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Fidelity and variability in the interlayer electronic structure of the kagome superconductor CsV3Sb5

Aurland K. Watkins ,1,* Dirk Johrendt ,2 Vojtech Vlcek ,1,3 Stephen D. Wilson ,1 and Ram Seshadri 1,3

1Materials Department, University of California, Santa Barbara, California 93106, USA
2Department Chemie, Ludwig-Maximilians-Universität München, 81377 Munich, Germany

3Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA

The AV3Sb5 (A = K, Rb, Cs) kagome materials host an interplay of emergent phenomena including super-
conductivity, charge density wave states, and nontrivial electronic structure topology. The band structures of 
these materials exhibit a rich variety of features like Dirac crossings, saddle points associated with van Hove 
singularities, and flat bands prompting significant investigations into the in-plane electronic behavior. However, 
recent findings including the charge density wave ordering and effects due to pressure or chemical doping point 
to the importance of understanding interactions between kagome layers. Probing this c-axis electronic structure 
via experimental methods remains challenging due to limitations of the crystals and, therefore, rigorous com-
putational approaches are necessary to study the interlayer interactions. Here we use first-principles approaches 
to study the electronic structure of CsV3Sb5 with emphasis on the kz dispersion. We find that the inclusion of 
nonlocal and dynamical many-body correlation has a substantial impact on the interlayer band structure. We 
present band behavior that additionally supports the integration of symmetry in accurately plotting electronic 
structures and influences further analysis like the calculation of topological invariants.

I. INTRODUCTION

First-principles electronic structure calculations are criti-
cal for the identification and characterization of topological
materials given the limited and complex experimental tools
designed to confirm nontrivial electronic structure topology
[1,2]. While bulk band structure features like band crossings
or flat bands can point to nontrivial topology, confirmation
requires additional techniques. There are three common com-
putational or theoretical methods relying on the bulk band
structure to classify topological materials: (1) adiabatically
evolving the Hamiltonian to match the band structure of
a material with known topology, (2) computing the sur-
face electronic structure to directly detect topological surface
states, and (3) calculating a topological invariant. This final
method employs the underlying symmetries and features of
the bulk band structure to produce an index describing the
topology [3].

A Z2 invariant (ν) is used to distinguish between trivial
(ν = 0) and nontrivial (ν = 1) time-reversal invariant systems
with a bulk electronic gap by specifying whether topological
surface states are expected to reside in this gap [4–6]. For
systems that additionally possess inversion symmetry, Fu and
Kane developed a protocol for calculating Z2 invariants that
relies on the parity (inversion) of the Bloch wave functions de-
fined at specific k points that are invariant under time-reversal
symmetry. In a 3D Brillouin zone, there are eight of these
k points known as time-reversal invariant momenta (TRIM)
points. In the Fu-Kane protocol, the product of band parities

*aurland@ucsb.edu

across all bands below the gap is calculated at individual
TRIM points. Subsequently, a product across all the TRIM
point products is taken and the Z2 invariant is calculated [7].

While this method was originally developed for insulators
or materials with band gaps, this type of Z2 analysis does not
depend on band filling and, therefore, can be applied to metal-
lic systems with partial band occupancy [8–10]. However, to
extend this calculation to metals, the band structure must have
a continuous gap throughout the Brillouin zone (BZ) located
near the Fermi energy (EF ). This requirement ensures that
the parity products at each of the TRIM points consistently
include the same bands. This method was previously applied
to metals featuring kagome nets to support their nontrivial Z2

classification [11,12].
The kagome net of corner-sharing triangles (Fig. 1) has

drawn significant interest as a platform for a variety of in-
stabilities and emergent phenomena like spin liquid states,
superconductivity, charge density waves, and topological sur-
face states [13–15]. Recently, materials within the AV3Sb5 (A
= K, Rb, Cs) kagome family were categorized as Z2 topo-
logical metals following the Fu-Kane method [11,12]. The
presence of two continuous gaps throughout the BZ near EF

allowed for the calculation of multiple Z2 invariants, both of
which indicated nontrivial topology suggesting that CsV3Sb5

exhibits topological surface states analogous to a topological
insulator. This original Z2 analysis relied on a band structure
that was obtained via a structural relaxation with the PBE
(Perdew-Burke-Ernzerhof) functional [16] and D3 correction
with the addition of spin-orbit coupling (SOC) in the self-
consistent calculation. The D3 correction is an empirical van
der Waals total energy correction that was identified as a nec-
essary parameter to more closely match experimental lattice
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FIG. 1. Crystal structure depictions of CsV3Sb5. (a) Quasi-
2-dimensional structure highlighting separation between kagome
sheets. (b) and (c) Coordination environment within and adjacent to
kagome layers.

parameters (specifically along the c axis) during relaxation
[17,18].

