to just topological roughness,

of the protein surface72.

We have  also  used  the  AMOEBA polarizable  model  to  investigate  changes  in  solution

structure and hydration dynamics of the 1M NALMA peptide solution upon the addition of two

small  molecule  co-solvents,  the  protein  stabilizer  glycerol  and the  protein  denaturant  dimethyl

sulfoxide (DMSO)73. There continues to be debate in regards the mechanism of protein stabilization

or destabilization by co-solvents78,79 (although that debate is often focused more on ionic additives).

An  indirect  mechanism  proposes  that  chaotropes  disrupt  water  structure  so  as  to  enhance

solubilization of hydrophobic groups, thus shifting the equilibrium to the unfolded state, whereas

kosmotropes increase water structure so as to diminish the solubilization of hydrophobic groups,

thus stabilizing the folded state. A more direct mechanism proposes that chaotropes or denaturants

preferentially bind to the protein, thereby dehydrating the protein surface to promote the unfolded

state,  while  stabilizing  kosmotropic  agents  do  not  interact  with  the  biological  macromolecule,

leading to a preferential hydration of the protein surface that favors the folded state. 

In  our simulations  we found that  with the  addition  of  DMSO,  water  was preferentially

excluded from the hydrophobic leucine surface, while the opposite occurred with the addition of

glycerol,  consistent  with  experimental  expectations.80 While  the  AMOEBA simulated  hydrogen

bonds formed between water molecules and the peptide backbone agreed well with our neutron

diffraction  data  for  the  glycerol  solution74 the  simulated  DMSO  solution  maintained  peptide

backbone-water  hydrogen  bonds,  contradicting  our  experimental  results,  indicating  a  need  to

reparameterize the DMSO molecule to better reproduce solution properties. This was done in 2009

for the SAMPL competition, and it is clear that the new modified Lennard-Jones parameters show

excellent  agreement  with  solvation  free  energy  data  (Table  4),  and  we  would  expect  that

corresponding solution structure would improve as a result.  Nonetheless, using the older parameter

set,  DMSO does displace  water near  the hydrophobic side  chain,  consistent  with a  preferential

exclusion mechanism we found from our experiments. 

For both co-solvent solutions the quantitative values of the translational diffusion constants

from  the  AMOEBA simulations  were  too  slow  compared  to  our  QENS  experiments74 for  all

temperatures studied. Clearly there is strong directionality and longer hydrogen-bonding lifetimes

between AMOEBA water and all solutes and co-solvents that explain why the diffusion constants of
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these solutions are  an order  of magnitude slower than  the experiments.  However,  the observed

dynamical trends were consistent with the experiment: mechanistically we showed that the glycerol

co-solvent preserves the hydration structure near the peptide, which in turn preserves the dynamical

temperature trends of two water relaxation processes observed in the co-solvent free solution. By

contrast the DMSO solution disrupts the water structure near the peptide surface and destroys the

inner hydration layer relaxation process, to show a single timescale for translational water dynamics

that is consistent with experiment. Together, the AMOEBA theoretical model and the corresponding

experiments showed that the direct mechanism was the most fully encompassing predictor of co-

solvent behavior.

PROTEIN STABILITY

As an initial evaluation of the AMOEBA force field for use in general protein simulation,

the  stability  of  some  small  globular  proteins  has  been  tested  via  a  series  of  short  molecular

dynamics trajectories in aqueous solution. The proteins studied include crambin, villin headpiece,

BPTI, Trp cage, GB3 and a SUMO-2 domain. All systems contained a single polypeptide without

counterions in a periodic cubic box of AMOEBA water, ranging in size from 49 to 62 Å on a side,

and chosen to provide a minimum of 10 Å of water between protein atoms and the closest box edge.

Simulation were started from partially minimized systems, slowly heated in stages over 300-500 ps,

and finally equilibrated at 298 K and 1 Atm. Production simulations were then collected for 2 ns to

20 ns using 1.0 fs time steps under a modified Beeman integrator. Van der Waals interactions were

smoothly  reduced  to  zero  over  a  window  from  10.8-12.0  Å.  Multipole  electrostatics  and

polarization were treated via particle-mech Ewald summation with a “tinfoil” boundary. Average

production period RMSD values from the original PDB structure over backbone -carbon atoms are

reported in Table 6. While RMSD from a reported crystal or NMR structure is a very imperfect

measure  of  the  overall  quality  and fidelity  of a  force field,  these  preliminary results  show the

promise of AMOEBA for modeling of larger biological structures. Some cursory comments are

provided below, and more detailed analysis will be the subject of future work.

