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Behavioral/Cognitive

Tinnitus Does Not Interfere with Auditory and Speech
Perception

Fan-Gang Zeng, Matthew Richardson, and Katie Turner
Center for Hearing Research, Departments of Anatomy and Neurobiology, Biomedical Engineering, Cognitive Sciences, Otolaryngology–Head and
Neck Surgery, University of California Irvine, Irvine, California 92697

Tinnitus is a sound heard by 15% of the general population in the absence of any external sound. Because external sounds
can sometimes mask tinnitus, tinnitus is assumed to affect the perception of external sounds, leading to hypotheses such as
“tinnitus filling in the temporal gap” in animal models and “tinnitus inducing hearing difficulty” in human subjects. Here we
compared performance in temporal, spectral, intensive, masking and speech-in-noise perception tasks between 45 human lis-
teners with chronic tinnitus (18 females and 27 males with a range of ages and degrees of hearing loss) and 27 young, nor-
mal-hearing listeners without tinnitus (11 females and 16 males). After controlling for age, hearing loss, and stimulus
variables, we discovered that, contradictory to the widely held assumption, tinnitus does not interfere with the perception of
external sounds in 32 of the 36 measures. We interpret the present result to reflect a bottom-up pathway for the external
sound and a separate top-down pathway for tinnitus. We propose that these two perceptual pathways can be independently
modulated by attention, which leads to the asymmetrical interaction between external and internal sounds, and several other
puzzling tinnitus phenomena such as discrepancy in loudness between tinnitus rating and matching. The present results sug-
gest not only a need for new theories involving attention and central noise in animal tinnitus models but also a shift in focus
from treating tinnitus to managing its comorbid conditions when addressing complaints about hearing difficulty in individu-
als with tinnitus.

Key words: animal model; attention; auditory perception; neural noise; speech recognition; tinnitus

Introduction
Subjective tinnitus, or “ringing of the ears,” is a phantom sound
that can be heard by a person in the absence of any physical
sound stimulation (Roberts et al., 2010). Tinnitus affects ;15%
of the population, especially those with hearing loss (HL), older
age, noise exposure, and head injury (Baguley et al., 2013;
McCormack et al., 2016). Different from auditory hallucinations,
which are often associated with meaningful linguistic and musi-
cal content, tinnitus typically contains meaningless steady or
fluctuating sounds with the quality being tonal, noisy, or a com-
bination of multiple tones and noises (Meikle and Taylor-Walsh,
1984; Stouffer and Tyler, 1990). Previous studies on perceptual
aspects of tinnitus focused on two areas. One area was character-
izing the perceptual quality of tinnitus via subjective description
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Significance Statement

Tinnitus, or ringing in the ears, is a neurologic disorder that affects 15% of the general population. Here we discovered an
asymmetrical relationship between tinnitus and external sounds: although external sounds have been widely used to cover up
tinnitus, tinnitus does not impair, and sometimes even improves, the perception of external sounds. This counterintuitive dis-
covery contradicts the general belief held by scientists, clinicians, and even individuals with tinnitus themselves, who often
report hearing difficulty, especially in noise. We attribute the counterintuitive discovery to two independent pathways: the
bottom-up perception of external sounds and the top-down perception of tinnitus. Clinically, the present work suggests a shift
in focus from treating tinnitus itself to treating its comorbid conditions and secondary effects.
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or matching tinnitus loudness, pitch, and spectrum (Reed, 1960;
Goodwin and Johnson, 1980; Penner, 1995; Norena et al., 2002;
Patuzzi et al., 2004; Moore, 2012). The other area was using vari-
ous external sounds, from pure tones and noises to modulated
sounds and even music, to attempt to mask tinnitus for treatment
purposes (Feldmann, 1971; Penner, 1987; Okamoto et al., 2010;
Reavis et al., 2012). Surprisingly, much less has been done to an-
swer the reverse question: does tinnitus affect the perception of
external sounds? While many individuals with tinnitus complain
about hearing difficulty, especially poor speech perception in
noise, this hearing difficulty was mostly based on self-report from
subjects who had not only tinnitus but also other comorbid factors
such as hearing loss and older age (Tyler and Baker, 1983;
Andersson et al., 2000; Soalheiro et al., 2012; Vielsmeier et al.,
2016; Ivansic et al., 2017). The effect of tinnitus on auditory per-
ception remains understudied, contributing to a lack of effective
clinical management of tinnitus.

This knowledge gap has hampered the understanding of the
mechanisms underlying tinnitus. Recent animal studies have
suggested several neural correlates of tinnitus, ranging from cen-
tral hyperactivity and maladaptive plasticity to abnormal homeo-
stasis and network connectivity (Muhlnickel et al., 1998;
Kaltenbach, 2006; Yang et al., 2011; Chen et al., 2015; Shore and
Wu, 2019). But how do we know whether animals have tinnitus?
A “tinnitus filling-in-the-gap” protocol has been widely used to
test for the presence of tinnitus by assuming that an animal
would have difficulty in detecting a silent temporal gap in a back-
ground sound that was qualitatively similar to the tinnitus in ani-
mals (Turner et al., 2006). However, human studies have found
little evidence for the tinnitus filling-in-the-gap hypothesis, cast-
ing doubt on whether previous animal studies actually studied tin-
nitus or other hearing disorders such as hyperacusis (Campolo et
al., 2013; Fournier and Hébert, 2013; Boyen et al., 2015; Möhrle et
al., 2019).

To bridge this knowledge gap in tinnitus research, the present
study first provided a strong test of the tinnitus filling-in-the-gap
hypothesis using a gap stimulus whose frequency and level were
matched to the tinnitus pitch and loudness for human subjects.
We then compared performance in a range of other psycho-
acoustical and speech perception tasks between a heterogeneous
group of tinnitus subjects and a homogeneous control group of
young, normal-hearing, non-tinnitus subjects. We minimized
the hearing loss factor by presenting stimuli at a frequency where
hearing threshold was normal or using either an equal sensation
level (SL) or comfortable level for frequencies where the thresh-
old was elevated. We controlled for the age factor by comparing
performance between the young and old tinnitus subjects and
comparing performance between the young tinnitus subjects and
the young control subjects. Because of the widely held assump-
tion that tinnitus interferes with auditory and speech perception,
we hypothesized that tinnitus subjects would perform more
poorly than the control group.