Here, we present electronic structure analysis of CsV3Sb5,
with special consideration of anisotropic nonlocal correla-
tion along the kz or inter-kagome-plane direction. Within the
framework of density functional theory (DFT), we find that
including certain computational parameters during a structural
relaxation gives rise to a symmetry-allowed band crossing
previously not identified between � and A as highlighted in
Fig. 2. This crossing is also observed when the calculations
are performed on the experimental structure without relax-
ation. However, higher-level calculations on the experimental
structure show gapped instead of crossed bands due to shifts
in the positions of the bands. As the level of computational

FIG. 2. PBE+SOC+D3 electronic structure of CsV3Sb5 along
high-symmetry k-point path. A previously unidentified crossing
along �-A representing the kz-band dispersion is confirmed by irrep
analysis.

theory increases, these energy shifts become more pro-
nounced. Ultimately, this study suggests that it is critical
to include nonlocal and dynamical many-body correlation
through the application of the GW approximation to obtain
accurate interlayer band behavior. The resulting electronic
structure shows significant shifts of the bands that results in
the almost degeneracy of a V band and an out-of-plane Sb
band. This study of the seemingly minor region of the band
structure additionally impacts the calculation of Z2 invariants
in this material and points to a larger issue of correct band
identification or tracking when plotting band structures.

II. METHODS

First-principles calculations were performed using the Vi-
enna ab initio Simulation Package (VASP) version 5.4.4.
Pseudopotentials following the projector-augmented wave
method were selected with the following valence configu-
rations: Cs (5s25p66s1), V (3s23p64s23d3), Sb (5s25p3). An
11 × 11 × 5 �-centered k-point mesh was automatically gen-
erated by VASP and the plane-wave energy cutoff was set to
500 eV. Geometric optimization or relaxation of the experi-
mental structure (ICSD 31841) was performed with all listed
parameters (for example, the structure for the PBE+SOC
results came from a relaxation using PBE and SOC) [19]. Dur-
ing optimization, the first-order Methfessel-Paxton smearing
scheme was employed with a smearing width of 0.2 eV and all
degrees of freedom (atomic positions and cell shape/volume)
were allowed to relax until forces were converged within 10−7

eV/Å [20]. Calculations based on the experimental structure
were also performed and are referred to as “unrelaxed” cal-
culations. The static self-consistent and non-self-consistent
density of states (DOS) calculations used tetrahedral smearing
with Blöchl corrections [21]. All nonhybrid DFT calculations
had an energy convergence better than 10−8 eV. A k-point path
for the band structure was generated using the AFLOW online
tool and the density of the path was set to 50 k points per
path segment (for example between � and A) to ensure high
resolution of band features in the final plot [22]. Band struc-
tures were plotted using the sumo package [23]. Irreducible
representations were obtained using the Irvsp program that
interfaces with VASP outputs [24].

