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EPIGRAPH

True ease in writing comes from art, not chance,
As those move easiest who have learn’d to dance.
’T is not enough to no harshness gives offence,—

The sound must seem an echo to the sense.

Alexander Pope

You write with ease to show your breeding,
But easy writing’s curst hard reading.

Richard Brinsley Sheridan

Writing, at its best, is a lonely life. Organizations for writers palliate the writer’s loneliness, but I
doubt if they improve his writing. He grows in public stature as he sheds his loneliness and often
his work deteriorates. For he does his work alone and if he is a good enough writer he must face
eternity, or the lack of it, each day.

Ernest Hemingway
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ABSTRACT OF THE DISSERTATION

Generalizable Risk Predictive Deep Learning Models

by

Fatemeh Amrollahi

Doctor of Philosophy in Bioinformatics and Systems Biology with a Specialization in
Biomedical Informatics

University of California San Diego, 2023

Professor Shamim Nemati, Chair
Professor Gabriel Wardi, Co-Chair

The broad adoption of Electronic Health Records (EHRs) accelerated the development

and usage of Machine learning (ML) and Deep learning (DL) algorithms in clinical settings. The

potential uses of ML and DL algorithms to augment clinical decision-making in domains such as

forecasting disease onset and progression, predicting response to treatments, and optimization

of treatment protocols are growing. While most existing ML/DL models are trained on single-

centered data, multi-center datasets are becoming increasingly available. However, curation of

such datasets is often time-consuming and lags behind shifts in disease prevalence and changes

in workflow practices, which are known to cause data distribution shifts and degradation in
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ML/DL model performance.

In addition, data privacy concerns and patient confidentiality regulations continue to

pose a major barrier to multicenter EHR data access. In this work, we developed algorithms to

enable DL models to transfer their knowledge across institutional boundaries and learn from

new episodes of patient care without forgetting previously learned patterns. We validated and

compared our methods in the context of early prediction of sepsis using data across four geograph-

ically distinct healthcare systems. We explore several methods to enhance the generalizability of

DL models. We focus on three areas: Continual Learning, Federated Learning, and Generative

Adversarial Networks (GANs), introducing new algorithms within each area and comparing their

performance against state-of-the-art models. We have validated and compared these methods in

one of the most challenging tasks for biomedical researchers: predicting the onset of sepsis in

intensive care units.
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Introduction

The broad utilization of artificial intelligence, especially its role in enhancing industrial

efficiency, customer experiences, and revenue generation over recent years, has increased interest

in its potential uses within healthcare domain. Deep learning, a subset of Machine learning

tools, that uses neural networks with connected non-linear layers to analyze various forms of

data, has become particularly prominent in various clinical domains such as disease diagnosis,

patient prognosis, decision-making support, and treatment suggestions [1–6]. For these deep

learning models to be widely accepted in clinical settings, they need to be adaptable to different

care settings and prioritize patient data privacy. A significant portion of the existing ML-model

applications rely on data either from a single hospital or multiple hospitals within a unified

healthcare system standards where medical protocols are largely uniform. A notable challenge in

this approach is that models developed using data from a single healthcare entity often suffer from

lack of generalizability. This is due to varying factors such as regional demographics, medical

equipment, electronic health record systems, data collection frequencies, and inconsistencies in

clinical procedures, including the manner in which diseases are coded and defined. To gain wide

clinical adoption, deep learning-based clinical models have to be generalizable and portable,

and ensure the privacy of patients whose data are used for model training and evaluations. To

make ML models more generalizable, one approach is to train ML models on data from large

and diverse patient populations, similar to industry ML and DL applications. This approach

requires data sharing and aggregation across institutional boundaries, which raises issues of

patient privacy and consent.

A recent external evaluation of popular predictive ML models highlighted challenges

1



related to models’ generalizability, especially when data distributions shift or when there are

changes in the types of patient demographics [7]. One method to enhance the external validity

of deep learning systems is to adjust or ”fine-tune” these models for each new healthcare

environment, a process known as Transfer Learning. However, this could lead to multiple

variations of the same algorithm being used across different care settings. This multiplicity poses

regulatory issues around change managements and scientific concern about generating consistent,

generalizable knowledge and insights. Hence, it’s crucial to develop learning algorithms and

models that can utilize data from diverse patient groups while preserving privacy. Additionally,

these models should come with clear change control strategies to ensure they perform consistently

and safely across diverse scenarios.

Several methods can be employed to enhance the broad applicability or generalizability

of ML models, and here,For this study, we will explore three of them in greater details:

Continual Learning (also known as Lifelong Learning): This approach involves

training models to learn continuously over time. As new data becomes available, the model

incorporates this data into its existing knowledge without forgetting previous information. This

is particularly useful in dynamic environments where data patterns can change over time.

Federated Learning (also known as Distributed Learning): Instead of centralizing

data to train models, federated learning allows for data to remain at its source (e.g., individual

hospitals or devices). Models are trained locally, and only model updates or weights are shared

and aggregated. This approach helps in dealing with data privacy concerns and can pull insights

from diverse data sources without actually moving the raw data.

Generative Adversarial Network (also known as GAN): These sophisticated models

are trained to generate new data samples that resemble the original data. GANs consist of

two neural networks that are trained in tandem. The goal of GANs is to produce synthetic

data samples that mirror the characteristics of the original data. GANs can generate synthetic

Electronic Health Records (EHR) datasets, reducing the need to transfer real patient data and

ensuring that deep learning models maintain their knowledge without compromising patient

2



privacy.

We validated and compared these methods in the context of the most challenging tasks for

biomedical researchers, predicting the onset of sepsis in intensive care units where information

overload poses cognitive burdens on the ability of bedside caregivers to integrate risk factors

across diverse sources [8].
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Chapter 1

Introduction to Sepsis and Predictive Risk
Monitoring

1.1 Why generalizeable sepsis prediction models are
needed?

Sepsis is a life-threatening condition that arises when the body’s over react to infec-

tion.Body’s response to an infection could injure its own tissues and organs known as septic

shock [9]. Instead of being localized to a particular area, the body’s immune response to infection

could becomes overactive, releasing a large number of chemicals into the bloodstream this causes

widespread inflammation. Untreated sepsis can lead to a cascade of changes that can damage

multiple organ systems, causing them to fail and eventually death.

Sepsis has been recognized as one of the most ancient and challenging conditions in

the medical world. It manifests as a severe organ malfunction resulting from an imbalanced

response of the body to an infection [9]. In terms of its pathophysiology, when an infection

strikes the human system, it induces a multifaceted and extended response. This includes

both proinflammatory actions, which target the removal of the invaders, and anti-inflammatory

mechanisms, which aim at infection clearance, tissue repair, but can also inadvertently lead to

organ harm and secondary infections [10].

Additionally, the exaggerated inflammation results in impaired tissue oxygenation and as

a result of which organ damage occurs. Sepsis is a major public health concern accounting for

4



more than $20 billion (5.2%) of total US hospital costs in 2011 [11]. The inpatient sepsis-related

costs for Medicare beneficiaries were projected at $41.5 billion in 2018. Over 1.7 million US

patients are affected by sepsis annually, with roughly 275 thousands progress to septic shock

and death [12, 13]. Although sepsis might not be as publicly recognized as conditions like heart

attacks, 6% of all US hospital patients are diagnosed with sepsis, in contrast to 2.5% diagnosed

with heart attacks. Almost 35% of hospital deaths are due to sepsis, which is remarkably higher

than the mortality rate of heart attacks, ranges between 2.7-9.6% [11].

Since 2004, the international alliance of critical care professionals and the Surviving

Sepsis Campaign (SSC) have been addressing the inconsistency in sepsis treatment strategies by

advocating evidence-based ”sepsis care bundles” [14]. These bundles consolidate the findings

of multiple studies, all pointing to enhanced sepsis outcomes when timely interventions using

broad-spectrum antibiotics, IV fluids, and vasopressors are administered [15–18].

The most recent recommendation from the SSC is a 1-hr bundle that in addition to

obtaining diagnostic tests like cultures and lactate levels, prescribes standard treatment with

broad spectrum antibiotics, IV fluid, and vasoactive drugs if necessary, all within an hour

of a sepsis diagnosis [19]. Despite the existence of effective treatment protocols, accurately

identifying sepsis early, before obvious clinical signs, is one of the most important needs for

modern medicine to be addressed.

A recent investigation by Seymour et al. [20] indicated that with every hour of delay

in administering antibiotics to septic patients, the mortality risk increase by 4-8%. So early

detection of sepsis in hospital settings is crucial. It’s estimated that timely identification and

treatment of septic patients in US hospitals could lead to reduced deaths, shorter hospital stays,

and an approximate saving of $1.5 billion [21]. The main aim of this research is to utilize

data from Electronic Health Records (EHRs) to create a generalizable deep learning model that

facilitates the accurate recognition and identification of sepsis onset across diverse healthcare

settings.
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1.1.1 Prior work on predicting sepsis

Prior studies have shown that early identification of sepsis and initiation of treatment

could improve the sepsis outcomes significantly. Early prediction and timely management can

not only drastically reduce death rates but also diminish the associated long-term complications

often suffered by sepsis survivors [8]. Therefore, developing mechanisms for the early prediction

of sepsis is not only crucial for clinical practice but also it’s a major step forward in enhancing

healthcare delivery and patient outcomes. In the last decade, several data-driven approaches for

predicting sepsis in the ICU have been presented. Many approaches selectively compare with

simple clinical scores, such as SIRS, NEWS or MEWS [22, 23]. However, none of these scores

are intended as specific, continuously-evaluated risk scores for sepsis. Nemati et al. [24] used

a modified Weibull-Cox model on a combination of low-resolution Electronic Health Record

(EHR) data and high-resolution vital signs time series data to predict onset of sepsis four hours

in advance with an AUC of 0.85. Futoma et al. [25] applied multitask Guassian process to RNNs

to predict sepsis, septic shock and in-hospital mortality. Authors used the publicly available

MIMIC-III [cite mimic iii] dataset and tried to predict sepsis 0 to 12 hours ahead. They compared

their models with several alternative machine learning-based models for predicting sepsis.

Desautels and colleagues [26] attempted to predict sepsis onset in ICU patients using

minimal EHR data (i.e., vital signs and limited lab tests) and a combination of different machine

learning models. Their model was able to predict sepsis 4-12 hours prior to clinical recognition

with an area under the receiver operating characteristic curve (AUC) of 0.83-0.85 using data from

two hospitals. Shashikumar et al. [27] utilized Recurrent Neural Networks (RNNs), specifically

Long Short-Term Memory (LSTM) networks to predict onset of sepsis using data from 2 separate

hospitals. Henry et al. [28] introduced a targeted real-time warning score (TREWScore) to predict

septic shock, using real-time EHR data. Septic shock occurs when sepsis leads to low blood

pressure that persists despite treatment with intravenous fluids.

However, external generalizability and validation of these models under data distribution
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shift remains unclear and these models are likely to produce sub-optimal performance. A recent

independent external validation of a widely used machine learning-based sepsis prediction risk

score highlighted the issue of these models generalizability in the presence of data distribution

shift and changes in the population case-mix [29].

In this research, we developed multiple appraiches and algorithm to enhance generaliz-

ability of our deep learning predictive models, focusing on forecasting the onset of sepsis using

Electronic Health Record (EHR) data available in Intensive Care Units (ICUs). We used data

from four geographically distinct hospitals, with unique data distributions.
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Chapter 2

Leveraging Clinical Data Across Health-
care Institutions for Continual Lifelong
Learning of Predictive Risk Models

2.1 Introduction

The digital transformation of healthcare has brought a new era of medical innovation,

promising more precise, accessible, and personalized patient care. As AI integrates deeper

into clinical environments, the application of advanced ML-based algorithms, particularly deep

learning models, has showcased potential in analyzing complex patterns avaiable in EHR and

medical data records. However, a critical limitation with these models is their difficulty in

generalizing knowledge across diverse healthcare systems, given the inherent variability in

patient demographics, equipment, and clinical practices. Such challenges often result in models

customized for specific datasets, making them less effective when confronted with new, unseen

data. Addressing these challenges, continual learning emerges as a promising solution. Continual

learning, by allowing models to learn progressively and adjust to new information without losing

previously acquired knowledge, offers the possibility of closing the gap in generalizability for

healthcare applications. This approach moves us nearer to achieving universally applicable

digital healthcare solutions.

Continual learning offers a robust methodology for sequentially learning multiple tasks
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while preserving efficiency on tasks previously learned. Continual learning stands as a promising

solution to the challenge of learning successive tasks without compromising the proficiency

achieved on prior tasks. This addresses the challenge of ’catastrophic forgetting,’ where deep

learning models tend to forget previously acquired knowledge when exposed to new data. By

leveraging knowledge from past experiences, continual learning enhances the model’s ability to

rapidly adapt to new tasks. This capability is especially suitable in the medical domain, where

clinical data are divided across various institutions. Nonetheless, a unified understanding across

diverse patient groups is critical.