Materials and Methods
Subjects. The University of California Irvine Institutional Research
Board approved the experimental protocol. All subjects gave written
informed consent to participate in the study. A homogeneous group of
27 young adults (mean 6 SD; age, 22 6 2 years) served as control sub-
jects. These subjects consisted of 11 females and 16 males who were free
of tinnitus and had normal hearing thresholds (�20dB HL) at audio-
metric frequencies from 125 to 8000Hz (Fig. 1a, solid black squares). A
heterogeneous group of 45 adults (mean age, 44 6 15 years; 18 females
and 27 males) who had chronic tinnitus (.6months) served as experi-
mental subjects. These consisted of 24 old subjects (i.e., .42 years old;

Fig. 1a, solid red circles) and 21 young subjects (i.e., ,39 years old; Fig.
1a, open red circles). On average, the old tinnitus subjects had hearing
loss (.20dB HL) at 4000 and 8000Hz, while the young tinnitus subjects
had normal hearing at all frequencies. Seven of the 21 young subjects
had mild hearing loss (25–40dB HL) at one or more frequencies, and
one had moderate hearing loss (45–50dB HL) at two frequencies, while
the remaining 13 had normal hearing (�20dB HL) at all frequencies.
The individual tinnitus demographic information can be found in
Extended Data Fig. 1-1.

All tinnitus subjects, except for two, completed an online question-
naire consisting of the Tinnitus Functional Index (Meikle et al., 2012)
and the Tinnitus Handicap Inventory (Newman et al., 1996). They had a
mean tinnitus index score of 38 6 22 of 100. There was no significant
difference in tinnitus severity between the old and young tinnitus sub-
jects (34 6 17 vs 42 6 27; two-tailed, two-sample t test, p = 0.28). To
qualify for the gap detection and frequency and intensity discrimination
experiments, 19 of the 45 tinnitus subjects characterized their tinnitus
loudness and pitch using a custom adjustment program with a graphical
interface. The subjects moved a marker along a horizontal axis to vary

Figure 1. a, Pure-tone audiograms showing hearing thresholds as a function of test-tone
frequency for 27 young, normal-hearing control subjects (solid black squares), 21 young tin-
nitus subjects (open red circles), and 24 old tinnitus subjects (solid red circles). Error bars
show 61 SD of the mean. b, Tinnitus matching levels (y-axis) and frequencies (x-axis) for
19 tinnitus subjects who participated in gap detection, frequency, and intensity discrimina-
tion experiments. The mean tinnitus matching level and frequency are represented by the
large solid circle with error bars (61 SD). The 19 subjects included 9 old subjects (small solid
red circles) and 10 young subjects (small open red circles). There was no significant difference
in tinnitus level between the old and young subjects (11.46 5.4 vs 9.16 8.4 dB SL; two-
tailed, two-sample t test, p = 0.46).
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the frequency of a 500 ms sinusoid (including 50 ms cosine-squared
ramps) from 250 to 20,000Hz on a logarithmic scale and moved a sepa-
rate marker along a vertical axis to vary the stimulus level from 0 to
100 dB SPL in 1 dB steps. The stimulus repeated once every second. The
subjects adjusted the stimulus to match as closely as possible the loud-
ness and pitch of their predominant tinnitus component. The stimulus
was presented to the ipsilateral ear for unilateral tinnitus or the ear with
the louder tinnitus for bilateral tinnitus. Once a match was selected, they
rated its similarity to their actual tinnitus using a 0-to-10 visual analog
scale. Finally, to allow for possible octave confusion (Moore and Vinay,
2010), subjects matched the loudness of three tones (the original match,
one octave below, and one octave above) to their tinnitus, then selected
the one that was most similar in pitch to their tinnitus. If the selection
differed from their original match, a new similarity rating was recorded,
and this stimulus was taken as their tinnitus match. The subjects rated
the matched stimulus to be highly similar to their tinnitus (mean simi-
larity = 8 of 10). On average, the matched stimulus had a low level of
10 dB SL but a relatively high frequency (arithmetic mean = 6675Hz;
geometric mean = 3964Hz; Fig. 1b, large solid circle).

Experimental design. Because of time constraints, only a subset of the
45 tinnitus subjects participated in each experiment, ranging from 10 in
the overshoot experiment to 31 in the speech-in-noise perception experi-
ment. Information regarding the individual subjects’ participation can
be found in Extended Data Fig. 1-1.

All experiments, except for speech in noise perception, used the fol-
lowing psychophysical procedure (Zeng et al., 2005b). Briefly, an daptive
three-alternative, forced-choice, two-down, and one-up procedure was
used to estimate the stimulus value giving 70.7% correct performance.
Each trial consisted of three intervals separated by 400ms and marked
visually by buttons on a computer interface. The subject had to choose
which of the three intervals contained the signal (i.e., the target stimulus
that was different from that of standard stimuli in the other two inter-
vals). Pilot experiments established the initial signal strength, making the
task easy for the subject at the beginning, and also the step size for
adjusting the signal strength throughout the task, making the experiment
efficient. Visual feedback of “correct” or “incorrect” after each trial fur-
ther facilitated learning of the task. Before formal data collection, all sub-
jects received one to three training blocks from equipment adjustment
to practice runs to become familiar with the test environment and
procedure.