Meta-GGA (generalized gradient approximation) and hy-
brid functional band structures were calculated using the
VASP-recommended protocol for these types of functionals.
First, a ground state calculation was performed to obtain
converged wave functions (for hybrid functionals, it is suf-
ficient to use PBE for this step for faster convergence).
This output served as the starting point for a self-consistent
band calculation using a regular k-point mesh with an ap-
pended zero-weighted k-point path for the band structure. This
protocol differs from standard non-self-consistent-field band
calculations that require only the precoverged charge density
(CHGCAR file) with a k-point path. However, both hybrid
and meta-GGA functionals require a regular k-point mesh and,
therefore, require this alternative band calculation procedure.
The k-point file was generated using the hybrid option within
the sumo package [23]. The energy convergence for the hybrid
functional calculations was loosened to 10−6 eV.
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GW calculations implemented in VASP were performed
on the experimental (unrelaxed) structure and employed the
PBE electronic structure as a starting point. Both single-shot
G0W0 and partially self-consistent eigenvalue GW 0 (ev GW 0)
calculations were performed. GW potentials were selected
based on the VASP recommendations with the following va-
lence configurations: Cs (5s25p66s1), V (3s23p64s23d3), Sb
(4d105s25p3). The total number of bands was set to 4000 and
the number of frequency points was set to 100. Given the high
computational cost of GW calculations, a smaller 4 × 4 × 2
k-point grid was used. This setup yields quasiparticle energies
converged to within 50 meV. For the GW 0 calculation, seven
steps were necessary for convergence; however, all results de-
tailed in this study were taken after ten steps. Since the orbitals
are not updated in the ev GW 0 self-consistency scheme, the in-
terpolation of bands between � and A in the GW output should
match that seen in standard DFT even as the eigenvalues are
updated. To visualize the resulting band behavior, eigenvalues
were matched to the ordering of states in DFT outputs. The
interpolation of bands between � and A was preserved from
the unrelaxed PBE band structure, yet it was scaled such
that the end-point energies (at � and A) correspond to the
updated eigenvalues from the GW calculations. Further details
are provided in Appendix B.

III. RESULTS

A. General features of the band structure

The electronic structure of CsV3Sb5 hosts a variety of
features associated with unique physical phenomena. Many
computational efforts have focused on the Dirac crossings
[25] and van Hove singularities [26] characteristic of the
kagome electronic structure. Specifically, there is significant
interest in the near-Fermi-level saddle points in the band struc-
ture that correspond to van Hove singularities or divergences
in the density of states. Due to the high DOS, interactions can
become pronounced when a saddle point becomes populated
and can nest across the Fermi surface. In CsV3Sb5, multiple
saddle points residing at the M point give rise to competing
instabilities depending on band filling [26,27].

Yet, while the intralayer interactions draw focus, the in-
terlayer electronic behavior is understudied [28]. Among
kagome materials, the 135 family is highly two-dimensional
as seen in the stacking of the kagome layers (Fig. 1). While
these materials are not considered traditional 2D materials
given the presence of A-site ions between the layers, previ-
ous electronic structure work concluded that van der Waals
interactions were necessary to reproduce the experimental
c-axis lattice parameter during structural relaxation. These
interactions are most relevant along the interlayer or kz di-
rection represented along the �-A and K-H paths within the
Brillouin zone. The near-Fermi-level bands along these paths
are dominated by Sb pz orbitals unlike the V character bands
found elsewhere in the BZ [29].

B. Band crossing along �-A

When comparing published band structures for this mate-
rial, there is a large degree of variability with respect to the
band behavior between � and A, specifically around 0.75 eV

below the Fermi energy. These band structures can be cate-
gorized into three main groups depending on the interaction
of the two bands in this energy range: (1) fully gapped bands
[27,30,31], (2) seemingly touching bands with a minor gap
[12,32], and (3) fully crossed bands with crossings between �

and A and between A and L [33,34]. We similarly obtain these
variations of electronic structures depending on the parame-
ters included in the calculation and the methods employed for
plotting. To understand the nature of and potentially validate
these crossings, the symmetry or the irreducible representa-
tions (irreps) of the bands at specific k points need to be
analyzed. When bands possess the same symmetry or irrep,
the associated electronic states mix or hybridize and form a
gap. Only when bands have different irreps can a symmetry-
allowed crossing occur [35].

Irreps additionally change with the inclusion of SOC since
a spinor representation (as opposed to a vector representation)
is required to capture the spin symmetry. Within the Brillouin
zone of CsV3Sb5, most of the paths connecting k points have
C2v symmetry which has only one spinor irrep. Since bands
in these regions can only have this one irrep, all bands will
be gapped from each other (i.e., no symmetry-dictated band
crossings). However, the paths along �-A and K-H have C6v

symmetry with multiple spinor irreps allowing for crossings.
Therefore, when SOC is included, these are the only two
regions of the Brillouin zone that matter for identifying a
continuous gap. This means that even though � and A only
represent two of the eight TRIM points necessary for calcu-
lating a Z2 topological invariant, these k points are critical for
determining whether this calculation can be performed in the
first place (a continuous gap is a prerequisite for a Fu-Kane
type Z2 calculation).

