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ABSTRACT OF THE DISSERTATION

Untangling the Connectional Neuroanatomy of the Language Dominant
Cerebral Hemisphere using Diffusion−Weighted Magnetic Resonance Imaging

By

Vatche George Baboyan

Doctor of Philosophy in Cognitive Neuroscience

University of California, Irvine, 2020

Professor Gregory Hickok, Chair

The present thesis is dedicated to studying the human language connectome by com-

bining diffusion-weighted magnetic resonance imaging (dMRI) and high-dimensional

predictive algorithms to isolate its relevant connections amongst the broader white

matter feature space. According to the classical “Broca-Wernicke” and contemporary

“Dual-Stream” neurobiological models of language, the fluent production and repe-

tition of speech relies on a distinct and lateralized neuroanatomical circuit. Where

these models diverge is in their neuroanatomical explanations, such that the for-

mer attributes these functions to the posterior inferior frontal gyrus (i.e., Broca’s

area) and its disconnection from the arcuate fasciculus while the latter emphasizes a

cortico-centric “dorsal stream” network where repetition processing occurs by way of

a sensorimotor node in sylvian parieto-temporal cortex (called “area Spt”). Experi-

ment 1 of this thesis tested the assumption that the speech production system is scaf-

folded by a lateralized set of connections by performing whole-brain inter-hemispheric

white matter comparisons between left- and right-hemisphere dominant subjects as

determined by a clinically-indicated Intracarotid Amytal (Wada) Test. Indeed, this

semi-automated analysis reconstructed a lateralized network for speech production

that was underscored by its convergence of pathways to Broca’s area and whose
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white matter properties successfully enabled Wada-concordant classifications using a

ridge-logistic regression model. Experiment 2 used dMRI collected by the Human

Connectome Project to perform multi-shell fiber tractography of Broca’s area in or-

der to segment the underlying sub-circuits connecting to this classical region. Exper-

iment 3 linked connectivity directly with behavior using a connectome-based lesion-

symptom mapping approach in a large dMRI sample acquired from stroke patients.

Over two-thousand distinct connections were mapped and a LASSO-regularized la-

tent projection-based regression algorithm was implemented to automatically isolate

the subset of connections predictive of speech repetition performance. We found that

the embedded feature selection algorithm identified a local set of sylvian parieto-

temporal connections that could make accurate out-of-sample predictions of repeti-

tion performance - a result which fuses the claims made by the “Broca-Wernicke” and

“Dual-Stream” models regarding the anatomic delineation of the repetition circuit.

Together, these studies demonstrate the utility in using dMRI and machine-learning

algorithms to understand the anatomy of eloquent functional networks while accom-

modating the collinearities that are characteristic of brain data.
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Chapter 1

Background

1.1 Introduction

One of the critical theoretical advances in modern neurosciences has been the shift

away from localizationist views of brain function, stressing the importance of com-

munication between brain networks rather than considering brain areas as modular

units (Thomas Yeo et al. (2011)). The past two decades of imaging and lesion studies

in humans have provided us with a wealth of new information on the human language

”network”. Today, this exclusively human ability for speech and language is widely

conceptualized as being sub-served by the parallel cortical operations of dorsal and

ventral processing streams anchored by downstream activity from primary auditory

cortex. This model borrows heavily from theoretical principles on neural foundations

of the visual system, where dorsal and ventral streams map onto ”how” and ”what”

pathways. In the language domain, it is believed that the dorsal stream is the ”how”

pathway for driving the speech articulators (Chang et al. (2013)) through senso-

rimotor feedback while the ventral ”what” language pathway supports the acoustic

1



signal processing needed for the comprehension of speech sounds (Hickok and Poeppel

(2007); Hickok (2012)).

A fundamental feature of the dual-stream model of language, and where it diverges

from its theoretical contemporaries, is in its assertion that the dorsal sensorimo-

tor stream, but not the ventral semantic stream, is heavily asymmetric towards the

language-dominant (i.e., mostly left) hemisphere (Hickok et al. (2008)). This claim is

bolstered by the ample evidence from the lesion study literature on non-fluent apha-

sia (i.e., Broca’s aphasia) resulting from unilateral brain damage and, conversely, by

the lack of evidence showing speech perception deficits from similar unilateral lesions

(Hickok et al. (2008)). Speech production therefore appears to have a localizable

hemispheric substrate in the language-dominant hemisphere.

1.1.1 The White-Matter Basis for Dual Stream Pathways...

or Lack Thereof

A potential criticism of the dual-stream model proposed by Hickok and Poeppel

(2007) is that it is under-specified with respect to the contributing white matter

pathways enabling each functional stream. Such a deliberate omission may have been

primarily driven by the lack of available white matter imaging methods in the early

2000s. Since the advent of diffusion magnetic resonance imaging (dMRI), the pre-

cise white matter structures contributing to dual-stream functioning continues to be

configured (Dick et al. (2014)). dMRI is an imaging technique that measures the

molecular displacement of water across brain tissue along different spatial directions.

This powerful technique takes advantage of the biological property of restricted water

diffusion along white matter axons of the brain, thereby allowing for mathematical

estimations of fiber trajectories based on the eigen-system of the water displacement

2



matrix (Basser et al. (2000)). Although much progress has been made in its applica-

tion to language, the literature has become severely limited by a variety of technical

limitations. Among them, a pervasive spatial bias accompanies the majority of work

conducted in this area. Specifically, statistical analyses are often restricted to pre-

defined fiber bundles to simplify subsequent statistical tests. The arcuate fasciculus,

for example, is a bundle that has been implicated in language since Carl Wernicke in

the late 1800s as a pathway interconnecting Broca’s and Wernicke’s areas. Early dif-

fusion imaging studies of the early-to-mid 2000s were then dedicated to relating this

pathway to language while ignoring all others (Glasser and Rilling (2008)). Today,

with advances in whole-brain statistical analysis techniques of diffusion data paired

with high-dimensional machine-learning algorithms that may accomodate collineari-

ties characteristic of brain imaging data, such spatial biases are no longer necessary,

and data-driven approaches are now necessary to validate prior findings as well as

reveal potentially novel ones. Second, virtual dissections (i.e., tractography) based

on diffusion imaging data is both a time-consuming and heavily operator-dependent

process, making tractography studies not only limited in sample-sizes, but also in

their consistency across studies since considerable disagreement exists in the field

regarding the exact terminations of the pathways in question (Bernal and Altman

(2010); Tremblay and Dick (2016); Mesulam et al. (2015)).

1.2 Research Aims

This thesis is dedicated to revisiting the connectional neuroanatomy of the language

network using modern brain-imaging and machine learning tools. Considering the

brain as a massive multivariate feature space with highly correlated spatial compo-

nents, it becomes essential to use modeling strategies that may accommodate this

3



structure while, at the same time, minimizing a priori theoretical assumptions that

may introduce bias to the analyses. The overall objective of this thesis is three-

fold: Firstly, if the human brain shows a hemispheric bias for speech, then an inter-

hemispheric comparison of white matter properties should reveal the precise neu-

roanatomical white matter substrate for this property. Are cortico-centric theoretical

models justified in their exclusion of specific white matter connections (Hickok and

Poeppel (2007); Rauschecker and Scott (2009))? If, for example, the dorsal language

stream is indeed unilaterally represented in the language-dominant hemisphere, then

it should follow that this functional asymmetry should be accompanied by some

structural asymmetry in the brain. These assumptions are tested in experiment #1,

where we compare inter-hemispheric asymmetry patterns in a large cohort of patients

within whom diffusion imaging data have been collected and shared by the University

of Texas Health Science Center. Second, using data from the Human Connectome

Project, we evaluate the connectivity patterns of one of the most eloquent regions of

the human brain: pars opercularis of the inferior frontal gyrus and the ventral pre-

central gyrus. Given the importance of these regions as elements of ”Broca’s area”,

a precise understanding of their structural connectivity patterns is surprisingly lack-

ing. This might be explained primarily by the complex organization of white matter

fibers projecting to this region. Therefore, assessing its connectivity to the rest of

the cerebral cortex in a large group of subjects using multivariate tools may allow us

to fully visualize its distributed connectivity patterns and thus provide insight into

its functional purpose as a critical node in the dual stream architecture. Third, we

integrate findings from experiments #1 and #2 in order to evaluate whether clas-

sical models are justified in attributing the arcuate fasciculus as being the so-called

”speech repetition pathway”. Recent lesion and imaging studies have suggested that

speech repetition is subserved by cortical set of brain regions. This relationship will

be evaluated in a large clinical cohort of stroke-induced aphasics from whom diffu-

4



sion imaging and extensive neuropsychological data have been acquired through a

collaboration with the Aphasia lab at the University of South Carolina. The pro-

posed experiments are aimed at determining the value in using diffusion weighted

imaging and tractography in studying the human language network in a data-driven

manner to evaluate whether reliable and accurate predictions could be made using

the information provided beneath the brain surface.
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Chapter 2

Brain Pathways Critical For

Language Laterality: An

Inter-Hemispheric White Matter

Comparison in Wada-Tested

Subjects

2.1 Introduction

Over the past half-century, many claims have been made regarding the structural

asymmetry underlying one of the most fundamental properties of the human brain -

it’s hemispheric preference for language. The most widely reported results have been

observed at the cortical level; particularly, in the planum temporale (area PT) region,

located posterior to Heschl’s gyrus. This asymmetry was first reported in a 1968 pa-
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per by Geschwind and Levitsky (Geschwind and Levitsky (1968)), when it was noted

by visual examination of post-mortem brain specimens that the surface area of the

PT was larger in the left hemisphere. This report, and the dozens of others that have

since followed in both imaging and cadaveric studies, have been driven by a strong

theoretical bias. Given what was known about perisylvian cortex and it’s role in lan-

guage from classical aphasiology, researchers repeatedly isolated such areas in their

research while ignoring the rest of the brain. This same approach has permeated the

subcortical white matter domain, such that the most widely reported finding is that

the arcuate fasciculus, a pathway classically described as interconnecting Broca’s and

Wernicke’s area, is the critical subcortical substrate of language laterality (Glasser

and Rilling (2008); Takaya et al. (2015)). Today, with the development of whole-brain

imaging techniques, this bias can easily be resolved by using data-driven analyses

across the entire brain and precluding the need for restrictions to specific brain areas.