The  longest  MD  simulations,  approaching  20  ns,  were  performed  for  the  disulfide-

containing crambin, and the three-helical villin headpiece. Crambin has an extremely hydrophobic

sequence, and remains remarkably close to its high-resolution X-ray crystal structure throughout the

AMOEBA simulation. The individual helices of villin generally remain intact across the simulation,

but relative motions of the helices via their connecting hinge regions lead to a larger overall RMSD
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from the NMR-derived PDB structure. For both BPTI and Trp cage, a significant portion of the

deviation from the PDB structure during the simulation is accounted for by fraying of the terminal

residues. As indicated in Table 6, the -carbon RMSD for each protein is reduced nearly one-third

by omitting only two residues. The reported average RMSD for the relatively short simulation of

GB3 is not converged, and this protein exhibits partial unfolding of an aromatic hydrophobic core at

one end of the single domain, with some water infiltrating to solvate surface area occluded in the

PDB structure. Another group (David Case, personal communication) has also noted a relatively

high RMSD  vs. the NMR structure for GB3 in a short AMOEBA simulation performed with the

Amber software package. Whether this is simply a random fluctuation in a short simulation, or a

reproducible characteristic of GB3 modeled with AMOEBA is currently under investigation.

PROTEIN-LIGAND BINDING 

AMOEBA has been utilized in calculating the binding free energy between trypsin and a

series of six benzamidine like ligands81-83. The positively charged benzamidine and its derivatives

form a salt bridge with the negatively charged D189 aspartic acid in the S1 site of trypsin 84. The

ability  to  capture  the  specific  recognition  between  proteins  and  ligands  requires  an  accurate

description  of  atomic  interactions  between  ligand-water  and  ligand-protein.  The  trypsin-

benzamidine system has been selected for the study due to the availability of experimental data, the

subtle chemical changes in the ligand series, the charged nature and small size of the ligands. To

calculate  the  absolute  binding free  energy  of  benzamidine  to  trypsin,  free  energy  perturbation

calculations have been performed using the AMOEBA potential for the protein, water and ligand

molecules. The interaction between the benzamidine and the environment (neat water or trypsin-in-

water) was gradually decoupled via the scaling of the ligand electrostatic parameters (permanent

multipole and polarizability) and the vdW interactions using a soft-core treatment following the

double decoupling procedure85,86 Up to 3 ns MD simulations were performed at each of the 20

uniform decoupling steps. A rather large hydration free energy, -45.8 kcal/mol, was obtained for

benzamidine. The total binding free energy was calculated to be 6.7 kcal/mol82, in good agreement

with the experimental value that ranges between -6.3 and -7.3 kcal/mol87,88. 

To achieve quantitative understanding of the polarization effect as the benzamidine moves

from water into the trypsin binding site, the dipole induction between benzamidine and water or

trypsin-in-water were “turned off” to evaluate the polarization free energy.  In this experiment, the

“permanent” atomic multipoles in trypsin-water or benzamidine no longer polarized each other;
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however the induction within water or trypsin-water remained as it  was an integral  part  of the

potential.   The  calculations  showed  that  the  polarization  between  water  and  benzamidine  was

responsible for -4.5 kcal/mol out of the total -45.8 kcal/mol hydration free energy. In contrast, the

polarization  between  trypsin-in-water  and  benzamidine  weakened  the  attraction  between

benzamidine and trypsin by 22.4 kcal/mol. It may seem counterintuitive that turning on polarization

would increase the system energy as at any given state the polarization effect always lowers the

system  energy.  However,  in  the  “on”  state,  the  trypsin-in-water  sees  both  aspartic  acid  and

benzamidine  together  as  a  dipole  moment  whereas  in  the  “off”  state  the  system  only  see  a

negatively charged aspartic acid, which gives rise to much more significant polarization. Thus our

observation indicates that, when the medium (trypsin-in-water in this case) is capable of responding

via electronic polarization, it will screen the “permanent” electrostatic interaction.