It is important to note that “symmetry-allowed crossing”
does not refer to symmetry-enforced crossings arising from
nonsymmorphic symmetries. While the crossings of interest
are dictated or “enforced” by the differing symmetries of the
bands, we avoid this terminology since it already has a specific
definition within topological band theory [36,37].

When band symmetry is included in the previously op-
timized calculations for CsV3Sb5 (relaxed with PBE+D3
followed by PBE+D3+SOC ground state calculation in [12]),
multiple band crossings are observed along �-A and K-H.
Since the band behavior between � and A conflict with previ-
ous reports, those crossings are the focus of this study. Based
on symmetry considerations, the two bands around 0.75 eV
below the Fermi energy cross between � and A but are gapped
beyond A since they possess the same spinor irrep beyond
that k point. Although these bands are significantly below the
Fermi level, they contribute to the Z2 characterization of this
material and they provide insight into the interlayer electronic
behavior.

To identify the origin of this crossing, a series of cal-
culations was performed to track the evolution of the band
structure and the relaxed physical structure as summarized
in Fig. 3. From here on, when referring to electronic struc-
ture calculations unless indicated otherwise, this includes a
structural relaxation, a self-consistent calculation, followed by
band structure and DOS calculations in which the Fermi level
for the band structure is taken from the DOS calculation given
the more accurate sampling of k points (for more detailed
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FIG. 3. Comparison of computationally relaxed to experimental
lattice parameters. Low deviation from experimental values (specifi-
cally the c axis) coincides with the presence of a symmetry-allowed
band crossing along �-A. The nonlocal van der Waals density func-
tional optB86b-vdW yields a relaxed structure most similar to the
experimental structure.

discussion see methods section). Each step in this procedure
includes all listed parameters.

The first step in understanding this band crossing is find-
ing what conditions give rise to the crossing. While the
PBE+SOC+D3 band structure features the crossing, the PBE
and PBE+SOC band structures show gapped bands. This
result indicates that the D3 van der Waals correction is respon-
sible for the crossing. The effect from the D3 correction can
be either electronic (i.e., from the calculation) or structural
(i.e., from the relaxation which produces a slightly different
structure). To figure out why the D3 correction creates this
band crossing, we performed unrelaxed calculations on the
experimental structure. Since the unrelaxed PBE, PBE+SOC,
and PBE+SOC+D3 calculations all show the band crossing,
we conclude that the effect from the D3 correction in the
relaxed calculation is structural. In other words, the relaxation
with D3 produces a structure that closely resembles the exper-
imental structure which already features a band crossing along
�-A.

C. Comparison of band dispersion corrections

It is well documented that DFT methods over-delocalize
electrons leading to overly dispersed bands [38,39]. These
errors are potentially most pronounced for band disper-
sions along the out-of-plane direction within quasi-two-
dimensional materials like the AV3Sb5 kagome compounds.
Within the Brillouin zone (Fig. 2), this direction is represented

by the �-A, K-H, and M-L paths, meaning that these paths are
more likely affected by overdispersion. Since the crossing of
interest is along �-A, any correction of the band dispersion
(i.e., decreasing the bandwidth) could open a gap between the
two bands.

To probe the conditions under which a gap might open
between the bands and thereby assess the robustness of this
crossing, we compare a variety of commonly applied DFT
approaches that address anisotropic nonlocal exchange and
correlation at various levels. Again, all parameters or tech-
niques were benchmarked against experimental or unrelaxed
results to parse the electronic and structural contributions.
Within electronic structure theory, there are a variety of meth-
ods to deal with localized electrons, including (1) adding
a Hubbard U correction to specific orbitals, (2) adding
an energetic correction term, (3) switching to a different
exchange-correlation functional, and (4) turning to more ad-
vanced methods that more accurately treat band dispersions.
While the following results do not constitute an exhaustive
selection of all methods impacting band dispersion, a repre-
sentative set of calculations within all of these categories was
performed to provide generalized results as summarized in
Fig. 3. Methods were selected based on their computational
accessibility and the specificity of the correction to the in-
terlayer band dispersion. Under these different computational
conditions, other regions of the band structure also undergo
minor changes. For example, the inclusion of SOC will open
gaps between bands across the Brillouin zone. However, the
most significant changes to the electronic structure within this
survey of techniques occur along the �-A path. Additionally,
for calculations that include SOC, the symmetry of the Bril-
louin zone paths outside of �-A dictates that bands will not
cross, highlighting the importance of this particular interlayer
direction in determining the necessary gap for Z2 calculations.