The gap detection experiment used sinusoids, with frequencies of
500, 2000, and 8000Hz, and additional frequencies matched to each sub-
ject’s tinnitus pitch. The total duration of the sinusoid was 400ms,
including 40 ms cosine-squared on and off ramps. The signal contained
a temporal gap with 2 ms cosine-squared offset and onset ramps in the
temporal center of the sinusoid; the gap duration was defined by the 6
dB down points of the gap, and the sinusoidal phase relationship was
preserved as if the gap were not present (Shailer and Moore, 1987). The
stimulus level was either 10dB SL for the frequencies of 500, 2000, and
8000Hz, or varied between 5 and 15dB SL (mean value of 10dB SL) for
the tinnitus-matched frequencies, depending on the SL of each subject’s
tinnitus match. The 5 dB SL lower limit was used because a stimulus
level ,5 dB SL resulted in occasional inaudibility of the stimuli (pilot
experiments). The 15 dB SL upper limit was needed to avoid the use of
spectral splatter cues from the 2 ms gap offset and onset ramps in detect-
ing the gap (pilot experiments; see also Shailer and Moore, 1987). The
frequency and intensity discrimination experiments used the same sinu-
soids as for gap detection, except that the signal was a sinusoid with
higher frequency or level, respectively. For these experiments, the stimu-
lus level was fixed at 30 or 70dB SL.

The masking and overshoot experiment used a 400 ms broadband
(100–10 000Hz) white noise and a 10 ms, 2000 Hz tone positioned either
at the onset or the temporal center of the noise. Both the noise and tone
had 4 ms cosine-squared onset and offset ramps. The noise spectrum
level was 0 and 20dB SPL/Hz, corresponding to an overall noise level of
40 and 60dB SPL. For subjects with normal hearing, the detection
threshold of the tone is typically higher when placed at the onset of the
noise compared with its temporal center. The difference in threshold
between the two conditions is called the overshoot effect (Zwicker,

1965). The magnitude of the overshoot effect may be influenced by both
peripheral and central mechanisms that are relevant to tinnitus (e.g.,
cochlear gain vs attention filter; see Zeng et al., 2005a). To minimize the
influence of hearing loss, which can reduce the overshoot effect (Bacon
and Takahashi, 1992), 10 tinnitus subjects were selected with normal
hearing (�20dB HL; mean = 106 7 dB HL) at 2000Hz.

The temporal modulation experiment used three sinusoidal carrier
frequencies, 250, 2000, and 8000Hz, either unmodulated (standard stim-
ulus) or amplitude modulated by a sinusoid (signal) at 4, 41, or 80Hz.
The modulation detection threshold was measured in decibels
(=20logm), wherem is the modulation depth. The level of the modulated
signal was adjusted to have the same root mean square level as the
unmodulated standard (Viemeister, 1979). Both the signal and the
standard were 500ms in duration, including 40 ms cosine-square onset
and offset ramps, and presented at 60dB SPL or the most comfortable
loudness level adjusted by the individual subject.

The speech in noise perception experiment followed a previously
described protocol (Zeng et al., 2005c). Briefly, the target speech stimuli
were sentences, each containing four to five key words, spoken by a male
talker. The three backgrounds were a steady noise with a spectrum
matched to the male talker’s long-term spectral shape, a competing
female talker, and a competing male talker (different from the male tar-
get talker). An daptive one-down and one-up procedure was used to esti-
mate the speech-to-background ratio, or speech reception threshold
(SRT), that produced 50% correct performance. A correct response
required all key words in the sentence to be correctly identified. No feed-
back was provided.

Statistics.We used within-subjects ANOVA to assess stimulus effects
and between-subjects ANOVA to assess effects of age, hearing, and tin-
nitus as categorical variables. We used two-way ANOVA to assess inter-
action effects between each of the within- and between-subjects factors.
The age category was either young (,39 years old) or old (.42). The
hearing category was either normal hearing (�20dB HL at all audiomet-
ric frequencies between 125 and 8000Hz) or hearing loss (�25dB HL at
any audiometric frequencies). Because the binary definition of both the
age and hearing factors was arbitrary, including the typically used 20dB
HL “normal” hearing criterion (Léger et al., 2012; Bernstein and
Trahiotis, 2016), we also used age in years and average hearing threshold
(125–8000Hz) as continuous or scale variables to perform linear
correlation and regression. Two-tailed t tests were used to assess the sig-
nificance of differences, with Bonferroni correction for multiple compar-
isons. For results meeting the criterion for significance (p, 0.05, or
smaller with correction), effect size was calculated as the difference in
means between two distributions divided by their joint SD, with 0.2, 0.5,
and 0.8 representing small, medium, and large effects (Cohen, 1969).

Results
Tinnitus does not affect gap detection
Even if tinnitus “fills in the gap” in a stimulus, and depending on
the stimulus used, tinnitus subjects could potentially still use ei-
ther an amplitude cue (the stimulus level is higher than the tinni-
tus level; Fig. 2a) or a frequency cue (the stimulus and tinnitus
have different frequencies; Fig. 2b) to detect a temporal gap.
Theoretically, deficits caused by tinnitus “filling in the gap”
would be maximized if the gap stimulus were matched to the tin-
nitus in amplitude and frequency on an individual basis (Fig. 2c).
To minimize the hearing loss factor, we measured gap detection
at 10 dB SL for pure tones with frequencies of 500, 2000, and
8000Hz for 10 control subjects (Fig. 2d, solid black squares) and
11 tinnitus subjects (Fig. 2d, open blue triangles). There was no
significant difference in gap detection between control and tinni-
tus subjects (F(1,17) = 0.50, p = 0.49). Neither was there any signif-
icant difference when subjects were grouped by hearing loss
(F(1,17) = 0.47, p = 0.51) or age (F(1,17) = 0.33, p = 0.57). Because
there was no significant within-subjects effect of frequency
(F(1,17) = 0.41, p = 0.53), we averaged across frequencies to show
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that the tinnitus and control subjects gave similar gap
thresholds of 18 and 21ms, respectively.