The ability to incrementally learn from experiences in a continual learning framework

is ideal for medical applications where clinical data are siloed across different institutions, and

yet generalizability is desirable across patient cohorts. We hypothesized that continual learning

might be advantageous in clinical settings where a model is expected to generalize across multiple

healthcare systems, and data is intended to remain local to each healthcare institution

We introduce WUPERR, our state-of-the-art continual learning approach designed to

learn sequentially from data streams without forgetting prior knowdgle. Instead of transferring

raw data, WUPERR emphasizes on sharing model weight uncertainties and learned represen-

tations across institutions. This facilitates learning from diverse datasets while maintaining

data privacy and granted each institution’s control over its data. We show that propagating

model weight uncertainty and learned representations across healthcare sites (as opposed to

the raw data) allows WUPERR to learn from diverse datasets while preserving privacy of data.

The innovation in WUPERR is inspired by cutting-edge advancements in the lifelong learning

realm. Specifically, it integrates the idea of Elastic Weight Consolidation (EWC) [30] and

Episodic Representation Replay (ERR) [31] to continuously refine our predictive models as

they encounter new patient cohorts from varied geographical locales. WUPERR combines

Episodic Representation Replay (ERR) and Weight Uncertainty Propagation (WUP) drived

from EWC to enable continual learning of tasks while mitigating the problem of catastrophic

forgetting. The goal of WUPERR is to minimize the drop in performance on older tasks when
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the model is trained on a new task (i.e., a new hospital). WUPERR attempts to achieve this goal

through consolidation of network parameters important to model performance on prior tasks and

episodic experience replay (by maintaining sample data representations during prior training and

periodically revisiting those examples at new task). To achieve privacy, WUPERR replaces raw

patient-level features with hidden representations learned via a neural network (i.e., lower level

of the neural network), thus obviating the need for moving protected health information outside

institutional boundaries.

In this chapter, we delve deep into the details of WUPERR, elucidating its functionality

and nuances as a representative of continual learning approaches in clinical domain. We further,

evaluate it against established and widely-recognized baseline algorithms in this domain. Through

this comprehensive exploration, we aim to provide a clear understanding of WUPERR’s unique

attributes and its standing in the realm of continual learning within the healthcare domain.

2.2 Methods

2.2.1 Study Populations

In this study, we employed a cohort comprising 104,000 adult patients admitted to

Intensive Care Units (ICUs) across four geographically distinct healthcare institutions: UC San

Diego Health, Emory University Hospital, the Beth Israel Deaconess Medical Center, and Grady

Hospital, referred to as Hospital-A through Hospital-D respectively. Our analysis rigorously

adhered to all relevant guidelines and regulations. The Institutional Review Boards (IRBs) of

UC San Diego (IRB#191098), Emory University/Grady Hospital (IRB#110675), and the Beth

Israel Deaconess Medical Center (IRB#0403000206) approved the use of the de-identified data

for this study. Furthermore, the requirement for informed patient consent was waived by these

IRBs, as the Health Insurance Portability and Accountability Act (HIPAA) privacy regulations

exempt the use of de-identified retrospective data from this prerequisite.

Patients in the cohort, all aged 18 years or above, were tracked throughout their ICU stay
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until the onset of their first sepsis episode or until their transfer out of the ICU. We used the

definitions provided by the Third International Consensus Definitions for Sepsis (Sepsis-3). The

diagnostic criteria for sepsis onset in our study were twofold: (1) an indication of an infection

(2) evidence of acute organ dysfunction through at least 2 point changes in SOFA score.

Evidence of Acute Organ Dysfunction: This was identified by a notable increase in the

Sequential Organ Failure Assessment (SOFA) score by a minimum of two points. We took into

consideration organ dysfunction symptoms that manifested between 48 hours prior and 24 hours

post the time an infection was suspected.

Suspicious of Infection: Clinical signs an infection was defined by specific actions –

namely, the initiation of a blood culture draw and the subsequent administration of intravenous

(IV) antibiotics for a period of at least three consecutive days. The sequencing of these actions is

important: if the blood culture was drawn before the antibiotics were prescribed, the antibiotics

had to be administered within the next 72 hours. Conversely, if the antibiotics were prescribed

first, the blood culture had to be initiated within the subsequent 24 hours.

The onset time of sepsis was identified then as the earliest time of suspicious of infection

and evidence of acute organ dysfunction. We focus on predicting sepsis hourly, starting from

the fourth hour post ICU admission.This timeframe ensures adequate initial patient assessment

and stabilization, as well as a comprehensive data collection scope for predictive purposes. We

excluded patients diagnosed with sepsis before our prediction onset, those lacking heart rate

or blood pressure measurements prior to prediction initiation, and individuals with ICU stays

exceeding 21 days.

2.2.2 Data Preprocessing

A total of 40 clinical variables were extracted across the four hospitals (see Table 2.1).

Additionally, for every vital signs and laboratory variable, their local trends (slope of change)

and the time since the variable was last measured (TSLM) were recorded, resulting in a total

of 108 features (the same set of variables have been used in a previously published study [32]).
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The patient characteristics of all the four cohorts have been tabulated in Table 2.3. Figure

2.1 illustrates the differences in race ethnicity across the four datasets. Table 2.2 shows the

missingness percentage acccross the four cohorts. All continuous variables are reported as

medians with 25% and 75% interquartile ranges (IQRs). Binary variables are reported as

percentages. All vital signs and laboratory variables were organized into 1-hour and 1-day

non-overlapping time series bins to accommodate for different sampling frequencies of available

data for the sepsis cohort. All the variables with sampling frequencies higher than once every

hour (or day) were uniformly resampled into 1-hour (or 1-day) time bins, by taking the median

values if multiple measurements were available. Variables were updated hourly when new data

became available; otherwise, the old values were kept (sample-and-hold interpolation). Mean

imputation was used to replace all remaining missing values (mainly at the start of each record).
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Table 2.1. List of Clinical variables used for hourly prediction of the risk of developing sepsis

Variable Measurement Unit

Vital Signs (Dynamical Features)

Heart rate beats/minutes

Mean Arterial Pressure mmHg

Pulse oximetry %

Diastolic BP mmHg

Temperature degC

Respiration rate Breaths/minutes

Systolic BP mmHg

End tidal Co2 mmHg

Systolic BP mmHg

End tidal Co2 mmHg

Laboratory values (Dynamical Features)

Excess bicarbonate mmol/L

Serum Glucose mg/dL

Bicarbonate mmol/L

Lactic acid md/dL

Fraction of inspired Oxygen %

Magnesium mmol/dL

pH -

Phosphate mg/dL

Partial Pressure of CO2 mmHg

Potassium mmol/L

Oxygen Saturation %
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Table 2.1. List of Clinical variables used for hourly prediction of the risk of developing sepsis

Variable Measurement Unit

Total Bilirubin mg/dL

Aspartate transaminase IU/L

Troponin I ng/mL

Blood Urea Nitrogen mg/dL

Hematocrit %

Alkaline Phosphate IU/L

Hemoglobin g/dL

Calcium mg/dL

Partial thromboplastin time Seconds

Chloride mmol/L

White blood count 103/L

Creatinine mg/dL

Fibrinogen mg/dL

Bilirubin direct mg/dL

Platelets 103/L

Demographics

Age Years

Pre ICU Stay Hours

Gender Male/Female

ICU Length of Stay Hours

Careunits Medical/Surgical ICU
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Table 2.2. Summary of missingness percentage of the variables across four cohorts considered
in this study.

Labs/Vitals
Hospital-A
%missing

Hospital-B
%missing

Hospital-C
%missing

Hospital-D
%missing

Heart rate 11.90 13.64 1.95 9.94
Pulse oximetry 13.10 15.61 2.04 17.90
Temperature 63.37 66.74 5.80 46.53
Systolic BP 36.79 15.38 2.25 10.69

Mean arterial pressure 37.00 16.41 2.02 11.57
Diastolic BP 36.80 15.39 2.26 10.69

Respiration rate 13.04 21.47 1.96 11.34
End tidal CO2 88.36 93.62 90.51 97.32

Excess bicarbonate 96.99 99.81 93.12 95.63
Bicarbonate 97.00 99.86 91.34 99.68

Fraction of inspired Oxygen 80.41 97.85 41.66 90.98
pH 96.98 97.88 88.40 95.57

Partial pressure of CO2
from arterial blood 97.00 98.87 79.46 95.63
Oxygen saturation
from arterial blood 97.00 98.20 80.55 99.72

Aspartate transaminase 97.82 98.17 69.40 96.55
Blood Urea Nitrogen 92.44 94.38 84.22 92.76
Alkaline phosphatase 97.81 98.17 88.69 96.55

Calcium 92.54 93.07 83.99 92.72
Chloride 92.55 99.44 83.65 92.75

Creatinine 92.50 94.37 88.15 92.74
Bilirubin direct 99.26 99.77 95.07 96.55
Serum Glucose 92.48 78.32 42.25 82.45

Lactic acid 98.59 98.23 91.34 98.06
Magnesium 94.16 95.23 76.42 95.07
Phosphate 94.60 97.07 87.74 95.73
Potassium 92.01 92.37 43.51 92.68

Total Bilirubin 97.84 98.16 73.09 96.55
Troponin I 98.63 97.90 72.17 98.67
Hematocrit 92.45 94.19 43.68 92.44

Hemoglobin 92.44 94.14 89.73 89.69
Partial Thromboplastin Time 96.09 99.06 89.95 99.37

White Blood Cell count 92.45 94.69 89.08 92.82
Fibrinogen 99.40 99.51 99.81 99.55
Platelets 92.46 94.63 84.59 92.84
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Table 2.3. Summary of patient characteristics of the four cohorts considered in this
study(including University of California San Diego Health, Emory University Hospital, MIMIC
IV, and Atlanta’s Grady Hospital, referred to as Hospital-A, Hospital-B, Hospital-C, and Hospital-
D respectively)
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Figure 2.1. Distribution of race/ethnicity per cohort
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2.2.3 Continual Learning

Continual learning, often referred to as ”lifelong learning” or ”incremental learning”,

embodies the concept of training machine learning models to learn progressively over time.

Instead of a one-time training on a fixed dataset, these models are designed to learn new

information without forgetting the previously acquired knowledge. This capability is crucial in

clinical setting where data streams are non-stationary over the time, arriving sequentially, and

where retraining a model from scratch every time is inefficient. Continual learning is inspired by

the human brain’s ability to acquire and integrate new knowledge over time without necessarily

forgetting past experiences. The brain possesses several mechanisms for lifelong learning, which

researchers aim to mimic through continual learning approaches.

One of the most remarkable attributes of the human brain is its neuroplasticity, the ability

to reorganize itself by creating new neural connections throughout life [33]. This plasticity

allows humans to adapt to new experiences, learn new information, and even recover from brain

injuries. In continual learning for DL models, this adaptability is replicated by allowing models

to modify their weights in response to new data, while we need to ensure important parameters

remain relevant to prior tasks as they encounter different tasks or data distributions.

The strengthening and weakening of synapses is believed to underlie the storage of

memories in the brain. This process of synaptic consolidation plays a role in how the brain

balances between retaining old memories and forming new ones [34]. In the context of arti-

ficial neural networks, certain weights (analogous to synapses) in the network are protected

or ”consolidated” to prevent them from drastic changes, ensuring that prior knowledge is not

easily overwritten by new information. While the brain’s propensity to forget may seem like a

limitation, there’s growing evidence suggesting that active forgetting is an adaptive process. It

ensures that only pertinent information is retained, while less relevant or potentially misleading

information is discarded. In continual learning, this idea is captured by the selective updating of

model parameters. Not all parts of the model are adjusted for every new task; instead, the model
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”chooses” which parts to update, replicating the brain’s selective memory retention.

The human brain has a hierarchical and modular organization. Different regions of the

brain specialize in different functions, and information processing can occur in a layered manner,

from basic perceptions to complex cognitions [35]. Drawing from this, some continual learning

methods propose modular architectures for neural networks, where different sub-networks or

modules are trained for different tasks, thereby reducing interference between tasks.In addition,

the brain often ”replays” experiences, especially during rest or sleep, which is believed to play

a role in memory consolidation. In the DL context, the replay strategy involves periodically

revisiting old data while training on new tasks, ensuring that the model doesn’t forget its earlier

training.

while artificial neural networks and the human brain are fundamentally different in their

architectures and mechanisms, the principles governing memory retention, adaptability, and

learning in the brain provide invaluable inspiration for developing robust continual learning

strategies in machine learning.