Hubbard U corrections are commonly used because they
provide a targeted method for dealing with electron over-
delocalization usually in d and f orbitals in a tunable and
computationally inexpensive way [40–43]. In the context of
CsV3Sb5, primarily Sb p orbitals contribute to the near EF

bands at the Brillouin zone center. While p orbitals typically
do not suffer from the same over-delocalization issues in DFT,
adding a variable U to these orbitals is a valuable exercise
for tracking the behavior of the crossing as a function of
the bandwidths of the involved bands. As the value of the U
is increased, the deviations along the a and c axes become
progressively more positive signifying an expansion of the
unit cell during relaxation. In the presence of the D3 van
der Waals correction, calculations with a Hubbard U from
1 eV to 6 eV exhibit a crossing. Without the D3 correction,
these calculations show fully gapped bands with high lattice
parameter deviations along the c axis.

Since CsV3Sb5 is considered a quasi-two-dimensional ma-
terial given the separation of the kagome layers, van der Waals
corrections beyond the D3 term could provide more accurate
band dispersions corresponding to localized electrons along
the kz direction. These van der Waals terms are total energy
corrections that are added to the calculated Kohn-Sham DFT
energy and, therefore, do not impact the fundamental elec-
tronic structure. The computational efficiency of adding these
corrections and the relative success in matching experimental
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lattice parameters make these terms a popular method for ad-
dressing van der Waals systems [44,45]. However, moving to
less empirical van der Waals corrections like the Tkatchenko-
Sheffler (TS) correction [46] does not yield an improvement
in the relaxed lattice parameters. In fact, the c-axis lattice pa-
rameter is significantly shorter compared to the experimental
value.

Changing the exchange-correlation functional can be a
more rigorous method for incorporating dispersion changes
within the electronic structure calculation. The broadly appli-
cable and widely used PBE functional is one example of a
GGA functional that incorporates the local electron density
and the gradient of the density. PBE can be improved for
solid-state systems by modifying the exchange and correlation
gradient expansion terms resulting in the PBEsol functional
[47]. For CsV3Sb5, PBEsol yielded a relaxed structure with
lattice parameters within 2% deviation from the experimental
values without the addition of any explicit van der Waals cor-
rection. Dispersion interactions can be approximated within
the functional by using a nonlocal van der Waals density
functional that includes a nonlocal correlation term [48–51].
For this system, the optB86b-vdW and the SCAN+rVV10
functionals show similar values to the experimental lattice
parameters, while the original nonlocal van der Waals den-
sity functional (vdW-DF) shows significant deviation. Finally,
using a meta-GGA functional that additionally takes into
account the kinetic energy density has been shown to sys-
tematically improve results without a significant increase in
computational cost [52,53]. The most popular implementation
of a meta-GGA functional, SCAN (strongly constrained and
appropriately normed), produces a relaxed structure with rela-
tively high deviation from experimental lattice parameters and
a band structure with gapped Sb bands.

All of these corrections and methods were additionally
compared to unrelaxed calculations (see Appendix A for a full
summary of relaxed and unrelaxed calculations) to deconvo-
lute the structural and electronic contributions. Under almost
all tested computational parameters, a crossing is observed
between the Sb bands along �-A, pointing to the importance
of the structural relaxation in controlling the presence of this
crossing. However, both SCAN and the nonlocal van der
Waals functional SCAN+rVV10 yield a gap between the the
Sb bands for the unrelaxed structure as shown in Fig. 4. These
calculations represent the only levels of theory within standard
DFT where this gap is observed for the experimental structure.

Another class of functionals that can provide more accurate
electronic structures combine Kohn-Sham and Hartree-Fock
theories. These “hybrid” functionals improve upon standard
Kohn-Sham functionals by calculating a portion of exchange
using Hartree-Fock methods [54–57]. Hybrid functionals can
either be unscreened where Hartree-Fock exchange is cal-
culated at full range or screened where only short-range
exchange is a linear combination of Hartree-Fock and Kohn-
Sham exchange and both correlation and long-range exchange
is treated at the Kohn-Sham level. The popular Heyd-
Scuseria-Ernzerhof (HSE) hybrid functional is an example of
a screened hybrid functional in which one-fourth of the short-
range exchange comes from Hartree-Fock and the remaining
three-fourths comes from PBE exchange, while all long-range
exchange and all correlation come from PBE. A modification

FIG. 4. Band structure calculated using the meta-GGA SCAN
functional for the unrelaxed experimental structure.

of the HSE functional, HSEsol, replaces the contributions
from PBE with PBEsol [58]. The distinction between short
and long range is specified through a screening parameter
[59,60].