To minimize the use of the frequency cue that
might contribute to the lack of tinnitus effect for fre-
quencies of 500, 2000, and 8000Hz, we matched the
gap stimulus to the same subject’s tinnitus, and meas-
ured gap detection on an individual basis (Fig. 2d,
small open red circles for young subjects and small
solid-red circles for old subjects). On average, the tin-
nitus subjects gave a gap threshold of 16ms at the
matched tinnitus frequency (Fig. 2d, solid red circle
with error bars), which was not significantly different
from the 21 ms threshold for the control group (two-
tailed, two-sample t test, p= 0.23) or the 18 ms
threshold for the tinnitus group tested at the frequen-
cies of 500, 2000, and 8000Hz (two-tailed, paired t
test, p = 0.42).

Hearing loss but not tinnitus is associated with
frequency discrimination
Frequency discrimination, expressed as the Weber
fraction (DF/F), was measured for stimulus frequen-
cies of 500, 2000, and 8000Hz and for the individu-
ally matched tinnitus frequency at 30dB SL (Fig. 3a)
and 70dB SL (Fig. 3b) using 10 control and 17 tinni-
tus subjects. There was no significant difference in
frequency discrimination between control and tinni-
tus subjects at 500, 2000, or 8000Hz (F(1,22) = 1.89, p
= 0.18). Unlike previous studies showing significant
effects of both age and hearing loss (Moore and
Peters, 1992), the present study found a significant
effect of hearing loss (effect size = 0.20, F(1,22) = 5.61,
p = 0.03) but no significant effect of age, probably
due to the small sample size (F(1,22)= 3.16, p = 0.09).
There was a significant interaction between hearing
loss and frequency (effect size = 0.22, F(2,44) = 6.33, p
= 0.004), which showed that hearing loss impaired
frequency discrimination for the 70 dB SL, 8000 Hz stimulus
only (DF/F = 0.052 vs 0.023; effect size = 0.22, p = 0.02; Fig. 3b,
“*”). To test whether hearing loss might confound the present
lack of tinnitus effect, results were compared for the five tinnitus
subjects with normal hearing and the control subjects. There was
no significant difference in frequency discrimination for the 70
dB SL, 8000 Hz stimulus among the five tinnitus subjects with
normal hearing and the control subjects (DF/F = 0.017 vs 0.029;
two-tailed, two-sample t test = 0.92, p = 0.38). There was no sig-
nificant difference between the tinnitus data at matched frequen-
cies and the control data at 8000Hz for either the 30 dB SL
condition (DF/F = 0.023 vs 0.024; two-tailed, two-sample t test, p
= 0.98) or for the 70 dB SL condition (DF/F = 0.022 vs 0.027;
two-tailed, two-sample t test , p = 0.59).

Level-dependent effects of tinnitus on intensity
discrimination
Intensity discrimination was measured at 30 dB SL (Fig. 4a) and
70dB SL (Fig. 4b) using the 10 control and 17 tinnitus subjects.
For intensity discrimination at 500, 2000, and 8000Hz, no signif-
icant effects were observed for any of the following three factors:
age (F(1,22) = 0.01, p = 0.91), hearing loss (F(1,22) = 2.51, p = 0.13),
and tinnitus (F(1,22) = 0.42, p = 0.53). Consistent with previous
results (Carlyon and Moore, 1984), there was a significant
within-subjects effect of both stimulus frequency (effect size =
0.42; F(1,22) = 16.18, p = 0.001) and stimulus level (effect size =

0.79; F(1,22) = 82.70, p, 0.001). On average, the 1.7 dB threshold
at 500Hz was better than the 2.7 dB threshold at 8000Hz (effect
size = �0.84; p = 0.002 with Bonferroni correction); the 2.9 dB
threshold at 30 dB SL was poorer than the 1.5 dB threshold at
70 dB SL (effect size = 0.79; p, 0.001 with Bonferroni
correction).

A level-dependent pattern emerged for intensity discrimina-
tion at the tinnitus-matched frequencies. At 70dB SL, the 1.3 dB
threshold at the tinnitus-matched frequency was not significantly
different from the 1.9 dB threshold for the control subjects at
8000Hz (two-tailed, two-sample t test, p = 0.22). However, at
30 dB SL, tinnitus subjects gave a 2.5 dB intensity discrimination
threshold at the tinnitus-matched frequency, which was signifi-
cantly better than the 4.1 dB control value at 8000Hz (effect size
= �0.84; two-tailed, two-sample t test, p = 0.04). This improve-
ment might be an effect of loudness recruitment due to hearing
loss in some of the present tinnitus subjects, which can give bet-
ter than normal intensity discrimination when the comparison is
made at an equal SL (Moore, 1996). Additional analysis was per-
formed to test the loudness recruitment hypothesis. First, at the
same 30dB SL, the sound pressure level was not significantly
higher for the present tinnitus subjects than for the control sub-
jects (51 6 11 vs 44 6 11dB SPL; two-tailed, two-sample t test,
p = 0.11). Second, had loudness recruitment played a significant
role in the present result, better intensity discrimination would
be correlated with higher sound pressure levels for a fixed SL. No
such correlation was found (r = 0.17, p = 0.56), suggesting that

Figure 2. Gap detection experimental design and data. a, Use of an amplitude cue for gap detection by
presenting the gap stimuli at a comfortable loudness level (black), which is usually higher than the tinnitus
loudness level (red). b, Use of a frequency cue for gap detection by using a pure tone, which has a lower fre-
quency (black) than the tinnitus pitch (red). c, The present study minimized the amplitude and frequency
cues by presenting the gap stimuli at the tinnitus-matched loudness level and pitch. d, Average gap detection
threshold for pure-tone stimuli at 500, 2000, and 8000 Hz for 10 control subjects (solid black squares) and 11
tinnitus subjects (open blue triangles). Average gap detection threshold for tinnitus-matched stimuli (the large
solid red circle with error bars) was the geometric mean for 11 tinnitus subjects, including 5 young subjects
(small open red circles) and 6 old subjects (small solid red circles). There was no significant difference in gap
detection at tinnitus-matched frequencies between the young and old tinnitus subjects (17 vs 15ms; two-
tailed, two-sample t test, p = 0.60). Four subjects matched their tinnitus pitches to two different frequencies,
producing a total of 15 data points. Error bars show61 SD of the mean.
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the 1.6 dB improvement in intensity discrimination at 30 dB SL
was more related to tinnitus than to loudness recruitment.