This approach is critical in determining the legitimacy of past claims through careful

validation of findings in a data-driven manner. In this study, we sought to apply

a data-driven framework on diffusion imaging data in order to determine whether

and where in the human brain a relationship between white matter asymmetries and

functional language asymmetries may exist. Importantly, we address this topic in

a cohort of neurosurgical subjects, whereby the dominant hemisphere has been re-

vealed by a powerful, and clinically indicated procedure, known as the Intra-carotid

sodium Amytal Test (IAT - also called the “Wada Test”). This unique sample of

patients provides access to an incredibly rare subset of individuals showing a reversed

(i.e., Right-hemisphere language dominance) asymmetry pattern. The Wada test is

scored as a categorical outcome for each individual patient, Left-Hemisphere Lan-

guage Dominance (LLD) or Right-Hemisphere Language Dominance (RLD), which

captures the ability of that hemisphere to carry out language whilst its contralat-

eral side is put to sleep using an anesthetics injection to its carotid blood supply
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(Wada and Rasmussen (1960)). Prior research has suggested that right-hemisphere

language dominance presents a homotopic or “mirror” configuration of language net-

works (Chang et al. (2011)). As such, a comparison of typical LLD and atypical RLD

groups may isolate the underlying the neuroanatomical substrate involved and yield

a noninvasive imaging biomarker to predict the language-dominant hemisphere in the

future. If indeed a region of asymmetry is identified, we can relate this to its under-

lying fiber pathways using diffusion fiber tractography. This approach will effectively

localize the fiber tracts underpinning the whole-brain analyses - in a manner that

is agnostic to a priori assumptions from neurobiological models of language. Based

on the dual stream theoretical framework proposed by Hickok and Poeppel (2007),

we hypothesize that this study will reveal that dorsal stream white matter is asym-

metrically represented in the language-dominant hemisphere (Hickok and Poeppel

(2007).

2.2 Methods

2.2.1 Participants

Ninety-two consecutive neurosurgical patients (44 male, mean age 35.52 years) under-

went intra-carotid sodium amytal (IAT) testing to lateralize language (Table 1) prior

to neurosurgical intervention for medically intractable epilepsy (n = 85) or a brain

tumor (n = 7). Handedness was prospectively assessed using the Edinburgh Hand-

edness Inventory (EHI) (Oldfield (1971)), scored on a scale ranging from negative

ten (completely left-handed on all tasks) to positive ten (completely right-handed on

all tasks). Each patient provided informed written consent, in accordance with the

University of Texas Health Science Center’s committee for the protection of human
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subjects, for collection and analysis of their data.

2.2.2 Wada Testing

Wada testing was carried out using a standardized protocol for lateralizing language

and memory function, detailed previously (Breier et al. (1999)). In brief, hemispheric

dominance for language was determined by testing: 1) comprehension of one- and

two-step commands; 2) naming of objects or parts of objects presented as line draw-

ings; 3) reading of sentences; and 4) repetition of simple phrases. Performance on

each of these tests was scored as either normal, mildly, moderately, or severely defi-

cient. A hemisphere was deemed to support language when it’s injection with sodium

amytal resulted in the disruption of performance in at least two of the aforemen-

tioned tests, with one or more test being rated as having at least moderate disruption

or at least three of the four tests being characterized with at least mild disruption.

Unilateral language representation was inferred when only one hemisphere met these

criteria. To minimize confounding or subjectivity in language lateralization, patients

classified as being bilaterally language-dominant were specifically excluded, and sub-

sequent analyses were restricted to those subjects presenting with unambiguous uni-

lateral dominance. Seven patients met the exclusion criteria for bilateral dominance,

seventy-two patients were Left-hemisphere Language Dominant (LLD) and thirteen

were Right-Hemisphere Language Dominant (RLD).
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Table 2.1: Patient Demographics
Patient Demographics
Characteristics Left-Language Dominant Right-Language Dominant Bilaterally-Language Dominant Totals
Number of subjects (n) 72 13 7 92
Age (yrs) 35.97 (12.43) 37.23 (9.88) 29.29 (8.85) 35.52 (11.91)
Gender M = 33; F = 39 M = 8; F = 5 M = 3; F = 4 M = 44; F = 48
Handedness (EHI) R = 46; L= 14; Mix = 12 R = 3; L = 8; Mix = 2 R = 0; L = 6; Mix =1 R = 49; L = 28; Mix = 15
Pathology Epilepsy = 65; Tumor = 7 Epilepsy = 13; Tumor = 0 Epilepsy = 7;Tumor = 0 Epilepsy = 85; Tumor = 7
Hemisphere of Pathology L = 36; R = 36 L = 9; R = 4 L = 3; R = 4 L = 48; R = 44

Numbers are means (SD). EHI = Edinburgh Handedness Inventory; M = male; F =
female; R = Right; L = Left; Mix = Mixed Mixed Handedness was defined as an
EHI score between -5 and 5 (inclusive).

2.2.3 Diffusion Weighted Imaging Acquisition and Process-

ing

Anatomical MRI scans were collected using a 3T whole-body MR Scanner (Philips

Medical Systems, Bothell WA) equipped with a 16-channel SENSE head coil. Anatom-

ical images were collected using magnetization-prepared 180-degree radio-frequency

pulses and rapid gradient-echo (MP-RAGE) sequence, optimized for gray-white mat-

ter contrast, with 1 mm thick sagittal slices and an in-plane resolution of 0.938 x

0.938 mm. DWIs were collected using a Philips 32-direction diffusion encoding scheme

(high angular resolution) with the gradient overplus option. One b0 (non-diffusion

weighted, b-value = 800 s/mm2) image volume was acquired before the acquisition

of one repetition of diffusion-weighted scans. Seventy axial slices were acquired with

a 224224 FOV (1.75 1.75 mm pixels) and 2 mm slice thickness.

DWIs were first corrected for eddy current distortion and head motion using a 12-

parameter affine registration to the b0 reference volume using the ”eddy correct” tool

provided by FSL. The B-matrix was rotated using the ”fdt rotate bvecs” tool provided

within the same distribution. Following brain extraction and quality control of DWIs,

FMRIB’s diffusion toolbox (http://www.fmrib.ox.ac.uk/fsl/fdt) was used to generate

voxel-wise images of fractional anisotropy (FA) by fitting a diffusion tensor model

to the data at each brain voxel. The resulting eigen-system images were converted
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FA =

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ1 − λ3)2

2(λ21 + λ22 + λ23)
(2.1)

Figure 2.1: Fractional Anisotropy (FA) represented as the standard deviation of dom-
inant eigenvalues. FA is widely used as a proxy for white matter microstructural
integrity.

into tensor volumes by DTI-TK (http://www.nitrc.org/projects/dtitk) which was

then used for tensor-based spatial normalization of the volumes to an iteratively

optimized study-specific template (Zhang et al. (2006)). This algorithm computes a

deformable registration to the tensor images, which has been shown to improve DWI

co-registration. Each participant’s tensor image was then normalized to the study-

specic template using one warp that combined afne and diffeomorphic alignments

with nal isotropic 1 mm3 resolution, followed by conversion back to an FA map to

begin integration with the TBSS workflow (next section).

2.2.4 Whole-Brain Grouped-Statistical Analyses of White Mat-

ter Asymmetry

A fundamental challenge when comparing diffusion weighted data across subjects is

that significant anatomical variability exists in white matter structures - especially

pronounced in the brain’s periphery - thus making it difficult to align data across

subjects. One solution to this problem is to roughly align (i.e., using nonlinear image

registration) all brain images and subsequently generate a so-called white matter

”skeleton” representing areas common to all subjects. For each subject, the diffusion

data most adjacent to the skeleton are then projected onto the corresponding voxels

along the skeleton. This framework, called Tract-Based Spatial Statistics (TBSS,

Smith et al. (2007)), allows one to test for differences in diffusion data at each voxel
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along the skeleton across large groups of subjects. Here, this strategy will be used to

test for differences in asymmetry between the LLD and RLD group along a symmetric

version of the skeleton.