Since unrelaxed HSE (HSE06) and HSEsol give band
structures with negligible differences, we focus on the HSE
results. While the band dispersions do not change signifi-
cantly from non-hybrid DFT calculations, many of the bands
experience a downward shift in energy as shown in Fig. 5.
As a result of these shifts, the two Sb bands along �-A
are gapped to an even greater extent than in the SCAN
calculation.

Moving outside of the framework of DFT can also provide
a more accurate picture of the electronic structure. For exam-
ple, using the GW approximation for the electronic self-energy
can appropriately narrow bands by more accurately capturing
electron exchange and correlation, however, at higher compu-
tational cost. The GW approximation relies on a quasiparticle
picture of the system in which electrons are “dressed” with
positively charged polarization clouds due to the Coulomb
repulsion of other electrons. These quasiparticles, which can
be described using single-particle Green’s functions (G), in-
teract weakly via a dynamically screened Coulomb potential
(W). Typically, GW calculations provide good estimates of
the band energies and dispersions when comparing electronic
structures from theory and experiment. Since GW calculations
capture correlations stemming from dynamical and nonlocal
density fluctuations, these calculations are well suited for sys-
tems in which van der Waals forces play a role. For CsV3Sb5,
these types of interactions likely dominate the interlayer elec-
tronic behavior, meaning that the GW approximation provides
inherent advantages over static mean field methods like Kohn-
Sham DFT.

GW calculations were performed on the experimental
structure without SOC and compared to a range of DFT results
using PBE, SCAN, HSE, and nonlocal van der Waals den-
sity functionals (vdW-DF, optB86b, SCAN+rVV10) [48–52].
Single-shot G0W0 and partially self-consistent eigenvalue
GW 0 yield similar band behavior as shown in Fig. 5,
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FIG. 5. DFT and GW interlayer electronic structure behavior. (a) Comparison of PBE, SCAN, HSE, single-shot G0W0, and partially self-
consistent eigenvalue GW0 band structures along �-A shows consistent band dispersions yet significant energetic shifts with the opening of the
crossing between Sb bands in SCAN, HSE, and GW. (b) Band-decomposed charge densities corresponding to bands in (a) ordered by degree
of interlayer character. (i) and (ii) show the out-of-kagome-plane and in-kagome-plane Sb pz charge density, respectively, while (iii), (iv), (v),
and (vi) show V d charge density with decreasing interlayer intensity.

indicating that single-shot calculations will give a relatively
consistent picture of the band structure. Across the selected
DFT and GW calculations, the dispersions of the bands
highlighted in Fig. 5 have a maximum change of 72 meV (cor-
responding to the difference in dispersion of band iii between
the GW 0 and vdW-DF calculations). For the Sb bands, i and
ii, the dispersions across these methods differ by a maximum
of 39 meV and 28 meV, respectively.

While the dispersions of the revelant bands remain rela-
tively consistent when moving to GW calculations, all bands
experience significant energy shifts and reordering especially
below the Fermi level as indicated in Fig. 5. In particular, the
two Sb bands shift downward by more than 1 eV, combining
these bands with lower-lying less-dispersive V bands that
experience less than 1 eV shifts downward. This shift induces
a reordering of bands as some V bands now lie between the
two Sb bands. Quantifying the quasiparticle energy shifts at �

and A shows larger shifts of around 1.6 eV and 1.3 eV for pz

bands associated with Sb outside the kagome layer and within
the kagome layer, respectively, and smaller shifts of 0.80 eV
and 0.65 eV for V dz2 and V dxy/x2−y2 bands, respectively. Or-
bital contributions are attributed based on band-decomposed
charge densities depicted in Fig. 5(b) and published electronic
structures with orbital projections [28,29]. The relative energy
shifts of bands with varying degrees of interlayer character
ultimately results in bands that are fully gapped between �

and A.