Level-dependent effects of tinnitus on masking and
overshoot
We measured detection of a short tone in broadband noise, with
the tone being presented at the onset of a noise masker (Fig. 5a)
or at the temporal center of the masker (Fig. 5b), for noise spec-
trum levels of 0 and 20dB SPL/Hz. There was no significant
effect of age (F(1,21) = 2.47, p = 0.13), hearing loss (F(1,21) = 0.39, p
= 0.54), or tinnitus (F(1,21) = 0.69, p = 0.42). For the temporal
center condition, the slope of the masking growth function was
1.0 for both the control (Fig. 5c, solid squares) and tinnitus (Fig.
5d, solid triangles) subjects. For the onset condition, the slope of
the masking function was 1.3 for both the control and tinnitus
subjects, which was significantly steeper than for the center con-
dition (effect size = 1.78, F(1,21) = 38.38, p, 0.001). The control

subjects produced no significant overshoot at the 0 dB noise level
(1 dB; two-tailed, paired t test, p = 0.28) but significant overshoot
at the 20 dB noise level (7 dB; effect size = 2.51; p, 0.001). Had
hearing sensitivity played a role, reduced overshoot would be
expected for the tinnitus subjects. On the contrary, they pro-
duced significant overshoot at both noise levels (2 dB at 0 dB:
effect size = 0.81, p = 0.015; 8 dB at 20 dB: effect size = 2.16,
p, 0.001; Fig. 5e). Moreover, no significant correlation was
observed between the hearing threshold at 2000Hz (�20dB HL)
and the overshoot value (r = 0.28, p = 0.44), suggesting that the
enhanced overshoot effect at the 0 dB noise level was related to
tinnitus.

No effect of tinnitus on temporal modulation detection
We measured temporal modulation detection as a function of
carrier frequency (250, 2000, and 8000Hz) for modulation fre-
quencies of 4Hz (Fig. 6a), 41Hz (Fig. 6b), and 80Hz (Fig. 6c).
There was no significant effect of age (F(1,34) = 1.01, p = 0.32),
hearing loss (F(1,34) = 0.71, p = 0.41), or tinnitus (F(1,34) = 0.25, p

Figure 4. Intensity discrimination. a, Intensity discrimination threshold as a function of
frequency at 30 dB SL for 10 control subjects (solid black squares) and 16 tinnitus subjects
(open blue triangles). Error bars show61 SD of the mean. The average threshold for tinni-
tus-matched stimuli (the solid red circle with error bars) was the arithmetic mean from 14
tinnitus subjects, including 9 young (small open red circles) and 5 old (small solid red circles).
The asterisk and the line below represent a significant difference between the groups. b, The
same as a except at 70 dB SL. There was no significant difference in intensity discrimination
at tinnitus-matched frequencies between the young and old tinnitus subjects at either 30 dB
SL (p = 0.10) or 70 dB SL (two-tailed, two-sample t test, p = 0.61).

Figure 3. Frequency discrimination. a, The Weber’s fraction as a function of frequency at
30 dB SL for 10 control subjects (solid black squares) and 17 tinnitus subjects (open blue tri-
angles). Error bars show 61 SD of the mean. The average threshold for tinnitus-matched
stimuli (the large solid red circle with error bars) was the arithmetic mean for 14 tinnitus
subjects, including 9 young (small open red circles) and 5 old (small solid red circles). b, The
same as a, except at 70 dB SL. The asterisk and the line below represent a significant differ-
ence between the groups. There was no significant difference in frequency discrimination
between the young and old tinnitus subjects at the matched frequencies (0.021 vs 0.027;
two-tailed, two-sample t test, p = 0.45).
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= 0.62). There were significant within-subject
effects for the modulator (effect size = 0.75,
F(2,68) = 103.05, p, 0.001) and the carrier
(effect size = 0.15, F(2,68) = 5.71, p = 0.005), but
no significant interactions with any subject var-
iables (p. 0.45).

Interactive effects of tinnitus, age, and
hearing loss on speech perception in noise
We estimated the SRT for the following three
backgrounds: a steady noise, a male talker, and
a female talker (Fig. 7). There was no signifi-
cant effect of age (F(1,45) = 3.47, p = 0.07), hear-
ing loss (F(1,45) = 0.55, p = 0.46), or tinnitus
(F(1,45) = 0.10, p = 0.75). There was a significant
effect of background type (effect size = 0.83,
F(2,90) = 235.55, p, 0.001): the steady noise
produced the highest SRT (�0.1 dB), followed
by the male talker (�3.8 dB) and the female
talker (�14.0 dB). There was a significant inter-
action between age and background, with only
the female talker producing a significant effect
of age (effect size = 0.57, F(2,90) = 3.4, p = 0.04).
We further analyzed the effect of age based on
tinnitus by comparing the young and old tinni-
tus subjects with the young control subjects.
The young tinnitus subjects outperformed the
old tinnitus subjects by 4.5 dB (effect size =
1.08, two-tailed, two-sample t test, p = 0.01)
and, surprisingly, the young control subjects by
3.0 dB (effect size = 0.86, two-tailed, two-sam-
ple t test, p = 0.03).

In addition to treating age, hearing, and tin-
nitus as categorical variables, we calculated the
correlation between the SRTs from the 31 tin-
nitus subjects and their age, average audiomet-
ric threshold, and tinnitus severity index
(Extended Data Fig. 1-1). After correcting for
multiple comparisons, the female-talker SRT
was the only measure that significantly corre-
lated with age (r = 0.43, p = 0.015) and the av-
erage audiometric threshold (r = 0.51, p =
0.003). Multiple regression analysis further
showed that age accounted for 19% of the var-
iance in the female-talker SRT data, while the
average thresholds accounted for an additional
12%.

