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ABSTRACT 1 

The increasing use of CRISPR-Cas9 in medicine, agriculture, and synthetic biology has accelerated the 2 

drive to discover new CRISPR-Cas inhibitors as potential mechanisms of control for gene editing 3 

applications. Many anti-CRISPRs have been found that inhibit the CRISPR-Cas adaptive immune system. 4 

However, comparing all currently known anti-CRISPRs does not reveal a shared set of properties for facile 5 

bioinformatic identification of new anti-CRISPR families. Here, we describe AcRanker, a machine learning 6 

based method to aid direct identification of new potential anti-CRISPRs using only protein sequence 7 

information. Using a training set of known anti-CRISPRs, we built a model based on XGBoost ranking. We 8 

then applied AcRanker to predict candidate anti-CRISPRs from predicted prophage regions within self-9 

targeting bacterial genomes and discovered two previously unknown anti-CRISPRs: AcrllA20 (ML1) and 10 

AcrIIA21 (ML8). We show that AcrIIA20 strongly inhibits Streptococcus iniae Cas9 (SinCas9) and weakly 11 

inhibits Streptococcus pyogenes Cas9 (SpyCas9). We also show that AcrIIA21 inhibits SpyCas9, 12 

Streptococcus aureus Cas9 (SauCas9) and SinCas9 with low potency. The addition of AcRanker to the 13 

anti-CRISPR discovery toolkit allows researchers to directly rank potential anti-CRISPR candidate genes 14 

for increased speed in testing and validation of new anti-CRISPRs. A web server implementation for 15 

AcRanker is available online at http://acranker.pythonanywhere.com/.  16 



INTRODUCTION 17 

CRISPR-Cas systems use a combination of genetic memory and highly specific nucleases to form a 18 

powerful adaptive defense mechanism in bacteria and archaea (1–4). Due to their high degree of sequence 19 

specificity, CRISPR-Cas systems have been adapted for use as programmable DNA or RNA editing tools 20 

with novel applications in biotechnology, diagnostics, medicine, agriculture, and more (5–9). In 2013, the 21 

first anti-CRISPR proteins (Acrs) were discovered in Pseudomonas aeruginosa phages able to inhibit the 22 

CRISPR-Cas system (10). Since then, Acrs able to inhibit a wide variety of different CRISPR subtypes have 23 

been found (10-28).  24 

Multiple methods for identifying Acrs include screening for phages that escape CRISPR targeting (10, 25 

19–23), guilt-by-association studies (12, 17, 24, 25, 28), identification and screening of genomes containing 26 

self-targeting CRISPR arrays (11–13, 24), and metagenome DNA screening for inhibition activity (26, 27). 27 

Of these approaches, the ‘guilt-by-association’ search strategy is one of the most effective and direct, but 28 

it requires a known Acr to serve as a seed for the search. Thus, the discovery of one new validated Acr can 29 

lead to bioinformatic identification of others, as many Acrs have been discovered to be encoded in close 30 

physical proximity to each other, typically co-occurring in the same transcript with other Acrs or anti-CRISPR 31 

associated (aca) genes (12, 17, 28). Screening approaches are particularly useful in this regard, as they 32 

can potentially identify new Acr families.  33 

Identification of self-targeting CRISPR arrays can also help in predicting new Acr families. Typically, a 34 

CRISPR array with a spacer targeting the host genome (self-targeting) is lethal to the cell (29). However, if 35 

a mobile genetic element (MGE) present in the cell carries acr genes, the CRISPR-Cas system could be 36 

inhibited, and this may allow a cell with a self-targeting array to survive. To find new Acrs, genomes 37 

containing self-targeting arrays are identified through bioinformatic methods, and the MGEs within are 38 

screened for anti-CRISPR activity, eventually narrowing down to individual proteins (11–13, 24). Screens 39 

based on self-targeting also benefit from the knowledge of the exact CRISPR system that an inhibitor 40 

potentially exists for, as opposed to broad (meta-)genomic screens where a specific Cas protein has to be 41 

selected to screen against. Both types of screening additionally benefit from not requiring the prediction of 42 

a transcriptome or proteome that bioinformatic methods depend on, where incorrect annotations could lead 43 

to missed acr genes (24).   44 



However, a weakness of all of these methods is that they are unable to predict a priori whether a gene 45 

may be an Acr, largely because Acr proteins do not share high sequence similarity or mechanisms of action 46 

(14, 16, 30–36). One theory to explain the high diversity of Acrs is the rapid mutation rate of the mobile 47 

genetic elements they are found in and the need to evolve with the co-evolving CRISPR-Cas systems trying 48 

to evade anti-CRISPR activity. Due to the relatively small size of most Acrs and their broad sequence 49 

diversity, simple sequence comparison methods for searching anti-CRISPR proteins are not expected to 50 

be effective. In this work, we report the development of AcRanker, a machine learning based method for 51 

direct identification of anti-CRISPR proteins. Using only amino acid composition features, AcRanker ranks 52 

a set of candidate proteins on their likelihood of being an anti-CRISPR protein. A rigorous cross-validation 53 

of the proposed scheme shows known Acrs are highly ranked out of proteomes. We then use AcRanker to 54 

predict 10 new candidate Acrs from proteomes of bacteria with self-targeting CRISPR arrays and 55 

biochemically validate three of them. Our machine learning approach presents a new tool to directly identify 56 

potential Acrs for biochemical validation using protein sequence alone.  57 

 58 

MATERIALS AND METHODS 59 

Data collection and preprocessing 60 

To model the task of anti-CRISPR protein identification as a machine learning problem, a dataset consisting 61 

of examples from both positive (anti-CRISPR) and negative (non-anti-CRISPR) classes was needed. We 62 

collected anti-CRISPR information for proteins from the Anti-CRISPRdb (37). At the time the work was 63 

initiated, the database contained information for 432 anti-CRISPR proteins. In order to ensure that the 64 

machine learning model generalizes well to protein sequences that do not share high sequence similarity 65 

to known anti-CRISPR proteins, a 40% sequence identity threshold is used (38). The use of a 40% identity 66 

threshold represents a boundary where proteins above this threshold are likely to share the same structure 67 

and possibly function (39), thus providing a comprise between ensuring non-redundancy of the train and 68 

test datasets while retaining enough training examples for cross-validation. We used CD-HIT (40) to identify 69 

a non-redundant set (at the 40% sequence similarity threshold) of 20 experimentally verified Acrs (Table 70 

S1). These proteins belong to different Acr classes: 12 of the proteins are active against subtype I-F 71 



CRISPR Cas systems, four against I-E, and four against II-A (10, 13, 17, 20, 22). This set constitutes the 72 

positive class of our dataset. We downloaded the complete proteomes of source species to which each of 73 

these proteins belong. Within these proteomes, any protein with 40% or higher sequence similarity with any 74 

protein in the set of known anti-CRISPR proteins was removed, and the remaining proteins were used to 75 

construct the negative dataset. For independent testing of the method, a dataset comprising 20 known Acrs 76 

separate from the training set (11–13, 21, 24, 26, 28, 41) was used (Table S2). The Acrs belonging to the 77 

test set were chosen to cover the wide variety of known Acr mechanisms and sequences (42), while mainly 78 

consisting of the three subtypes the model was trained on. Source proteomes for all these proteins were 79 

downloaded, based on open reading frame predictions on the NCBI database. 80 

 81 

Feature Extraction 82 

In line with existing machine learning based protein function prediction techniques, we used sequence 83 

features (43) based on amino acid composition and grouped dimer and trimer frequency counts (44). For 84 

this purpose, amino acids are first grouped into seven classes based on their physicochemical properties 85 

(44) (Table S3) and the frequency counts of all possible groups labeled as dimers and trimers in a given 86 

protein sequence are used in conjunction with amino acid composition. All three types of features (amino 87 

acid composition, di- and tri- meric frequency counts) are normalized to unit norm resulting in a 20 + 7% +88 

7& = 412-dimensional feature vector representation for a given protein sequence (45, 46).  89 

Machine learning model 90 

The underlying machine learning model for AcRanker has been built using EXtreme Gradient Boosting 91 

(XGBoost) (47). In machine learning, boosting is a technique in which multiple weak classifiers are 92 

combined to produce a strong classifier (47). XGBoost is a tree-based method (47) that uses boosting in 93 

an end-to-end fashion, i.e., every next tree tries to minimize the error produced by its predecessor. XGBoost 94 

has been shown to be a fast and scalable learning algorithm and has been widely used in many machine 95 

learning applications (47).  96 

In this work, we have used XGBoost as a pairwise ranking model to rank constituent proteins in a given 97 

proteome in descending order of their expected Acr behavior. The XGBoost model is trained in a proteome-98 



specific manner to produce higher scores for known anti-CRISPR proteins as compared to non-anti-99 

CRISPR proteins in a given proteome. In comparison to conventional XGBoost classification, the pairwise 100 

ranking model performed better in terms of correctly identifying known anti-CRISPR proteins in test 101 

proteomes in cross-validation (Table S4). Specifically, given a set of training proteomes *	each with one or 102 

more known anti-CRISPR proteins, our objective is to obtain an XGBoost predictor ,(.; 0) with learnable 103 

parameters 0 that generates a prediction score for a given protein sequence represented in terms of its 104 

feature vector .. In proteome-specific training, we require the model to learn optimal parameters 0∗	such 105 

that the score ,(3; 0∗)	for a positive example 3 (known Anti-CRISPR protein) should be higher than 106 

,(4; 0∗)	for all negative examples 4 (non-Anti-CRISPR proteins) within the same proteome. The 107 

hyperparameters of the learning model are selected through cross validation and optimal results are 108 

obtained with: number of estimators set at 120, learning rate of 0.1, subsampling of 0.6, and maximum tree 109 

depth of 3.  110 

Performance Evaluation 111 

To evaluate the performance of the machine learning model, we have performed leave-one-proteome-out 112 

cross-validation as well as validation over an independent test set. In a single fold of leave-one-proteome-113 

out cross-validation, we set aside the source proteome of a given anti-CRISPR protein for testing and train 114 

on all other proteomes. To ensure an unbiased evaluation, all sequences in the training set with a sequence 115 

identity of 40% or higher with any test protein or among themselves are removed from the training set. 116 

Furthermore, all proteins in the test set with more than 40% sequence identity with known anti-CRISPR 117 

proteins in the training set are also removed. This ensures that there is only one known anti-CRISPR protein 118 

in the test set in a single fold. The XGBoost ranking model is then trained and the prediction scores for all 119 

proteins in the test set are computed. Ideally, the known anti-CRISPR protein in the proteome should score 120 

the highest across all proteins in the given test proteome. This process is then repeated for all proteomes 121 

in our dataset. The rank of the known anti-CRISPR protein in its source proteome is used as a performance 122 

metric. 123 

In bacteria, Acrs are usually located within prophage regions (13, 48). Based on this premise, in another 124 

experiment for model evaluation, we passed only the proteins found within prophage regions to the model. 125 



To identify the prophage regions for a given bacterial proteome we used PHASTER (PHAge Search Tool 126 

Enhanced Release) web server (49) which accepts a bacterial genome and annotates prophage regions in 127 

it. The decision scores are computed for all phage proteins identified by PHASTER in the test proteome.  128 

To help assess AcRanker’s performance during leave-one-out cross-validation, BLAST (Basic Local 129 

Alignment Search Tool) (50) similarity was used to set a minimum performance expectation. For each 130 

protein in a given test proteome, we compute BLASTp scores (with default parameters) with the set of 131 

known Acrs (excluding the tested protein) and rank proteins in the increasing order of the respective e-132 

values.  133 

For independent validation, the ranking based XGBoost model trained over sequence features for all 20 134 

source proteomes (Table S1) has been tested for recently discovered Acrs (Table S2) that are not part of 135 

our training set. The rank of known Acr in its corresponding proteome was computed. Here again, we 136 

evaluated the model for both the complete proteome of the organism and the respective MGE subset 137 

identified by PHASTER. 138 

AcRanker Webserver 139 

A webserver implementation of AcRanker is publicly available at http://acranker.pythonanywhere.com/. The 140 

webserver accepts a proteome file in FASTA format and returns a ranked list of proteins. The Python code 141 

for the webserver implementation is available at the URL: https://github.com/amina01/AcRanker. 142 