Continual learning approaches can be grouped in to four main types including:

• Rehearsal Methods:Rehearsal methods involve storing some or all of the past data

and ”replaying” them when training on new data. This approach tries to blend old

and new information, ensuring that the model does not drift too far from its previous

knowledge while still accommodating the new data. The primary advantage of replay is

its straightforward nature and the direct way it tackles catastrophic forgetting. However,

the challenge lies in managing the storage requirements especially when dealing with

large datasets, and privacy of patient data by moving them. Some variations of replay,

like ”pseudo-replay”, generate synthetic samples instead of storing actual data, helping

to alleviate these concerns. Replay-based Methods in continual learning have various

innovative implementations. Mnih et al. [36] utlized experience replay for stabilizing deep

reinforcement learning. Experience Replay is perhaps the most straightforward incarnation
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of the replay paradigm. Originally popularized in the context of Deep Q-learning for

reinforcement learning, it involves maintaining a memory buffer that stores previous data

samples. During training, instead of solely using new data, random samples are drawn

from this buffer and mixed with the new data for a more balanced training process.The

primary motivation behind Experience Replay is to break the temporal correlations of

incoming data, providing a more i.i.d (independently and identically distributed) experience

to the model. This helps mitigate catastrophic forgetting as the neural network gets

reminders of its past knowledge. However, managing the size of the replay buffer becomes

crucial as one needs to strike a balance between the diversity of samples and storage

limitations. The other approach are Generative Replay methods. Generative Replay

leverages generative models, like Generative Adversarial Networks (GANs) or Variational

Autoencoders (VAEs), to generate synthetic samples of past data. Instead of storing actual

past examples, a generative model is trained to capture the distribution of previous datasets.

When new tasks come in, this generative model can produce synthetic examples from past

tasks which are then combined with the new data for training. The strength of Generative

Replay lies in its ability to produce a potentially infinite amount of data from previous

tasks without the need for extensive storage. However, the quality of the replay and the

efficacy of the continual learning process are dependent on the quality of the generative

model. Poorly generated samples can negatively affect the learning process [37].The last

well-known replay approach is Pseudo-Rehearsal [38].Pseudo-Rehearsal is a variant of

replay where, instead of using generative models, a separate neural network is employed

to produce ”pseudo-samples.” This network, trained on earlier tasks, generates outputs for

random inputs, effectively creating synthetic examples that capture the characteristics of

past tasks.Pseudo-Rehearsal can be seen as a form of distillation, where the knowledge

from one network is transferred to another. It has the benefit of not requiring the explicit

storage of old data samples and not being dependent on sophisticated generative models.

However, the quality and diversity of pseudo-samples can vary, and their appropriateness
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for the task can sometimes be a concern [38].

• Regularization-based Methods:These methods add constraints to the neural network’s

loss function to prevent drastic changes in the learned weights when training on new tasks.

The aim is to ensure that the updated weights after learning a new task remain close to the

original weights from prior tasks. One prominent technique in this category is ”Elastic

Weight Consolidation” (EWC), which penalizes changes to network weights that are

important for previous tasks [30]. This method allows for the retention of old knowledge

while making room for the new. The challenge here is determining the importance of

weights and ensuring that the regularization does not overly constrain the learning of new

tasks. EWC introduces a regularization term to the loss function that penalizes changes

to network weights that were important for previously learned tasks. EWC achieves

the importance of weights by computing the Fisher Information Matrix, a measure that

identifies which weights in the network are crucial for the tasks the model has already

learned.

Synaptic Intelligence (SI) is another regularization based method that, like EWC, focuses

on identifying important weights in the network [39]. However, instead of the Fisher

Information, SI computes a surrogate measure for the importance of each weight by

considering the contribution of the weight to the overall loss over its entire learning

trajectory. When training on a new task, SI imposes a penalty on weights with higher

importance values, ensuring they don’t change drastically. This method is particularly

notable for its efficiency, as it requires fewer computations than EWC.

Cuong et al. [40] introduce Variational Continual Learning (VCL) as a regularization

based method which employs a Bayesian neural network approach for continual learning.

Instead of single-point estimates for each weight, VCL maintains a distribution over the

weights.This method addresses catastrophic forgetting by incorporating the uncertainty

inherent in neural network training. As new data comes in, the posterior distribution from
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the previous task becomes the prior for the next task. With this approach, VCL provides a

principled method to update the neural network’s weights while considering the uncertainty

associated with them.

• Dynamic Architectural Methods: Within this approach instead of fitting all the knowl-

edge into a fixed architecture, these methods dynamically modify the network structure.

For instance, as new tasks arrive, new neurons or layers might be added to the network.

Progressive Neural Networks is a notable technique in this category, where each new task,

or data distribution gets a new set of neurons, and these neurons are interconnected. These

approaches address the catastrophic forgetting through avoiding overwritten to previous

knowledge. The primary challenge with dynamic methods is the potential growth in the

network’s size, making it less efficient over time. Andrei et al. [41] introduce ProgNNs,

the idea of adding new columns or sub-networks for each new task. Essentially ProgNNs

preserves the weights and structure of a network as they are when a new task arrives.

Instead of retraining the network, a new column is added to netwrok. New connections

allow the new column to access the representations of previous ones, but not vice versa,

ensuring that the new task does not interfere with the already learned tasks. The downside

of ProgNNs is the potential for the model size to grow substantially with each new task.

DENs [42] take a more flexible approach compared to ProgNNs by allowing for selective

expansion of the network. DEN is trained in an online manner trough performing selective

retraining, dynamically expansion of network with only the necessary number of units.

DEN evaluates which parts of the network to expand, rather than adding an entirely new

column of neurons. DEN freezes the previously learned weights, then identifies which

parts of the network are crucial for the new task and, based on this analysis, decides

where to expand the network. Furthermore, DEN has a pruning process to remove less

important neurons to maintain efficiency. In [43] as new tasks arrive, the model undergoes

architecture optimization to determine the most effective structure for accommodating
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the new data or task without forgetting the old. In this work, authors employs Neural

Architecture Search (NAS) techniques to dynamically adapt the architecture of the network

for sequential learning. Instead of manual or heuristic-based decisions on how the archi-

tecture should change, NAS automates the process, searching for the optimal structure that

can cater to both new and old tasks. Though promising, a significant challenge here is

the computational expense associated with NAS to explore search space of all possible

structures.

• Context-based Methods: These methods, through determining the context (or task) at

hand, adjust the network parameters to achieve good performance across various tasks.

Here, different tasks can have dedicated pathways or shared representations in the network.

Context-based methods operate under the assumption that providing a model with task-

specific context improve interference between tasks and eventually avoid catastrophic

forgetting. Context-dependent gating [44], uses a mechanism where certain parts of the

neural network are selectively activated based on the arrival task. This is achieved through

gating mechanisms which ensure that only a specific subset of the network’s units are

active. These gates can be controlled using external signals indicating the current task or

learned in an end-to-end fashion. By ensuring only a subset of neurons are active for any

given task, this approach reduces interference between tasks. The advantage of gating

mechanism is that by limiting the active parts of the network, it minimizes the overlap

and thus reduces the interference between tasks. However, determining the optimal gating

mechanism is challenging.

Task-Embedded Control Networks (TECNs) is another context based approach where a

task embedding, is used to modulate the behavior of a neural network [45]. In TECNs,

first, a task descriptor is computed. This descriptor, or embedding, is then used throughout

the network to modulate its behavior. This can be done through mechanisms like feature-

wise transformations or by influencing gating mechanisms. By embedding task-specific
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information directly into the network’s operations, TECNs ensure that the model is aware

of the current task context, which can help in preserving previously learned tasks and

efficiently learning new ones.

Similarly, in Conditional Neural Processes (CNPs) [46] they utilize context to make

predictions. CNPs take a set of context points and an input, and they produce a distribution

over possible outputs. Effectively they are combining ideas from meta-learning and

Bayesian neural networks. The network here is structured to use context points, adapting

its behavior based on the provided context. For a given task, there is a set of context points

and a set of target points. The context points provide information about the task, and the

target points are what you want to predict. The context points are fed into an encoder,

which produces a fixed-size representation. This context representation aims to capture the

underlying structure of the task based on the context points. The context representation,

along with target inputs, is then passed to a decoder. The decoder produces a distribution

over possible target outputs. This distribution explicitly models the uncertainty in the

prediction. During training, the context points are randomly sampled from the available

data, teaching the CNP to make predictions based on varying amounts of context. This

equips the CNP to handle few-shot scenarios where only limited context might be available.

In the realm of continual learning, they can be seen as a way to use task-specific context to

adjust the model’s behavior rapidly and reduce interference between tasks.

These strategies constitute key components of the extensive spectrum of continual learning

methodologies, each characterized by unique advantages and limitations. The selection of

a suitable approach is typically contingent upon the particularities of the problem at hand,

the characteristics of the incoming data stream, and the extent of computational resources.

Continual learning offers a robust methodology for sequentially mastering multiple tasks

or data stream while preserving efficiency on tasks or data previously learned without

the need for transferring data outside of institutional boundaries. Despite the need for
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robust continual learning algorithms in clinical settings, applications of such methods to

clinical predictive modeling remain scarce [47]. Here we consider a clinically significant

problem involving prediction of sepsis in critically ill patients. Using data across four

sepsis cohorts, we developed and validated a continual learning framework for sequentially

training predictive models that maintain clinically acceptable performance across all

cohorts while preserving patient data privacy.

In our research, we employ continual learning to empower deep predictive models to

learn from data streams incrementally and sequentially, sourced from diverse institutions.

Our objective is to achieve this without the models losing their proficiency on data from

previous hospitals, while simultaneously safeguarding patient data confidentiality. Here,

we introduce the WUPERR algorithm, a novel continual learning strategy. We are inspired

by the idea of replay-based and regularization-based techniques to continual learning. The

subsequent sections will delve into the WUPERR algorithm, detailing its algorithm and

assessing its performance against multiple baseline methodologies in the domain of sepsis

prediction.

2.2.4 WUPERR

WUPERR combines Episodic Representation Replay (ERR) and Weight Uncertainty

Propagation (WUP) to enable continual learning of tasks while mitigating the problem of

catastrophic forgetting. The goal of WUPERR is to minimize the drop in performance

on older tasks when the model is trained on a new task (i.e., a new hospital). WUPERR

attempts to achieve this goal through consolidation of network parameters important to

model prediction on prior tasks (via a targeted weight regularization scheme) and episodic

experience replay (by maintaining sample data representations encountered during prior

training and periodically revisiting those examples during re-training). Figure 2.2 shows

the schematic diagram of the WUPERR algorithm.
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Via the WUPERR algorithm and after we fine-tuning the model on Hospital-A data, we

freeze the shallow (input) layer of the network. By passing the input data through the first

network layer, WUPERR obtains a data representation that we leverage towards continuous

learning (these representations are no longer considered protected health information). To

retain previous knowledge we replay the Hospital-A data representations while fine-tuning

the model on Hospital-B data using a variant of weight uncertainty propagation. Similarly,

as we go to the Hospital-C we carry forward the weight uncertainties for regularization

purposes and fine-tune the deeper layers of the model using the representation of Hospital-

A and Hospital-B, as well as data from Hospital-C data.

Let N, J, K be the number of parameters of the neural network, the number of training

epochs, and the total number of tasks, respectively. At training time of task k, the loss

L( j;θ) calculated at epoch j is as follows:

L( j,θ) = LCE( j;θ)+
γ

2

N

∑
n=1

Ik
n( j−1)(θ k

n ( j−1)−θ
k−1
n )2 (2.1)

where LCE( j;θ) corresponds to the cross-entropy classification loss, θ k
n ( j−1) corresponds

to the n-th parameter of the neural network from the previous epoch, Ik
n( j − 1) is an

approximation of Fisher information (inverse of uncertainty) associated with parameter

θn during task k and epoch j−1. The approximate Fisher information corresponding to

parameter θn during task k and epoch j is computed as follows:

Ik
n( j) = β ∗ Ik

n( j−1)+(1−β )(
∂L( j;θ)

∂θ k
n

)2 (2.2)

Note that the magnitude of the gradient corresponds to the degree of steepness of the

loss surface around a point in the parameter space, which in-turn provides a measure of

information gain. For task k(k = 2, . . . ,K), Ik
n is initialized as max(I1

n , ..., I
k−1
n ).

Bayesian Optimization is used to optimize regularization parameter (equation (2.1)) and
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uncertainty estimation moving average parameter (equation (2.2)).