Attention-normalization model
We propose an attention-normalization model
to account for the perceptual relationship
between stimulus (s) and tinnitus (t; Fig. 8a).
The physical stimulus, as an external sound,
travels through a traditional bottom-up path-
way to form a percept (Ps) in the bottom-left box. However, the
tinnitus, as an internal sound, travels through an independent
top-down pathway to form a percept (Pt) in the top-left box
(Jastreboff, 1990; Sedley et al., 2016). Because these two pathways
do not overlap, the tinnitus and stimulus percepts only influence
each other through an attention normalization mechanism
(Reynolds and Heeger, 2009), in which the total percept (P) is
determined by the sum of attention-weighted tinnitus percept

and stimulus percept (atPt1 asPs) over the total level of attention
(at 1 as), as follows:

P ¼ atPt 1 asPs

at 1 as
: (1)

The tinnitus, stimulus, and total percepts (Pt, Ps, P) are multi-
dimensional, including loudness, pitch, time and other compo-
nents, but we focus on loudness here. To illustrate the interactive
role of attention in tinnitus and stimulus perception, we fix the

Figure 5. Temporal masking and overshoot. a, Onset masking condition: detection of a 10 ms, 2000 Hz tone (red
waveform) positioned at the onset of 400 ms broadband (100–10 000 Hz) white noise (black waveform). b, Center-
masking condition: detection of the same signal positioned at the temporal center of the 400 ms noise. c, Masking
growth functions for 13 control subjects. Detection threshold as a function of the noise level for the onset (open
squares) and center (solid squares). The solid red line represents a slope of 1. The asterisk and the line below represent
a significant difference between the groups at the 20 dB noise level. d, Masking growth functions for 10 tinnitus sub-
jects. The symbols have the same meanings as those in c, except for the blue colors and triangles. The asterisk and
the line below represent a significant difference between the groups at the 0 and 20 dB noise levels. e, Overshoot
functions for the average tinnitus subjects (open blue triangles) and control subjects (solid black squares). Individual
overshoot data include six old tinnitus subjects (solid blue circles), five young tinnitus subjects (open blue circles), and
13 control subjects (open black squares). The solid red line represents no overshoot, namely no difference in tone
detection threshold between the onset and center conditions. Error bars show61 SD of the mean. There was no sig-
nificant difference in overshoot between the old and young tinnitus subjects (solid vs open circles in e; p = 0.29 for 0
dB noise and p = 0.75 for 20 dB noise).
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baseline tinnitus loudness and attention level (Pt = 50 and at =
0.5). In this case, the tinnitus loudness is atPt

at1as
¼ 0:5p50

0:51as
, which has

a value of 50 when no attention is paid to the stimulus (i.e., as =
0; Fig. 8b, y-axis intercept for the red dashed line). We liken this
scenario to performing a tinnitus loudness-rating task, where the
external sound is absent. However, when an external sound is
present (e.g., performing a tinnitus loudness-matching task), the
tinnitus loudness decreases with increased attention to the

stimulus (Fig. 8b, red dashed line). We then calculate how the
stimulus loudness ( asPs

at1as
) varies with attention (as) for four stimu-

lus baseline levels (i.e., Ps = 100, 50, 25, and 10; Fig. 8b, four black
lines from top to bottom). The intersections between the red
dashed line and the black lines (Fig. 8b, blue circles) indicate that
the same 50-loud tinnitus can be matched in loudness to four
different levels of an external stimulus, dependent on the relative
levels of attention to the tinnitus and the stimulus. The model
predicts a strong role of attention, making it possible to reconcile
the puzzling discrepancy between loud tinnitus rating (e.g., Pt =
50 for as = 0) and tinnitus matching to a low-level sound (e.g., Ps
= 10 for as = 2). This factor of five change in loudness due to
attention is not impossible, as a factor of four effect of attention
on loudness was previously observed (Schlauch, 1992).

The model can predict the effects of tinnitus on loudness
growth for an external stimulus as a function of its intensity. At
present, we do not know how attention varies with loudness, but
it is reasonable to assume that a louder percept is associated with
more attention. In the interest of simplicity, we assume attention
is a linear function of loudness, namely, at = aPt and as = aPs =
aI0.3 (Stevens’s power law), where a is a constant and I is stimu-
lus intensity. The total loudness of tinnitus and stimulus is
obtained by rewriting Equation 1 as follows:

P ¼ aP2
t 1aP2

s

aPt 1aPs
¼ P2

t 1 I0:6

Pt 1 I0:3
: (2)

At low stimulus levels, I0.3� Pt, so the total loudness P � Pt,
which serves as a floor due to tinnitus (Fig. 8c, far left part of the
blue lines). At high stimulus levels, I0.3 � Pt, so the total loud-
ness was P � I0:3, following normal loudness growth (Fig. 8c, far
right part of the blue lines). This prediction is consistent with the
idea of conceptualizing tinnitus as internal noise, which increases
the loudness estimates at low stimulus levels but not the slope of
the loudness function (Zeng, 2013).

The present attention-based model can also explain several
puzzling tinnitus phenomena. For example, the traditional
energy-based model cannot explain why sometimes soft, low-
frequency, and dynamic stimuli can mask loud, high-pitched,
and steady tinnitus (Vernon and Meikle, 1981; Zeng et al., 2011;

Figure 6. Temporal modulation detection. a, Detection threshold of 4 Hz sinusoidal ampli-
tude modulation as a function of carrier frequency (250, 2000, and 8000 Hz). The open blue
triangles show the average threshold for 22 tinnitus subjects, and the solid black squares
show the average threshold for 14 control subjects. The solid blue circles represent individual
data for the 12 old tinnitus subjects, open blue circles for the 10 young tinnitus subjects, and
black open squares for the 14 control subjects. Error bars show61 SD of the mean. b, The
same as a, except for detecting 41 Hz modulation. c, The same as a except for detecting 80
Hz modulation.