Once the data were projected onto the symmetric skeleton, inter-hemispheric (i.e.,

Left-Right) differences in fractional anisotropy were computed between each voxel

along the skeleton in the left hemisphere and its contralateral homolog in the right

hemisphere. Fractional anisotropy is a metric that is commonly used in diffusion

studies to estimate microstructural integrity of white matter fibers. To test for poten-

tial differences, we implemented an non-parametric, permutation-based (k = 5,000)

general linear model (GLM) approach. An unpaired two-sample design matrix was

generated with group as a between-subjects factor while also adding handedness, age,

and gender as nuisance covariates given their potential effects on white matter asym-

metry. The asymmetry maps were thus modeled using the design matrix below (Eq:

2.2), with treating the response variable, Y, as each voxel in the diffusion maps for

each subject, and with the design matrix, X, containing an intercept column, indica-

tor variables for the Wada groupings (LLD vs RLD) in the second and third columns,

respectively, and the nuisance covariates in the remaining columns:

Y =



1 LLD1 RLD1 EHI1 DxHemi1

1 LLD2 RLD2 EHI2 DxHemi2
...

...
...

. . .
...

...

1 LLD84 RLD84 EHI84 DxHemi84

1 LLD85 RLD85 EHI85 DxHemi85





β0

β1

β2

β3

β4


+ ε (2.2)

The non-parametric permutation test shuffles the group memberships 5000 times

to generate voxelwise p-values, testing where the asymmetry of the LLD group is
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significantly greater than the asymmetry in the RLD group (i.e., where β1 β2). P-

values were then corrected for multiple comparisons with a specified significance level

of P < 0.01.

2.2.5 Probabilistic Tractography

In order to relate the differences in white matter asymmetry to their underlying

pathways, a post-hoc fiber tracking procedure was implemented by inverse transform-

ing the cluster coordinates of the implicated region in each of the subjects in the

study. The cluster coordinates were then fed into a probabilistic tractography al-

gorithm (Behrens et al. (2007)), with crossing-fiber estimation as implemented by

FSL’s bedpostX function, to establish the connectivity pattern of pathways intersect-

ing the cluster. The resulting volumetric connectivity maps were projected onto a

standardized surface mesh containing a node-to-node correspondence across subjects

and thereby enabling direct comparisons in connectivity at each node across subjects.

We then statistically compared grouped-differences in connectivity across brain areas

of the Human Connectome Project’s Multimodal Parcellation atlas (Glasser et al.

(2016)), which provides 180 discrete cortical labels per hemisphere.

2.2.6 Hierarchical Clustering & Projection Zone Analysis

To statistically evaluate grouped-differences in connectivity patterns, the tracto-

graphic cortical projections were subjected to a separate analysis. After projecting

each individual tractogram onto its respective surface-mesh model in native space,

the data was kept un-smoothed (Coalson et al. (2018)) and was transformed onto

the “fsaverage” template surface. The Human Connectome Project’s Multi-Modal

Parcellation atlas (Glasser et al. (2016)) was then used to compute averages within
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each of the 180 hemispheric parcels provided by the atlas. Of these, only parcels

with consistent connections were analyzed (i.e., parcels wherein at least 80% of LLD

subjects had nonzero values) and parcels traversing the length of the central sulcus

were excluded. Lastly, data from nearby parcels in the atlas were grouped together

using a hierarchical clustering algorithm (with “complete linkage” agglomeration).

The cluster solution was selected by minimizing the total number of clusters while

ensuring spatial coherence of parcels forming a cluster. Statistical comparisons of the

connectivity data from each of the resulting clusters - forming cortical “projection

zones” of neighboring parcels with shared connectivity patterns - were then carried

out with a linear mixed effects model (LME) using the lme4 package in R (Bates et al.

(2015)). The LME analysis for each projection zone tested for hemisphere by Wada

outcome interactions while controlling for both handedness and diseased hemisphere.

All models were fit using maximum likelihood estimation and included random in-

tercepts for both subject ID and for the parcels comprising each projection zone in

order to account for inter-individual variability and statistical inter-dependence of

these repeated bilateral measurements (e.g., one subject contributing both left and

right hemisphere connectivity measurements per parcel). In cases when a projection

zone contained a single parcel, the random effect for parcel was excluded. Significant

main effects for hemisphere ascertained that the parcels of a given projection zone

presented a hemispheric bias across both groups, while significant interaction effects

showed a hemispheric bias modulated by Wada outcome. P-values for the parameter

estimates were obtained using t-tests with Satterthwaite’s method for approximating

degrees of freedom, adjusted for multiple comparisons using Bonferroni correction

based on the total number of projection zones tested. The connectivity data are dis-

played as “connectivity fingerprints” (Passingham et al. (2002); Mars et al. (2018))

which describe the full-range of cortical terminations underlying the fiber tracts com-

prising the TBSS-derived ROI with respect to the relevant HCP atlas parcels.
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2.2.7 Binary Classification Analysis Using Regularized Lo-

gistic Regression and Nested Cross-Validation

Once identified, the predictive capacity of a supra-threshold cluster(s) was evaluated

by classifying the language dominant hemisphere for each subject. FA asymmetry

from identified regions along the symmetric skeleton were extracted and used as a

feature vector in a logistic regression model (coding RLD as 1, LLD as 0). By using

regularization in the form of a shrinkage parameter (λ), the high-dimensionality and

collinearity of the feature space could be accommodated during model fitting. This

was implemented using the glmnet package (Friedman et al. (2010) in R (https://www.R-

project.org/) - setting the alpha parameter to zero in order to enforce the so-called

“ridge” penalty. Nested cross-validation (CV) was implemented to separately tune

the model hyper-parameter (inner loop: repeated stratified 5-fold CV, 3 repeats) and

to generate an unbiased estimate of model performance (outer loop: Leave-One-Out-

CV). Unequal case weights (proportional to the inverse of the sample proportions)

were applied when training the model to prevent bias towards the over-represented

class. The classifier was trained using the area under the receiver operating charac-

teristic curve (AUC) as the quality metric, and the entire nested-CV procedure was

repeated 20 times to account for the stochasticity associated with repeated resam-

pling within the inner CV loop. The average AUC over the 20 iterations is reported

and the proportion of 10,000 class-shuffled permutations yielding an AUC of equal or

greater value to this average was reported as the classifier’s statistical significance.

Resampling, cross validation, and performance evaluation was performed using the

caret package (Kuhn and Johnson (2013)) in R.

15



2.3 Results

Tract-Based Spatial Statistics (TBSS) and Exploratory Classification Anal-

ysis

The univariate GLM analysis of inter-hemispheric FA asymmetry showed that relative

to RLD group, the LLD group has a significantly greater leftward asymmetry in

fronto-parietal white matter (P < .01), resulting in a single supra-threshold cluster

of 449 voxels within this region (Fig. 2.2, Left). This effect was driven by a slightly

leftward asymmetry of FA within the LLD group and strong rightward asymmetry

of FA within the RLD group. This locus of asymmetry difference is localized under

the posterior inferior frontal gyrus and the fronto-parietal operculum (mean voxel

coordinates (MNI Space): 131, 128, 93). Over 20 iterations of the nested cross-

validation procedure, the regularized logistic regression model resulted in an average

AUC of 0.84 (± 0.02) (P < 0.0001), reflecting the probability that for any random

pair of observations drawn from each group, the classifier assigned a higher predicted

probability to a subject classified as RLD (coded as 1) relative to LLD (coded as 0)

(Fig. 2.3, Right).

Connectivity Analysis

At the group level, fiber tracking seeded from the region-of-interest (ROI) identified

by the TBSS analysis revealed a variety of intra- and inter-lobar frontal pathways

primarily converging in the posterior inferior frontal cortex (Fig. 2.4B). The grouped

pathway trajectories are expressed volumetrically as subcortical group maps and as

surface-based projection maps in figure 2.4 (Fig. 2.4). Within the left-hemisphere for

both groups, pathways coursed to the posterior middle temporal cortex by way of the
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Figure 2.3: Exploratory classification analysis with nested cross-validation. The plots
show model performance estimates on the training (left) and on the test set (right).

classical arcuate fasciculus (Fig. 2.4A). Conversely, in the right hemisphere, the pos-

terior pathway terminations were primarily observed in supra-marginal gyrus within

the inferior parietal cortex (Fig. 2.4B), by way of the superior longitudinal fasciculus

(Fig. 2.4A). Anteriorly, both hemispheres showed cortical connections ventrolater-
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ally to pars opercularis of the inferior frontal gyrus (i.e., BA 44), ventral precentral

cortex, and insular cortex, and dorsomedially to posterior superior frontal cortex by

way of the frontal aslant tract and to the caudal middle frontal gyrus likely through

superficial fibers interconnecting inferior and middle frontal gyri (Fig. 2.4A).