Note that, after task 1 (Hospital-A), parameters corresponding to the first layer of the

neural network are frozen (a.k.a representation layer). Additionally, after completion of

training on each Task k, the hidden representations (hk
1; output from the first layer of neural

network) corresponding to a random sample of patients from Hospital-k are stored. From

Task 2 onwards, we fine-tune the neural network (except for the first layer) with data from

the new patient cohort (Hospital-k) and hidden representations stored from previous tasks.

2.2.5 Baseline models

The performance of the WUPERR algorithm was compared against four baseline models,

listed below:

– site-specific training: In this approach, we trained the model in isolation at each

hospital site wherein a new model is trained on each task independently.

– Transfer learning: Transfer learning is a technique where a model developed for

a particular task or data distribution is repurposed on a second related task or data.

It is most effective when the features learned from the first task are relevant to the

ongoing tasks. Transfer learning assumes that the source and target tasks are derived

from the same feature space, as a result of which transferring knowledge from prior

tasks might accelerate the learning procedure on new tasks and thereby improve

model performance.However, one of the challenges that arises in transfer learning

is the issue of domain shift, where the data distribution of the source domain is

different from the target domain [48].To address this, transfer learning techniques

often incorporate fine-tunings.

* Transfer learning: In this approach, parameters of the neural network after

training on task k-1, was transferred over to task k and were further fine-tuned

using data from task k.
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Figure 2.2. Schematic diagram of the WUPERR algorithm. The training starts with a randomly
initialized set of weights, which are trained on the first task (e.g., prediction on Hospital-A
data). In all subsequent learning tasks the input layer weights (W A

1 ) are kept frozen. The optimal
network parameters, the parameter uncertainties under task-A, and the set of representations
from training cohort of Hospital-A ({hA

1}) are then transferred to Hospital-B. The deeper layers
of the model are fine-tuned to perform the second task (e.g., prediction on Hospital-B data)
through replaying the representation of Hospital-A and Hospital-B data. Similarly, the optimal
parameters and their uncertainty levels along with the Hospital-A and Hospital-B representations
are transferred to Hospital-C to fine-tune the model on performing the third task. Note, at no time
protected health information (PHI+) leaves the institutional boundaries of a given hospital.Finally,
at the time of evaluation (on testing data) at a given task, the model is evaluated on all the hospital
cohorts.
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* Transfer learning-freeze:In this approach, the first layer of the neural network

was frozen after training on task 1. Parameters of the neural network after

training on task k-1, were transferred over to task k and were further fine-tuned

(all layers except the first layer) using data from task k.

– Elastic weight Consolidation (EWC) [30]: EWC balances the trade-off between

stability and plasticity to avoid forgetting in incremental task learning. EWC through

protecting previously learned knowledge, allows the network to maintain existing

knowledge (stability) and still have the ability to learn new information (plasticity).

This balance is critical in achieving effective continual learning without suffering

from catastrophic interference. EWC relies on regularization terms to avoid forget-

ting. EWC protects the neural network performance on old tasks by slowing down

the learning process on selected weights and staying in a region corresponding to

lower error for prior tasks while learning a new task.To identify weights that carry

more information, EWC relies on a fisher information matrix. EWC is formalized

mathematically by adding a regularization term to the loss function during training.

Let a neural network has parameters θ , after fine-tuning on task 1 we have θ ∗, then

we want our neural network to learn task 2.EWC adds a quadratic penalty to the loss

function L2(θ) for new task, leading to the modified loss function 2.3:

Here,λ is the a hyperparameter that controls the strength of the regularization,θi

represents the individual parameters of the network, and i represents the diagonal

elements of the Fisher Information Matrix of task 1, evaluated at θ ∗. A large value

of i indicates that the i-th parameter is very important for preserving the performance

on task 1, and therefore, the penalty for changing it is high.

L(θ) = L2(θ)+
λ

2
ΣiFi(θi −θ

∗
i )

2 (2.3)

– Episodic Representation Reply (ERR):In ERR, we use representations of data

30



from previous tasks in addition to data from the current to fine tune a model. I’m We

observed the greatest changes in the network weights at the deeper layers, which may

suggest that these layers are more important to learning a new task. consequently,

it was observed that freezing the weights within the first network layer had little

effect on the ability of the network to adapt to a new dataset. This enabled us

to use the first layer (after training on Task 1) as an encoding network to obtain

representations for the upper network layers. From Task 2 onwards, we used these

input data representations at every new site, in conjunction with the representation of

data from prior sites, to train the model. The latter (i.e., replaying data representations

from prior tasks) enabled the network to remember the older tasks while learning

from a new dataset.

2.3 Results

We evaluated the performance of the proposed continual learning algorithm for early

prediction of onset of sepsis in hospitalized patients across four healthcare systems. A

comparative study of WUPERR against several baseline models is shown in this section.

2.3.1 Evaluation metrics

To gauge the effectiveness of the continual learning models, we conducted a compara-

tive analysis of each approach utilizing the Clinical Workflow aware AUC (C-AUC) as

introduced by Shashikumar et al. [49], alongside metrics such as Positive Predictive Value

(PPV) and Sensitivity. We proceed to detail modifications to the c-AUC algorithm and

elucidate why substituting AUC with c-AUC is imperative in the context of this study.

Although, well-known performance metrics such as the Area Under the Receiver Operating

Characteristic Curve (AUC) and the Area Under the Precision-Recall Curve (AUCpr) are
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standard benchmarks for evaluating the efficacy of predictive models. However, in the

context of healthcare we need to define a suitable and more specific quality metrics.

In healthcare setting two types of data available: longitudinal, where patient data is

recorded over time as a sequence, and static, where a single-time-point snapshot of patient

information is captured. Our research focuses on models that process longitudinal or

time-sequenced patient data. The AUC and AUCpr metrics are enable to account the

temporal dimension of the data, considering each data point independently of its place

in time. To address this,Shashikumar et al. [49] introduce the Clinical Workflow Area

Under the Curve (C-AUC), which has been conceptualized with two critical considerations

in mind: firstly, it’s metric for evaluating the Clinical Decision Support (CDS) system

application and secondly, its accommodation for the sequential progression of patient data.

The first modification that they make to the AUC/AUCpr metric is that any predictions

after a positive prediction has been made are ignored for a fixed duration (which they call

as ‘snooze duration’).

The second alteration addresses the progressive nature of conditions like Sepsis, which

doesn’t manifest suddenly but develops over time, making it challenging to pinpoint a

precise moment of onset. Such gradual progression is not acknowledged by traditional

AUC/AUCpr metrics. These metrics assign a binary label, negative until four hours before

the diagnosed onset of the disease, switching to positive in the four-hour window leading

up to the disease’s actual onset. This abrupt binary classification penalize predictive

models. For instance, if a model predicts the onset of the disease earlier than four hours

before the actual onset, this would be inaccurately recorded as a False Positive. Such

predictions outside the designated four-hour predictive window are erroneously penalized.

To mitigate this issue and reduce unfair penalization for early predictions, they propose a

refinement in the computation of False Positives (FP), True Positives (TP), False Negatives

(FN), and True Negatives (TN) by adjusting the criteria to accommodate predictions made
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before the horizontal window.

Here,we tried to develop a generalizable DL model that can predict the onset of sepsis four

hours in advance. So corresponds to the [49] the FP,TP,FN and TN is:

– FP: makes a positive prediction - M hours prior to the onset of sepsis (here we cosider

M=12 hours) for septic patients or at any point of time for non-septic patients.

– TP: makes a positive prediction - within M hours prior to onset of sepsis

– FN: makes a negative prediction - between four hours prior to onset of sepsis

– TN: makes a negative prediction four hours prior to onset of sepsis for septic patients

or at any point of time for non-septic patients.

In our research, we define a timeframe referred to as ’positive prediction duration’, denoted

by M,to be 12 hours. This duration is the time-frame within which the model is not

penalized for positive prediction for the onset of sepsis.Therefore, any positive prediction

made by the model within this 12-hour window leading up to the actual occurrence of

sepsis is considered acceptable and not subject to penalty.However, it is important to

note that the model will still incur a penalty if it fails to predict sepsis within the critical

four-hour period before the onset of sepsis.

Finally, the proposed C-AUC in [49] takes into consideration both the first modification

and second modification.

In our study, we fixed the snooze duration at 6 hours and positive prediction at 12 hours

while computing C-AUC/C-AUCpr.

2.3.2 Evaluation setting

The WUPERR framework was used to train a model to sequentially predict the onset of

sepsis (defined according to the Sepsis-3 consensus definitions for Sepsis and Septic Shock)
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four hours in advance [50]. To investigate the impact of variations in data distributions

on our model performance, we trained our model sequentially on over 104,000 patients

belonging to four critical care centers with various underlying demographic characteristics.

The model was first trained on the Hospital-A dataset (Task 1), followed by Hospital-B

(Task 2), Hospital-C (Task 3) and Hospital-D (Task 4).

We compare the performance of WUPERR algorithm in terms of c-AUC, PPV, and

Sensitvity with other five baseline continual learning methods for a fixed threshold of

sensitivity equals to 0.8 at hospital-A. Figure 2.3 displays evaluation of continual learning

models for early prediction of sepsis using PPV metric. 2.3a illustrates the positive

predictive value (PPV) of four separate models trained at each site separately on all the

other sites. In all cases, PPV was calculated at a fixed threshold, corresponding to 80%

sensitivity at Hospital-A. For instance, the model trained at hospital-C (with PPV of 31%)

performs poorly on hospital D (PPV of 24%). Figure 2.3b illustrates the model PPV on

sequentially learning to predict the onset of Sepsis across four distinct hospitals using

Transfer learning.Figure 2.3 (c-f) shows the same for Transfer-Learning-Freeze, Elastic

Weight Consolidation (EWC), Episodic Representation Replay (ERR), and the proposed

WUPERR method, respectively.Figure 2.3g shows PPV values on Hospitals A-C after

continual learning on all four hospitals with site-Specific (orange), Transfer learning (red),

EWC (green), ERR (purple) and WUPERR (blue). Similarly, Figure 2.4, and 2.5 illustrate

the assessment of WUPERR performance on predicting onset of sepsis and other five base

line continual learning models in terms of C-AUC, and Sensitivity respectively.
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Figure 2.3. Evaluation of continual learning models for early predicting of onset of Sepsis.
Evaluation of continual learning models for early prediction of sepsis using PPV metric.In all
cases, PPV was calculated at a fixed threshold, corresponding to 80% sensitivity at Hospital-A.
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Figure 2.4. Evaluation of continual learning models for early predicting of sepsis measured
using C-AUC metric.
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Figure 2.5. Evaluation of continual learning models for early predicting of sepsis. Same as the
previous figure but here we summarize the model sensitivity at the fixed threshold.
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Throughout the subsequent stages of our experimental analysis, we maintained the in-

tegrity of the context while streamlining our comparison process. We focused solely on

benchmarking our algorithm against a baseline transfer learning method for clarity and

conciseness.This approach allows for a more direct and focused analysis of our proposed

method’s performance.

Figure 2.6, panels a-c, show the performance of WUPERR on the four hospital datasets,

where the model was trained on one cohort at a time and the performance is reported on

testing data from all other cohorts (previous and subsequent cohorts). With the transfer

learning approach, we observed that with the progression in training on new cohorts the

model performance degenerated on previous cohorts. Whereas sequential training by

WUPERR enabled the model to maintain comparable performance on older tasks. For

example, at the end of Task 4 with transfer learning, AUC of the model on Task 2 was

0.90 [0.89-0.91], a drop from the AUC of 0.93 [0.92-0.94] when the model was trained on

the data from Hospital-B (corresponding to task 2). In comparison, at the end of Task 4

with WUPERR, the model maintained its performance on Task 2 with an AUC of 0.93

[0.91-0.94]. Notably, we observed that the superiority of WUPERR over transfer learning

grow as the number of subsequent training cohorts the model was exposed to increased

(see Fig. 2.6, panel c, performance on Hospital-A at the end of training on hospital-D).

Additionally, we observed that at the end of Task 4, the model trained with the WUPERR

approach performed superior to transfer learning across all the Hospital cohorts (See Fig.

2.6b).

In Fig. 2.7 we compared the positive predictive value (PPV) of the model sequentially

trained on four cohorts using the WUPERR approach versus the baseline transfer learn-

ing approach. A decision threshold corresponding to 80% sensitivity was chosen after

completion of training on Task 1. This decision threshold was then used to measure

positive predictive value (PPV) for all the remaining tasks. We observed that WUPERR
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consistently outperformed the transfer learning approach across all the tasks (See Fig.

2.7a-c). For instance, with WUPERR the positive predictive value (PPV) for Hospital-A

improved from 37.28 [35.57-37.69] after Task 1 to 39.27 [38.11-39.78] by the end of Task

4, whereas with transfer learning approach the positive predictive value (PPV) dropped to

31.28 [30.11-31.78] by the end of Task 4.