Acr candidate selection 143 

Self-Targeting Spacer Searcher (STSS; https://github.com/kew222/Self-Targeting-Spacer-Searcher) (11) 144 

was run with default parameters using ‘Streptococcus’ as a search term for the NCBI genomes database, 145 

which returned a list of all self-targets found in those genomes. Whether known acr genes were present in 146 

each of the self-targeting genomes was checked using a simple blastp search using default parameters 147 

with the Acr proteins stored within STSS. Twenty self-targeting genomes that contained at least one self-148 

target with a 3′-NRG PAM were chosen for further analysis with AcRanker. Prophage regions with each 149 

genome were predicted using PHASTER (49). Then proteins found across all of the prophage regions 150 

predicted in a given genome were ranked with AcRanker. 151 



To select individual gene candidates for synthesis and biochemical validation, the 10 highest ranked 152 

proteins from each genome were examined by visual inspection for a strong promoter, a strong ribosome 153 

binding site, and an intrinsic terminator. Promoters were searched for manually by looking for sequences 154 

closely matching the strong consensus promoter sequence TTGACA-17(+/-1)N-TATAAT upstream of the 155 

acr candidate gene, or any genes immediately preceding it. The presence of a strong ribosome binding site 156 

(resembling AGGAGG) near the start codon was similarly searched for and was required to be upstream 157 

of a gene candidate for selection. Last, given the nature of Acrs to be clustered together, genes neighboring 158 

the best candidates were also selected for further testing/validation and comprise part of the 10-member 159 

candidate test set. 160 

Protein expression and purification 161 

Each of the Acr candidates (Table S5) were cloned into a custom vector (pET-based expression vector) 162 

such that each protein was N-terminally tagged with a 10xHis sequence, superfolder GFP, and a tobacco 163 

etch virus (TEV) protease cleavage site, available on Addgene (#140995-141004). Each Cas effector 164 

(Table S6): Acidaminococcus sp. Cas12a (AsCas12a), Streptococcus pyogenes Cas9 (SpyCas9), 165 

Staphylococcus aureus Cas9 (SauCas9) and Streptococcus iniae Cas9 (SinCas9, Addgene #141076), 166 

were expressed as N-terminal MBP fusions. Proteins were produced and purified as previously described 167 

(33). Briefly, E. coli Rosetta2 (DE3) containing Acr or Cas9 expression plasmids were grown in Terrific 168 

Broth (100 µg/mL ampicillin) to an OD600 of 0.6-0.8, cooled on ice, induced with 0.5 mM isopropyl-b-D-169 

thiogalactoside and incubated with shaking at 16°C for 16 h. Cells were harvested by centrifugation, 170 

resuspended in wash buffer (20 mM Tris-Cl (pH 7.5), 500 mM NaCl, 1 mM tris(2-carboxyethyl)phosphine 171 

(TCEP), 5% (v/v) glycerol) supplemented with 0.5 mM phenylmethanesulfonyl fluoride and cOmplete 172 

protease inhibitor (Roche), lysed by sonication, clarified by centrifugation and purified over Ni-NTA 173 

Superflow resin (Qiagen) in wash buffer supplemented with 10 mM (wash) or 300 mM imidazole (elution). 174 

Elution fractions were pooled and digested overnight with recombinantly expressed TEV protease while 175 

dialyzed against dialysis buffer (20 mM Tris-Cl (pH 7.5), 125 mM NaCl, 1 mM TCEP, 5% (v/v) glycerol) at 176 

4°C. The cleaved proteins were loaded onto an MBP-Trap (GE Healthcare) upstream of a Heparin Hi-Trap 177 

(GE Healthcare) in the case of SpyCas9, SauCas9 and SinCas9. Depending on the pI, TEV digested Acrs 178 



were loaded onto a Q (ML1, ML2, ML3, ML6, ML8, and ML10), heparin (ML4 and ML5), or SP (ML7 and 179 

ML9) Hi-Trap column. Proteins were eluted over a salt gradient (20 mM Tris-Cl (pH 7.5), 1 mM TCEP, 5% 180 

(v/v) glycerol, 125 mM – 1 M KCl). The eluted proteins were concentrated and loaded onto a Superdex 181 

S200 Increase 10/300 (GE Healthcare) for SpyCas9, SauCas9, SinCas9 or Superdex S75 Increase 10/300 182 

(GE Healthcare) for all the Acr candidates and developed in gel filtration buffer (20 mM HEPES-K (pH 7.5), 183 

200 mM KCl, 1 mM TCEP and 5% (v/v) glycerol). The absorbance at 280 nm was measured by Nanodrop 184 

and the concentration was determined using an extinction coefficient estimated based on the primary amino 185 

acid sequence of each protein. Purified proteins were concentrated to approximately 50 µM for Cas9 186 

effectors and 100 µM for Acr candidates. Proteins were then snap-frozen in liquid nitrogen for storage at -187 

80°C. Purity and integrity of proteins was assessed by 4-20% gradient SDS-PAGE (Coomassie blue 188 

staining, Figure S2A) and LC-MS (Figure S2B). 189 

RNA preparation 190 

All RNAs (Table S7) were transcribed in vitro using recombinant T7 RNA polymerase and purified by gel 191 

extraction as described previously (51). Briefly, 100 µg/mL T7 polymerase, 1 µg/mL pyrophosphatase 192 

(Roche), 800 units RNase inhibitor, 5 mM ATP, 5 mM CTP, 5 mM GTP, 5 mM UTP, 10 mM DTT, were 193 

incubated with DNA target in transcription buffer (30 mM Tris-Cl pH 8.1, 25 mM MgCl2, 0.01% Triton X-100, 194 

2 mM spermidine) and incubated overnight at 37°C. The reaction was quenched by adding 5 units RNase-195 

free DNase (Promega). Transcription reactions were purified by 12.5% (v/v) urea-denaturing PAGE (0.5x 196 

Tris-borate-EDTA (TBE)) and ethanol precipitation. 197 

In vitro cleavage assay  198 

In vitro cleavage assays were performed at 37°C in 1X cleavage buffer (20 mM Tris-HCl pH 7.5, 100 mM 199 

KCl, 5 mM MgCl2, 1 mM DTT and 5% glycerol (v/v)) targeting a PCR amplified fragment of double-stranded 200 

DNA (Table S8). For all cleavage reactions, the sgRNA was first incubated at 95°C for 5 min and cooled 201 

down to room temperature. The Cas effectors (SpyCas9, SauCas9, AsCas12a at 100 nM and SinCas9 at 202 

200 nM respectively) were incubated with each candidate Acr protein at 37°C for 10 min before the addition 203 

of sgRNA (SpyCas9, SauCas9, AsCas12a sgRNA at 160 nM and SinCas9 sgRNA at 320 nM respectively) 204 



to form the RNP at 37°C for 10 min. The DNA cleavage reaction was then initiated with the addition of DNA 205 

target and reactions incubated for 30 min at 37°C before quenching in 1X quench buffer (5% glycerol, 0.2% 206 

SDS, 50 mM EDTA). Samples were then directly loaded to a 1% (w/v) agarose gel stained with SYBRGold 207 

(ThermoFisher) and imaged with a BioRad ChemiDoc.  208 

 209 

Competition binding experiment 210 

The reconstitution of the SinCas9-sgRNA-ML1 and SinCas9-sgRNA-AcrIIA2 complex was carried out as 211 

previously described (52). Briefly, purified SinCas9 and in vitro transcribed sgRNA were incubated in a 212 

1:1.6 molar ratio at 37°C for 10 min to form the RNP. To form the inhibitor bound complexes, a 10-fold 213 

molar excess of AcrIIA20 (ML1) or AcrIIA2 were added and incubated with the RNP complex at 37°C for 214 

10 min. For the competition binding experiment, a 10-fold molar excess of AcrIIA20 was first incubated with 215 

the RNP complex at 37°C before incubation with a 10-fold molar excess of AcrIIA2 at 37°C for 10 min. Each 216 

complex was then purified by analytical size-exclusion chromatography (Superdex S200 Increase 10/300 217 

GL column, GE Healthcare) pre-equilibrated with the gel filtration buffer (20 mM HEPES-K (pH 7.5), 200 218 

mM KCl, 1 mM TCEP and 5% (v/v) glycerol) containing 1 mM MgCl2. The peak fractions were concentrated 219 

by spin concentration (3-kDa cutoff, Merck Millipore), quenched in 1X SDS-Loading dye (2% w/v SDS, 0.1% 220 

w/v bromophenol blue and 10% v/v glycerol) and boiled down to 20 µl before loading onto a 4-20% gradient 221 

SDS-PAGE.  222 

 223 

Mass spectrometry 224 

Protein samples were analyzed using a Synapt mass spectrometer as described elsewhere (53).  225 

 226 

 227 

 228 

  229 



RESULTS  230 

A machine learning model for anti-CRISPR prediction 231 

A major challenge in the discovery of new anti-CRISPR proteins is the diversity of amino acid sequences 232 

that have been discovered so far, and the lack of predictable structural features between them (54, 55). 233 

While some Acrs and aca genes are predicted to contain an HTH fold (13, 24, 54, 56, 57), there is no 234 

broadly unifying structural motif, making traditional searching methods (such as BLAST similarity searching 235 

(50) poorly equipped to identify new Acr families. To address this challenge, we have developed AcRanker, 236 

a machine learning model that accepts a proteome as input and ranks its constituent proteins in decreasing 237 

order of their expected Acr character. 238 

 To build the model, we used EXtreme Gradient Boosting (XGBoost) based ranking (47) with 1-, 2- and 239 

3-mer amino acid composition as input features (43). Other features were considered, but did not improve 240 

model performance, or were impractical to include (e.g. requiring experimental data to determine 241 

transcription or translation rates). Additionally, the use of sequence features alone can indirectly capture 242 

information about the structure of the protein and other properties, such as the isoelectric point and 243 

physiochemical properties, while being minimally restrictive. The utility of sequence features has been 244 

demonstrated previously (58), including work to predict binding sites within calmodulin (59), where the 245 

target proteins sequences are diverse.  246 

 To train the model we created a dataset comprised of 20 experimentally verified Acrs taken from the 247 

anti-CRISPRdb (37) (Table S1) and their source proteomes. Testing was performed on an additional set of 248 

20 known Acrs, with different predicted mechanisms, sequence composition, and source organisms (Table 249 

S2). 250 

Cross-validation by single proteome omission 251 

To evaluate the performance of AcRanker, we performed leave-one-out cross-validation using the training 252 

dataset. Out of the 20 known Acr proteomes tested individually, we observed that the ranking-based model 253 

ranked seven Acrs higher than other proteins in their respective proteomes (Table 1). In total, 14 out of the 254 

20 known Acrs are ranked within the top 5% in their respective proteomes (Table 1).  255 



Generally, we observe that the machine learning rankings for Acrs contained in phage proteomes are 256 

much better than those contained in bacterial proteomes, likely due to their smaller size (Table 1). To test 257 

if the relative rankings of the known Acrs found within bacterial proteomes would improve in the context of 258 

only prophage-derived proteins, we identified which proteins in the bacterial proteomes were found within 259 

prophages using PHASTER (49) and used only that subset to test both models. With the prophage subsets 260 

we did observe a higher ranking for the known Acrs due to the removal of higher-ranking proteins not found 261 

in the predicted prophages (Table 1). 262 

As a baseline, we also compared the rankings obtained from the machine learning model to a blastp 263 

(50) ranking (Table 1). For each excluded Acr in the leave-one-out train/test cycles, the excluded Acrs 264 

proteome was used as a query set to BLAST against the 19 other Acrs used for training and the resulting 265 

e-values ranked from lowest to highest. These BLASTp scores represent a naïve search strategy that 266 