Cortical Group Map
(Surface-Based Spatial Normalization)

Cortical Group Map
(Surface-Based Spatial Normalization)

BA

Left Hemisphere Language DominantLeft Hemisphere Language Dominant

Right Hemisphere Language DominantRight Hemisphere Language Dominant
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Figure 2.4: Volumetric (A) and surface-based (B) probabilistic maps of the highest
probability pathways comprising the TBSS cluster in both LLD and RLD groups.
Both representations show the average connection probability across their respective
group but thresholded at 5% to remove spurious connections.

Hierarchical Clustering into Projection Zones and Linear Mixed Effects

Modeling

Of the 180 parcels in the HCP atlas, 32 parcels reached the criterion for further anal-

ysis (Fig. 2.5). The hierarchical clustering analysis of their connection probabilities
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produced 13 projection zones (i.e., clusters) that are shown in figure 2.5. Each zone

corresponds to a local collection of HCP atlas parcels sharing similar connectivity

patterns within inferior frontal (zones iF1, iF2, iF3), superior frontal (zones sF1, sF2,

and sF3), insular/opercular (zones INS, OP1, and OP2), inferior parietal cortex (zone

iP), parieto-temporal (zone PT), and lateral temporal cortex (zones T1 and T2). The

connectivity fingerprints demonstrate the primary projection sites of the connections

emanating from the TBSS-derived ROI, grouped according to zone membership (Fig.

??, Bottom). At a corrected level of significance, the LME analysis revealed a sig-

nificant main effect of hemisphere in 5 out of the 13 zones tested (Table 2). These

effects, sorted by effect size magnitude (Cohen’s d), were found in lateral temporal

zone T2 containing parcels STSdp, STSvp, TE1p, and PHT (Beta = -0.48, S.E =

0.02, p = 1.44 x 10-72, d = -1.22), inferior parietal zone iP containing parcels IP2,

PF, and PFm (Beta = 0.29, S.E = 0.03, p = 1.06 x 10-9, d = 0.78), superior frontal

zone sF2 containing parcels 8Ad and area s6-8 (Beta = 0.17, S.E = 0.04, p = 6.16

x 10-21, d = 0.5), the zone between inferior parietal and lateral temporal cortex in

the planum temporale (zone PT) containing parcels PSL, RI, and PFcm (Beta =

0.14, S.E = 0.03, p = 1.16 x 10-8, d = 0.44), and posterior inferior frontal zone iF1

containing parcels 6v, IFJp, and area 43 (Beta = -0.08, S.E = 0.02, p = 1.16 x 10-8,

d = -0.22). Positive coefficients for the main effect of hemisphere reflect clusters that

showed increased connectivity in the right hemisphere relative to the left hemisphere

across both groups (i.e., rightward asymmetry), while negative coefficients reflect de-

creased connectivity in the right hemisphere relative to the left hemisphere across

both groups (i.e., leftward asymmetry). As such, zone T2 located in lateral temporal

cortex and zone iF1 in posterior inferior frontal cortex showed a leftward asymmetry

across both LLD and RLD groups. Conversely, clusters located within the planum

temporale (zone PT), inferior parietal cortex (zone iP), and superior frontal cortex

(sF2) showed a rightward asymmetry across both groups. For hemisphere by Wada
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outcome interactions, two zones showed significant interaction effects, but only 1 re-

mained significant after multiple comparisons correction; specifically, the insular zone

(zone INS) containing parcels FOP3 and MI (Beta = 0.17, S.E = 0.08, uncorrected p

= 0.0359, d = 0.57) trended toward significance. The only significant interaction sur-

viving multiple comparisons correction was observed in zone iF2 - containing parcels

44, 45, area 6r, and FOP4 (Beta = 0.13, S.E = 0.07, p = 0.01, d = 0.59). Positive

interaction effects reflect clusters where an increase in connectivity is seen in the right

hemisphere in the RLD relative to the left hemisphere in the LLD group, and this

pattern was observed in zones INS and iF3 (Fig. 2.6, bottom).
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Figure 2.5: Hierarchical clustering of individual parcels into projection zones. (A)
(Left) Relevant Human Connectome Project (HCP) atlas parcels were identified and
clustered using a hierarchical clustering algorithm (middle). The dendrogram and
correlation matrix heat-map illustrate the clustering solution by color-coding individ-
ual parcels according to cluster membership. (Right) This approach resulted in 13
clusters - referred to as “projection zones” - representing proximal parcels that shared
similar connectivity patterns.

2.4 Discussion

We identified a highly conserved and localized asymmetry in the white matter un-

der the posterior inferior frontal gyrus and the fronto-parietal operculum that closely

indexes language lateralization. Tractographic connectivity of this region (mediated
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Figure 2.6: (Top) Inflated and mid-thickness brain surfaces showing the individual
HCP parcels (left) as well as their projection zone representation (right). (Bottom)
Grouped structural connectivity fingerprints plot the average connection probabilities
of the relevant HCP parcels, ordered and colored by their projection zone membership.
The 13 projection zones were then subjected to separate linear mixed effects models
testing for hemisphere by Wada outcome interactions in the connection probabilities
of the parcels contained in each zone. Zones were named according to their locations
in superior frontal (sF1, sF2, sF3), inferior frontal (iF1, iF2, iF3), insular (INS),
opercular (OP1, OP2), inferior parietal (iP), parieto-temporal (PT), and temporal
(T1, T2) cortex.

primarily by the arcuate fasciculus and the frontal aslant tract) specifically elaborated

all canonical language cortex. This work reveals distinctions in the microstructural

integrity of this region in Left-Language Dominant (LLD) and Right-Language Dom-

inant (RLD) groups with a slight leftward asymmetry of fronto-parietal fractional
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Table 2.2: Linear mixed effects (LME) models evaluating the hemispheric associations
in connectivity between projection zones and Wada outcome.
Projection Zone(Parcel Names) Main Effect of Hemisphere Hemisphere by Wada Interaction Effect

Beta (SE) p value Effect size (d) Beta (SE) p value Effect size (d)
PT (PSL, RI, PFcm) 0.14 (0.03) 0.000** 0.45 0.05 (0.07) 0.439 0.17
sF3 (SFL, 6ma, 6a) -0.04 (0.03) 0.183 -0.11 0.04 (0.07) 0.558 0.12
iF1 (6v, IFJp, 43) -0.08 (0.02) 0.000* -0.22 -0.02 (0.06) 0.660 -0.07
sF2 (8Ad, s6-8) 0.17 (0.04) 0.000** 0.5 -0.05 (0.09) 0.612 -0.13
sF1 (8BL) 0.13 (0.05) 0.018 0.38 0.2 (0.14) 0.159 0.59
iF2 (44, 45, 6r, FOP4) -0.04 (0.01) 0.018 -0.16 0.13 (0.04) 0.001* 0.59
iF3(IFJa, IFSp) 0.08 (0.03) 0.011 0.25 0.06 (0.08) 0.443 0.2
OP2 (OP2-3) 0.06 (0.03) 0.057 0 -0.15 (0.09) 0.098 -0.66
INS (MI, FOP3) 0.06 (0.03) 0.056 0.2 0.17 (0.08) 0.036 0.57
OP1 (FOP1, FOP2) 0 (0.02) 0.662 -0.03 0.05 (0.06) 0.359 0.18
T2 (STSdp, STSvp, TE1p, PHT) -0.48 (0.2) 0.000** -1.22 0.04 (0.06) 0.463 0.11
T1 (TPOJ1, PGi) -0.03 (0.04) 0.408 -0.09 0.08 (0.1) 0.399 0.25
IP (IP2, PF, PFm) 0.29 (0.03) 0.000** 0.78 0.13 (0.07) 0.067 0.35

Note: All LME models controlled for handedness and disease hemisphere by including
these variables as covariates. In addition, all models included random intercepts
for both subject ID and for the parcels comprising each cluster in order to account
for inter-individual variability and for statistical inter-dependence of these repeated
bilateral measurements in connectivity (e.g., one subject contributing left and right
hemisphere connectivity measurements per parcel). In cases when a cluster contained
a single parcel, the random effect for parcel was excluded.
*Significant at p <0.05 (corrected)
**Significant at p <0.001 (corrected)

anisotropy (FA) in the LLD group and a much stronger rightward asymmetry of FA

in the RLD group. The rare group of RLD subjects was critical in revealing regions

important for speech in the more typical LLD group. These findings have import to

the establishment of the language dominant hemisphere, solely using a data-driven

approach that ascertains inter-hemispheric differences in white matter microstructure.