In  addition,  the  binding  free  energy  of  five  ligands  relative  to  benzamidine  has  been

evaluated using AMOEBA via free energy perturbation82 (Figure 6). The RMSE of the computed

binding free energy is 0.4 kcal/mol and the largest error is 0.7 kcal/mol. When the amidine group in

benzamidine is replaced by an amine or the phenyl ring is substituted by a diazine or an aniline, the

free energy changes in both trypsin and water are on the order of several tens of kcal/mol and are

mostly due to the electrostatic interaction83.  The two changes mostly cancel so that  the relative

binding  free  energy  changes  are  on  the  order  of  0.0-3.0  kcal/mol.  These  substitutions  in  the

benzamidine also results in notable change in the molecular dipole moment of the ligand. There

seems to  be  a correlation between the ligand molecular  polarizability,  instead of the molecular

dipole  moment,  and its  binding free energy83.  Note that  the  accuracy of the  computed binding

energy (RMSE=0.4 kcal/mol) is slightly better than that of the hydration free energy of the 30 small

molecules reported in Table 4 (RMSE=0.68 kcal/mol). On the other hand, the HFE of the drug-like

compounds in SAMPL (Table 5) show much greater error due to the various factors discussed in the

previous  section,  such  as  uncertainty  in  the  experimental  data,  problems  with  halogenated

molecules  and  nitro  compounds.  The  Distributed  Multipole  Analysis  used  to  derive  atomic

multipole moments has not been extensively tested on such molecular systems.  Nonetheless, it is

likely  that  better  accuracy  can  be  achieved  in  the  binding  free  energy  than  in  the  individual

solvation free energy in water or protein as the systematic error may cancel between the two. Study

of a broader range of protein-ligand complexes will be necessary to bring further insight.

The initial application of AMOEBA to protein-ligand binding suggests that the polarization

effect plays an important role in the specific recognition, and the polarizable atomic multipole is
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able to capture the chemical details of the substituted benzamidine ligands. The fact that the finite

binding free energy arises from a small  difference between some large free energy of solvation

stresses the need for a highly accurate interaction potential in order to achieve robust chemical

accuracy in  the  binding free energy prediction.  We are  in  process  of  extending the  AMOEBA

polarizable model to a broader range of protein-ligand systems.

X-RAY CRYSTALLOGRAPHY REFINEMENT

X-ray crystallography is one of only a few experimental methods capable of yielding atomic

resolution structural information. During refinement of a model against  diffraction data,  a force

field  offers  a  rich  source  of  prior  chemical  knowledge.  However,  widely  used  crystallography

programs such as CNS89 and PHENIX90 are not yet coupled to modern force fields. Furthermore,

particle  mesh  Ewald  (PME)  summation  is  almost  exclusively  limited  to  P1  symmetry  within

biomolecular  simulation  codes.91-93 Given these  limitations,  chemical  features  that  are  not  seen

clearly  in  the  electron  density  are  typically  left  out  of  the  model.  Our major  goal  in  applying

AMOEBA to X-ray crystallography is to consistently explain important structural features that are

ambiguous based only on the experimental data.

Our first work in applying AMOEBA to crystallography focused on the development of a

scattering model based on Cartesian Gaussian multipoles that for the first time allowed structure

factors to be computed from an aspherical (ie. multipolar) and anisotropic description of molecular

electron density via FFT.94 After beginning with peptide crystals, we scaled up to high resolution

lysozyme, trypsin and nucleic acid data sets to demonstrate that our AMOEBA based refinement

method  precisely  orients  water  within  hydrogen  bonding  networks  while  reducing  R and  Rfree

relative to deposited values by 5-6%.95 

A limitation of this work has been the requirement to  expand to P1 in order to use the

TINKER energy and gradient routines. This motivates our current efforts to develop an AMOEBA

code capable of taking advantage of space group symmetry to reduce memory requirements and

accelerate the calculation of energies and gradients for any system size, unit cell dimensions or

space  group encountered in biomolecular  crystallography.  We have recently completed such an

engine, named “Force Field Xplor”, in pure Java code. To the best of our knowledge, this represents

the first formulation of AMOEBA or PME that includes support for all 230 space groups. Although

the details  of our space group PME version of AMOEBA are beyond the scope of the present

article, we present timings in Table 7 to demonstrate that we have opened the door to routine use of
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AMOEBA within the X-ray crystallography community even for large, challenging data sets such as

ribosome crystals. 