AcRanker seeks to improve upon. The BLAST search method, however, only returned the highest rank for 267 

the AcrIF6 family because three distant homologs (using the <40% identity threshold) were included in the 268 

training dataset. Interestingly, we also observed that the BLAST method gave higher ranks than AcRanker 269 

for AcrIF9, AcrIIA5, and AcrIIA1 (13, 17, 20). However, with the exception of AcrIF6, the BLAST rankings 270 

of all the Acrs fell outside of the top 5%, demonstrating the diversity of Acr families, the difficulty of predicting 271 

new Acrs de novo, and improvement gained using AcRanker. 272 

We next asked which of the features used in AcRanker had the biggest impact on Acr ranking to 273 

determine if any biological insight could be gained. Performing a SHAP (SHapley Additive exPlanations) 274 

(60) analysis on the constructed model (Figure S1) revealed that the three highest impact features were 275 

the presence or absence of three single amino acids: proline, glutamine, and leucine. However, the 276 

‘blackbox’ nature of machine learning models, the relative continuity of the top 20 impact values, and the 277 

lack of a clear relationship between them prevent any clear conclusions from being drawn.  278 

Independent set validation 279 

To validate AcRanker, we used an independent testing dataset of 20 recently discovered Acrs not part of 280 

the training dataset (Table S2). Of these 20 Acrs, three are found in phage (AcrIF14, AcrIIA6, and AcrIIIB1) 281 

and 10 (AcrIE4-F7, AcrIF11, AcrIF11.1, AcrIF11.2, AcrIC1, AcrIIA3, AcrIIA13, AcrIIC5, AcrVA1, and 282 



AcrVA4) were predicted to be in a prophage region using PHASTER. For the proteins predicted to be in a 283 

prophage both the complete bacterial and phage proteome were ranked with AcRanker, otherwise only the 284 

complete proteome was ranked (Table S9). The results from the complete bacterial proteomes did generally 285 

not perform well (Table S9), with only four (AcrIE5, AcrIC1, AcrIIA3, and AcrIIC5) out of 16 receiving ranks 286 

within the top 10. However, of the 13 proteins found within a phage/prophage, AcRanker ranked six within 287 

the top five, including two with the highest rank (Table 2). 288 

 Within the 20 Acr independent test set, AcRanker returns a higher rank for the majority of (pro-289 

)phage proteomes compared to blastp searching (Table 2). Of the six cases where blastp ranked the known 290 

Acr higher than AcRanker, three (AcrIIA6, AcrIIIB1, AcrVA4) were ranked outside of the top 40% by both 291 

blastp and AcRanker, and would be unlikely to be discovered using either method. In two of the remaining 292 

three cases where blastp returned the higher rank (AcrIE4-F7 and AcrIF11), AcRanker was able to rank at 293 

least one member of the family within the top 10 of its respective the predicted prophage proteome. AcrIF14 294 

was the only case where blastp was able to rank the known Acr in the top 10 and AcRanker was not (Table 295 

2). Generally, we observe better performance of AcRanker relative to blastp to identify Acrs, although the 296 

appearance of highly ranking known Acrs using blastp suggests a possibility that direct BLAST searching, 297 

as opposed to guilt-by-association searching, may be beneficial to locating certain undiscovered Acrs, for 298 

which there is some related precedent where three Acr families shared a homologous N-terminus (24). 299 

anti-CRISPR candidate selection 300 

Encouraged by the number of highly ranked Acrs from the test dataset, we proceeded to apply AcRanker 301 

to predict novel anti-CRISPRs from self-targeting genomes. Given the ubiquity of Streptococcus pyogenes 302 

Cas9 (SpyCas9) in gene editing and our inclusion of known SpyCas9 Acrs in the machine learning training 303 

dataset (AcrIIA1, AcrIIA2, AcrIIA4, AcrIIA5), we chose to focus specifically on Streptococcus species 304 

containing Cas9 proteins homologous to SpyCas9.  305 

We began by generating a list of Streptococcus genomes containing at least one self-targeting type II-306 

A CRISPR system using Self-Target Spacer Searcher, which has been previously described (11). We found 307 

385 instances of self-targeting from type II-A CRISPR arrays occurring within 241 Streptococcus genome 308 

assemblies, six of which contained known Acrs. Of these 241 self-targeting arrays, we looked for instances 309 



where the target sequence was flanked by the 3′ NRG protospacer adjacent motif (PAM) characteristic of 310 

SpyCas9 and observed that it was present in 20 genomes. These 20 self-targeting arrays would be 311 

expected to be lethal for close homologs of SpyCas9, suggesting that other factors, such as the presence 312 

of Acrs (11), are preventing CRISPR self-targeting and cell death (Table S10). During our original search 313 

of these 20 genomes, Streptococcus iniae strain UEL-Si1 was the only one that contained a previously 314 

discovered Acr, AcrIIA3 (13), providing a large proteome space to search for novel acr genes.  315 

To identify new acr gene candidates, we first used PHASTER (49) to predict all of the prophages residing 316 

within the 20 self-targeting Streptococcus genomes as well as an additional Listeria monocytogenes 317 

genome (strain R2-502) containing a type II-A self-targeting CRISPR system (with six self-targets) and 318 

three well-known AcrIIA genes (13). We included the Listeria strain to determine if the known Acrs within it 319 

were returned as the top ranked genes, and if not, test the higher-ranking genes as potential additional Acrs 320 

within a known Acr-harboring strain. We created lists of the annotated proteins found within each genome’s 321 

set of prophages. These proteins lists were then ranked with AcRanker to predict the 10 highest ranked 322 

genes most likely to be an acr (Table S11). Of the approximately 200 genes returned, a subset was selected 323 

for further biochemical testing. The selection was based on previous observations that many Acrs are 324 

typically short genes with transcripts driven by strong promoters and ribosome binding sites that frequently 325 

end with intrinsic terminator sequences (11, 13, 24) (Figure 1). We also looked for proteins encoded in 326 

operons with other acr or aca genes, although this was rare, highlighting a challenge of guilt-by-association 327 

approaches. 328 

As with the previous testing dataset, we observed that the known acr genes were highly ranked within 329 

the test proteomes. Interestingly, a few proteins contained in the same, or overlapping, transcripts as the 330 

known Acrs ranked higher with AcRanker (ML1 and ML2). We took these candidates as well as eight others 331 

(ML3-ML10) containing the features described above (Figure 1).  332 

Biochemical validation of novel Acrs identified by AcRanker 333 

To determine if the identified proteins were inhibitors of SpyCas9, we purified each candidate and tested 334 

their ability to directly inhibit DNA targeting in vitro. Of the ten candidate inhibitors, nine were successfully 335 

cloned, expressed and purified (Figure S2A and S2B). To assess inhibition of DNA targeting in vitro, we 336 



first assayed the ability of SpyCas9 to cleave double stranded DNA (dsDNA) when incubated in the 337 

presence of a 50-fold excess of each candidate Acr (Figure 2A). While SpyCas9 was capable of complete 338 

DNA target cleavage, the generation of DNA cleavage products was attenuated in the presence of the 339 

positive control inhibitor AcrIIA4 and the candidates ML1 or ML8. To determine the potency of inhibition, 340 

we tested the ability of SpyCas9 to cleave the DNA target in the presence of a dilution series of ML1 or 341 

ML8 (Figure 2B). In contrast to AcrIIA4, an established potent inhibitor of SpyCas9 (13), both ML1 and ML8 342 

inhibited SpyCas9 with around a 10-fold lower potency. We wondered if the high concentration of ML1 or 343 

ML8 required to completely inhibit Cas9 might represent an in vitro concentration-dependent artifact. To 344 

explore this, we assayed SpyCas9 DNA cleavage against a titration series of either non-target DNA 345 

competitor, BSA, ML2, or ML3 and observed no significant inhibition of SpyCas9, even with a 100-fold 346 

excess (Figure S3B-D). Taken together, these data indicated that both ML1 and ML8 weakly inhibit 347 

SpyCas9 DNA cleavage in vitro. 348 

We next tested the ability of the AcRanker-generated candidates to inhibit Staphylococcus aureus 349 

(SauCas9), another Cas9 commonly used for gene editing (61, 62) to determine whether any of the 350 

candidates identified from self-targeting Streptococcus genomes had broader Cas9 inhibition activity. At a 351 

25-fold excess relative to the SauCas9 RNP complex, ML3 and ML8 were able to inhibit SauCas9 dsDNA 352 

cleavage (Figure 2C). To determine potency, we incubated a dilution series of either ML3 or ML8 with 353 

SauCas9 before the addition of the DNA target. However, in comparison to AcrIIA5, an established strong 354 

inhibitor of SauCas9 (20, 24, 63), both Acr candidates inhibited SauCas9 with approximately 50-fold lower 355 

potency (Figure 2D, Figure S4A, S4B), an activity we confirmed was not due to a false positive from the 356 

high concentration of protein in the assay (Figure S4A).  357 

Given the relatively weak inhibition of both SpyCas9 and SauCas9, we next tested the specificity of ML1, 358 

ML3, and ML8 by assaying their ability to block DNA targeting by either AsCas12a or the restriction enzyme 359 

AlwNI. Neither AcrIIA4, ML1, ML3, nor ML8 were able to inhibit DNA targeting by AlwNI, suggesting that 360 

they all are specific inhibitors of CRISPR effectors (Figures S5A and S5B). Consistent with this, inhibition 361 

of AsCas12a was only observed with ML1 and ML8 at a 100-fold excess (Figure S5C). Taken together, our 362 

data show that ML1, ML3, and ML8 are low potency inhibitors of SpyCas9 (ML1 and ML8) or SauCas9 363 



(ML3 and ML8). While testing ML1-ML10 for Acr activity, Osuna, et al. described AcrIIA12, a specific 364 

inhibitor of LmoCas9 in plaque assays, which shares the same sequence as ML3 (25).  365 

ML1: a potent inhibitor of SinCas9 366 

ML1 was identified in the Streptococcus iniae (Sin) genome. Previous studies have reported anti-CRISPRs 367 

can exhibit either selective or broad-spectrum inhibition of divergent Cas effectors (14, 33). Given that 368 

SinCas9 is ~70% identical to SpyCas9 and only ~26% identical to SauCas9 we wondered whether ML1 is 369 

a more potent inhibitor of SinCas9. To explore this, we cloned, expressed, and purified SinCas9 protein for 370 

use in in vitro DNA targeting assays. Like SpyCas9, SinCas9 was capable of cleaving dsDNA targets 371 

proximal to an NGG PAM using a sgRNA derived from a fusion of the tracrRNA and crRNA (Figure 3A, 372 

Figure S6, Figure S7). Similar to SpyCas9, both ML1 and ML8 inhibited DNA cleavage by SinCas9 (Figure 373 

3A). Using a titration of ML1 and ML8, we again assayed the potency of SinCas9 inhibition (Figure 3B, 374 

Figure S6B). Strikingly, in contrast to the weak inhibition of SpyCas9, ML1 was able to potently inhibit DNA 375 

cleavage by SinCas9 (Figure 3B). To investigate at which step ML1 inactivates SinCas9 function, we carried 376 

out in vitro cleavage assays where ML1 was incubated with SinCas9 before and after the addition of sgRNA 377 

(Figure S6C). In both cases the DNA cleavage activity of SinCas9 was potently inhibited, suggesting that 378 

ML1 inhibits activity after sgRNA binding to Cas9.  379 

A number of reported type-IIA Acrs inhibit their cognate Cas9 by competing with target DNA through 380 

PAM mimicry (52, 64). We noted that SinCas9 was susceptible to inhibition by AcrIIA4 at 100-fold excess 381 

(Figure 3A) and AcrIIA2 at 10-fold excess (Figure S6D), both PAM mimics that inhibit PAM recognition by 382 