Additionally, WUPERR was able to maintain consistent sensitivity levels on the Hospital-A

cohort while being sequentially trained on Tasks 2, 3, and 4 (79.70 [78.50-82.57], 79.76

[79.57-81.20], 80.06 [79.87-81-50], respectively). In comparison, the sensitivity level on

the Hospital-A cohort dropped below 80% when the model was trained on Tasks 2, 3 and

4 in the case of transfer learning approach (See Fig. 2.7d). Similar patterns for sensitivity

were observed for the other hospital cohorts.

Lastly, we evaluate the resilience of WUPERR to the sequence of datasets in which the

model is trained. Figures 2.8,2.9, 2.10, and 2.11 display the performance assessment of

our proposed WUPERR algorithm against standard Transfer-Learning-based continual

learning approaches while the order of datasets is swapped. This is done using PPV

and Sensitivity as metrics for the early prediction of Sepsis, under conditions where

the sequence of hospital datasets is altered. From these observations, it is evident that

WUPERR maintains its robustness regardless of the training sequence, and it consistently

surpasses the Transfer-Learning approach.
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c

Figure 2.6. Evaluation of continual learning models for early predicting of onset of Sepsis,
redmeasured using Area Under the Curve (C-AUC) metric. Panel (a) Illustrates C-AUC of a
model (median[IQR]) trained using transfer learning. The model performance is reported (using
different markers; see legend) across all the cohorts after sequential training on data from a given
hospital on the x-axis. Panel (b) shows the C-AUC of the proposed WUPERR model, under
the same experimental set-up as panel (a). redAt the time of evaluation (on testing data) at a
given site, the model is evaluated on all the hospital cohorts. The solid line-style indicates that
at the time of model evaluation (on testing data) at a given site, the model had already seen the
training data from that site. For instance, since the model is first trained on Hospital-A data, the
performance of the model on this dataset after continual learning on all subsequent hospitals is
shown in solid line-style to signify that the model had already seen this patient cohort in the past.
Panel (c) summarizes the model performance (median[IQR]) on Hospitals A-C after continual
learning on all four hospitals with Transfer learning (red) and WUPERR (blue).
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Figure 2.7. Evaluation of continual learning models for early predicting of onset of Sep-
sis,measured using positive predictive value (PPV) and sensitivity. Panel (a) Illustrates the PPV
of a model (median[IQR]) trained using transfer learning (measured at fixed threshold of 0.41
corresponding to 80% sensitivity at Hospital-A after Task 1, for all folds and across all tasks).
Panel (b) shows the PPV of the proposed WUPERR model, under the same experimental set-up
as panel (a). Panel (c) summarizes the model performance (median[IQR]) on Hospitals A-C
after continual learning on all four hospitals with Transfer learning (red) and WUPERR (blue).
Panels (d-f) summarize the model sensitivity results under the same experimental protocol.
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In all the aforementioned assessment strategies, we utilized data from Hospital-A to

train the representation layer, which constitutes the initial layer of our neural network.

Once this layer was trained, we fixed its parameters across subsequent processing tasks.

Consequently, the quality of data from Hospital-A is pivotal for effectively training

representation layer. Additionally, we evaluated the network’s performance when Hospital-

D was designated as the initial training task (see Fig.2.12 and Fig.2.13). The PPV for

Hospital-C, after the model sequentially learned from Hospital-D, Hospital-C, Hospital-B,

and finally Hospital-A, was found to be 23.50[22.89-23.73]. In contrast, the PPV for

Hospital-B, when the learning sequence was Hospital-A, Hospital-B, Hospital-C, and

then Hospital-D, yielded a different result of 25.34[24.83-26.59] (comparing Fig.2.12 and

Fig.2.7).
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Figure 2.8. Evaluation of continual learning models for early predicting of onset of Sepsis.
The performance measured using PPV metric while tasks reordered as Hospital-A, Hospital-C,
Hospital-B, and Hospital-D.
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Figure 2.9. Evaluation of continual learning models for early predicting of onset of Sepsis.
The performance measured using sensitivity while tasks reordered as Hospital-A, Hospital-C,
Hospital-B, and Hospital-D.
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Figure 2.10. Evaluation of continual learning models for early predicting of onset of Sepsis.
The performance measured using PPV metric while tasks reordered as Hospital-A, Hospital-B,
Hospital-D, and Hospital-C

45



a b

c

Figure 2.11. Evaluation of continual learning models for early predicting of onset of Sepsis. The
performance measured using Sensitivity metric while tasks reordered as Hospital-A, Hospital-B,
Hospital-D, and Hospital-C
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Figure 2.12. Evaluation of continual learning models for early predicting of onset of Sepsis
measured using PPV metric (tasks reordered as Hospital-D, Hospital-C, Hospital-B, and Hospital-
A).
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Figure 2.13. Evaluation of continual learning models for early predicting of onset of Sepsis
measured using Sensitivity metric (tasks reordered as Hospital-D, Hospital-C, Hospital-B, and
Hospital-A).
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2.4 Discussion

In this study we designed and validated a continual learning algorithm for training gener-

alizable clinical predictive analytics models across multiple patient cohorts. WUPERR

integrates rehearsal memory with weight uncertainty propagation, and enables clinical

deep learning models to learn new tasks while maintaining acceptable performance across

prior tasks. We evaluated our proposed algorithm on four consecutive tasks involving

early prediction of sepsis in hospitalized patients. Our results indicate that WUPERR can

successfully deal with data distribution shifts that often adversely affect the generalizability

of clinical predictive models. By the virtue of using data representations for continual

learning, WUPERR allows the raw training data to remain at each site and therefore

maintains privacy and autonomy of healthcare data. We compared WUPERR against

several baselines, including Transfer Learning [51], EWC [30], and Experience Replay

using three clinically relevant performance metrics, namely AUCroc, Positive Predictive

Value, and Sensitivity. One may expect that learning a site-specific model should achieve

the best performance, although such a model may not generalize well to external sites.

WUPERR outperformed baseline Transfer Learning and EWC in terms of all three metrics

to alleviate forgetting. One of the main advantages of WUPERR is the ability to learn from

embedded representation of data points which makes WUPERR an appropriate approach

for privacy-preserving continual learning.

Research on machine learning and deep learning has produced promising results in identifi-

cation, diagnosis, and delivery of treatments in healthcare [52, 53]. Improved performance

of deep learning algorithms comes at the cost of requiring large and diverse datasets [54].

However, patient privacy and data governance considerations have contributed to data silos

and have made the task of constructing large multicenter datasets impractical. Some of the

challenges of learning complex models from data silos have been addressed by Federated

learning, where a decentralized learning algorithm relies on local model updates to con-

49



struct a global model [55–57]. Huang et al., introduced the community based federated

learning (CBFL) framework to predict prolonged ICU stay and mortality [58]. Qayyum et

al., used clustered federated learning (CFL) for identifying patients with Covid-19 [59]. In

the subsequent chapter, our focus shifts to the exploration of federated learning, where

we introduce an innovative aggregation algorithm tailored for this paradigm. Although

federated learning is promising, but federated learning models tend to learn an average

model that may perform suboptimally within any given local site. In particular, standard

federated learning methods do not address the problem of data distribution shift and model

drift that result from differences in patient demographics and workflow-related practices.

On the other hand, continual learning methods (such as WUPPER) allow models to

incrementally learn new tasks while preserving their performance on prior tasks. This

allows a model to adapt to dynamic changes and shifts in data distribution across different

healthcare sites. A recent longitudinal analysis of a sepsis alert algorithm across four

geographically diverse health systems reported significant dataset shift due to a change in

the case-mix over time [60]. As such, algorithm monitoring [32] and continual learning

are needed to ensure such systems adapt to the underlying changes in data distribution and

can maintain a high level of accuracy.

This study has several limitations. The proposed learning method allows a model to adapt

to shifting data distributions across clinical sites, however, a key requirement is the quality

of input data and labels. Recently, conformal prediction was introduced to provide a

probabilistic framework for assessing out-of-distribution samples and to detect outliers

and noisy data [32]. WUPERR can be used in association with conformal prediction to

control the quality of input data at each site for continual learning. In addition, differences

in quality of labels at various sites can pose a challenge to continual learning. Combining

WUPERR with methods for assessing and correcting label noise may provide a mechanism

for training high-quality models. Moreover, WUPERR does not address the problem of
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partial data availability, but recent work in continually growing neural networks can be

combined with WUPERR to design algorithms that can leverage additional variables and

features in new datasets [61,62].Finally, the datasets used in this study were collected from

major academic medical centers and may not be representative of smaller community and

rural hospitals. However, our proposed framework is likely to benefit smaller hospitals that

may not have the necessary resources to maintain large clinical data warehouses, since fine-

tuned pre-trained neural networks have been shown to outperform neural networks trained

from scratch on smaller datasets [63]. In summary, our findings provide significant clinical

evidence for the applicability of continual learning to design and update of generalizable

clinical predictive models.
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Chapter 3

Improving Clinical Deep Learning
Model Generalizability via Federated
Learning

3.1 Introduction

In previous chapter, we discussed the need for generalizable models, and the difficulty of

curating multi-center data to train generalizable models. To protect patient privacy, it has

been suggested that instead of moving data across institutional boundaries, models can be

moved around and learning can occur in a decentralized manner. Federated learning (FL)

is a paradigm that addresses learning with fragmented sensitive data [56, 64].

FL has emerged as a transformative approach in the realm of digital healthcare, offering

a collaborative model of learning that preserve patient privacy and data security. FL

circumvents the traditional barriers to data-sharing, imposed by strict privacy regulations

and ethical considerations, through enabling healthcare institutions to contribute to the

development of robust predictive models without the need for sharing their sensitive patient

data [65].

FL through transferring the model characteristics addresses the problem of data governance

and preserving data privacy for training DL models on multi-center EHR data [66]. FL
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is the problem of training a shared consensus model from decentralized data. This is

particularly beneficial in healthcare settings, where data cannot be aggregated centrally

due to privacy concerns.

The utility of FL in healthcare is further amplified by its capacity to harness the rich, diverse

datasets that are naturally distributed across different institutions. These varied datasets

include a range of patient demographics, different disease prevalence, various treatment

protocols, and treatment outcomes, providing a comprehensive canvas for developing

generalizable models. By combining insights from various sources, FL can result in more

reliable CDS models for clinical decision-making [55].

Federated learning (FL) is being explored extensively in the healthcare domain for its ability

to utilize distributed datasets while maintaining the privacy of the data. [67] provided an

overview of how FL can be applied to healthcare informatics for various disease prediction

and classification tasks. For example, [68] provide a hypothetical study for using FL to

classify breast density from mammograms in real-work setting. In [69] they use FL for

brain tumour segmentation on the BraTS dataset. Cho et al. [70] proposed FL framework

allows each participating site to compute summary statistics from its genetic data cohort

and then shares only these summary statistics with a central server, rather than raw genetic

data. In this study authors conduct Genome-Wide Association Studies (GWAS) across

multiple biomedical datasets without centralizing individual-level genetic data.

FL also opens avenues for continuous learning and model refinement. As healthcare is a

rapidly evolving field, the ability to continuously update models with new data from various

institutions, positions FL as an ideal paradigm for digital healthcare innovation [71].

FL works in a collaborative manner, such that data remains at each health site, and a

globally aggregated model would be exchanged and transferred across sites. FL models are

being designed to tackle statistical heterogeneity, ensuring that the global model remains

robust and performs well across all participating entities [72]. Although, a significant
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concern is the non-IID (independently and identically distributed) nature of EHR data

across different institutions, which can introduce bias and affect the performance of the

global model [73].

Federated learning encompasses diverse architectures, each defining how the collaborative

learning process unfolds among participating entities, such as healthcare institutions, and

potentially a central coordinating server. The chosen architecture is pivotal, as it directly

influences the efficacy, confidentiality, and operational efficiency of the learning system.

The primary types of federated learning structures:

– Centralized Federated Learning (FL): In this structure, there’s a central server that

coordinates the learning process. Each Client (here a healthcare institution) computes

model updates using their local data and sends these updates to the central server.

The central server aggregates these updates to improve the global model and then

distributes the updated global model back to the clients [74].

– Decentralized Federated Learning (FL): This structure removes the need for

a central server. Clients communicate directly with each other to share model

updates [75].

– Hierarchical Federated Learning (FL): This introduces intermediate aggregation

nodes, which can be beneficial for large-scale applications. It typically involves a

layered model where local aggregations are performed in subgroups (e.g., within a

hospital network with same standard), and a higher-level aggregation might occur at

the central server (e.g., across different healthcare systems) [76].