SOFTWARE INFRASTRUCTURE FOR AMOEBA

The Ponder lab introduced AMOEBA as one of the first new polarizable protein and water

force fields released in the public domain, and available in the TINKER package via the web site at

http://dasher.wustl.edu. All of the force field parameters are made freely available to both academic

and commercial  parties.  Currently  AMOEBA serves  as  the  force field engine for a  number of

independent  efforts,  including  the  Folding@Home  distributed  computing  project96,  the

TINKERATE kinetic  rate  calculation  software97,  and  the  GAMESS QM/MM implementation98.

Versions are available for essentially all modern computer systems, and prebuilt executables are

supplied for Linux, Windows and Apple OSX. A User's Guide as well as many examples and test

cases are available online. A variety of potential functions and parameter sets are available to the

user, including MM2, MM3, AMBER, CHARMM, OPLS, OPLS-AA and our own AMOEBA force

field parameters. TINKER is one of only a few molecular mechanics packages to implement each of

the major protein force fields within a single unified body of code. The AMOEBA force field also

supports  the  study  of  nucleic  acids  and  small  molecules,  and  therefore  the  TINKER  package

supports a more broad chemistry computational infrastructure of molecular models. 

In 2009 we released the TINKER 5 modeling software and AMOEBA force field which

contains a number of software improvements such as increased efficiency of Particle Mesh Ewald

(PME) and neighbor list calculations, and shared-memory parallelization of the TINKER modeling

package for the AMOEBA force field under the OpenMP protocol. Recent performance advances

allow a speedup of 5.5X out of a possible 8 on commodity dual quad-core machines for AMOEBA-

based  MD  simulation  of  medium-sized  proteins  in  explicit  water  (~25000  atoms).  Simple

application of Amdahl’s law would indicate that nearly 95% of computational cost of the TINKER

simulation is now parallelized. Much of the speedup has been in the AMOEBA implementation of

PME summation,  but challenges also remain in this  area.  Future work will  optimize the initial

placement  of  AMOEBA multipoles  onto  the  PME  “charge”  grid  (the  current  parallelization

bottleneck) as well as working on a shared memory spatial  decomposition algorithm to achieve

further  speed  gains.  The  Pande  group  is  also  working  on  accelerating  AMOEBA and  other

molecular mechanics force fields on graphical processor units (GPUs), and is collaborating with the

Simbios National Center for Biomedical Computing to disseminate the software. This collaboration
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has also led to novel methods for programming molecular dynamics on GPUs on implicit solvent

and explicit solvent on fixed charge force fields99. This has been accomplished within the OpenMM

software package, now available at http://simtk.org/home/openmm, and we hope to release the same

for AMOEBA in 2010.

Two major new software programs have been added to the TINKER package with the goal

of substantially automating development and refinement of AMOEBA force field parameters for

arbitrary organic molecules. The first program, POTENTIAL, is a facility for comparing and fitting

parameters to the electrostatic potential surrounding a molecule. It reads the potential from ab initio

results or computes the potential from a force field model on a user-controlled radial grid. Force

field parameters (partial charges, atomic multipoles) can be fit to potentials with a great deal of

flexibility regarding terms and regions to optimize and parameter restraints. The program supports

multiple  molecular  conformations  and  cluster  configurations,  which  we  find  to  be  critical  in

obtaining robust parameterizations. The second new program, VALENCE, aids in determination of

local valence force field parameters for bond stretching, angle bending, stretch-bend coupling, out-

of-plane bending and torsional amplitude. It also uses ab initio quantum results, and operates in two

modes:  force fitting,  and structure  fitting.  Force  fitting refines parameters  for a  static  structure

against the ab initio forces, and Hessian matrix. Structure fitting finds the force field parameters via

repeated structural optimization and comparison to ab initio bond and angle values and vibrational

frequencies. In addition, another program called TORSFIT is under development for the fitting of

force  field torsional  parameters  to  energy  benchmark results  for  rotation  about  specific  bonds.

Taken together, these programs represent a major advance in AMOEBA parameter development

both in terms of accuracy and consistency of the resulting parameters. For example, using these

tools  we  were  able  to  complete  the  AMOEBA parameterization  of  the  43  drug-like  organic

molecules in the 2009 SAMPL solvation free energy test set reported above in about one week.