The probabilistic tractography analysis, done unconstrained by prior knowledge of the

language literature, revealed pathways of great interest to language researchers: the

classical arcuate fasciculus (AF), connections between the posterior inferior frontal

cortex (pIFC) and the superior frontal gyrus (SFG) by way of the frontal aslant tract

(FAT), and connections medial to the insula - mediated by either the inferior fronto-

occipital fasciculus (IFOF) or fronto-insular pathway. Furthermore, a quantitative

asymmetry analysis of cortical connectivity revealed significant grouped-differences in

connectivity patterns to anatomical Broca’s area (BA 44/45), to pre-supplementary

motor area (pre-SMA), as well as to caudal middle temporal cortex. Lastly, using the

TBSS-derived region of asymmetry as a feature in a machine-learning classifier, we

22



were able to effectively classify the language-dominant hemisphere in the majority of

subjects in each group.

To conclude, this data-driven analysis applied to a unique cohort of Wada-tested pa-

tients validates prior claims about the human language network but the crucial insight

provided here lies in the confluence of connections to anatomical Broca’s area as being

a neuroanatomic substrate in the hemispheric dominance for speech. This claim is

consistent with prior imaging studies that show functional and structural properties

of anterior language sites being more reliably predictive of hemispheric language dom-

inance, in contrast to those observed in posterior perisylvian cortex. We recognize

that the data and subjects used in this study are limited by their clinical nature but

we believe these findings to be robust. A recent voxel-based analysis (VBA) study

showed comparable asymmetry patterns between Wada-tested patients with epilepsy

and healthy controls (Keller et al. (2018)); a demographic representing nearly all of

the subjects in the present work. Moreover, a study that implemented graph theoretic

analyses on high-angular resolution diffusion imaging (HARDI) data have implicated

a strikingly similar network architecture that appears to degenerate in the non-fluent

variant of PPA (Mandelli et al. (2016)). Lastly, we highlight the possibility that

having speech in the right-hemisphere influences subtle structural properties of peri-

sylvian networks. Specifically, while asymmetric temporal lobe projections of the

AF in the left-hemisphere appear to be a critical feature of left-hemisphere language

dominance, rightward fronto-parietal microstructure and structural connectivity is

an anatomical substrate for right-hemisphere language dominance. Thus, considering

Broca’s area as a convergence zone between the AF/SLF fiber complex, the frontal

aslant tract, and fronto-insular tracts better explains the constellation of symptoms

associated with lesions to this area (Mandelli et al. (2016)); namely, with agramma-

tism (Wilson et al. (2012)), reduction in fluency (Mandelli et al. (2014)), and with

phonologically paraphasic production (Duffau (2015)).
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Chapter 3

Dissociating the Structural

Networks Underlying Brodmann

Area 44 and Ventral Premotor

Cortex using Partial Least Squares

Discriminant Analysis: A Human

Connectome Project Study

3.1 Introduction

Our first experiment showed that the posterior inferior frontal cortex - including

the ventral premotor cortex (vPMC) - is a crucial convergence zone for a variety of

pathways critical for the hemispheric dominance for speech. Lesion studies have high-
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lighted that cerebral infarctions to these cortical areas result in a well-documented

neuropsychological syndrome called ”Broca’s aphasia”, presenting with a profile of

agrammatic and non-fluent pattern of speech output (Dronkers et al. (2007)). Sim-

ilarly, a specific sub-type of primary progressive aphasia (PPA) which selectively

targets this area of the brain - the non-fluent variant of PPA (nvPPA) - results in

symptoms closely relating to those seen in Broca’s aphasia (Gorno-Tempini et al.

(2011)). It is thus within reason to expect that the constellation of symptoms aris-

ing from these syndromes might be best explained by the differential patterns of

disruption to discrete white matter structures converging to this region. In the lit-

erature, the overwhelming focus of research has been dedicated to relating language

deficits to fiber pathways connecting to posterior peri-sylvian areas (i.e., the ”canon-

ical language areas”). Recently, with advanced diffusion imaging and virtual tract

reconstruction techniques, a greater emphasis is being placed on studying pathways

connecting so-called ”noncanonical language areas” (Catani et al. (2012, 2013)). As a

result, the connectivity patterns of these central hubs - namely, of BA 44 and vPMC

- is now being revisited (Mandelli et al. (2014)). Unfortunately, these studies rely on

a priori specifications of their cortical endpoints in order to extract the pathways in

question. This approach becomes problematic if the exact endpoints are ill-defined or

if the contributing networks are unknown. To date, no study investigates the broad

cortico-cortical connectivity patterns of BA44 and vPMC directly within a large sam-

ple of subjects, preventing a full appreciation of their overall relationships with the

rest of the brain. Here using a sample of data from 100 human subjects afforded by

the Human Connectome Project (HCP), we sought to characterize the predominant

connectivity patterns of these eloquent areas separately and also draw comparisons

between them. Without having to pre-specify ”target” regions-of-interest (ROIs), we

can use a data-driven approach to evaluate and compare the underlying connectivity

patterns in a spatially unbiased manner.

25



Theoretically, the constellation of symptoms that are seen in Broca’s aphasia and the

nonfluent variant of PPA are being explained as ”dorsal stream” deficits (Fridriksson

et al. (2018)). This stream, as part of the dual-stream model proposed by Hickok

and Poeppel (Hickok and Poeppel (2007)), is thought to enable disparate linguistic

processes ranging from the sensorimotor aspects of speech (Isenberg et al. (2012)), to

phonological working memory (Buchsbaum et al. (2011)), and syntax (Wilson et al.

(2012)). The underlying fiber pathways enabling this cortico-centric model of speech

has received less attention. By examining the connectivity of two dorsal stream hubs

in BA 44 and vPMC, we are in effect studying pathways comprising this stream. Our

approach is twofold: First, we carry out a fiber tracking procedure seeded in each of

the sub-regions to assess connectivity to the rest of the brain. An exploratory principal

components analysis is then applied to the grouped results from each sub-region to

generate brain eigen-images representing the regions explaining the most variance in

connectivity patterns. Next, we apply a supervised machine-learning classification

algorithm, partial least squares- discriminant analysis (PLS-DA), to identify a latent

projection of the data onto an axis which maximally separates the sub-regions. By

virtue of the weights assigned to the optimal class-separating projection of the data,

we can learn about the exact anatomical networks distinguishing these adjacent areas.

3.2 Methods

3.2.1 Participants

One hundred unprocessed T1-weighted scans along with their corresponding pre-

processed diffusion-weighted scans Glasser et al. (2013) were downloaded through the

Human Connectome Project (HCP) database. Of these data, all were males from the
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Figure 3.1: (Left) Photographs of the brains of Leborgne and Lelong, Paul Broca’s
first two aphasic patients. Notice the focal brain damage in the second patient (panels
C and D), restricted to the inferior aspect of the precentral sulcus; specifically, to the
junction between BA44 and vPMC. (Right) The ROIs of BA44 and vPMC used in
the present study.

“HCP young adult” study and ages ranged from 22 to 35 years (mean age 27.5 years).

3.2.2 Anatomical Parcellation and Segmentation

We constructed surface-based models from the T1-weighted structural image of each

individual using FreeSurfer (http://surfer.nmr.mgh.harvard.edu). From FreeSurfer’s

automated procedure (Dale et al. (1999)), we obtained an anatomical parcellation and

labeling of 74 cortical and subcortical sulci and gyri for each hemisphere (Destrieux

et al. (2010)). The brain parcellation into discrete sulci and gyri was then used to

extract seed ROI masks for the different pIFC sub-regions. For BA 44, the gyrus

label corresponding to the pars opercularis of the inferior frontal gyrus was used. For

the vPMC, the entirety of the precentral gyrus label was modified to match pars

opercularis in vertical extent, hence restricting the precentral gyrus to generate an

ROI of solely it’s ventral portion.
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3.2.3 Probabilistic Tractography

Next, probabilistic tractography was initiated from each subregion separately using

the probtrackX algorithm in FSL. Importantly, to restrict the streamlines to purely

intra-hemispheric fibers, exclusion masks of the brain stem, corpus callosum, thala-

mus, ventricles, and basal ganglia were added. An exclusion mask was also added

in the temporal stem region to prevent recording of streamlines from ventral stream

pathways; namely, from the uncinate fasciculus and inferior fronto-occipital fascicu-

lus (Saur et al. (2008); Weiller et al. (2011); Friederici (2015)). Once obtained, the

tractography data were then projected onto a standardized surface model which con-

tained a node-to-node correspondence across subjects (Dale et al. (1999)), allowing

for direct statistical comparisons at each node along the mesh across all subjects.

3.2.4 Descriptive Connectivity Fingerprints and Exploratory

Principal Components Analysis

Two different atlases were used to summarize the connectivity patterns of each sub-

region. The first was the recently developed Glasser HCP Multi-modal Parcellation

atlas (Glasser et al. (2016)) which subdivides each hemisphere into 181 cortical re-

gions (Fig.3.2, Right) based on multiple imaging modalities. The second atlas comes

from a study by Yeo et al.(2011), which subdivides the brain on the basis of its

intrinsic connectivity patterns (Fig.3.2, Left) using resting-state functional MRI (rs-

fMRI) (Thomas Yeo et al. (2011)). This atlas embeds the brain into seven different

functional networks: The Default Mode, Dorsal Attention, Fronto-parietal, Limbic,

Somatomotor, Ventral Attention, and Visual Networks.