In our research, we have formulated a novel algorithm for updating the global model within

federated learning systems. Our empirical results indicate that this new algorithm surpasses

standard federated learning approaches, which rely on averaging model parameters. For

the sake of simplicity and clarity in our comparative analysis, we adopted a centralized
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architecture. Furthermore, we compare the performance of our federated learning model

in predicting the rsik of sepsis against the continual learning models delineated in the

preceding chapter.

Figure 3.1 illustrates the schematic diagram of the baseline FL approach. Within the FL

model, the server initiates the global network’s parameters randomly and shares the global

weights (i.e., WG) with all the clients (i.e., Hospital A-D). At each iteration of server-client

communication until convergence the following steps occur: each client fine-tunes the

network on the locally kept data and communicates the new weights with the server. The

server updates the global weights using the pre-defined consensus algorithms and shares

the new global weights with all clients.

3.1.1 Research design and methods

3.1.2 Study Populations

For this analysis, we focused on the same problem as the prior study on predicting the

onset of sepsis using four distinct datasets. To develop and evaluate the FL framework, we

randomly split the train data at each center with the same rate of sepsis prevalence into five

non-overlapping batches. Through the FL framework at each iteration, our clients (i.e.,

Hospital A-D) use one of the batches to fine-tune the local model.

3.1.3 Methods

Let k be the number of clients (here k=4, Hospitals A-D)) where the data reside. The

Server randomly initialized our neural network and shared the parameters with all clients.

At each iteration each client fine-tunes the network locally and they communicate the local

updates with the server.

Let Dk denote the data distribution associated with client k (for a total of K nodes) and nk

the number of samples available from the client k. Then N = ΣK
k=1(nk) is the total sample
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Figure 3.1. Block diagram of the Centralized Federated Learning (FL) approach. At each
iteration all the clients (i.e Hospitals A-D) send the locally fine tuned parameters to the server.
Server further shares the sum of weighted scaled parameters with all the clients.
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size and l denotes global loss function obtained via a weighted combination of K local

losses. The FL aims to minimize the l (see equation.3.1):

minWGl(WG) = Σ
K
k=1lk(WG) (3.1)

– Vanilla Federated Learning (baseline): In this approach the global model param-

eters (WG) is the weighted average of fine-tuned model parameters at each client

wk.

WG = Σ
K
k=1(

nk

N
.wk) (3.2)

– Novel Federated Learning Approach: In this approach, after each iteration t all

clients send their fine-tuned model parameters wt
k to the server. The server then

update global weight W t
G according to scaled sum of wt

k.

W t
G = Σ

K
k=1(S

t
k.w

t
k) (3.3)

St
k the scaling factor for weights of client k at iteration t, calculated based on model

performances on external test data at server. The external test data on servers

comprises unseen data from all clients. We calculate St
k as:

St
k =

eAUCk

ΣK
k=1eAUCk

(3.4)

AUCk is the average performance of the k-th model on test data from all clients. As

such, this approach rewards local weights that have a higher overall generalizability.
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3.2 Results

We evaluated and compared the performance of our new FL approach with the vanilla

FL algorithm using the C-AUC metric. Figure 3.2 shows the performance of the global

network updated using the two consensus algorithms on test data after each iteration.

Test data comprises unseen data from all clients and we show the model performance

for test data from each client in a different color and marks. We observed that our novel

approach outperformed the vanilla FL for Hospital-A, Hospital-B, and Hospital-D. We

hypothesize that our novel approach for updating the global network could not perform

well on Hospital-C because of the drift in Hospital-C’s underlying data distribution. Fine-

tuned network parameters from Hospital-C could not perform well on all other hospital’s

unseen data so our approach did not integrate parameters from Hospital-C while the vanilla

FL model that averages the weights integrate more parameters from Hospital-C, and

consequently could not perform well on all other hospitals. So our approach is more robust

against the adversarial data from one client.

We further compare the FL algorithms with WUPERR on the same test data from each

hospital after the model trained on all four hospitals’ data. Figure 3.3 indicates WUPERR

outperformed both FL algorithms on all four hospitals after the model trained on data from

all hospitals, mainly because WUPERR improves the model’s generalizability through

broadening the model’s knowledge while transferring and maintaining the previously

acquired knowledge. On the other hand, the FL approaches are prone to forgetting

previously learned tasks.
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3.3 Discussion

The incorporation of Federated Learning (FL) in healthcare domain has been a burgeoning

area of interest, yielding promising results in protecting patient privacy while enabling

collaborative learning across different institutions. Prior works in this domain have

highlighted FL’s potential in creating robust predictive models for various clinical outcomes

without the need for data centralization. Sheller et al. [77] demonstrated FL’s utility in

brain tumor segmentation tasks, showcasing the model’s adeptness at learning from

distributed data sources while maintaining data confidentiality. Similarly, in [78] Brisimi

et al. highlighted the application of FL in patient-specific heart rate prediction models,

indicating that FL can cater to individual patient characteristics while leveraging a broad

dataset.

Our work extends these foundational studies by introducing a novel algorithm for updating

the global model in the context of sepsis prediction. When contrasted with traditional

FL approaches that rely on model parameter averaging, our approach demonstrates an

enhanced ability to cope with the intrinsic variability of healthcare data across different

hospitals. Furthermore, our method demonstrated superior performance in predicting sepsis

in hospitals A, B, and D. This suggests that the adaptive mechanism of our algorithm

for updating the global network is more effective, especially in environments where data

distributions can significantly diverge, as in the case of Hospital-C.

In the FL landscape, especially within healthcare, our study contributes to the evolving

narrative of how models can be adapted to address the challenges of data heterogeneity

and drift, which are especially pronounced in multi-institutional healthcare datasets. The

results from our investigation highlight the potential of FL in creating more tailored and

adaptive models that do not merely learn across settings but also resist the dilution of

performance that often accompanies the incorporation of outlier data. This exploration
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(a) (b)

Figure 3.2. Evaluation of Federated Learning (FL) models for predicting onset of sepsis using
AUC metrics. Panel (a) represents the model performance on test data using vanilla FL after
each iteration. Panel (b) illustrates the model performance on test data using our novel approach
for updating the global weights after each iteration.
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Figure 3.3. Comparing the model performance on predicting onset of sepsis on test data of four
hospitals after model learned data from all hospitals using proposed WUPERR algorithm, new
proposed Federated learning model and vanilla federated learning.
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into FL’s adaptability and resilience paves the way for further progress in the predictive

analytic technology, ensuring that it continues to align with the complex and dynamic

nature of healthcare data.

Furthermore, when compared with the WUPERR algorithm, it is apparent that while our

FL method advances the capabilities of FL, WUPERR provides an even more enhanced

performance after it has sequentially assimilated data across the four hospitals. WU-

PERR’s strength lies in its ability to acquire new information without forgetting previously

acquired knowledge, a feature that is paramount in healthcare settings where continuity of

information is crucial. This continuous learning approach aligns well with the dynamic

nature of healthcare data, where each patient or hospital may introduce new patterns to the

model.
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Chapter 4

Generating synthetic longitudinal elec-
tronic health records for machine learn-
ing applications

4.1 Introduction

The advent of Generative Adversarial Networks (GANs) in 2014, as introduced by Goodfel-

low et al. [79], was a major turning point in the field of machine learning. GANs comprise

two distinct neural networks that engage to improve their functions: the generator, which

creates data, and the discriminator, which distinguish between real and fake data. This

unique architecture allows GANs to generate new data instances that are similar to real

instances, thus achieving impressive results in generative tasks.

The generator network are able to produce synthetic data that the discriminator network

cannot distinguish it from real data. Meanwhile, the discriminator learns to differentiate

between the generator’s fake data and the real data it has been trained on. Through

iterative training, both networks incrementally improve their performance; the generator

progressively creates more realistic data, while the discriminator enhances its ability to

identify subtle differences that distinguish real data from generated one.

The original GAN framework introduced in [79] has undergone various enhancements to
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improve stability and output quality. These include modifications such as the introduc-

tion of Deep Convolutional GANs (DCGANs) by Radford et al. [80], which incorporate

convolutional neural networks into the GAN architecture, improving the quality of gen-

erated images. Other notable innovations, such as the Wasserstein GAN (WGAN) [81],

address training stability issues by modifying the loss function used to train GANs, thereby

providing more reliable convergence during training.

The training process of GANs involves a finely tuned balance between its components.

If the discriminator becomes too proficient, the generator may fail to improve due to

discouraging gradients. Conversely, a too-powerful generator may produce data that

doesn’t incorporate the diversity and variability seen in real data, a phenomenon known

as mode collapse [82]. Advances in GAN training methods, such as the introduction

of auxiliary classifier GANs (AC-GANs) [83], have aimed to mitigate these issues by

incorporating additional information, such as class labels, to guide the generative process

more effectively.

GANs have achieved remarkable results in producing synthetic data sets in industry.

These models are designed to synthesis data from an initial random noise vector or based

on specific features to which the model is conditioned. With the aim of maintaining

privacy, the foundational principle here is that the synthetic data, generated from random

inputs, must be indistinguishable from actual data. Within the realm of generative models,

GANs have become notably prominent due to their capacity to generate highly persuasive

samples that closely resemble the distribution of actual data. GANs have been successful

in generating complex, high-dimensional data, with proven effectiveness across domains

such as imagery [84], audio [85], text [86], and sequential time-series [87].
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4.1.1 GANs in Healthcare

The increased adoption of EHR has created unprecedented opportunities for advancing

healthcare analytics. However, the sensitive nature of medical data poses significant

privacy challenges that restrict the free exchange of data for research purposes.

In healthcare, the sensitivity and privacy of patient data necessitate solutions that can

utilize data without compromising patient privacy. GANs have emerged as a powerful

tool to address this issue by generating synthetic, yet realistic, EHR data that can be used

for research without compromising patient confidentiality. GANs enable researchers to

overcome privacy constraints while advancing medical research and training AI models.

Choi et al. [88] demonstrated the utility of GANs in creating synthetic patient records,

paving the way for a new era of privacy-preserving data sharing.

Synthetic EHR data generation with GANs not only aids in protecting patient privacy but

also enhances the ability to model complex and rare diseases by creating large, diverse,

and balanced datasets that may not be available in real-world settings due to rarity or

under-reporting. Esteban et al. [89] showcased the successful application of GANs to

create continuous EHRs, which enabled the development of predictive models for clinical

events. The synthetic data generated by these models can accurately reflects the complex

time-related patterns observed in actual patient data, helping in the creation of dynamic

patient profiles for various simulation and modeling tasks.

Another challenge in medical data analysis is the imbalanced nature of datasets, particularly

when it comes to rare diseases or outcomes. GANs can help overcome these limitations by

generating additional synthetic examples of underrepresented classes, leading to improved

predictive modeling. The work by Jones et al. [90] exemplifies how synthetic data can be

used to augment datasets, creating more balanced data that enhance the performance of

classification algorithms. This methodological advancement is particularly relevant for

65



training robust machine learning models that can better predict rare clinical events.

Furthermore, the potential of GANs to generate dynamic EHR data is especially valuable

in addressing the temporal and sequential nature of healthcare data, where patient states

can evolve over time. This ability of GANs to generate dynamic EHR data is transforming

personalized healthcare. By leveraging temporal and sequential data synthesis, GANs can

model the progression of diseases and patient responses to treatments over time. This is

critical for personalized medicine, which focuses on customizing treatments to suit the

unique disease progression of each individual patient. For instance, the Recurrent GAN

(RGAN) and Recurrent Conditional GAN (RCGAN) proposed by Esteban et al. [89] are

specifically designed to generate sequential data that maintain the integrity of temporal

correlations, thereby facilitating more accurate predictive analytics for patient trajectories

and treatment outcomes.

The Temporal GAN (TGAN) proposed by Yoon et al. [87] illustrates how EHR data can

be synthesized to retain temporal relationships, allowing for more accurate modeling of

patient states over time. This is not only beneficial for predictive modeling but also it help

researchers for simulating patient responses to various treatment regimens, aiding them in

decision-making and treatment planning.

In the domain of synthetic EHR data creation, the use of GANs comes with its own set of

intricate challenges. In our study, we use GANs to fabricate synthetic EHR data, ensuring

that the privacy of sensitive information is upheld. Through this process, we maintain

the balance between data utility and patient data confidentiality, addressing the nuances

that arise when GANs are applied to health-related data, which is inherently complex and

multifaceted.

The diagram depicted in Figure 4.1 illustrates the architecture of our proposed model,

which is meticulously engineered to generate high-fidelity synthetic EHR data. This model,

inspired by a framework presented in [91], is designed to retain the critical statistical
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properties that are essential for subsequent analytical tasks while ensuring the stringent

privacy requirements of the original dataset are met.