IV. DISCUSSION

Within standard DFT, various band dispersion correc-
tion terms and methods lead to a similar conclusion: when
the structure matches or is comparable to the experimen-
tal structure, the associated band structure will feature a
symmetry-allowed crossing along �-A. This conclusion is
evident in relaxed calculations; when there is a small deviation
between the relaxed and experimental lattice parameters, a
crossing is observed. Unrelaxed calculations reinforce this
result by showing a crossing that is robust to a variety of

electronic corrections and terms. Additionally, the dispersions
of the Sb bands that introduce the crossing are maintained
across a variety of functionals and in GW calculations. How-
ever, in moving to higher levels of theory like meta-GGA
functionals, hybrid functionals, or GW calculations, these Sb
bands are gapped for the unrelaxed structure. This gap arises
from the relevant bands shifting in energy and not from
changes in the band dispersions. In GW calculations, these
shifts are more pronounced for bands with higher degrees of
interlayer orbital character. For example, the purely intralayer
V dxy/x2−y2 bands experience the smallest shift in quasiparti-
cle versus Kohn-Sham energies, whereas the out-of-plane Sb
pz band experiences the largest shift. Since the in-plane Sb
band does not shift as much as the out-of-plane Sb, a gap
is expected to open between these bands (note the separation
between bands i and ii in Fig. 5).

Based on DFT calculations, the presence of this symmetry-
allowed crossing and its robustness with a variety of band
dispersion corrections suggests a reevaluation of the elec-
tronic structure of CsV3Sb5 specifically along the kz direction.
GW calculations provide further insights into the interlayer
electronic structure, revealing a gap due to significant ener-
getic shifts of bands below the Fermi level. Additionally, these
results show interlayer interactions mediated through the V
and out-of-plane Sb atoms indicated by the almost degenerate
i and v bands shown in Fig. 5. The hybridization of these states
suggests more interlayer phenomena at play than indicated in
previous electronic structures.

Given the two-dimensionality of this kagome system, it
is particularly important to study the interlayer electronic
behavior as has been demonstrated computationally and ex-
perimentally with effects due to pressure and chemical doping
and charge-density wave ordering [30,33,34,61]. All of these
phenomena show dramatic changes along the c or kz axes
pointing to the critical role of understanding interlayer inter-
actions. Rigorous electronic structure calculations capturing
the kz dispersion are further necessary since experimental
verification of theses bands via ARPES remains challenging.
The highly two-dimensional single crystals make it difficult
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to obtain a clean surface required for the technique along the
relevant axis.

Additionally, the �-A crossing (or lack thereof) has greater
implications in the topological characterization of this sys-
tem via Z2-invariant calculations. A crossing implies the
absence of a continuous gap necessary for Fu-Kane Z2 cal-
culations across a band manifold. In the case of CsV3Sb5,
two near-Fermi-level gaps were included in the original Z2

analysis with both gaps yielding nontrivial Z2 invariants.
However, based on the irrep analysis of this band structure
(PBE+SOC+D3), one of these gaps is not a continuous gap
due to the band crossing along �-A. While this symmetry
analysis invalidates this lower gap, the upper gap (which can
be seen above the crossing in Fig. 2) remains continuous
throughout the entire Brillouin zone and maintains a nontrivial
Z2 invariant. Since the Fu-Kane method involves taking the
product of parity eigenvalues, the ordering of bands below the
continuous gap does not affect the overall result meaning that
the Z2 calculation for this particular gap is unchanged from
previous reports even with the band reordering along �-A seen
in the GW results [12]. Ultimately, the presence or absence
of this symmetry-allowed crossing does not change the non-
trivial Z2 classification even though it potentially reduces the
number of continuous gaps. However, in other systems that
do not have additional continuous gaps, subtle crossings that
are not identified until irreps are considered could have more
severe consequences on topological-invariant calculations.

This study motivates revisiting the protocol for defining Z2

invariants in metallic systems. Since the Fu-Kane method was
originally intended for insulators, the presence of a gap and,
subsequently, a separable band manifold is guaranteed by the
system [7]. However, when moving to metals, this condition
of separable bands becomes a prerequisite step before con-
tinuing with the calculation. From this study of CsV3Sb5, we
find that visual identification of a near-Fermi-level gap that
extends throughout the entire Brillouin zone is not always suf-
ficient fulfillment of this prerequisite. Our results highlight the
importance of confirming a gap via irreps prior to performing
Z2 analysis in metals.