CONCLUSIONS

Biomolecular  simulations  lie  at  the  heart  of  physically  driven  atomistic  approaches  to

computational biology. Empirical force fields are the core of all biomolecular simulations, with the

computer  programs  that  implement  them,  and  together  they  define  the  central  community

intellectual  property  and  infrastructure  in  this  field.  While  sustained  advances  in  computing

hardware have helped the broad adoption of simulation as an equal to theory and experiment, an

equally important advance is the development of theoretical models that have proven predictive
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power. We have shown that the AMOEBA force field offers a significant improvement over non-

polarizable models for more accurate structural and thermodynamic of small protein-like fragments,

and good transport  properties  such as  diffusion constants  near  ambient  temperatures.  Given its

parameterization strategy involving careful decomposition, AMOEBA shows excellent agreement

with  benchmark  electronic  structure  data,  and  should  be  advocated  as  an  excellent  molecular

mechanics choice for QM/MM schemes. Further fine-tuning is necessary to describe solvation free

energies of drug-like small molecules, dynamical properties away from ambient conditions, with

possible further improvements on aromatic group interactions that may impact structural stability of

proteins  like  GB3.  However  AMOEBA  has  demonstrated  that  polarizability  is  a  necessary

intermolecular interaction for prediction of protein-ligand binding, and its improved treatment of

electrostatics  is  likely  to  open  up  a  new  level  of  protein  structural  refinement  in  X-ray

crystallography.
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Table  1.  Comparison  of  relative  energies  (kcal/mol)  for  sulfate-water  clusters  (H2O)3SO4
2-.

Geometries  of  each  cluster  isomer were  optimized  at  the  RIMP2/aug-cc-pVTZ level,  and
single point quantum mechanical energies were calculated at a benchmark level (RIMP2/aug-
cc-pVQZ+ΔCCSD(T)/6-31+G*),  as  well  as  RIMP2  using  aug-cc-pVQZ  and  aug-cc-pVDZ
basis sets. AMOEBA results are reported for the AMOEBA minimized structures.

Isomer Benchmark
RIMP2/

aug-cc-pVQZ
RIMP2/

aug-cc-pVDZ
AMOEBA

1 0.00 0.00 0.00 0.00
2 0.29 0.29 0.25 0.72
3 0.57 0.60 0.33 0.37
4 0.65 0.54 0.32 1.31
5 0.71 0.59 0.29 1.74
6 2.38 2.68 2.08 2.63
7 2.66 2.80 3.04 2.04
8 3.62 3.54 3.27 2.27

Table 2.  Comparison of benchmark RI-MP2 calculations approaching the basis set limit against
other electronic structure methods and AMOEBA for 27 alanine tetrapeptide conformations. All
relative energies are in kcal/mol and geometries optimized at  the HF/6-31G** level. AMOEBA
results used minimized structures based on the AMOEBA force field for each conformation. 

Conf. MP2
/TQ

MP2
/DT

B97
/LP

B97X
/LP

B97X-D
/LP

B3LYP
/Q 

LMP2/ 
cc-pVTZ (-f)

AMOEBA

11 0.000 0.000 0.000 0.000 0.000 2.184 0.000 0.090
12 0.290 0.346 1.099 1.187 0.902 3.266 0.699 0.372
3 0.571  0.693 0.723 0.425 0.523 1.251 0.195 0.000
26 0.674 1.223 2.367 2.187 2.398 1.806 0.373 1.509
20 1.755 2.335 3.032 2.666 3.190 1.270 1.061 2.432
18 1.913  2.468 1.944 1.577 2.668 0.000 0.718 1.938
15 2.194  1.707 2.136 2.347 2.591 5.291 2.261 1.164
25 2.495  3.118 3.575 3.389 4.030 2.442 1.784 2.935
6 2.895  3.148 2.601 2.433 3.196 3.228 2.383 2.422
21 2.918  3.009 2.474 2.547 2.749 3.336 2.300 2.828
17 3.418 3.414 2.474 2.547 2.749 4.638 2.980 2.520
16 3.549 3.784 4.713 4.292 4.438 3.925 3.021 2.575
13 3.655 4.538 4.034 3.474 4.509 1.225 1.965 3.519
19 3.816  4.319 3.950 3.682 4.648 2.033 3.029 3.610
24 3.976 4.115 4.280 4.241 5.131 4.521 3.171 3.424
27 4.020 4.513 5.197 4.989 5.423 4.155 3.378 4.355
1 4.130 5.553 4.745 4.088 5.576 0.742 2.690 4.162
2 4.190 5.390 4.892 4.358 5.650 1.056 2.780 4.001
8 4.640 4.477 5.024 5.050 5.390 6.333 4.364 4.258
14 4.679 5.395 5.811 5.336 5.758 3.862 3.877 4.029
5 5.261 6.353 6.431 5.835 5.758 3.263 4.074 4.152
4 5.730 6.884 6.907 6.219 7.317 3.350 4.062 4.831
23 5.815 5.979 5.944 5.809 6.383 6.335 5.018 5.618
22 5.824 5.899 5.667 5.520 6.126 6.318 5.019 4.295
7 6.665 6.931 6.648 6.614 6.126 7.730 5.927 4.385
10 7.791 7.766 7.637 7.707 8.286 8.367 7.189 5.613
9 7.923 8.197 7.932 7.631 8.033 6.264 7.129 8.066
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Table 3.  Effect of the level of theory used for geometry optimization on the energy difference (in
kcal/mol) between the extended and globular conformations of alanine tetrapeptide. The benchmark
value of 4.994 kcal/mole for the energy gap is highlighted in bold.