Figure 7. SRTs for three backgrounds. The solid black squares represent the average SRTs
for 16 control subjects, and the open blue triangles represent the average SRTs for 31 tinnitus
subjects. Individual data are shown by blue solid circles for 18 old tinnitus subjects, blue
open circles for 13 young tinnitus subjects, and black open squares for 16 control subjects.
Error bars show 61 SD of the mean. The asterisk and the line below represent significant
differences between the groups for the female talk background.
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Reavis et al., 2012). Our model suggests
that the tinnitus is reduced because
greater attention is paid to the soft, low-
frequency, and dynamic stimuli than the
tinnitus, similar to the tinnitus-matching
scenario (Fig. 8b). It would be equally
difficult for the traditional model to
explain why sometimes tinnitus cannot
be masked by any external sounds at all
(Penner, 1987). Our model can explain
this unmaskability of tinnitus by assum-
ing the separate pathways between tinni-
tus and stimulus (Fig. 8a) and the
subject’s inability to ignore tinnitus (at .
0). Finally, the traditional model cannot
explain how tinnitus occasionally could
improve auditory performance (e.g., in-
tensity discrimination; Fig. 4a) and per-
ception of male speech in the presence of
a female talker (Fig. 7a). We note that the
tinnitus-improved performance occurred
at relatively low stimulus levels (30dB SL
for intensity discrimination and �14dB
SRT for the female-talker background).
We speculate that tinnitus increases atten-
tion to the low-level stimuli (Fig. 8c) so
that a “spotlight” strategy can be used to
improve auditory performance at these
low levels (Luce and Green, 1978; Leek et
al., 1991).

Discussion
The present study compared perform-
ance between tinnitus and control sub-
jects in 36 perceptual measures (4 in gap
detection, 16 in frequency and intensity
discrimination, 4 in masking, 9 in temporal
modulation detection, and 3 in speech-in-
noise perception). Contradictory to the hy-
pothesis, we found that tinnitus does not
affect performance in 32 of the 36 meas-
ures. We found one instance of worsened
performance with tinnitus (Fig. 3b; but the
worsened frequency discrimination might
be due to hearing loss), and three instances
of improved or enhanced performance
with tinnitus (Fig. 4a, intensity discrimina-
tion; Fig. 5d, overshoot; Fig. 7, speech per-
ception). Because these four significant
differences were all relatively small and the majority (32 of 36) of
the measures did not show any significant effect, we conclude that
tinnitus does not interfere with auditory and speech perception in
general. We interpret this lack of the effect of tinnitus on auditory
perception as a result of two independent pathways between the tin-
nitus and external sounds. The separate pathways make it difficult
to perfectly match an external sound to tinnitus, and even if they
were matched, the tinnitus would not interfere with the sound
physically, to “fill in temporal gaps,” as described by the traditional
energy-based model.

Comparison with previous studies
There are few previous studies on the perceptual effects of tinni-
tus. In seven previous gap-detection studies using human

tinnitus subjects, four observed a small gap-detection deficit (1–
4ms worse than the normal) for tinnitus subjects (Sanches et al.,
2010; Mehdizade Gilani et al., 2013; Jain and Dwarkanath, 2016;
Ibraheem and Hassaan, 2017), but the other three did not find
any deficit (An et al., 2014; Boyen et al., 2015; Morse and Vander
Werff, 2019). By assessing gap detection using gap stimuli
matched to the loudness and pitch of the tinnitus (Fig. 2c), the
present study has provided the strongest evidence against the tin-
nitus filling-in-the-gap hypothesis.

One study reported that frequency discrimination is impaired
for subjects with moderate tinnitus but not for those with mild
tinnitus (Jain and Sahoo, 2014). In terms of intensity discrimina-
tion, one study found a 1 dB deficit in two of nine test conditions
(Epp et al., 2012), while the other found no effect of tinnitus
(Jain and Sahoo, 2014). We did not find any masking studies

Figure 8. Tinnitus attention-normalization model and predictions. a, Tinnitus (t) is of an internal origin and goes through a
top-down pathway to produce a tinnitus percept Pt. A physical stimulus (s) is of an external origin and goes through an inde-
pendent bottom-up pathway to produce a stimulus percept Ps. Both percepts are modulated by attention (at = attention to
tinnitus; as = attention to stimulus) to produce a total percept P, which is the sum of the attention-weighted individual per-
cepts (asPt 1 atPs) over the total attention level (as 1 at). b, Prediction of the role of attention in perception of tinnitus and
stimulus. For a tinnitus baseline loudness at 50 and tinnitus attention level at 0.5, tinnitus loudness (Pt = red dashed line)
decreases with increased attention to stimulus (x-axis). For four stimulus loudness baseline levels (100, 50, 25, and 10 repre-
sented by the four black lines from top to bottom, respectively), stimulus loudness (Ps) increases with attention to stimulus.
The intersections between the tinnitus curve and the four stimulus curves (blue circles) indicate equal loudness between tinni-
tus and stimulus. c, Prediction of the effect of tinnitus on loudness growth for an external stimulus. The total loudness (P)
grows as a function of stimulus intensity (represented as 10logI or dB here) for three tinnitus loudness baseline levels (Pt = 25,
10, and 5 as three solid blue lines, respectively). The loudness growth function without tinnitus (Pt = 0) is shown by the dotted
blue diagonal line.
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using a flat-spectrum broadband noise but found two studies
using the “threshold-equalizing-noise” (Moore et al., 2000) to
detect dead cochlear regions in tinnitus subjects (Weisz et al.,
2006; Buzo and Carvallo, 2014). Both studies found a significant
masking effect, but none showed a masked signal threshold that
was �10 dB than the control, as required for the detection of a
dead region (Moore et al., 2000). There was no previous study of
the effect of tinnitus on overshoot. One of the two studies on
temporal modulation detection found no effect of tinnitus except
for improved detection (;2 dB) of 10 Hz sinusoidal modulation
in the tinnitus ear relative to the non-tinnitus ear for a group of
unilateral tinnitus subjects with normal audiograms (Moon et
al., 2015). The other study found no effect of tinnitus on the
detection of 19 Hz modulation of a 500 Hz carrier, but found
worse performance (2 dB) for a 5000 Hz carrier in tinnitus sub-
jects (Paul et al., 2017). Overall, like the present study, these pre-
vious studies found either a small or nonsignificant effect of
tinnitus on auditory perception.