Principal Components Analysis (PCA) / Singular Value Decomposition (SVD) is
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an unsupervised dimensionality reduction tool that seeks to seeks to generate linear

combinations of a data matrix (i.e., feature space) while maximally preserving as

much information - or variance - available in the data. In this setting, the SVD will

be performed on the list of connectivity data at each vertex of the surface-mesh while

across each of the 100 subjects in the study. This approach will be used to generate

brain eigenimages and subject-specific projections (principal scores) onto each brain

eigenimage. The resulting eigenimages will be mapped onto the brain surface with

loading at each node representing the relative contribution to the overall connectivity

pattern that explains most of the variability across subjects. This approach will be

used as an exploratory technique to visualize the major loci of variation in connectivity

patterns for each of the sub-regions (BA44 and vPMC), individually, before drawing

comparisons between them (next section).

Figure 3.2: The Yeo (Left) and Glasser HCP (Right) atlases were used to characterize
the feature space with respect to both functional and multimodal parcellation of the
human cerebral cortex.

3.2.5 Partial Least Squares-Discriminant Analysis: Data Pre-

procesing & Analysis

Data Preprocessing

Rather than using node-wise connectivity matrix as features (40k x 200), a series of

pre-processing steps were needed. First, each individual’s node-wise tractogram was

thresholded to include only the top 10% of connections. This step ensured that only

29



the strongest (i.e., not spurious) connections would be fed into the classifier. Next,

the connectivity data was summarized across each of the 181 ROIs defined by the

Glasser atlas by computing the average number of streamlines intersecting each ROI.

This effectively reduces the dimensionality of the data from 40,000 features to just

181 features. Last, certain ROIs will not have received any projections from either

vPMC nor BA44, leading to columns of zero-variance features across both matrices.

These columns were thus removed, resulting in a reduced data matrix of 99 features

representing the average connectivity to each of the 99 ROIs from the Glasser atlas.

Using Partial Least Squares Projection

The objective here is to establish a linear combination of features which maximally

differentiates class-membership (i.e., vPMC vs BA44). Given that many of the ROIs

will exhibit correlations amongst each other, a model using latent variable projections

is ideally suitable. To this aim, we subjected the data matrices to a classification al-

gorithm, called partial least squares discriminant analysis (PLS-DA) (Barker and

Rayens (2003)), that would project the data onto a subspace spanned by the first

PLS component best discriminating the sub-regions on the basis of their distributed

connectivity patterns. The appeal behind PLS-DA is that it allows one to interpret

the weights of the loadings going into the PLS scores - as opposed to being purely a

”black box” algorithm (Brereton and Lloyd (2014)). Figure 3.3B provides a concep-

tual understanding of how the projections differ between PCA and PLS-DA. PCA

projects the data matrix (X) onto axes representing the direction of maximum vari-

ance (pink arrow), while PLS-DA projects the data matrix (X) onto a direction which

maximizes the covariance with the class labels (Y) (orange arrow), and can therefore

be seen as the supervised counterpart to PCA. Given that BA44 and vPMC will

likely exhibit distinct connectivity patterns, the feature weights onto the first PLS
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Figure 3.3: A) Conceptual diagram depicting the structure of a Partial Least Squares
model. PLS finds components that simultaneously summarize variation of the predic-
tors while being optimally correlated with the outcome. B) A simple example illus-
trating the differences in latent projections between PCA (green arrow) and PLS-DA
(pink arrow).

component should provide informative information into the cortical projections most

relevant to the classification rule, thereby providing insight into the broad cortico-

cortical network of each sub-region. As noted in the prior section, the feature space

will be comprised of the average connectivity values in each of the 99 ROIs of the

Glasser atlas. Each subject will have two rows in the overall data matrix (X): One

row for that subject’s connectivity from BA44 to each of the 99 ROIs and the other

for the vPMC connectivity to each of the same 99 ROIs. Overall, the dimensions

of the data matrix will be 200 subjects x 99 ROIs and the response vector (Y) will

contain the class-membership of each row; namely, the pIFC sub-region from which

each row was generated (i.e., BA44 or vPMC). Using k-fold (k=5) cross-validation,

the PLS-DA model was tuned over the number of PLS components to retain when

making classifications and the optimal model was selected by picking the model with

the smallest number of PLS components yielding the highest area under the ROC

curve. Given that the classifier will have received data from distinct anatomical cir-

cuits, we expect the algorithm to select a minimal number of components to optimally

classify the groups.
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3.3 Results

3.3.1 Exploratory PCA/SVD

As evidenced by the scree plots for both vPMC and BA44 (Fig. 3.4B), the first prin-

cipal component (PC) explained nearly 70% of total variance in the data. No other

PC explained greater than 2.5% of the total variance in either experiment, indicat-

ing that the decomposition was able to retain the majority of the information in the

connectivity data just from using a single component representation. The resulting

eigen-images from the first PC for each sub-region, shown in figure 3.4, color-code

the spatial sources of variability. These exploratory plots are effective at visualizing

the overall trends. BA44 shows projections primarily to the pre-supplementary mo-

tor area, anterior insular cortex, and posterior temporal cortex. Conversely, vPMC

shows distinct projections to supplementary motor area, posterior insular cortex, and

posterior temporal cortex albeit to a lesser extent than BA44. vPMC appears to have

a greater set of projections to inferior parietal cortex which is pattern otherwise not

observed in the BA44 eigen-image.

3.3.2 Sparse Partial Least Squares Discriminant Analysis

The optimal PLS-DA classifier, selected through the k-fold cross-validation procedure,

was the model that used a single PLS component which achieved perfect classification

accuracy. This result was expected given that the classifier received as inputs data

from distinct structural networks. Our goal in using the PLS-DA algorithm was

not simply to achieve accurate classification accuracy but primarily to interpret the

feature weights assigned to the PLS component used in distinguishing the different

sub-regions. The weights assigned to the optimal class-separating projection of the
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Figure 3.4: PCA reveals predominant eigen-images for each subregion. (Top) Seed
ROIs of BA44 and vPMC, along with the surface-projected tractograms of individual
subjects. (Bottom) Separate SVD analyses reduce dimensionality from 160k vertices
by 100 subject, to 160k vertices by 1 principal component explaining 69% of the
variance for each sub-region. Vertices are color-coded by their loadings onto the first
singular vector (i.e, PC1).

data are plotted in Figure 3.5A), where each horizontal bar represents the weight

magnitudes for a given ROI and are color-coded according to the networks defined

by the Yeo atlas. ROIs given negative weights were those that loaded onto BA44

while those given positive weights loaded on vPMC. To visualize these weighting

patterns on the brain, the entire Glasser atlas ROIs was then colorized by assigning

an RGB triplet based on the magnitude of its ROI weightings, such that bright red

areas were those that were most strongly weighted toward vPMC and bright blue

areas were those that were most strongly weighted toward BA44. Regions in black

reflect ROIs given near-zero weights while regions in white reflect ROIs that were not

included in the analysis because neither sub-region projected to these areas based on
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our tracking criterion. Based on the different patterns of brain regions assigned to the

classification rule, it is evident that vPMC ROIs cluster around a core sensorimotor

network while BA44 ROIs cluster around more higher order cognitive networks by

way of its connections to the dorsolateral prefrontal cortex, pre-supplementary motor

area, and posterior temporal cortex (Fig. 3.4B).

Figure 3.5: (Top Right) PLS-DA optimal model (with 1 PLS component) weights
sorted by magnitude and colored by their respective locations in the Yeo atlas. (Bot-
tom) Visualizing optimal class-separating Glasser atlas ROIs projected onto the brain
surface: ROIs in bright load onto vPMC, Blue ROIs load onto BA44
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3.4 Discussion

The present anatomical experiment was dedicated toward taking a multivariate ap-

proach in evaluating the cortico-cortical connectivity patterns of the posterior inferior

frontal cortex (pIFC); specifically, of brodmann area 44 (BA44) and ventral premo-

tor cortex (vPMC). Prior studies of this region have often been limited by a spatial

bias, such that only connections to pre-specified cortical areas have been investigated

while ignoring the rest of the cerebral cortex Catani et al. (2013); Wilson et al. (2012);

Brown et al. (2014); Takaya et al. (2015); Kinoshita et al. (2015). Latent variable pro-

jection routines like principal components analysis (PCA) and partial least squares-

discriminant analysis (PLS-DA) applied on brain connectivity data provide powerful

and complimentary approaches in describing how these distributed brain networks

are organized across large pools of human subjects. By applying them here, our re-

sults provide insight into the structural correlates of various functional sub-networks

involved in language. Here we showed the each of BA44 and vPMC are central nodes

embedded into both sensorimotor and higher-order aspects of language. Our data pro-

vide strong anatomical support for the ”neuroanatomical pathway model” proposed

by Friederici and colleagues (Friederici (2015)). This model suggests that the dorsal-

stream of speech processing is likely subdivided into parallel perisylvian circuits: a

sensorimotor circuit that interconnects the inferior parietal cortex to the vPMC and

a syntactic processing circuit that interconnects BA44 with the posterior middle tem-

poral cortex. A unique contribution of this study, however, is that each of BA44 and

vPMC also receive extensive intra-frontal and fronto-insular connections. This exact

finding was shown in the neurosurgical subjects in experiment #1 and has now been

replicated within a healthy population but using a much higher-resolution diffusion

imaging dataset from the Human Connectome Project. Although purely speculative,

these intra-frontal and fronto-insular networks likely interact closely with the parallel
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dorsal streams, as noted above, through some motor control mechanism which, in

turn, appears to have its own functional specializations. In other words, given that

BA44 connects to the pre-supplementary motor area make it highly likely it consti-

tutes a functionally distinguishable network relative to the connections from vPMC

to the supplementary motor area (Figures 3.4- 3.5). Ford et al. (2010) were the first

to show that these sets of fiber bundles actually belong to much larger set intercon-

necting nearly the entire span of medial and lateral frontal cortex Ford et al. (2010),

and the idea that they may each serve different functional roles appears plausible.