SpyCas9 (15, 52). Like these established PAM mimics, ML1 is a small protein with a predicted negatively 383 

charged surface potential (isoelectric point of 4.3), suggesting that it too might compete with target DNA. 384 

To explore this idea, we developed a competition binding experiment to assay if the association of ML1 385 

with SinCas9 might prevent the binding of AcrIIA2 (Figure 4A). First, we incubated either AcrIIA2 or ML1 386 

with the SinCas9-sgRNA complex and observed a stable SinCas9-sgRNA-Acr complex on a gel filtration 387 

column (Figure 4B, Figure S8A) with the complex components all resolvable on a protein gel (Figure 4C, 388 

Figure S8B). To determine if ML1 binding to the SinCas9 RNP could prevent AcrIIA2 binding, we first formed 389 

the SinCas9-sgRNA-ML1 complex and then incubated with AcrIIA2 before resolving over a column. 390 



Incubating ML1 with the SinCas9 RNP before adding AcrIIA2 abolished AcrIIA2 co-elution with SinCas9-391 

sgRNA (Figure 4C, Figure S8B), suggesting that ML1 might occupy the same site on SinCas9. Collectively, 392 

these data are consistent with a model where ML1 directly binds to the SinCas9-sgRNA complex to form a 393 

complex that is incompatible with AcrIIA2’s ability to bind to the PAM interacting domain (52).  394 



DISCUSSION 395 

With the growth of the anti-CRISPR field, there has been a need for improved tools to search the extensive 396 

proteomic space to find new anti-CRISPRs more efficiently. In this work we developed a machine learning 397 

method, AcRanker, as a first step toward the direct prediction of acr genes de novo with minimal knowledge 398 

a priori. We show that with only protein sequence features, AcRanker is able to highly rank Acrs from within 399 

prophage proteomes. Using a combination of AcRanker and self-targeting information from STSS (11), we 400 

were able to quickly reduce to a few top acr gene candidates for direct synthesis and testing of anti-CRISPR 401 

properties. From these candidates, we identified two novel Acrs: here named AcrIIA20 and AcrIIA21. 402 

AcrIIA20 (ML1) inhibits Streptococcus iniae Cas9 (SinCas9) with high potency and Streptococcus 403 

pyogenes Cas9 (SpyCas9) with low potency. With only 64 amino acids and a molecular weight of 7.3 kDa, 404 

to our knowledge it is the smallest type II Acr found to date. Based on the negative charge of AcrIIA20 and 405 

its competitive binding with AcrIIA2, we speculate that AcrIIA20 inhibits Cas9 dsDNA cleavage via a similar 406 

mechanism of PAM mimicry. In addition, we found AcrIIA21 (ML8), a broadly acting type II-A Acr, which is 407 

able to inhibit SpyCas9, SauCas9 as well as SinCas9, although with low potency.  408 

 The narrow and broader inhibition range of AcrIIA20 and AcrIIA21, respectively, is mirrored in their 409 

distribution in other genomes. Within the NCBI protein database, only a handful of homologs can be found 410 

for AcrIIA20 in closely related Streptococcus species (namely iniae, uberis, and dysgalactiae). In contrast, 411 

sequences sharing homology with AcrIIA21 are found broadly in Lactobacillales and beyond, owing at least 412 

in part to its shared identity with replication initiator protein A, a single stranded DNA binding protein, 413 

suggesting nucleic acid binding as one potential mechanism of inhibition for AcrIIA21. 414 

We also observe weak inhibition of SauCas9 with ML3 (AcrIIA12), which was shown to be a specific 415 

inhibitor of Listeria monocytogenes Cas9 (LmoCas9) while this study was being conducted (25). Because 416 

we were unable to test LmoCas9 (due to the difficulty of purifying it intact and active), we were unable to 417 

observe strong inhibition activity specific to its host Cas9. Similarly, we were unable to satisfactorily purify 418 

S. agalactiae Cas9 (SagCas9) to test ML4-ML10 against the Cas9 found in the same genomes in which 419 

they were found, leaving the door open for the possibility that they are specific against SagCas9.  420 

AcRanker adds yet another tool to the anti-CRISPR hunter’s toolbox by providing an alternative to 421 

BLAST and guilt-by-association searching to find new Acr families. In fact, we find that of the three 422 



candidates that we or others validated (ML1, ML3, and ML8), all had significantly higher rankings with 423 

AcRanker over BLAST (Table S12). However, we do see some cases where BLAST ranks known Acrs 424 

higher than AcRanker (Tables 1 and 2), providing a potential complementary approach, although one we 425 

believe is less likely to lead to new Acrs. 426 

The ability to identify potential new Acr candidates directly from protein sequence with AcRanker opens 427 

the door for testing many new proteins without the need for laborious screening efforts. Searching within 428 

prophages of genomes containing self-targeting CRISPR arrays promises to be particularly effective, as 429 

the potential inhibitors for a specific CRISPR system can be quickly ranked to make a short list of candidates 430 

to test. We expect that direct Acr prediction methods like AcRanker will continue to reveal many more Acrs 431 

distributed across many bacterial species, finding new Acrs with unique properties for yet unforeseen future 432 

biotechnology applications. 433 

 434 
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DATA AVAILABILITY 436 

A webserver implementation of AcRanker is publicly available at http://acranker.pythonanywhere.com/. The 437 

Python code for the webserver implementation is available in the GitHub repository 438 

(https://github.com/amina01/AcRanker). 439 
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Table 1. Results for leave-one-out cross-validation. Each row of the table indicates which Acr was 473 
excluded from the training dataset and used as a test dataset, and each number displayed is the ranking 474 
of the known Acr received from the indicated test proteome using either the blastp search against all other 475 
known Acrs (BLAST) or AcRanker. The Acrs from bacterial proteomes - AcrIF6, AcrIF9, AcrIF10, AcrIIA1, 476 
AcrIIA2, and AcrIIA4 - were also ranked using only the subset of proteins predicted to reside within 477 
prophages as predicted by PHASTER (49). Two Acrs from bacterial proteomes did not occur in the 478 
predicted prophages (WP_014702809.1 and WP_031500045.1) and are indicated by dash placeholders. 479 
All three prophage proteome subset fields have been left empty for Acrs from phage proteomes.  480 

 481 

  482 

--

YP_007392738.1

Accession No. Anti-CRISPR
family

AcrIE1

Proteome
Size

BLAST
rank

AcRanker
rank

Proteome 
Size

AcRanker
rank

Complete Proteome Prophage Subset

57 33 1
YP_007392439.1 AcrIE2 54 18 2
YP_950454.1 AcrIE3 52 17 1
NP_938238.1 AcrIE4 54 11 1
YP_007392342.1 AcrIF1 56 21 11
YP_002332454.1 AcrIF2 51 34 1
YP_007392440.1 AcrIF3 54 5 1
YP_007392799.1 AcrIF4 57 36 3
YP_007392740.1 AcrIF5 57 26 19
WP_043884810.1 AcrIF6 6095 1 80
WP_019933870.1 AcrIF6 3045 1 13
WP_014702809.1 AcrIF6 2689 1 130
ACD38920.1 AcrIF7 57 20 1
AFC22483.1 AcrIF8 68 30 1
WP_031500045.1 AcrIF9 4928 198 333
KEK29119.1 AcrIF10 3552 189 17
AEO04364.1 AcrIIA1 2951 183 770
AEO04363.1 AcrIIA2 2952 210 16
AEO04689.1 AcrllA4 2951 59 21
ASD50988.1 AcrIIA5 54 5 8

361 15
72 1
57

--
--
--
--
--
--
--

--
--

--
--

-

37 -
70 2
146 87
146 3
146 4

BLAST
rank

1
1

23
60
34
9

-
-
-
-
-
-
-
-
-

-
-
-

-

-



Table 2. Independent testing set validation results. Thirteen proteomes containing non-redundant 483 
(<40% sequence identity) Acrs from phage or bacterial prophage (as predicted by PHASTER) were ranked 484 
with either AcRanker or a blastp search against the training set of Acrs.  485 

  486 

  487 

WP_064584002.1

Accession no. Anti-CRISPR
family

AcrIE4-F7

Proteome 
Size

AcRanker
rank

Prophage Subset

111 4
WP_038819808.1 AcrIF11 64 3
WP_033936089.1 AcrIF11.1 92 1
EGE18857.1 AcrIF11.2 59 30
AKI27193.1 AcrIF14 68 14

BLAST
rank

1
38
38
1
5

WP_046701304.1 AcrIC1 72 1
WP_014930691.1 AcrIIA3 74 2

15
10

WP_149028791.1 AcrIIA6 40 23
AKS70260.1 AcrIIA13 145 3

21
29

WP_002642161.1 AcrIIC5 367 6
NP_666582.1 AcrIIIB1 54 44

237
25

WP_046701302.1 AcrVA1 72 10
WP_046699156.1 AcrVA4 293 220

18
181



 488 

Figure 1. Acr candidates selected for biochemical testing. Ten Acr candidates were selected from 489 

manual inspection for further biochemical testing (blue fill). Each candidate is shown in its genomic context 490 

with its assigned rank from AcRanker noted in red. Homologous proteins share the same color border 491 

(green, blue). Homologs of AcrIIA3 (orange border) and AcrIIA1 (red border) are indicated. While testing 492 

the ML candidates, ML3 (yellow fill) was identified as a specific inhibitor of LmoCas9 (25).  493 

  494 



 495 

Figure 2. Inhibition of SpyCas9 and SauCas9 by newly discovered Acr candidates. (A) In vitro 496 
cleavage of dsDNA by SpyCas9 in the absence or presence of a 50-fold excess of AcrIIA4 (positive control) 497 
and each Acr candidate. (B) In vitro cleavage of dsDNA by SpyCas9 in the presence of increasing 498 
concentrations of (left to right) BSA (negative control), AcrIIA4 (positive control), ML1 and ML8 (Acr:RNP 499 
0.1-, 1-, 2- ,10-, 50- and 100-fold excess from left to right). (C) In vitro cleavage of dsDNA by SauCas9 in 500 
the absence or presence of a 25-fold excess of each Acr candidate. (D) In vitro cleavage of dsDNA by 501 
SauCas9 in the presence of increasing concentrations of (left to right) BSA (negative control), AcrllA5 502 
(positive control, Acr:RNP 0.1-, 1-, 2- ,4-, 8- and 10-fold excess from left to right), ML3 and ML8 (Acr:RNP 503 
0.1-, 1-, 2- ,10-, 50- and 100-fold excess from left to right). Uncropped gel images for panels B and D are 504 
shown in Figures S3 and S4.  505 

  506 



 507 

Figure 3. ML1 and ML8 inhibit SinCas9 with ML1 showing high potency. (A) In vitro cleavage of dsDNA 508 
by SinCas9 in the absence or presence of a 50-fold excess of each Acr candidate. (B) In vitro cleavage of 509 
dsDNA by SinCas9 in the presence of increasing concentrations of ML1. The uncropped gel image for 510 
panel B is shown in Figure S6.  511 
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513 

Figure 4. ML1 competes with AcrIIA2 to bind to the SinCas9-sgRNA complex. (A) Flowchart for the 514 

competition binding experiment between ML1 and AcrIIA2. Binding of the Acr to the SinCas9-sgRNA RNP 515 

was reconstituted using size-exclusion chromatography (SEC). (B) Size-exclusion chromatogram of 516 

SinCas9-sgRNA in the presence of either ML1, AcrIIA2 or both Acrs with AcrIIA2 added after ML1. (C) 517 

Coomassie-stained polyacrylamide gel illustrating the components of the SinCas9-RNP fraction annotated 518 

(I), (II), and (III) in panel B. 519 
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Figure S1. SHAP analysis of AcRanker features. (A) Absolute mean of the SHAP (SHapley Additive 

exPlanations) (1) values as measured for the 20 highest impact features in the AcRanker model. G1-G6 represent 

amino acid groupings used for computing dimeric and trimeric frequencies in AcRanker. Individual amino acids are 

grouped according to their side-chain volume and dipole moment (Table S3) (2). (B) Violin plots showing the 

SHAP value vs. the feature value for the 20 highest impact features in AcRanker. Higher feature values (red) with 

negative SHAP values indicate features that tend to be absent in the training set anti-CRISPRs, while high measured 

feature values with positive SHAP values suggest features that are more frequently found in the training set anti-

CRISPRs. The data suggest that candidates with lower proline (P), glutamine (Q), and leucine (L) content will tend 

to have higher rankings. 
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Figure S2. Purified Acr candidates and Cas effectors used in this study. (A) 4-20% gradient SDS-PAGE 

showing a size marker (M) and (left to right) purified machine learning Acr candidates, Cas9 effectors and 

AsCas12a used in this study. (B) Mass spectra of each purified Acr candidate used in this study. The measured mass 

of ML3 is 896 Da higher than the expected mass. We did not investigate the mass difference any further. ML5 

contained a significant unidentified contaminant (*) of 23,510 Da in size.  