Finally, broader lessons regarding the interpretation of
band structures can be learned from this study of CsV3Sb5.
For example, recognizing that most band structure outputs do
not include band symmetries and can, therefore, misidentify
“continuous” bands advocates the integration of irrep analysis
when depicting and understanding band structures. This lack
of proper band tracking is reinforced if other computational
parameters like k-point density along the Brillouin zone path
are not high enough to resolve small features. These issues
are crucial when attempting to calculate topological invariants
based on bulk band structures but are also widely applicable
to any system in which an accurate picture of the electronic
structure is necessary.

V. CONCLUSION

Using first-principles calculations, we have identified vari-
able band behavior along the interlayer direction in CsV3Sb5.
Given the two-dimensional nature of this system, capturing
the electronic structure along the c or kz direction is ex-
perimentally and computationally difficult. In this study, we

TABLE I. Summary of unrelaxed and relaxed calculations show-
ing which levels of theory yield crossing bands (×) or gapped bands
(•) along �-A.

Experimental Relaxed
Computational parameters structure structure

PBE × •
PBE + SOC × •
PBE + D3 × ×
PBE + D3 + SOC × ×
PBE + TS × ×
PBE + TS + SOC × ×
PBE + U = 1 eV + SOC × •
PBE + U = 2 eV + SOC × •
PBE + U = 3 eV + SOC × •
PBE + U = 4 eV + SOC × •
PBE + U = 5 eV + SOC × •
PBE + U = 6 eV + SOC × •
PBE + D3 + U = 1 eV + SOC × ×
PBE + D3 + U = 2 eV + SOC × ×
PBE + D3 + U = 3 eV + SOC × ×
PBE + D3 + U = 4 eV + SOC × ×
PBE + D3 + U = 5 eV + SOC × ×
PBE + D3 + U = 6 eV + SOC × ×
PBEsol × ×
PBEsol + SOC × ×
SCAN • •
SCAN + SOC × •
SCAN + rVV10 • ×
optB86b-vdW × ×
vdW-DF × •
HSE06 •
HSEsol •
G0W0 •
ev GW 0 •

survey a variety of computational methods to address nonlocal
exchange and correlation at different scales. Density func-
tional theory calculations show a symmetry-allowed crossing
along the kz dispersion that arises due to the structural effect
of dispersion corrections and methods employed during relax-
ation to more closely match experimental lattice parameters.
This crossing is revealed upon irrep analysis of the bands. Yet,
in turning toward higher levels of computational theory, this
crossing is absent due to relative energy shifts of bands. By
including dynamical nonlocal correlation via the GW approx-
imation, we observe the near degeneracy of a V band and
an out-of-kagome-plane Sb band. This interlayer electronic
structure points to increased interactions occurring out of the
kagome plane and serves as a baseline band structure for
further studies of inter-kagome-layer phenomena.
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APPENDIX A: SUMMARY OF CALCULATIONS

Our summary of calculations is given in Table I.

APPENDIX B: PLOTTING ELECTRONIC STRUCTURES

Since typical band structure data include the k points and
energies of each band, portions of this data need to be rear-
ranged to reflect the true band identity confirmed by irreps.
For example, if two bands cross between k point 1 and k point
2, the output may incorrectly identify all lower energies as a
continuous band and similarly all higher energies as another

continuous band. In other words, the lower energy band before
the crossing will be spuriously connected to the lower energy
band after the crossing. However, looking at the irreps at k
point 1 and k point 2 will indicate there is a crossing because
the irreps switch between the two k points. This weakness
in the output can be corrected by identifying the point at which
the crossing occurs and reconnecting the bands to match the
irrep results. This practice can be seen in Fig. 2 where the
bands between � and A have been reconnected and colored to
match the irreps.

The GW band structures in Fig. 5 were constructed based
on the unrelaxed PBE band structure. Once the bands were
reconnected based on irreps, each band was rescaled and
repositioned according to the renormalization computed in the
G0W0 and GW 0 calculations at � and at A. As such, bands
from the GW output may suffer from the same misidentifica-
tion across crossings; however, since only the energies and
not the orbitals are updated in the employed partially self-
consistent scheme, the GW energies can be properly matched
based on the ordering of bands from the original PBE band
structure.
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