Despite widespread self-report of poor speech perception,
especially in noise, by tinnitus subjects (Ivansic et al., 2017), pre-
vious studies actually found little or no deficits when age and
hearing loss were carefully controlled (0–2 dB differences in
SRTs; Moon et al., 2015; Gilles et al., 2016; Tai and Husain,
2018). Two mechanisms may underlie the previous and present
results. On the one hand, tinnitus can be subjectively loud and
annoying, but most often its matched level is low at 10–20dB SL,
and its matched frequency high at.4000Hz (Reed, 1960; Pan et
al., 2009; Fig. 1b). In contrast, speech sounds have a conversa-
tional level at �50dB SL, and most energies at frequencies
,4000Hz (Studebaker et al., 1987; Cox et al., 1988). These level
and frequency differences between speech and tinnitus would
predict the lack of an effect of tinnitus on speech perception. On
the other hand, an attention-related mechanism may explain
how the young tinnitus subjects performed better than the young
control subjects in the male target and female background condi-
tion (Fig. 7). Because the male and female talkers represent two
separate auditory objects, the tinnitus-enhanced “spotlight” may
improve perception of the male talker while ignoring the female
background (Luce and Green, 1978; Leek et al., 1991).

Comparison with other hearing disorders
Cochlear hearing loss, the most common hearing disorder, pro-
duces higher thresholds, broader frequency tuning, and poorer
speech performance in noise than for normal control subjects
(Moore, 1996). The perceptual consequences are different between
tinnitus and cochlear loss. First, tinnitus and cochlear loss are cor-
related, but this correlation is neither necessary nor sufficient,
because some tinnitus subjects have normal thresholds while
some hearing-impaired subjects have no tinnitus (Axelsson and
Ringdahl, 1989; Henry et al., 2005). Second, tinnitus subjects with
normal hearing have a similar tip but lowered tails of the tuning
curve than non-tinnitus, normal-hearing control subjects (Buzo
and Carvallo, 2014). If both tinnitus and non-tinnitus subjects
have hearing loss, then the tinnitus subjects have sharper tuning
than the non-tinnitus control subjects (Tan et al., 2013). These
perceptual differences likely reflect the different pathophysiologies
between cochlear hearing loss (damage to hair cells and other
cochlear structures) and tinnitus (e.g., selective loss of low-sponta-
neous rate neurons; Furman et al., 2013).

Tinnitus is similar to, yet different from, auditory neuropathy,
a hearing disorder that is characterized by normal cochlear
amplification but abnormal neural activity (Starr et al., 1996).
People with either tinnitus or auditory neuropathy may present

with normal audiometric thresholds, but their suprathreshold
processing deficits are different. Auditory neuropathy impairs
temporal processing (Zeng et al., 2005b), but tinnitus does not
(the present gap and modulation results). Auditory neuropathy
is characterized by speech recognition that is poorer than
expected from reduced audibility (Zeng and Liu, 2006). In con-
trast, tinnitus rarely impairs speech perception in quiet (Tai and
Husain, 2019), and its effect on speech perception in noise is
minimal (the present study).

Tinnitus shares some attributes associated with central audi-
tory processing disorder. For example, both disorders can pro-
duce poorer speech in noise perception in the left ear than the
right ear (Bellis et al., 2008; Tai and Husain, 2019). Tinnitus is
associated with impaired cognitive processing, working memory,
and selective attention in cross-modality processing (Andersson
et al., 2000; Hallam et al., 2004; Dornhoffer et al., 2006; Rossiter
et al., 2006; Stevens et al., 2007; Araneda et al., 2015; Husain et
al., 2015; Li et al., 2018). At present, the relationship between tin-
nitus and central auditory processing disorder remains unclear
because most of these studies did not control for the comorbid
age and hearing loss factors that may also contribute to the
observed cognitive impairment (Dupuis et al., 2015; Mohamad
et al., 2016).

Significance
The present study suggests that tinnitus does not interfere with
the perception of external sounds; thus, it is unlikely to be “fill-
ing-in-the-temporal-gap.” Instead, future tinnitus animal model
studies may consider two alternatives. First, the presence of tin-
nitus in animals increases the level of central noise, which can be
measured directly (Möhrle et al., 2019) or indirectly (Jones et al.,
2013). Second, the presence of tinnitus in animals increases the
level of attention (Roberts et al., 2013), with one recent study
showing increased vigilance but impaired attention in rats with
tinnitus (Brozoski et al., 2019). The present attention-based
model predicts increased attention to tinnitus-like sounds; thus,
a biomarker of attention (Jacobson et al., 1996) can be used to
detect not only the presence of tinnitus, but also the specific
affected frequency region in animal model studies.

If tinnitus does not impair the perception of external sounds,
why then do many individuals with tinnitus complain about
hearing difficulty? We believe that this hearing difficulty is due
to tinnitus comorbid conditions and secondary effects. First,
most individuals with tinnitus have some degree of hearing loss,
which impairs both audibility and suprathreshold processing to
directly contribute to the hearing difficulty (Moore, 1996).
Second, some individuals with tinnitus have comorbid hyperacu-
sis (Jastreboff and Jastreboff, 2000), which reduces their dynamic
range and forces them to listen to soft sounds under less favor-
able conditions. Third, tinnitus may increase cognitive load, and
induce stress, fatigue, or even fear, resulting in subjective com-
plaints about hearing difficulty (Jagoda et al., 2018; Zhang et al.,
2018). Because tinnitus has no cure at present and tinnitus does
not affect auditory and speech perception, clinicians may deliver
greater benefit and satisfaction to individuals with tinnitus by
treating their comorbid conditions and secondary effects than by
attempting to treat tinnitus itself.
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