 

 

 

 



 
Figure S3. Inhibition of SpyCas9 by newly discovered Acr candidates. (A) In vitro cleavage of dsDNA by 

SpyCas9 in the presence of increasing concentrations of AcrllA4 (positive control). (B) In vitro cleavage of dsDNA 

by SpyCas9 in the presence of increasing concentrations of (left) DNA mimic and (right) BSA (DNA or BSA:RNP 

0.1-, 1-, 2- ,10-, 50- and 100-fold excess from left to right). (C) In vitro cleavage of dsDNA by SpyCas9 in the 

presence of increasing concentrations of ML1, ML2, ML3 and ML8 (Acr:RNP 0.1-, 1-, 2- ,10-, 50- and 100-fold 

excess from left to right). (D) Quantified band intensities of the in vitro cleavage assays. Fraction of dsDNA cleaved 

(y-axis) is plotted against the Acr to SpyCas9 RNP ratio (x-axis). AcrllA4, BSA, ML1 and ML8 were run in 

triplicates.  

 

 



 

Figure S4. Inhibition of SauCas9 by newly discovered Acr candidates. (A) In vitro cleavage of dsDNA by 

SauCas9 in the presence of increasing concentrations of the positive control AcrllA5 (top) or negative control BSA 

(bottom). (B) In vitro cleavage of dsDNA by SauCas9 in the presence of increasing concentrations of ML3 (top) and 

ML8 (bottom).  

 

 

  



 

 
Figure S5. Control experiments for in vitro dsDNA cleavage assay. (A) In vitro cleavage of dsDNA by the 

restriction enzyme AlwN1 in the absence or presence of increasing concentrations of AcrllA4, ML1, ML3 and ML8 

(Acr:AlwN1 0.1-, 1-, 2- ,10-, 50- and 100-fold excess from left to right). (B) In vitro cleavage of dsDNA by the 

restriction enzyme AlwN1 in the presence of increasing concentrations of ML8. (C) In vitro cleavage of dsDNA by 

AsCas12a in the absence or presence of increasing concentrations of AcrVA1, ML1, ML3 and ML8 (Acr:RNP 0.1-, 

1-, 2- ,10-, 50- and 100-fold excess from left to right). 

 

 

 

 



 
Figure S6. Inhibition of SinCas9 by ML1, ML8 and AcrIIA2. (A) In vitro cleavage of dsDNA by SinCas9 in the 

absence or presence of increasing concentrations of ML1. (B) In vitro cleavage of dsDNA by SinCas9 in the absence 

or presence of increasing concentrations of ML8. (C) In vitro cleavage assay where ML1 is incubated with SinCas9 

before and after the incubation with sgRNA. (D) In vitro cleavage of dsDNA by SinCas9 in the presence of 

increasing concentrations of AcrIIA2. The same DNA target is used in all gels.   



 
 

Figure S7. Design of the SinCas9 single guide RNA. (A) Predicted structure of the SinCas9 pre-crRNA:tracrRNA 

complex. (B) Schematic of the single-guide RNA designed for use in this study. The 20-bp spacer sequence is 

shown in blue, tracrRNA is shown in red and the direct repeat sequence in gray.  

  



 
 

Figure S8. Competition binding experiment between ML1 and AcrIIA2. (A) Size-exclusion chromatogram of 

SinCas9-sgRNA in the absence or presence of ML1 (left), AcrIIA2 (middle) or both (right). (B) Coomassie-stained 

polyacrylamide gel illustrating the components of the fractions annotated with (I) to (VI) and 1 to 8 in panel (A). 

 

 

 

  



Table S1. List of Acrs used for training and cross-validation of the AcRanker model. 

Anti-CRISPRdb 

Name 

Acr 

Family 
Protein Accession # Species 

Proteome 

Size 
Ref 

anti_CRISPR0407 AcrIE1 YP_007392738.1 Pseudomonas phage JBD5 57 (3) 

anti_CRISPR0408 AcrIE3 YP_950454.1 Pseudomonas phage DMS3 52 (3) 

anti_CRISPR0409 AcrIE2 YP_007392439.1 
Pseudomonas phage 

JBD88a 
54 (3) 

anti_CRISPR0410 AcrIE4 NP_938238.1 Pseudomonas phage D3112 54 (3) 

anti_CRISPR0001 AcrIF1 YP_007392342.1 Pseudomonas phage JBD30 56 (4) 

anti_CRISPR0007 AcrIF2 YP_002332454.1 Pseudomonas phage MP29 51 (4) 

anti_CRISPR0003 AcrIF3 YP_007392440.1 
Pseudomonas phage 

JBD88a 
54 (4) 

anti_CRISPR0002 AcrIF4 YP_007392799.1 Pseudomonas phage JBD24 57 (4) 

anti_CRISPR0005 AcrIF5 YP_007392740.1 Pseudomonas phage JBD5 57 (4) 

anti_CRISPR0008 AcrIF6 WP_043884810.1 Pseudomonas aeruginosa 6095 (5) 

anti_CRISPR0011 AcrIF6 WP_019933870.1 Oceanimonas smirnovii 3045 (5) 

anti_CRISPR0013 AcrIF6 WP_014702809.1 Methylophaga frappieri 2689 (5) 

anti_CRISPR0022 AcrIF7 ACD38920.1 

Pseudomonas aeruginosa 

strain PACS458 clone 

fa1376 Pseudomonas 

aeruginosa 

57 (5) 

anti_CRISPR0034 AcrIF8 AFC22483.1 Pectobacterium phage ZF40 68 (5) 

anti_CRISPR0038 AcrIF9 WP_031500045.1 Vibrio parahaemolyticus 4928 (5) 

anti_CRISPR0051 AcrIF10 KEK29119.1 Shewanella xiamenensis 3552 (5) 

anti_CRISPR0134 AcrIIA1 AEO04364.1 
Listeria monocytogenes 

J0161 
2952 (6) 

anti_CRISPR0246 AcrIIA2 AEO04363.1 
Listeria monocytogenes 

J0161 
2952 (6) 

anti_CRISPR0384 AcrIIA4 AEO04689.1 
Listeria monocytogenes 

J0161 
2952 (6) 

anti_CRISPR0433 AcrIIA5 D4276_028 Streptococcus phage D4276 54 (7) 

 

 

  



Table S2. List of Acrs used for independent testing of AcRanker. 

Acr Family Protein Accession Species Proteome 
Size Ref 

AcrIE5 WP_074973300.1 Pseudomonas otitidis strain DSM 17224 5731 (8) 

AcrIE6 WP_087937214.1 Pseudomonas aeruginosa strain S708_C14_RS 6794 (8) 

AcrIE7 WP_087937215.1 Pseudomonas aeruginosa strain S708_C14_RS 6794 (8) 

AcrIE4-F7 WP_064584002.1 Pseudomonas citronellolis strain SJTE-3 6260 (8) 

AcrIF11 WP_038819808.1 Pseudomonas aeruginosa str. C1426 5888 (8) 

AcrIF11.1 WP_033936089.1 Pseudomonas aeruginosa strain TRN6649 6373 (8) 

AcrIF11.2 EGE18857.1 Moraxella catarrhalis BC8 1844 (8) 

AcrIF12 ABR13388.1 
Pseudomonas aeruginosa PAGI-5 genomic 

island sequence 
121 (8) 

AcrIF13 EGE18854.1 Moraxella catarrhalis BC8 1843 (8) 

AcrIF14 AKI27193.1 Moraxella phage Mcat5 68 (8) 

AcrIC1 WP_046701304.1 Moraxella bovoculi strain 58069 1944 (8) 

AcrIIA3 WP_014930691.1 
Listeria monocytogenes serotype 7 str. 

SLCC2482 
2822 (6) 

AcrIIA6 WP_149028791.1 Streptococcus phage D1811 40 (9) 

AcrIIA7 AII65827.1 Bacteroides dorei isolate HS1_L_1_B_010 4519 (10) 

AcrIIA9 WP_004289410.1 Bacteroides fragilis strain DCMOUH0067B 4286 (10) 

AcrIIA13 AKS70260.1 Staphylococcus schleiferi strain 5909-02 2278 (11) 

AcrIIC5 WP_002642161.1 Simonsiella muelleri ATCC 29453 2170 (12) 

AcrIIIB1 NP_666582.1 Sulfolobus islandicus rod-shaped virus 2 54 (13) 

AcrVA1 WP_046701302.1 Moraxella bovoculi strain 58069 1944 (8, 14) 

AcrVA4 WP_046699156.1 Moraxella bovoculi strain 22581 2105 (14) 

 

 

  



Table S3. Grouping of amino acids based on physiochemical properties. Groups of amino acids with similar side 

chains are grouped together to reduce the number of features to test in the machine learning model (2). 

 
 
  

Group # Dipole Scale Volume Scalea b

c

Amino Acids
1
2
3
4
5
6
7

-
-
+

++
+++
+'+'+'

+

-
+
+
+
+
+
+

A, G, V
I, L, F, P
Y, M, T, S

H, N, Q, W
R, K 
D, E 

C

c

aDipole scale (Debye): -, Dipole < 1.0; +, 1.0 < Dipole < 2.0; ++, 2.0 < Dipole < 3.0; +++, Dipole > 3.0; 
+'+'+', Dipole > 3.0 with opposite orientation

bVolume scale (Å ): -, Volume < 50; +, Volume > 503

Cysteine is separated from class 3 because of its ability to form disulfide bonds



Table S4. Comparison of XGBoost classification vs. pairwise ranking models during leave-one-out cross-

validation. Each row of the table indicates which Acr was excluded from the training dataset and used as a test 

dataset, with the number indicating the rank obtained using either a blastp search against all other known Acrs in the 

training set (blastp), an XGBoost classification model (Class.), an XGBoost pairwise ranking model (Ranking). The 

best rank achieved by the XGBoost classification or pairwise ranking model within the complete or prophage 

proteome is marked with an asterisk. The best rank between blastp and either XGBoost model is bolded, and any 

method that produces the top rank is bolded with two asterisks. The pairwise ranking model performs better than the 

classification model, with the ranking model receiving a better rank 11 times vs. six times for the classification 

model in complete bacterial or phage proteomes. In the smaller prophage proteomes the ranking model is ranked 

higher five times vs. once for the classification model. 