Indeed, this idea has recently gained traction from neurosurgical stimulation stud-

ies in humans (Corrivetti et al. (2019); Rech et al. (2019)). Corrivetti et al. (2019)

presented evidence suggesting an anterior-to-posterior functional gradient existing

among them. Intra-operative electrical white matter stimulation to posterior aspects

led to transient motor-speech deficits ranging from complete speech-arrest to stut-

tering and vocalizations. Conversely, stimulation of more anterior aspects produced

impairments in naming, implicating its role in lexical-semantic aspects of language

(Corrivetti et al. (2019)). Furthermore, Mandelli et al. (2016) showed that, in pa-

tients with the nonfluent-variant of primary progressive aphasia, cortical atrophy

starting from a specific epicenter in BA 44 leads to longitudinal pathological changes

to the networks described here (Mandelli et al. (2016)). The functional role of these

intra-frontal networks is discussed and addressed in Experiment #3 (Next Chapter).
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Chapter 4

Isolating the Speech Repetition

Network using Connectome-based

Lesion-Symptom Mapping in

People with Stroke Induced

Aphasia

4.1 Introduction

The dual stream framework for speech processing posits that a distinct functional

network for sensorimotor control is subserved by a left-lateralized structural architec-

ture. Localization of the cortical substrates underlying a fundamental sensorimotor

ability - speech repetition - have been circumscribed to various posterior perisylvian

structures - primarily, to supramarginal gyrus of the inferior parietal cortex, poste-
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rior superior temporal cortex, and their adjoining parieto-temporal junction in the

planum temporale in an area called ”Spt” (Hickok and Poeppel (2007); Buchsbaum

et al. (2011)). Damage to these structures is thought to impair speech repetition,

as is seen in ”conduction aphasics” who present with repetition deficits and para-

phasic speech output. This type of aphasia is distinct from expressive and receptive

aphasia, in that the impairments appear to selectively disrupt the ability to repeat

speech sounds while fluency and comprehension remain intact, and whose output is

characterized by frequent phonologically paraphasic errors likely driven by damage

to an auditory-motor integration network that serves as an internal feedback control

mechanism (Buchsbaum et al. (2011)).

Mapping the underlying white-matter network for speech repetition has been a more

challenging endeavor for a variety of reasons. First, cerebral infarctions tend to pro-

duce widespread lesions to perisylvian cortical areas, making it difficult to track the

underlying pathways using traditional tractography approaches. Second, these lesions

are highly variable, making it difficult to draw exact correlations between structure

and function. Third, studies in healthy controls that localize speech repetition sites

using task-based fMRI are heavily driven by certain theoretical assumptions, such

that activation blobs are often selectively chosen for subsequent analysis based on a

priori knowledge from the literature while ignoring everything else (Isenberg et al.

(2012); Saur et al. (2008)). Here, we address these limitations by mapping the struc-

tural connectome in a relatively large sample of people with stroke-induced aphasia

while using data-driven feature selection algorithms in order to automatically localize

the connections most predictive of speech repetition scores. This will, for the first

time, isolate the underlying network sub-serving this ability in a purely data-driven

manner, consistent with the objectives of this thesis.
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4.2 Methods

4.2.1 Population and Neuropsychological Assessment of Word

Repetition

The data for this project was obtained from an archival database in the Aphasia Lab,

University of South Carolina and Medical University of South Carolina. Participants

had sustained a single-event stroke to the left hemisphere at least 6 months prior to

study inclusion and were tested either as part of an aphasia treatment study or strictly

for the purpose of lesion-symptom mapping research. A total of 72 participants

we’re enrolled in this study and had both imaging a neuropsychological assessments

performed. For this study, two tests of speech repetition were administered and

averaged for each participant: The Repetition subtest of the Western Aphasia Battery

(Kertesz (2006)) and the Philadelphia Repetition Test (Dell et al. (2007)).
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Figure 4.1: The barplots represent average performance over the repetition measures.
Patients with Anomia had the highest scores while patients with Wernicke’s had the
lowest. Conduction Aphasics performed at just over chance levels. The number of
participants per subtype are denoted on each individual bar with Broca’s aphasics
representing the largest subgroup in this sample.
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4.2.2 Tractography Protocol and Preprocessing

The structural connectome contains the connectivity values for each pair of 192

regions-of-interest (ROIs) defined by the AICHA atlas (Joliot et al. (2015)), resulting

in a 192x192 symmetric matrix per subject (36,864 total elements). These values

represent the probabilistic fiber counts, normalized both by the distance between the

ROIs and the volume of the two ROIs. The lower triangular of the matrix was ex-

tracted for each subject and transformed to a single 1-dimensional vector containing

18,240 elements with each value representing a particular pairwise connection between

two AICHA atlas ROIs. These vectors were then concatenated across subjects to form

a 72 x 18,240 matrix to be used as the feature space for subsequent analysis. Lastly,

to further eliminate near-zero-variance features or features with low connectivity val-

ues across the entire population, the matrix was thresholded to remove any features

with a average connectivity value of less than one, thereby reducing the feature space

to a 72 x 2363 matrix.

4.2.3 Sparse Partial-Least Squares Regression and Variable

Importance

We previously described the PLS formulation (subsection 3.2.5) as a supervised coun-

terpart to principal components analysis, wherein the covariance between the data

matrix (X) and the response (Y) is maximized when performing the projection onto

the latent PLS components (Lê Cao et al. (2008)). In Chapter 3, this sparsity-inducing

algorithm was used to perform a binary classification (i.e., sPLS-DA). In this chapter,

its regression counterpart (i.e., sPLS-R) will be used to predict a continuous outcome:

speech repetition scores derived from a neuropsychological test battery. The goal in

this setting is to allow the algorithm to automatically implement feature selection
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Figure 4.2: All supra-threshold connections used in the connectome-based lesion-
symptom mapping analysis with each edge representing a unique connection and
each node representing a region defined by the AICHA atlas.

using the LASSO penalty (Rohart et al. (2017)) and subsequently evaluate the im-

portance of the retained features in the model (i.e., variable importance) by ranking

the features on the basis of their predictive value with the repetition scores. Prior

to model tuning, 25% of the data were held out and the remaining 75% was used to

tune the sPLS model’s complexity, defined as the number of features to retain during

model fitting. A range of values were tested for this complexity parameter, 5-100, and

the optimal number of features was determined using repeated k-fold cross validation

using mean absolute error as the quality metric of the fit at each iteration. Second,

the number of PLS components to be retained was fixed at 2 and these components

effectively represent multivariate connectional signatures whose linear combinations
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possess predictive value for the repetition scores.

4.2.4 Feature Ranking using Variable Importance in Projec-

tion and Out-of-Sample Predictions

In order to rank the retained features on the basis of their predictive value, the variable

importance in projection (VIP) method was used (Farrés et al. (2015)). The VIP

coefficient essentially represents the impact of a given variable into the construction

of the PLS components while weighting the impact by the variance accounted for by

each of the components. The VIP score for the jth variable is given as:

V IPj =

√∑F
f=1w

2
jf · SSYf · J

SSYtotal · F
(4.1)

where wjf is the weight value for j variable and f component and SSYf is the sum

of squares of explained variance for the f th component and J number of X variables.

SSYtotal is the total sum of squares explained of the dependent variable, and F is

the total number of components. The w2
jf gives the importance of the jth variable in

each fth component, and V IPj is a measure of the global contribution of j variable

in the complete PLS model. The VIP coefficients therefore represent a weighted sum

of the PLS loadings, which take into account the explained variance of each of the

connectional brain signatures (i.e., PLS Component) at each iteration and is directly

related to the nonzero features in the optimal model. Since the average of the squared

VIP scores equals 1, ‘greater than one rule’ is generally used as a criterion for variable

selection (Chong and Jun (2005)).
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The aforementioned model tuning procedure was subjected to a bootstrap resampling

analysis, wherein the data was re-sampled (with replacement) 500 times and the VIP

scores for the retained features at each iteration was recorded. The median VIP scores

across the 500 iterations was then used as a measure of feature importance. Lastly,

the highest ranked features were used to fit a PLS model on the full training set and

performance was evaluated by making predictions on the test set (i.e., the 25% of

samples that were held out during model tuning). The predicted repetition scores

were compared with the actual repetition scores using kendall’s tau metric, which is

a non-parametric correlation coefficient to evaluate the strength of an association.