Energy evaluation Level of theory for geometry optimization
RI-MP2/T B3LYP/T HF/T HF/6-31G**

RI-MP2/TQ 4.994 4.414 2.884 3.559
RI-MP2/DT 6.720 5.582 3.942 4.860
B3LYP/Q -1.320 -0.093 -0.560 -0.590

Table 4. Accuracy of AMOEBA solvation free energies for small molecules.  The
uncertainty is the statistical uncertainty in the BAR free energy calculation. All
units are kcal/mol. When compared to the experimental results, the RMS error
for  the  30  AMOEBA solvation  free  energies  is  0.68  kcal/mol  and the  mean
signed error is +0.14 kcal/mol.

Compound AMOEBA Experiment Compound AMOEBA Experiment

Isopropanol -4.21±0.34 -4.74 Propane 1.69±0.17 1.96

Methylether -2.22±0.38 -1.92 Methane 1.73±0.13 1.98

H2S -0.41±0.17 -0.44 Methanol -4.79±0.23 -5.10

p-Cresol -5.60±0.23 -6.61 n-Propanol -4.85±0.27 -4.85

Ethylsulfide -1.74±0.24 -1.14 Toluene -1.53±0.25 -0.89

Dimethylsulfide -1.85±0.21 -1.83 Ethylbenzene -0.80±0.28 -0.79

Phenol -5.05±0.28 -6.62 N-Methylacetamide -8.66±0.30 -10.0

Benzene -1.23±0.23 -0.90 Water -5.86±0.19 -6.32

Ethanol -4.69±0.25 -4.96 Acetic Acid -5.63±0.20 -6.69

Ethane 1.73±0.15 1.81 Methylsulfide -1.44±0.27 -1.24

n-Butane 1.11±0.21 2.07 Methylethylsulfide -1.98±0.32 -1.50

Dinitrogen 2.26±0.12 2.49 Imidazole -10.25±0.30 -9.63

Methylamine -5.46±0.25 -4.55 Acetamide -9.30±0.27 -9.71

Dimethylamine -3.04±0.26 -4.29 Ethylamine -4.33±0.24 -4.50

Trimethylamine -2.09±0.24 -3.20 Pyrrolidine -4.88±0.29 -5.48

Table 5.  Comparison of AMOEBA solvation free energies vs reported values from SAMPLE2009.
The statistical uncertainty in the BAR free energy calculation is reported.  All units are kcal/mol.

Molecule AMOEBA SAMPL2009 Molecule AMOEBA SAMPL2009 

Cyanuric acid -20.59±0.30      -18.60 Ibuprofen    -6.00±0.39        -7.00

Glycerol -14.59±0.72      -13.43 6-Chlorouracil  -14.78±0.37      -15.83
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Methyl Paraben -13.80±0.44        -9.51 Uracil  -15.30±0.35      -16.59

Butyl Paraben -12.16±0.55        -8.72 5-trifluoromethyluracil  -13.97±0.28      -15.46