Protein Acr 
Family 

Complete Proteome Prophage Proteome Subset 

Size blastp 
AcRanker (XGBoost) 

Size blastp 
AcRanker (XGBoost) 

Class. Ranking Class. Ranking 
anti_CRISPR0407 AcrIE1 57 33 9 1**     

anti_CRISPR0408 AcrIE3 52 17 1** 1**     

anti_CRISPR0409 AcrIE2 54 18 5 2*     

anti_CRISPR0410 AcrIE4 54 11 2 1**     

anti_CRISPR0001 AcrIF1 56 21 4* 11     

anti_CRISPR0007 AcrIF2 51 34 1** 1**     

anti_CRISPR0003 AcrIF3 54 5 9 1**     

anti_CRISPR0002 AcrIF4 57 36 1** 3     

anti_CRISPR0005 AcrIF5 57 26 19* 19*     

anti_CRISPR0008 AcrIF6 6095 1** 69* 80 361 1** 17 15* 

anti_CRISPR0011 AcrIF6 3045 1** 25 13* 72 1** 3 1** 

anti_CRISPR0013 AcrIF6 2689 1** 541 130* 57 - - - 

anti_CRISPR0022 AcrIF7 57 20 3 1**     

anti_CRISPR0034 AcrIF8 68 30 3 1**     

anti_CRISPR0038 AcrIF9 4928 198 44* 333 37 - - - 

anti_CRISPR0051 AcrIF10 3552 189 2* 17 70 23 1** 2 

anti_CRISPR0134 AcrIIA1 2951 183 931 770* 146 60 97 87* 

anti_CRISPR0246 AcrIIA2 2952 210 15* 16 146 34 6 3* 

anti_CRISPR0384 AcrIIA4 2951 59 56 21* 146 9 15 4* 

anti_CRISPR0433 AcrIIA5 54 5 12 8*     

  



Table S5. Amino acid sequence and accession numbers of all the Acr candidates. 

#ML cand. Accession No. Sequence 

ML1 OHX26873.1 MKNYEVTNEVKNLNTQVETIGQAVDLYKEYGSNTIVWSIDK

NEDLIDEVTELVAEYAEKGTVIK 

ML2 WP_003731277.1 MGKTYWYNEGTDTLLTEKEYKELMEREAKALYEEVQEEEKD

FESSEKTSFEEFLKTCYENESDFVLSDNEGNKLEEW 

ML3 WP_003731276.1 MSKTMYKNDVIELIKNAKTNNEELLFTSVERNTREAATQYFR

CPEKHVSDAGVYYGEDFEFDGFEIFEDDLIYTRSYDKEELN 

ML4 WP_000946250.1 MLRRVNHVKNVLAHGEFAEWIENKIGIHYREANRMMTVAKQ

IPNVSTLKYLGATAKHVNGVAKRKQNFLSQISLIPTNPQLPHQ

TIINTYLYWQP 

ML5 WP_001080841.1 MNRLKELRKEKKLTQEELAGEIGVSKITILRWENGERQIKPDK

AKELAKYFNVSVGYLLGYAPNKKIDFQLNLDGTTLHLTKEQF

LALENTSKSIKKIKNTINESVKQEEYIKNASKYYDFEKVSRRLT

DRLFEIHTDLIELLMMLDHFPSGELSKSQQEAIFKFYKQLDYFV

TDTPASFDYFKKNLESYGYKIYTEGDKIDFD 

ML6 WP_000965633.1 MLYIDEFKEAIDKGYILGGTVAIVRKNGKIFDYVLPHEEVREE

EVVTVERVEDVMRELE 

ML7 WP_000591144.1 MIKIYFGKDAALNQAIQSRLDSYQIDYQAFSSKDIDAKTLMEW

LFKSTDIFELLSTKMLKYKLNTQITLSQFVRKILKDVNSTLKLPI

VVTDEVIYSNMSPDYVTVLLPKEYRKIKRIQLMRKMEQLDEG

RLFWKNFELFRKQSELRWFELNELLFADVSDDLGEIKKAKDR

FFSYKKNNQVPPNEIIERILKIFLVDREDFFKKSPSDLQNF 

ML8 WP_000384271.1 MDYDNENYLIPKILLQDDFYSSLSAKDILVYAVLKDRQIEALE

KGWIDTDGSIYLNFKLIELAKMFSCSRTTMIDVMQRLEEVNLI

ERERVDVFYGYSLPYKTYINEV 

ML9 WP_000134666.1 MTEGFTIQLPKVTEKKLLARYDDMLQKAIEKALEDKELYKPI

VRMAGLCRWLDVSTTTVVKWQKQGGMPHMVIDGVTLYDK

HKVAQWLQQFER 

ML10 WP_011058321.1 MNIEDIERIISEYLIFRSDIDGCAVIDIEDFLKHIRFSYERLK 

 

  



Table S6. Amino acid sequence of all the Cas effectors used in this study. 

Cas effector Species Sequence 

Cas9 Streptococcus 

pyogenes 

MDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIK

KNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNE

MAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYP

TIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDN

SDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLE

NLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSK

DTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEIT

KAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKN

GYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRK

QRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRI

PYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFI

ERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMR

KPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEI

SGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLF

EDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGI

RDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVS

GQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPEN

IVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVEN

TQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSF

LKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLN

AKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVA

QILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVR

EINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVR

KMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIET

NGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKE

SILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKG

KSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKL

PKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHY

EKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANL

DKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTID

RKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD 

Cas9 Staphylococcus 

aureus 

MGKRNYILGLDIGITSVGYGIIDYETRDVIDAGVRLFKEANVENN

EGRRSKRGARRLKRRRRHRIQRVKKLLFDYNLLTDHSELSGINP



YEARVKGLSQKLSEEEFSAALLHLAKRRGVHNVNEVEEDTGNE

LSTKEQISRNSKALEEKYVAELQLERLKKDGEVRGSINRFKTSDY

VKEAKQLLKVQKAYHQLDQSFIDTYIDLLETRRTYYEGPGEGSP

FGWKDIKEWYEMLMGHCTYFPEELRSVKYAYNADLYNALNDL

NNLVITRDENEKLEYYEKFQIIENVFKQKKKPTLKQIAKEILVNEE

DIKGYRVTSTGKPEFTNLKVYHDIKDITARKEIIENAELLDQIAKI

LTIYQSSEDIQEELTNLNSELTQEEIEQISNLKGYTGTHNLSLKAIN

LILDELWHTNDNQIAIFNRLKLVPKKVDLSQQKEIPTTLVDDFILS

PVVKRSFIQSIKVINAIIKKYGLPNDIIIELAREKNSKDAQKMINEM

QKRNRQTNERIEEIIRTTGKENAKYLIEKIKLHDMQEGKCLYSLE

AIPLEDLLNNPFNYEVDHIIPRSVSFDNSFNNKVLVKQEENSKKG

NRTPFQYLSSSDSKISYETFKKHILNLAKGKGRISKTKKEYLLEER

DINRFSVQKDFINRNLVDTRYATRGLMNLLRSYFRVNNLDVKVK

SINGGFTSFLRRKWKFKKERNKGYKHHAEDALIIANADFIFKEW

KKLDKAKKVMENQMFEEKQAESMPEIETEQEYKEIFITPHQIKHI

KDFKDYKYSHRVDKKPNRELINDTLYSTRKDDKGNTLIVNNLN

GLYDKDNDKLKKLINKSPEKLLMYHHDPQTYQKLKLIMEQYGD

EKNPLYKYYEETGNYLTKYSKKDNGPVIKKIKYYGNKLNAHLDI

TDDYPNSRNKVVKLSLKPYRFDVYLDNGVYKFVTVKNLDVIKK

ENYYEVNSKCYEEAKKLKKISNQAEFIASFYNNDLIKINGELYRV

IGVNNDLLNRIEVNMIDITYREYLENMNDKRPPRIIKTIASKTQSI

KKYSTDILGNLYEVKSKKHPQIIKKG 

Cas9 Streptococcus iniae MRKPYSIGLDIGTNSVGWAVITDDYKVPSKKMRIQGTTDRTSIK

KNLIGALLFDNGETAEATRLKRTTRRRYTRRKYRIKELQKIFSSE

MNELDIAFFPRLSESFLVSDDKEFENHPIFGNLKDEITYHNDYPTI

YHLRQTLADRDQKADLRLIYLALAHIIKFRGHFLIEGNLDSENTD

VHVLFLNLVNIYNNLFEEDIVETASIDAEKILTSKTSKSRRLENLIA

EIPNQKRNMLFGNLVSLALGLTPNFKTNFELLEDAKLQISKDSYE

EDLDNLLAQIGDQYADLFIAAKKLSDAILLSDIITVKGASTKAPLS

ASMVQRYEEHQQDLALLKNLVKKQIPEKYKEIFDNKEKNGYAG

YIDGKTSQEEFYKYIKPILLKLNGTEKLISKLEREDFLRKQRTFDN

GSIPHQIHLNELKAIIRRQEKFYPFLKENQKKIEKLFTFKIPYYVGP

LANGQSSFAWLKRQSNESITPWNFEEVVDQEASARAFIERMTNF

DTYLPEEKVLPKHSPLYEMFMVYNELTKVKYQTEGMKRPVFLS

SEDKEEIVNLLFKKDRKVTVKQLKEEYFSKMKCFHTVTILGVED

RFNASLGTYHDLLKIFKDKAFLDDEANQDILEEIVWTLTLFEDQA



MIERRLVKYADVFEKSVLKKLKKRHYTGWGRLSQKLINGIKDK

QTGKTILGFLKDDGVANRNFMQLINDSSLDFAKIIKHEQEKTIKN

ESLEETIANLAGSPAIKKGILQSIKIVDEIVKIMGQNPDNIVIEMAR

ENQSTMQGIKNSRQRLRKLEEVHKNTGSKILKEYNVSNTQLQSD

RLYLYLLQDGKDMYTGKELDYDNLSQYDIDHIIPQSFIKDNSIDN

IVLTTQASNRGKSDNVPNIEIVNKMKSFWYKQLKNGAISQRKFD

HLTKAERGALSDFDKAGFIKRQLVETRQITKHVAQILDSRFNSNL

TEDSKSNRNVKIITLKSKMVSDFRKDFGFYKLREVNDYHHAQDA

YLNAVVGTALLKKYPKLEAEFVYGDYKHYDLAKLMIQPDSSLG

KATTRMFFYSNLMNFFKKEIKLADDTIFTRPQIEVNTETGEIVWD

KVKDMQTIRKVMSYPQVNIVMKTEVQTGGFSKESILPKGNSDKL

IARKKSWDPKKYGGFDSPIIAYSVLVVAKIAKGKTQKLKTIKELV

GIKIMEQDEFEKDPIAFLEKKGYQDIQTSSIIKLPKYSLFELENGRK

RLLASAKELQKGNELALPNKYVKFLYLASHYTKFTGKEEDREK

KRSYVESHLYYFDEIMQIIVEYSNRYILADSNLIKIQNLYKEKDNF

SIEEQAINMLNLFTFTDLGAPAAFKFFNGDIDRKRYSSTNEIINSTL

IYQSPTGLYETRIDLSKLGGK 

Cas12a Acidaminococcus sp. MTQFEGFTNLYQVSKTLRFELIPQGKTLKHIQEQGFIEEDKARND

HYKELKPIIDRIYKTYADQCLQLVQLDWENLSAAIDSYRKEKTEE

TRNALIEEQATYRNAIHDYFIGRTDNLTDAINKRHAEIYKGLFKA

ELFNGKVLKQLGTVTTTEHENALLRSFDKFTTYFSGFYENRKNV

FSAEDISTAIPHRIVQDNFPKFKENCHIFTRLITAVPSLREHFENVK

KAIGIFVSTSIEEVFSFPFYNQLLTQTQIDLYNQLLGGISREAGTEK

IKGLNEVLNLAIQKNDETAHIIASLPHRFIPLFKQILSDRNTLSFILE

EFKSDEEVIQSFCKYKTLLRNENVLETAEALFNELNSIDLTHIFISH

KKLETISSALCDHWDTLRNALYERRISELTGKITKSAKEKVQRSL

KHEDINLQEIISAAGKELSEAFKQKTSEILSHAHAALDQPLPTTLK

KQEEKEILKSQLDSLLGLYHLLDWFAVDESNEVDPEFSARLTGIK

LEMEPSLSFYNKARNYATKKPYSVEKFKLNFQMPTLASGWDVN

KEKNNGAILFVKNGLYYLGIMPKQKGRYKALSFEPTEKTSEGFD

KMYYDYFPDAAKMIPKCSTQLKAVTAHFQTHTTPILLSNNFIEPL

EITKEIYDLNNPEKEPKKFQTAYAKKTGDQKGYREALCKWIDFT

RDFLSKYTKTTSIDLSSLRPSSQYKDLGEYYAELNPLLYHISFQRI

AEKEIMDAVETGKLYLFQIYNKDFAKGHHGKPNLHTLYWTGLF

SPENLAKTSIKLNGQAELFYRPKSRMKRMAHRLGEKMLNKKLK

DQKTPIPDTLYQELYDYVNHRLSHDLSDEARALLPNVITKEVSHE



IIKDRRFTSDKFFFHVPITLNYQAANSPSKFNQRVNAYLKEHPETP

IIGIDRGERNLIYITVIDSTGKILEQRSLNTIQQFDYQKKLDNREKE

RVAARQAWSVVGTIKDLKQGYLSQVIHEIVDLMIHYQAVVVLE

NLNFGFKSKRTGIAEKAVYQQFEKMLIDKLNCLVLKDYPAEKVG

GVLNPYQLTDQFTSFAKMGTQSGFLFYVPAPYTSKIDPLTGFVDP

FVWKTIKNHESRKHFLEGFDFLHYDVKTGDFILHFKMNRNLSFQ

RGLPGFMPAWDIVFEKNETQFDAKGTPFIAGKRIVPVIENHRFTG

RYRDLYPANELIALLEEKGIVFRDGSNILPKLLENDDSHAIDTMV

ALIRSVLQMRNSNAATGEDYINSPVRDLNGVCFDSRFQNPEWPM

DADANGAYHIALKGQLLLNHLKESKDLKLQNGISNQDWLAYIQ

ELRN 

 

 

 

 



Table S7. sgRNAs used for the in vitro cleavage assay.  