Our model integrates a robust encoding and decoding mechanism that capably handles

the features characteristic of EHR data. It adeptly normalizes complex and skewed

distributions, accurately representing even the missing data points, thereby maintaining

the integrity and utility of the synthesized dataset. To evaluate the efficacy of our synthetic

data generation method, we employed the comprehensive and diverse AllofUs dataset,

spanning multiple institutions. We then compared the performance of models using this

synthetic data in predicting the onset of sepsis against those using the original dataset.

Digging further, we have customized this model to enhance the development of generalized

predictive models in a clinical setting. It is particularly effective in incremental learning,

that involve sequential streaming data, a challenge we thoroughly investigate in previous

chapters. By leveraging synthetic EHR data, our model not only circumvents privacy

concerns but also contributes to the continuous improvement of healthcare predictive

analytics. This dual advantage showcases the potential of our model to serve as a pivotal

tool in the advancement of digital healthcare, propelling forward the capabilities of clinical

decision-making aids.

4.2 Methods

4.2.1 Study Populations

In our study, we utilized patient data from the AllofUs Research Program, supplied by the

National Institutes of Health (C2022Q4R9). We secured the required approval from the

Institutional Review Board (IRB) under the AllofUs program (Protocol Number: 2016-05,

approval date: March 17, 2021). An exemption was also granted by our institution’s IRB,

allowing us to proceed without the need for individual consent, provided that all research
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was conducted in line with the ethical standards of the Declaration of Helsinki, and under

the oversight of the relevant human research ethics committees.

The dataset is a multicenter cohort that spans 35 US hospitals, covering over 331,382 indi-

vidual patient records. The AllofUs program aims to encompass a broad cross-section of

the US populace, including minority groups often not sufficiently represented in biomedical

research.

The AllofUs dataset’s rich diversity, encompassing a wide array of patient demographics

and information from an extensive network of healthcare institutions, renders it an excep-

tional resource for our research. This is a key factor in our choice of the AllofUs dataset

for our study, as it aligns with our objective to create universally adaptable healthcare

models.

The dataset in question comprises a comprehensive collection of EHR data, such as patients’

medical histories, vital sign measurements, and laboratory test outcomes. Additionally, it

includes demographic information such as gender, race, and ethnicity, as reported by the

participants themselves. A more in-depth exploration of the AllofUs dataset can be found

in the specialized report produced by the AllofUs Research Program [92], which delves

into the nuances and structure of the collected data.

4.2.2 Data Preprocessing

To be consistent with our prior study cohort, similarly we included all patients 18 years or

older who developed sepsis as defined by the Third International Consensus Definition of

Sepsis (“Sepsis 3”) during hospitalization [9]. We focused on sequential hourly prediction

of sepsis starting at hour four after admission. Patients who were identified as having

sepsis prior to prediction start time or those with no measurement of heart rate or blood

pressure prior to the prediction start time or those whose length of stay were more than 21

days were excluded. The same clinical variables as 2.1 and 50 histories of medication were
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extracted. All variables were obtained via automated Observational Medical Outcomes

Partnership (OMOP) common data model queries provided by Amrollahi et al [93]. All

clinical variables were extracted from the AllofUs database using OMOP concepts codes.

For variables with multiple concept codes with distinct measurement units we applied

appropriate conversion rates.

All vital signs and laboratory variables were organized into 1-h and 1-day non-overlapping

time series bins to accommodate for different sampling frequencies of available data for

the sepsis cohort. All the variables with sampling frequencies higher than once every hour

(or day) were uniformly resampled into 1-h (or 1-day) time bins, by taking the median

values if multiple measurements were available. Variables were updated hourly when new

data became available; otherwise, the old values were kept (sample-and-hold interpolation).

Mean imputation was used to replace all remaining missing values (mainly at the start of

each record).

In the preceding chapter, we enhanced model performance by incorprating the slope of

local trends and TSLM for each vital sign and laboratory measurements. In this chapter,

to generate synthetic EHR data, we account for all variables and the patterns of missing

data on an hourly basis. We also used this missingness information to calculate the rate of

change and TSLM on generated data for downstream task.

The patient characteristics of the cohorts have been tabulated in Table 4.1. All continuous

variables are reported as medians with 25% and 75% interquartile ranges (IQRs). Binary

variables are reported as percentages.

4.2.3 Stochastic Normalization and Feature representations

Our EHR data consist of 191 total features including both static and longitudinal variables.

Each static and temporal feature can be categorized into either numeric or categorical.
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Table 4.1. Summary of patient characteristics of the AllofUs dataset

Non-Septic Septic
Patients (#) 25304 518
Male (%) 7692 (30%) 193 (37%)

Median Age [IQR] 48.0[33.0-58.0] 51.0[41.0-59.0]
Race (%)
Caucasian 12627(50%) 272(53%)

African American 5966 (24%) 94 (18%)
Asian 810(3%) 8(2%)

TSepsis [IQR] - 11.0 [8.0 -29.0]

we have the four categories of features for each of the patient including: measurement

date and time, static numeric feature Sn (e.g., age), static categorical feature Sc (e.g.,

medications), and time-varying numerical feature (e.g., vital signs). Note that each patient

record may have a different sequence length. We set the maximum length of sequence as

36. For longer sequences, we only use the last 36 time steps. One-hot encoding is used for

categorical features.

With all these features, given training dataset (D), EHR records for patient (i) can be

represented as:

D = {Sn(i),Sc(i),Mη(i),V c
η(i),V

n
η (i)}

η=T (i)
η=1 (4.1)

Where N is the total number of patients and T is the sequence length of EHR records for

patient i. At each time stamp η , V c represents the time varying categorical features, and

V n is the time varying numerical features. M contains missing patterns at each time-stamp

for longitudinal variables.

EHR data records contain feature distributions where the mass probability is condensed

within a small numerical range, this is a severe issue for training the Generative model

(known as mode collapsing [94]). GAN models suffer from mode collapse and would
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have the tendency to generate common values for all samples. To circumvent GANs’

overemphasizing on the generation of some commonly observed data values we adopted

stochastic normalization technique used by yoon et al [91].

The normalization method maps the raw feature distributions to more uniform distribution

that is easier to model with GANs. This method is reversible. Stochastic normalization

maps the original feature space into a normalized feature space (with uniform distribution),

and then the applied renormalization recreates the skewed distributions. We have found that

applying Stochastic normalization to our dataset improves the model performance. Figure

4.2 illustrated a pseudocode of stochastic normalization and renormalization algorithms.

To evaluate the framework we divide the patients into disjoint train and test datasets with

90% and 10% ratios. We only use the training split to train our framework to generate

synthetic data. At inference, we compared the model performance on test data while

trained on generated synthetic data and real train data.

4.2.4 Encoder-Decoder Architecture

We used an encoder-decoder to jointly extract the representations from multiple types of

data, including static, temporal, measurement time, and mask features. We encode these

heterogeneous features into joint representations from which the synthetic data samples

are generated. An encoder-decoder model is beneficial for GANs model convergence as it

condenses high-dimensional heterogeneous features into latent compact representations.

The encoder model uses the static, temporal, and missing pattern of data and generates

the encoder states (E). The decoder would further decode the encoder states (E) to

generate normalized encoder inputs. Teacher forcing during training where the target (

input to the encoder) is passed as the next input to the decoder is employed to help the

model converge faster. Zero padding and masking technique has been used to capture the

dynamic of sequence length. If the decoder model can recover the original heterogeneous
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data correctly, it can be inferred that E contains most of the information in the original

heterogeneous data.

4.2.5 GAN Architecture

The trained encoder model is further used to map raw data into encoded representations,

that are then used for GAN training. So the GAN learns to generate encoded representations

that can be decoded into raw data. We first utilize the trained encoder to generate encoder

states (E) using the original normalized raw data. Next, we use the GAN framework to

generate synthetic encoder states (Ē) to make synthetic encoder states close to the real

encoder states. The generator uses the random noise vector (Z) where Z ∼ N(0,1) to

generate synthetic encoder states. Then, the discriminator tries to distinguish the original

encoder states E from the synthetic encoder states Ē. As the GAN framework, we adopt

Wasserstein GAN with Gradient Penalty due to its training stability for heterogeneous data

types.

After training the both encoder-decoder and GAN, we can generate synthetic EHR data

from any random vector. Note that only the trained generator and decoder are used at the

inference time. The trained generator uses the random vector to generate synthetic encoder

states (Ē). Then, the trained decoder uses the synthetic encoder states as the inputs and last

time predicted synthetic temporal, static and missingness EHR values to generate new time

point EHR synthetic data.We have an extra post-process module to renormalize generated

synthetic EHR data to raw synthetic EHR data for the downstream tasks.

4.2.6 Evaluation of GAN performance

Evaluating the performance of GANs on approximating data distribution is an important

challenge and active research area in training GANs. Although there are popular methods

such as Inception Score (IS) [95], Fréchet Inception Distance (FID) [96], and Perceptual
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Path Length (PPL) [97] for evaluation the quality of generated images and videos by

generative models, there is no well-known method to assess the quality of time-series

generated data. IS and FID use the already pretrained image classification model (inception

v3) and remove the last layer of model to get the representation of images. These methods

further use KL-divergence of the representation for generated images and real images as

quality metrics of generated methods.

To monitor the quality of the generated data with every 5 epoch we plot the distribution

of the generated data versus the real encoded data using T-SNE. T-SNE is a nonlinear

dimensionality reduction method which can deal with linearly non separable data. Figure

4.3 illustrates the generated data distribution and real data distribution for AllofUs non

septic population cohort before and after training.

4.3 Results

As previously discussed, one of the most prominent goals for GANs is to benefit the future

downstream analyses in the real clinical application. In this study, we worked on a relevant

question on predicting the onset of sepsis four hours ahead for hospitalized patients. We

observed that a single generative framework is not able to capture the rare abnormal trends

occurring for septic patients, so we utilized a separate framework for non-septic patients

and fine-tuned the copy of the framework specifically for septic patients. To assess the

quality of generated synthetic data, we compare the model performance (C-AUC metric)

trained on synthetic EHR data versus the model trained on real EHR data for predicting

the onset of sepsis using real EHR test data. Table 4.2 tabulates both model performances

for predicting sepsis.
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Table 4.2. Model performance on predicting the onset of sepsis on Real EHR data using Real
EHR data and Generated EHR data

Performance on Test Set Performance on Test Set
(C-AUC) (Speci f icity∗)

Model I 0.91 0.77
(Train using Real Data)

Model II 0.83 0.54
(Train using Generated Data)

* Specificity at Sensitivity =0.8

4.4 Improving Clinical Deep Learning Model General-
izability using Generating Synthetic Electronic Health
Records

We further integrate our proposed generative models with the context of aforementioned

continual learning problem. In our continual learning approach, we replayed the represen-

tations of patients’ episodes to prevent catastrophic forgetting while the model is trained

on data from the new institution. Transferring representations of data from prior tasks

may raise concerns of privacy preservation. In this study, we address this concern through

transferring and replaying the generated synthetic data at each institution.

Building on the findings from the previous chapter, our analysis indicated that Hospital-

C’s data distribution was significantly varied compared to the other institutions. Due to

the high computational demands, we focused our assessment on the data from Hospital-

B and Hospital-C, which were representative of the sequential learning problem. This

decision allowed us to maintain computational efficiency without sacrificing the essential

components of our study. Within each healthcare facility, we use the same frame work as

described in the preceding section for the creation of synthetic EHR data, encompassing

both septic and non-septic patient groups. We found that the removing the Stochastic

Normalization process from our frame work here did not adversely affect the performance

of our model. This insight simplifies our approach and reduces the computational expenses
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without compromising the integrity and effectiveness of our results.

To mitigate the issue of catastrophic forgetting associated with incremental learning, we

have employed a strategy of fine-tuning our generative model for each healthcare facility

involved in the study—specifically Hospital-B and Hospital-C. Our method involves

transferring the learned model weights from one hospital to the next, and replaying

synthetic data from the previous hospitals. This process helps in maintaining knowledge

consistency across the learning phases. Additionally, our framework is designed with the

capability to adjust the synthetic EHR data according to varying sepsis incidence rates.

For the purposes of this study, we generated a balanced dataset comprising 2000 synthetic

samples at each facility, with an equal sepsis rate of 50%, to ensure a uniform data structure

when the model is applied to subsequent new hospital data.

Table 4.3 tabulate the performance of our framework. In this study we use 80% -20%

split of data for model training and evaluation respectively. We first train our model on

Hospital-B data (i.e Task 1), we further transfer the model weights and fine-tune the

model on hospital-C data (i.e Task 2). Within the Generative Replay model, we employed

our GAN framework within Hospital-B to generate synthetic EHR data, which was then

replayed at proceeding Hospital-C. This approach allowed the predictive model to retain

and leverage the knowledge acquired from previous institutions. We compare the proposed

approach with the baseline transfer learning method, as outlined in the initial section.