4.3 Results

The 2363 connections surviving the connectivity threshold are displayed in Figure 4.2

as a connectomics graph representation with respect to the AICHA atlas parcellation.

These connections serve as the the entire feature space for the sPLS-R feature selection

algorithm. After 500 iterations of the bootstrapped resampling procedure, the median

VIP scores were computed and only 7 features presented with a median VIP score

greater than one (Fig. 4.3, Left).

The feature with the strongest median VIP score was revealed as a local connection

within the Intraparietal Sulcus: ”S Intra-Parietal 3” to ”S Intra-Parietal 2”. The ma-

jority of the remaining connections identified by the feature selection algorithm were

found in close anatomical vicinity within parieto-temporal cortical areas; specifically,

connections between superior temporal, supramarginal, and angular gyrus appeared

most prominent. The collection of features identified by the analysis are shown as

edges on the AICHA atlas in figure (Fig. 4.3, Right), with the edge thickness scaled

according to the VIP score magnitude. This plot shows that among the features iden-
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Figure 4.3: The results from the 500 bootstrap resamples of the model tuning proce-
dure are aggregated, sorted, and displayed using both the mean and median of the
distribution of VIP scores, respectively.

tified by the analysis, parietal connections had the strongest predictive value relative

to the temporal connections. After fitting the PLS model using the 7 parieto-temporal

connections, the model predictions were evaluated on the test set and achieved a

Kendall’s tau value of 0.35 (p = 0.02). The scatter-plot of actual vs fitted repetition

scores illustrates their strong association across all aphasia subtypes present in the

test set (Fig. 4.4).

4.4 Discussion

The neuroanatomical basis for speech repetition has been a point of contention ever

since the classical neurobiological models of language proposed in the late 19th cen-

tury. So-called ”disconnectionist” accounts explaining repetition deficits have ex-

plained such disruptions to the accurate fascicles, preventing communication between

anterior and posterior language sites. Such accounts are still widely taught in medi-

cal schools today yet modern evidence in support of this claim is surprisingly lacking
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Figure 4.4: A scatterplot of the actual vs predicted repetition scores from the gener-
ated PLS model, with points colored by aphasia sub-type.

(Moritz-Gasser and Duffau (2013)). Here, for the first time, we mapped the struc-

tural connectome in an aphasic population within whom speech repetition scores were

collected and correlations with the connectome were drawn. Our data-driven feature

selection framework localized a small network of connections in the parieto-temporal

junction as being essential for predicting repetition scores in out-of-sample partici-

pants. This novel finding pertaining to subcortical white matter correlates of repeti-

tion is remarkably in line with more recent studies evaluating its cortical substrates.

It has thus been hypothesized that lesions to this temporo-parietal junction directly

cause conduction aphasia - a syndrome characterized by repetition deficits (Buchs-

baum et al. (2011); Isenberg et al. (2012); Rogalsky et al. (2015)). It therefore appears

that speech repetition is, by-and-large, a disruption to the cortical areas associated

with auditory-motor integration considering that this ability has been localized to
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the exact regions identified in the present work (Rogalsky et al. (2015); Lukic et al.

(2019)). Similarly, studies in primary progressive aphasia populations have identi-

fied a variant of the neurodegenerative disease, named the logopenic variant of PPA

(lvPPA), wherein areas in perisylvian cortex are selectively impacted, leading to im-

pairments with repetition abilities. One such study evaluated the relation between

cortical thickness and repetition performance, and it was found that poor repetition

of long phrases was associated with cortical thinning in left temporo-parietal areas,

especially pronounced in subject with lvPPA (Lukic et al. (2019)). The cortical maps

revealed in that study strikingly overlap with the connections identified here, indeed

suggesting that avSTM impairments are related either to local cortical (Buchsbaum

et al. (2011); Lukic et al. (2019)) or subcortical mechanisms in the parieto-temporal

cortex rather than to the disconnection of the long-rage association pathway of the

classical arcuate fasciculus.
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Chapter 5

Conclusion

This thesis was dedicated to testing several of the most widely accepted assumptions

relating to the structural architecture of the human language network. With an

emphasis on white matter connectomics, the present work implemented several data-

driven approaches to lessen the reliance on a priori theoretical approaches that often

contaminate the literature. With such a framework in mind, several novel insights

were obtained that would have otherwise been unfeasible using classical approaches.

First, we asked whether there were any white matter asymmetries that indexed hemi-

spheric language dominance as recreated by the clinical gold standard Wada proce-

dure. Experiment 1 tested the hypothesis using a whole-brain spatially unbiased

approach. Is the accurate fasciculus the sole arbiter of language dominance, as clas-

sical models propose? Or could the analysis reveal a more nuanced picture in which

a greater subset of pathways are implicated in this fundamental property of the hu-

man brain (i.e., it’s hemispheric preference for speech)? Indeed, we found that several

non-canonical pathways were identified by the analysis, all of which shared a common

projection zone in so-called “Broca’s area” in the posterior inferior frontal cortex. In
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addition to the classical accurate The implicated pathways involved classical perisyl-

vian pathways (i.e., the superior longitudinal fasciculus and it’s arcuate branch) as

well as pathways connecting to the insular cortex and supplementary motor cortex

in the superior frontal gyrus. These latter pathways - the fronto-insular tract and

frontal aslant tract - have been studied in isolation with relevance for speech produc-

tion. To our knowledge, this is the first analysis to implicate these connections in a

data-driven manner. Together, experiment 1 revealed a novel result pinpointing to

Broca’s area as being a critical convergence zone for a variety of pathways critical for

speech. A somewhat controversial finding was that the accurate fasciculus - defined

as white matter interconnecting inferior frontal and middle temporal cortex - was left

lateralized across both groups of participants (i.e., even in right-hemisphere domi-

nant subjects). Despite this, our classification analysis using fractional anisotropy

from within fronto-parietal white matter enabled successful classification of the dom-

inant hemisphere across both groups. This result points to the possibility that right

hemisphere dominance can occur in the presence of a left-lateralized arcuate.

Second, experiment 2 was dedicated to using state-of-the-art diffusion imaging data

from the Human Connectome Project in order to take a closer look at the connectivity

patterns of 2 central nodes within the speech production network: Pars Opercularis

of the inferior frontal gyrus (Brodmann area 44) and ventral precentral cortex. The

connectivity of the latter area - the vPMC - is widely understudied due to its complex

underlying fibre configuration but is increasingly being recognized as a higher-order

language region. By seeding a tractography algorithm in each of these areas, we found

that each subregion of Broca’s area possessed distinct connectivity patterns with the

rest of the brain. Specifically, BA44 was densely connected with superior frontal,

insular, and middle temporal cortex; a network closely resembling the architecture

identified from experiment 1. Conversely, vPMC was densely connected with a senso-

rimotor core network that was by-and-large supra-Sylvian. The vPMC had notably
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stronger connections to the inferior parietal and supramarginal areas, both of which

are known to be associated with phonological working memory together with the

vPMC. Together, these findings shed light on the distributed connectivity patterns

of these critical nodes in the dominant hemisphere.

Third, experiment 3 was dedicated to uncovering the pathways important for speech

repetition. Classically, it was proposed that this ability was carried out by the con-

nections of the arcuate and whose disconnection would lead to conduction aphasia

(i.e., an impairment with repetition). More recent evidence suggests that conduction

aphasia is actually a cortical impairment rather than a subcortical disconnection.

Using a connectome-based lesion symptom mapping approach, we mapped the struc-

tural connectome of a population of stroke patients, and tested whether there was

a subset of connections predictive of speech repetition scores (as measured by the

Western Aphasia Battery). This study is by far the most comprehensive analysis

available in the literature, by evaluating over 2000 different connections and their

relationship with repetition ability. Using a novel feature selection framework made

possible using the sparse partial least squares regression algorithm, we identified a

local cluster of connection in parieto-temporal cortex. This result gives credence to

the idea that speech repetition is a deficit with a focal set of brain regions responsible

for auditory verbal working memory (avWM). Damage to this focal region impairs

the phonological buffer that is crucial to storing information in memory prior to

repetition. The finding that fronto-temporal connections were not identified by the

analysis provides evidence that the classical disconnectionist model is inadequate in

explaining speech repetition deficits. Rather, local cortical areas and their and local

subcortical connections are fundamental in successful verbatim repetition by enabling

access to phonological stores. Our data provides support for the dual stream model

for language, which emphasized in area in parieto-temporal cortex, area Spt, as being

the locus for sensorimotor integration for speech-related actions.
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