Cas 

effector 

Species sgRNA sequence* Main Text 

Fig. 

Suppl. 

Fig. 

Cas9 Streptococcus 

pyogenes 

ATACGGGAGGGCTTACCATCGTTTTA

GAGCTATGCTGTTTTGGAAACAAAACA

GCATAGCAAGTTAAAATAAGGCTAGTC

CGTTATCAACTTGAAAAAGTGGCACCG

AGTCGGTGCTTTTTTT 

2A-B 3A-D 

Cas9 Staphylococcus 

aureus 

TATCGTAGTTATCTACACGACGGTTT

TAGTACTCTGGAAACAGAATCTACTAA

AACAAGGCAAAATGCCGTGTTTATCTC

GTCAACTTGTTGGCGAGATTTTT 

2C-D 4A-B 

Cas9 Streptococcus iniae ATACGGGAGGGCTTACCATCGTTTTA

GAGCTGTGTTGAAAAACACAGCAAGTT

AAAATAAGGCTTGTCCGTAATCAACTT

GAAAAAGTGAACACCGATTCGGTGTTT

TTTT 

3A-B 6A-D 

Cas12a Acidaminococcus sp. AAUUUCUACUCUUGUAGAUAAAGUGC

UCAUCAUUGGAAAACGU 

- 5C 

* Spacer sequences are shown in bold 
 
  



Table S8. DNA target used for the in vitro cleavage assay.  

Cas 

effector 

Species DNA target sequence* Main Text 

Fig. 

Suppl. 

Fig. 

Cas9 Streptococcus 

pyogenes 

AATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGA

AATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATAC

ATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATA

AATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTAT

TCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCAT

TTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAA

AGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGG

TTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGA

GAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACT

TTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTG

ACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATT

CTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAA

AGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCA

GTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACT

TACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCG

CTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGA

TCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGA

CGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAAC

GTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCT

TCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAA

GTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCT

GGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTC

TCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCC

CTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGG

CAACTATGGATGAACGAAATAGACAGATCGCTGAGATAG

GTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGT

TTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTT

AATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCT

CATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGA

GCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGA

GATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAA

AAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATC

AAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAG

CAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCC

GTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCT

ACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTG

2A-B 3A-D 

Cas9 Staphylococcus 

aureus 

2C-D 4A-B 

Cas9 Streptococcus 

iniae UEL-Si1 

3A-B 6A-D 

Cas12a Acidaminococcus 

sp. 

- 5C 



CCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAA

GACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAA

CGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGA

CCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAG

AAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGG

TATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCAC

GAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAG

TCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTT

TTGTGATGCTCGTCAGGGGGGCGGAGCCTGTGGAAAAAC

GCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCT

GGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGAT

TCTGTGGATAACCGTATTACCGCAGAGTTTGTAGAAACGC

AAAAAGGCCATCCGTCAGGATGGCCTTCTGCTTAATTTGA

TGCCTGGCAGTTTATGGCGGGCGTCCTGCCCGCCACCCTC

CGGGCCGTTGCTTCGCAACGTTCAAATCCGCTCCCGGCGG

TTGAGAAGAGAAAAGAAAACCGCCGATCCTGTCCACCGC

ATTACTGCAAGGTAGTGGACAAGACCGGCGGTCTTAAGT

TTTTTGGCTGAAATGCCTGGCAGTTCCCTACTCTCGCATG

GGGCTCGCGGTTAACTGATTATTTTATTTATCTAGGCTAC

TTACGAACG 

  DNA mimic** 

GCTGACAATGATACGAACGAGACACACGCTCACGACTCA

G 

- 3B 

* Target sequences are shown in blue (Streptococcus pyogenes, Streptococcus iniae), green (Acidaminococcus sp.) 

or bold (Staphylococcus aureus); **DNA mimic used for control experiments 

  



Table S9. Independent testing set validation results. 20 proteomes containing non-redundant (<40% sequence 

identity) Acrs from bacterial and phage sources were ranked using AcRanker and blastp. Bacterial proteomes that 

had Acrs within PHASTER-predicted prophages were also tested with a subset of the proteome containing only the 

prophage proteins. Cases where the top rank is returned are in boldface. 

 Complete Proteome Prophage Subset 

Acr Accession # Acr Family Proteome 
size 

AcRanker 
rank 

Blastp 
rank 

Proteome 
size 

AcRanker 
rank 

Blastp 
rank 

WP_064584002.1 AcrIE4-F7 6260 68 1 111 4 1 

WP_074973300.1 AcrIE5 5731 10 63 - - - 

WP_087937214.1 AcrIE6 6794 80 4383 - - - 

WP_087937215.1 AcrIE7 6794 742 6546 - - - 

WP_038819808.1 AcrIF11 5888 138 2995 64 3 38 

WP_033936089.1 AcrIF11.1 6373 38 2293 92 1 38 

EGE18857.1 AcrIF11.2 1844 412 90 59 30 1 

ABR13388.1 AcrIF12 121 7 10 - - - 

EGE18854.1 AcrIF13 1844 187 755 - - - 

AKI27193.1 AcrIF14 68 14 3 68 14 3 

WP_046701304.1 AcrIC1 1944 6 313 72 1 15 

WP_014930691.1 AcrIIA3 2822 10 1184 74 2 40 

WP_149028791.1 AcrIIA6 40 23 21 40 23 21 

AII65827.1 AcrIIA7 4519 179 2208 - - - 

WP_004289410.1 AcrIIA9 4286 53 930 - - - 

AKS70260.1 AcrIIA13 2278 22 355 145 3 29 

WP_002642161.1 AcrIIC5 2170 10 1954 367 6 237 

NP_666582.1 AcrIIIB1 54 44 25 54 44 25 

WP_046701302.1 AcrVA1 1944 114 376 72 10 18 

WP_046699156.1 AcrVA4 2105 1100 1405 293 220 81 

 

 

 



Table S10. List of expected lethal self-targeting Streptococcus genomes obtained with Self-Target Spacer Searcher (STSS). Searching Streptococcus 

assemblies from NCBI with STSS returned 385 cases of self-targeting derived from type II-A arrays representing 241 individual genomes. Of those genomes, 20 

contained at least one spacer with the characteristic NRG 3′ PAM for SpyCas9, shown in the table below. Only Streptococcus iniae strain UEL-Si1 contains a 

previously discovered anti-CRISPR (AcrIIA3). Also shown in the table are the self-targeting spacers for Listeria monocytogenes strain R2-502, which was also 

ranked with AcRanker.  

Target Accession# Locus Accession# Species/Strain Self-Targeting Spacer Sequence(s) 
3′ PAM 
Region 

Anti-CRISPRs 
Present 

NZ_MNAC01000031.1 NZ_MNAC01000010.1 Streptococcus iniae strain 

UEL-Si1 

TTGATAAGTATAATTTCCTGTCTTTGTTTT AGGAGTTTT AcrIIA3 

(WP_071127625.1) 