We assessed and reported the model’s predictive performance for predicting the onset of

sepsis at each hospital, utilizing both current and prior institution test data using the PPV

metric.Table 4.3 reveals that replying the synthetic data while model trains on data from

the new institution aids the model to address catastrophic forgetting.
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Table 4.3. Evaluation of Synthetic Data Replay models for early predicting of onset of Sepsis
measured using PPV ∗ metric

Transfer Learning
Hospital-B Hospital-C

Hospital-B 39 34
Hospital-C 5 44

Synthetic EHR Replay
Hospital-B Hospital-C

Hospital-B 39 37
Hospital-C 5 52

* PPV at Sensitivity =0.8 on Hospital-B

4.5 Discussion

Patient data privacy concerns are among the key bottlenecks for the sharing and exchanging

of EHR data to develop generalizable ML-based models. AI innovations have tremendous

potential in the clinical domain. Although patient data privacy is one of the obstacles

in broad employment of AI in clinical applications. One possible solution for sharing

data beyond institutional boundaries is to share anonymized data. Although, there is no

single standardized set of recommendations on how to anonymize clinical datasets for

sharing such that the disseminated data is protected against privacy attacks. The Privacy

Rule of the Health Insurance Portability and Accountability Act (HIPAA) outlines Safe

Harbor, and Expert Determination policies for protecting anonymity. The Safe Harbor

policy enumerates eighteen identifiers that must be removed from data, based on the Expert

Determination policy, an expert needs to certify that the shared data poses a low privacy

risk.

Conventional methods to anonymize data, including perturbation via microaggregation,

data swapping, or rank swapping, Suppression, Data masking and Differential Privacy,

are expensive and tedious. Further, anonymization methods can distort important features

from the original dataset, decreasing the utility of the data significantly, and they can be

76



susceptible to privacy attacks even when the de-identification process is in accordance with

existing standards. A promising solution to sharing of EHR data is to use synthetic EHR

data. Recent advances in generative GANs and their variants pave the way to generate

synthetic data for a wide range of clinical applications. In this chapter, we developed a

GAN for generating synthetic EHR data. We focused on key challenging aspects of real-

time EHR data, including heterogeneity, sparsity, coexistence of numerical and categorical

features with distinct characteristics, and time-varying features. We adopted a generative

modeling framework, for generating highly realistic synthetic EHR data.

Although, there are several proposed models for time-series synthetic data generation in-

cluding TimeGAN [87], RC-GAN [89], C-RNN-GAN [98]), but these alternative methods

are not designed to handle all the challenges we addressed through our model, such as

varying length sequences, missingness and joint representation of static and time-varying

features. Our model is based on a two-stage approach that consists of sequential techer

forcing encoder-decoder networks and generative adversarial networks to address these

limitations. Within this model we employed mask modeling to deal with dynamic sequence

length of EHR data.

To evaluate the effectiveness of our framework, we conducted two distinct experiments.

In the initial experiment, we assessed the synthetic EHR data quality generated by our

framework to ensure its efficacy for clinical decision support (CDS) tasks. Utilizing

the extensive AllofUs multi-institutional cohort, we aimed to predict the onset of sepsis,

demonstrating that models trained on synthetic data offer satisfactory performance on

real-world EHR datasets. Subsequently, we investigated the potential for enhancing the

generalizability of deep learning (DL) predictive models by transferring and replaying

synthetic EHR data. Our findings indicate that incorporating synthetic EHR data allows

our models to progressively learn from a continuous data stream while retaining previously

acquired knowledge, thereby mitigating the problem of catastrophic forgetting.
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         Encoder          Decoder 

       Generator        Discriminator 

Original encoded 

Synthetic encoded 

Temporal data
Missing  data
Time   data

Static   data

Random 
Vector 

Original data 

Training Inference 

Figure 4.1. Block Diagram of generating synthetic EHR data from the original data.At inference,
we only use the trained generator and decoder to generate synthetic data (shown in red arrows)

stochastic renormalization:

Input: Normalized feature (Ā), 
normalization parameters 
(params=Normalized_Feature[Ā])
Unique(Ā)=unique values of Ā
A=Ā
For each val in Unique(Ā):

Find the keys (k) that val is in the boundary
idx(val)=index of Ā where value=val 
A[idx(val)]=params[kl

Return A

Stochastic Normalization Algorithm:

Input: Input data (X),Normalized_Feature=dict()
For each feature A  in X do:

Uniq(A) = Unique values of A, N = Length of (A), lower-bound = 0.0,  upper-bound = 0.0,  Ā= A
 For val in Uniq(A) do:

Find index of A whose value = val as idx(val) 
Compute the frequency of val as ratio(val) = Length of idx(val) / N
upper-bound = lower-bound + ratio(val) 
Ā[idx(val)] ~ Uniform(lower-bound, upper-bound)
params[lower-bound, upper-bound]  =val 
lower-bound = upper-bound

 End
 Normalized_Feature[A]=params

Return  Normalized_Feature,Ā

Figure 4.2. pseudo code of Stochastic Normalization/Renormalization. The proposed algorithm
can be highly effective in transforming features with high skewed distribution into approximately
uniform distributions while allowing for perfect renormalization into the original feature space.
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(a) (b)

Figure 4.3. T-SNE plot of generated data versus representation of real data for non septic
populations. (a) Illustrates the TSNE plot of real and fake data generated at the first epoch. (b)
Illustrates the TSNE plot of real and fake data generated at last epoch
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Chapter 5

Conclusion and Future Work

5.1 Summary of Contribution

Our research has been focused on designing generalizable deep learning (DL) models

capable of learning continuously and adapting to data from diverse healthcare institutions.

A key objective of our work is to ensure these models uphold the strict privacy standards

required for protecting patient data. We designed new algorithms, and have conducted

comparative analyses of various approaches, we focus our evaluation on specific biomedical

researchers problem for predicting the onset of sepsis.

In our pursuit of developing generalizable deep learning predictive models, we have

developed a new continual learning method that enable models to learn from ongoing

data streams while retaining proficiency in previous tasks. In particular, We introduced an

innovative continual learning algorithm, WUPERR, which utilizes weight consolidation

and representation replay to help the model preserve acquired knowledge while learn

new data. WUPERR specifically penalizes significant modifications to weights that are

crucial for performing prior tasks, thereby mitigating the issue of catastrophic forgetting.

Moreover, it ensures privacy by transferring only data representations between institutions.

Comparative studies have demonstrated that our WUPERR model outperformed traditional

transfer learning methods.
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We then leveraged Federated Learning (FL) techniques, which facilitate collaborative

learning while maintaining data privacy. In FL, data remains on-site at each healthcare

institution where models are trained locally. These local models’ weights are sent to a

central server, ensuring patient privacy. The server then updates a global model weights

with defined aggregation function and redistributes global models weights to the individual

sites. We developed an innovative approach for updating the global model, which we have

benchmarked against traditional federated learning aggregation functions. Our method has

demonstrated superior performance compared to conventional FL, particularly in scenarios

where the data distribution varies greatly across institutions.

Additionally, we utilized Generative Adversarial Networks (GANs) to create synthetic

Electronic Health Records (EHR) data. Previous research in this field faced numerous

challenges, which we addressed with a cutting-edge framework adopted from EHR-

SAFE. Our framework boasts several benefits: it adeptly manages varying lengths of

EHR sequences, employs stochastic normalization to mitigate skewed distributions, and

utilizes Wasserstein loss with a gradient penalty to prevent model collapse. Our model has

demonstrated promising results, particularly when using synthetic EHR data for continual

learning. By replaying synthetic data, our model can retain previous knowledge efficiently,

thus eliminating the need to transfer and replay real data, which addresses potential privacy

concerns.

5.2 Future Direction

In our feature research work, we will focus on improving the generalizability and robust-

ness of DL predictive models across varied clinical landscapes. Our objective includes

the rapid adaptation of these models to diverse clinical settings and patient populations.

A recognized limitation within our current framework is its susceptibility to outlier data

influences in data representation and in turn model performance. Addressing this challenge,
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we plan to develop and integrate more effective techniques for the detection and exclusion

of outliers. This will involve creating sophisticated algorithms that can accurately identify

and manage anomalies within each patient cohort at every participating healthcare institute.

Our goal is to ensure that our model is trained on the most representative and accurate

data, thus enhancing its performance and reliability in real-world clinical applications.

In our subsequent research initiatives, we will direct our focus towards the pivotal role

of high-quality data and accurate labeling in achieving optimal model performance. We

have observed that noise in the training data can significantly degrade the effectiveness of

our models. Specifically, within our Federated Learning framework, it was noted that the

model parameters fine-tuned using Hospital-C’s data exhibited sub-optimal performance

when tested on data from other hospitals. This challenge could be attributed to either a

shift in data distribution domains or the presence of noisy labels. To tackle this issue,

our future efforts will be towards leveraging advanced label enhancement techniques,

with a particular emphasis on Graph Neural Networks (GNNs). GNNs operate under

the premise that neighboring nodes tend to share similar labels. Utilizing this principle,

we aim to construct GNNs within each institute by focusing on data points with high-

quality labels, identifiable through lower cross-entropy loss. This strategy is expected to

significantly improve the quality of labels, thereby enhancing the overall performance and

reliability of our deep learning models across different healthcare settings. By refining the

accuracy of our labels, we anticipate a substantial improvement in model robustness and

its applicability to diverse clinical data.

Scaling the generation and application of synthetic EHR data is another critical area of

focus. Our GAN framework needs to be optimized. we also need to adopt our model

for longer sequence length and more complex data such as clinical notes, ensuring the

synthetic data’s utility is validated across a multitude of clinical prediction tasks. Rigorous

testing for model resilience against data perturbations and ethical considerations will be
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paramount, ensuring that the use of synthetic data and AI respects patient privacy and

aligns with healthcare ethics.

Finally, integrating AI models into clinical practice necessitates close collaboration with

healthcare professionals and ongoing real-world evaluation. Longitudinal studies will

assess the impact on patient outcomes, guiding iterative model refinement. We will

engage with regulatory bodies to ensure compliance and actively participate in shaping

policies for AI in healthcare, fostering interdisciplinary collaborations that address the

broad implications of our work. Through these efforts, we aim to create a future where

AI-driven tools are seamlessly integrated into healthcare systems, enhancing the quality

and accessibility of patient care.

5.3 Conclusion

In conclusion, our research has made significant contributions in the development of deep

learning models that are both generalizable across different healthcare institutions and

respectful of patient data privacy. We have evaluated different approaches for predicting

sepsis, highlighting the strengths of our methodologies. Using continual learning algorithm,

we have shown that models can effectively retain knowledge from sequential data streams

without the common problem of catastrophic forgetting.

Moreover, our innovative use of Federated Learning has allowed for collaborative model

training while keeping the data localized, ensuring patient privacy. We introduced a

unique approach to updating the global model that surpasses traditional federated learning

techniques, particularly in settings with disparate data distributions.

Lastly, the application of GANs for generating synthetic EHR data has addressed limita-

tions found in prior studies. Our framework is specially designed to handle the challenges

of dynamic EHR sequences and skewed data distributions. The synthetic data generated
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has proven to be a valuable asset for continual learning processes, facilitating knowledge

preserving without compromising data privacy.

These contributions mark a considerable advancement in the field, opening pathways to

improved predictive models in healthcare while strictly adhering to privacy standards.
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2017. arXiv:1701.07875 [cs, stat].

[82] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and
Xi Chen. Improved Techniques for Training GANs, June 2016. arXiv:1606.03498
[cs].

[83] Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional Image Synthe-
sis With Auxiliary Classifier GANs, July 2017. arXiv:1610.09585 [cs, stat].

[84] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive Grow-
ing of GANs for Improved Quality, Stability, and Variation, February 2018.
arXiv:1710.10196 [cs, stat].

[85] Kong, J., Kim, J. & Bae, J. HiFi-GAN: generative adversarial networks for efficient
and high fidelity speech synthesis. Adv. Neural Inf. Process. Syst. 33, 17022–17033
(2020). - Google Search.

[86] Cyprien de Masson d’ Autume, Shakir Mohamed, Mihaela Rosca, and Jack Rae.
Training Language GANs from Scratch. In Advances in Neural Information Process-
ing Systems, volume 32. Curran Associates, Inc., 2019.

[87] Jinsung Yoon, Daniel Jarrett, and Mihaela van der Schaar. Time-series Generative
Adversarial Networks. In Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019.

[88] Edward Choi, Siddharth Biswal, Bradley Malin, Jon Duke, Walter F. Stewart, and
Jimeng Sun. Generating Multi-label Discrete Patient Records using Generative
Adversarial Networks, January 2018. arXiv:1703.06490 [cs].
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