Ethyl Paraben -12.33±0.56        -9.20 d-Glucose  -23.69±0.40      -25.47

Naproxen -13.17±0.43      -10.21 Hexachlorobenzene    -0.51±0.34        -2.33

Propyl Paraben -11.66±0.57        -9.37 Diflunisal    -7.47±0.42        -9.40

Octafluorocyclobutane    2.17±0.22         3.43 Hexachloroethane     0.72±0.20        -1.41

Phthalimide -10.84±0.38        -9.61 Acetylsalicylic Acid    -7.62±0.39        -9.94

Caffeine -12.96±0.47      -12.64 Trimethylphosphate    -6.30±0.28        -8.70

d-Xylose -20.60±0.38      -20.52 5-Chlorouracil  -15.08±0.26      -17.74

Ketoprofen -10.67±0.44      -10.78 5-Fluorouracil  -14.05±0.27      -16.92

Trimethylorthotrifluoroacetate   -0.68±0.28        -0.80 5-Bromouracil  -14.49±0.29      -18.17

Flurbiprofen   -8.00±0.45        -8.42 4-Nitroaniline    -5.34±0.34        -9.45

Sulfolane   -7.99±0.28        -8.61 5-Iodouracil  -14.44±0.27      -18.72

Table 6.  Results of AMOEBA protein simulations showing the average -carbon RMSD between
PDB structure and MD snapshots.

Protein PDB Code # of Residues
Simulation
Time (ns)

<RMSD>

Crambin 1EJG 46 19.6 0.73
Villin 1VII 36 18.1 1.80
BPTI 1BPI 58 2.0 1.20 (0.85)a

Trp Cage 1L2Y 20 5.0 1.40 (1.00)b

GB3 2OED 56 3.0 1.56
SUMO-2 1WM3 72 3.0 1.23

a RMSD computed over residues 1-56, omitting 57 and 58.
b RMSD computed over residues 2-19, omitting 1 and 20.

Table 7. Timings for the space group PME implementation of AMOEBA on a 3Ghz 8 core MacPro
workstation. The self-consistent field was converged to 0.01 RMS Debye. Expansion to P1 for the ribosome
system (2J00) was not attempted due to limited RAM.

Number of Atoms Time (sec)
PDB ID Space Group Asymmetric Unit Unit Cell Expand to P1 Native
1WQY P3221 5370 895 0.3 0.1 
3DAI P6522 31752 2646 2.2 0.5
2J00 P212121 1954100 488525 - 72.4 
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FIGURE CAPTIONS

Figure 1. An example of the “z-then-bisector” local frame definition. Shown for methylamine that

ensures that the atomic multipoles remain constant with time within this local reference frame.

Figure 2. Energy correlations between AMOEBA and MP2 energies for (a) AMOEBA minimized

water-sulfate  anion  clusters  and  (b)  MP2  minimized  water-sulfate  anion  clusters.  Shown  for

(H2O)nSO4
2- n =3 (), 4 () and 5 (). Correlation coefficients are 0.88 (n=3), 0.77 (n=4), and 0.79

(n=5) for AMOEBA geometries, and correlation coefficients are 0.92 (n=3), 0.92 (n=4), and 0.90

(n=5) for MP2 geometries.

Figure  3. Comparison  of  the  AMOEBA  solvation  free  energies  vs  reported  values  from

SAMPLE2009.  See Table 5 for details.  All units are kcal/mol.

Figure 4. Solute carbon-carbon radial distribution functions for the 1M NALMA solution at 298K

in the fixed charge (black) vs AMOEBA (red) force fields. Figure reproduced with permission from
73. 

Figure 5. Arrhenius representation of the (a) fixed charge force field and (b) AMOEBA force field

compared to the experimentally determined Dt for the 1.5M NAGMA solution. VFT fit (solid line) is

to the simulation data (black circles). Figures reproduced with permission 73.

Figure 6.  Comparison of experimental and calculated ligand binding free energy using AMOEBA

potential. The ligand chemical structures are shown from left to right roughly according to their

experimental binding free energy.
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	Short-ranged valence interactions
	The AMOEBA model includes full intramolecular flexibility. For atoms directly bonded (1-2) and separated by two bonds (1-3), the covalent energy is represented by empirical functions of bond lengths and angles. The functional forms for bond stretching (Eq. 2), angle bending (Eq. 3), and the coupling between the stretching and bending (Eq. 4), are those of the MM3 force field,�37� and include an accounting of anharmonicity through the use of higher-order deviations from ideal bond lengths (b0) and angles (0):