NZ_MNAC01000046.1 TAAGGAATTTGAAGCAATACGTCTTAATTT AGCAATGAC 

NZ_MNAC01000023.1 CAAAAAAGTTCGGTAACTTACGGTAACTTA CGGTAACTT 

TCTAAAAAATCAAAAGTTACCGTGTTACCG TAGTTTTGA 

AATATGACTTTTGGGAAATTAACTAATCAA TGGCTGAAA 

TTTTTGAGTGTACTGATGTTGCTTTTGAGC TGGCCACTT 

NZ_MNAC01000021.1 ATAATCAATCACATTAATGCTGACATCAAC TGGAGCAGA 

GAGTTTAATTAAGTGACATAATATCTTCAT CGGTTATAG 

NZ_JRLL01000002.1 NZ_JRLL01000058.1 Streptococcus pyogenes 

SS1447 

TCGTCAGATTTGTCAGTATAGTAATCATCA CGATATAAA None 

NZ_JRLL01000072.1 CTATATTGTTGAGCTGTGGGCTTTGCATAA AGGTTTAAA 



NZ_JRLL01000026.1 GTAATAATAGCATTGCCTGTTCTATCCTGT CGGTAGAAC 

NZ_CQAV01000003.1 NZ_CQAV01000001.1 Streptococcus agalactiae 

strain DE-NI-032 

TATTTGATAGCGGTAACGGGTCATATACAA AGGCATCTA None 

TGGTGGTATTTATAATGTACGAGCAAATCG AGGCGCTCC 

ACCTTGCTCCGATGACACCATCGCGAACCT TGGTCTAAT 

NZ_CP010449.1 NZ_CP010449.1 Streptococcus pyogenes 

strain NGAS322 

ATCGTAAGGCAACAGATTATCGTAAGATCT AGGTGTATA None 

NZ_ALQN01000014.1 NZ_ALQN01000018.1 Streptococcus agalactiae 

CCUG 37430  

ATTTGCAACTTTCTCAAGTGTTGCGAGAGA TGGAGAATT None 

NZ_ALQN01000018.1 GCAAGCACTAAATGAAGCTACTAGACTTAA AGGTCGCAG 

TAATGACATGTGGATTGATATCTCAGAGAA CGGCGATTA 

TGTCATTGTTAAAATCATTTGCATATTTTT TGGATATAA 

TACTTGACGAATTGAAGATGACGGAATTTA TTGCTCCAC 

NZ_CPVL01000019.1 NZ_CPVL01000003.1 Streptococcus agalactiae 

strain DE-NI-007 

AAGGCACGCGCAAGATGAATTCATTTCTAA TGGCTACAC None 

TGATGTTCTTTATCAAACATTCTAAATACT TGGAAGCCC 

GAGCCTTGCTTGAGTTTGTGGAGCTTTATA GGGATGGAA 

GTATAATTTAGTTAAGCTTAAATTTAACCA AGGAGACGT 



NZ_ANCM01000101.1 NZ_ANCM01000101.1 Streptococcus agalactiae 

FSL S3-586  

GAAAAAGGCGATGTAGCTTAGAAAGGAGAA GGGATGGAA None 

NZ_ANCM01000006.1 GAAAAAGGCGATGTAGCTTAGAAAGGAGAA CACCATGAA 

NZ_ANCM01000028.1 TACGAAAAGGTTGTGATAAAAGCCATATCA TCGAGTTTG 

NZ_ALTM01000012.1 NZ_ALTM01000016.1 Streptococcus agalactiae 

GB00548  

AACAACTTTCTTACAAAAGGTTCTAGTTTTC

TT 

TCGCAAAAC  

NZ_ALTM01000013.1 ACGCTCTGAGGCAGATGAGGAACAGGCGCA TAGGCACCC 

NZ_ALUZ01000056.1 NZ_ALUZ01000054.1 Streptococcus agalactiae 

GB00984  

TGAAAACAAGCGCAAAGCTGTCAGAAAACA CGGAACTAA None 

TACTTGACGAATTGAAGATGACGGAATTTA TGGCTCCAC 

NZ_ALRF01000019.1 NZ_ALRF01000066.1 Streptococcus agalactiae 

BSU188  

GAAACTTCGATTAGTTTGCGTACTCGCTCA CGGCAAAAC None 

NZ_ANEM01000019.1 NZ_ANEM01000012.1 Streptococcus agalactiae 

MRI Z1-022  

TTGCTGCTAGACCCAAACAGTTTATTTTTAG GGCCAAAAA None 

NZ_ANEM01000074.1 TATTTCATCATAGAAAATCCTGCTAGTGGT CGGTTATGG 

NZ_CQEL01000006.1 NZ_CQEL01000002.1 Streptococcus agalactiae 

strain DK-NI-014 

ACACCTAGTTTCAAGTTTTTAGCAGATTTTTT GGTTACATT None 

NZ_CQEL01000008.1 ACGCTCTGAGGCAGATGAGGAACAGGCGCA TAGGCACCC 

NZ_MAWX01000026.1 NZ_MAWX01000055.1 ATTGACTGTTTACGATTTCCTTCCACCGTT GGGTACAAA None 



Streptococcus agalactiae 

strain DK-PW-096 

TGATGAGATTTTTAAAAGACTCACTGATAT AGGATTGAC 

CGCTTAGATGAAGTACAGATTGTAACAAGT TCGGAAGTA 

NZ_CTJD01000013.1 NZ_CTJD01000001.1 Streptococcus agalactiae 

strain GB-NI-015 

TGAAAACAAGCGCAAAGCTGTCAGAAAACA CGGAACTAA None 

TACTTGACGAATTGAAGATGACGGAATTTA TGGCTCCAC 

NZ_CPZS01000003.1 NZ_CPZS01000001.1 Streptococcus agalactiae 

strain IT-NI-009 

TATTTGATAGCGGTAACGGGTCATATACAA AGGCATCTA None 

ACCTTGCTCCGATGACACCATCGCGAACCT TGGTCTAAT 

NZ_CPVQ01000026.1 NZ_CPVQ01000002.1 Streptococcus agalactiae 

strain RBH12 

AACACAGCTTCCTCGAAAGGGATATATCTA CGGACAACT None 

NDGB01000049.1 NDGB01000023.1 Streptococcus agalactiae 

strain ST 618  

ATTAAGTTGCTTAGTGCTTTCATAATCATC TGGAATAAC None 

NDGB01000030.1 ATTAAGTTGCTTAGTGCTTTCATAATCATC TGGAATAAC 

NZ_KQ969340.1 NZ_KQ969342.1 Streptococcus oralis strain 

DD14  

TTCCATTTCTGATTTGATTCAACAGCAGCA GGAAATCCT None 

TACAGCGGATACAACCCCACCAATAGCCTC AGGAATTGC 

NZ_KQ961462.1 NZ_KQ961485.1 Streptococcus pasteurianus 

strain GED7275A 

TTTATTCGGCATCGGCTGGTGTTATGGACT TGGCTGCGG None 



NZ_AWTL01000007.1 NZ_AWTL01000011.1 Streptococcus pyogenes 

GA03805  

TAGAGTAAACCGAATCTTTGCCATCTCTGG CAGTTTGAC None 

NZ_LRGN01000012.1 NZ_LRGN01000001.1 Streptococcus pyogenes 

strain SST2091-1  

TAGAGTAAACCGAATCTTTGCCATCTCTGG CAGTTTGAC None 

LRGT01000330.1 LRGT01000062.1 Streptococcus pyogenes 

strain SST2097-1  

TGGTCTAACTGCGTCTGGTCTGTGAATGA TAGGTACAA None 

NC_021838.1 NC_021838.1 Listeria monocytogenes 

strain R2-502 

GGTAAAACAAGCATCGGCGAAGCAGTAACA TGGCTTCTT AcrIIA3 

(WP_023553812.1), 

AcrIIA2 

(WP_023553814.1), 

AcrIIA1 

(WP_003722518.1), 

AcrIIA1 

(WP_012581438.1) 

GGTAAAACAAGCATCGGCGAAGCAGTAACA TGGCTACTC 

TAGGTTTAGGGAGTAAATTAGCTCCTTTGG CAGCTGGGT 

TAACTTTAGATACTGCTAAAGAATTAGCAA TGGTGCAAA 

TTGGGCAAAATGACCGTAATAAATCCATTC CGGTTCATC 

TAGGTTTAGGGAGTAAATTAGCTCCTTTGG CGGCTGGAT 



Table S11. Top Acr gene candidates within each genome ranked by AcRanker. The proteins found within the 

prophages of 20 Streptococcus genomes were ranked using AcRanker; up to the top 10 highest ranking genes are 

listed in ascending order. Known Acr genes and the 10 genes synthesized for biochemical testing are indicated in the 

rightmost column. Genomes with fewer than 10 listed have very few annotated proteins found within predicted 

prophages. 

 

Organism Source Contig Protein Rank 

Candidate # or 

Acr 

Streptococcus iniae strain 

UEL-Si1 

NZ_MNAC01000021.1 WP_071127623.1 1 ML1 

NZ_MNAC01000023.1 

WP_071127667.1 2  

WP_071127683.1 3  

WP_071127693.1 4  

NZ_MNAC01000021.1 
WP_071127625.1 5 AcrIIA3 

WP_071127624.1 6  

NZ_MNAC01000023.1 WP_071127689.1 7  

NZ_MNAC01000021.1 WP_071127610.1 8  

NZ_MNAC01000023.1 WP_071127674.1 9  

NZ_MNAC01000021.1 WP_071127619.1 10  

Streptococcus pyogenes 

strain SS1447 

NZ_JRLL01000026.1 

WP_032460883.1 1  

WP_029713970.1 2  

WP_003057301.1 3  

NZ_JRLL01000072.1 
WP_032461152.1 4  

WP_076634198.1 5  

NZ_JRLL01000026.1 WP_032460878.1 6  

NZ_JRLL01000072.1 WP_002986828.1 7  

NZ_JRLL01000026.1 

WP_080286986.1 8  

WP_012678849.1 9  

WP_032460877.1 10  

Streptococcus agalactiae 

strain DE-NI-032 
NZ_CQAV01000003.1 

WP_000640620.1 1  

WP_000164461.1 2  

WP_025194532.1 3  

WP_017827941.1 4  

WP_050201842.1 5  

WP_050305756.1 6  

WP_001162136.1 7  



WP_000431575.1 8  

WP_000138374.1 9  

WP_001872365.1 10  

Streptococcus pyogenes 

strain NGAS322 
NZ_CP010449.1 

WP_002983328.1 1  

WP_080370149.1 2  

WP_002983750.1 3  

WP_002984315.1 4  

WP_032465789.1 5  

WP_002982773.1 6  

WP_011054546.1 7  

WP_010921912.1 8  

WP_080370134.1 9  

WP_053308468.1 10  

Streptococcus agalactiae 

strain CCUG 37430 
NZ_ALQN01000018.1 

WP_000649300.1 1  

WP_079261174.1 2  

WP_000660740.1 3  

WP_000076700.1 4  

WP_000033707.1 5  

WP_000343312.1 6  

WP_000130090.1 7  

WP_000582684.1 8  

WP_000431581.1 9  

WP_000323860.1 10  

Streptococcus agalactiae 

strain DE-NI-007 
NZ_CPVL01000019.1 

WP_000694571.1 1  

WP_001166092.1 2  

WP_000359663.1 3  

WP_000141918.1 4  

WP_000648623.1 5  

WP_079260963.1 6  

WP_000205000.1 7  

WP_000130289.1 8  

WP_000946250.1 9 ML4 

WP_001021397.1 10  

WP_001080841.1 12 ML5 

Streptococcus agalactiae 

FSL S3-586 
NZ_ANCM01000028.1 

WP_017643458.1 1  

WP_000134940.1 2  



NZ_ANCM01000006.1 WP_001875290.1 3  

NZ_ANCM01000028.1 

 

WP_000789102.1 4  

WP_003051787.1 5  

WP_000032136.1 6  

WP_000342242.1 7  

WP_000686776.1 8  

WP_000988928.1 9  

NZ_ANCM01000101.1 WP_017643459.1 10  

Streptococcus agalactiae 

strain GB00548 
NZ_ALTM01000002.1 

WP_000331953.1 1  

WP_000259017.1 2  

WP_000793595.1 3  

WP_079254676.1 4  

WP_000384271.1 5 ML8 

WP_001018249.1 6  

WP_000568029.1 7  

WP_001097380.1 8  

WP_001867157.1 9  

WP_000656477.1 10  

WP_000134666.1 12 ML9 

WP_000591144.1 29 ML7 

Streptococcus agalactiae 

strain GB00984 
NZ_ALUZ01000056.1 

WP_000660738.1 1  

WP_000164461.1 2  

WP_017827941.1 3  

WP_000965653.1 4  

WP_000431574.1 5  

WP_000138374.1 6  

WP_000614971.1 7  

WP_000258802.1 8  

WP_000763911.1 9  

WP_000118546.1 10  

Streptococcus agalactiae 

strain BSU188 
NZ_ALRF01000068.1 

WP_001042289.1 1  

WP_000965633.1 2 ML6 

WP_025194532.1 3  

WP_000660741.1 4  

WP_001162136.1 5  

WP_000274022.1 6  



WP_000076712.1 7  

WP_001183891.1 8  

WP_000431576.1 9  

WP_000763914.1 10  

Streptococcus agalactiae 

strain MRI Z1-022 
NZ_ANEM01000074.1 

WP_017648179.1 1  

WP_079265830.1 2  

WP_000033707.1 3  

WP_000582684.1 4  

WP_017648175.1 5  

WP_017648177.1 6  

WP_000802599.1 7  

WP_000343901.1 8  

WP_025195242.1 9  

WP_000142566.1 10  

Streptococcus agalactiae 

strain DK-NI-014 

 

NZ_CQEL01000002.1 

WP_000421991.1 1  

WP_000640620.1 2  

WP_011058321.1 3 ML10 

WP_000965642.1 4  

WP_000660741.1 5  

WP_000906736.1 6  

WP_001162136.1 7  

WP_000076715.1 8  

WP_000027835.1 9  

WP_001872365.1 10  

Streptococcus agalactiae 

strain DK-PW-096 
NZ_MAWX01000026.1 

WP_000258802.1 1  

WP_001229661.1 2  

WP_001921522.1 3  

WP_000774601.1 4  

WP_011324937.1 5  

WP_000218309.1 6  

WP_079261306.1 7  

WP_000411527.1 8  

WP_001270064.1 9  

WP_000659174.1 10  

Streptococcus agalactiae 

strain GB-NI-015 
NZ_CTJD01000013.1 

WP_000640620.1 1  

WP_000660738.1 2  



WP_000164461.1 3  

WP_017827941.1 4  

WP_000965655.1 5  

WP_000431574.1 6  

WP_000138374.1 7  

WP_001872365.1 8  

WP_000614971.1 9  

WP_000258802.1 10  

Streptococcus agalactiae 

strain IT-NI-009 
NZ_CPZS01000003.1 

WP_000640620.1 1  

WP_000164461.1 2  

WP_079261174.1 3  

WP_050201842.1 4  

WP_001162136.1 5  

WP_000431575.1 6  

WP_000138374.1 7  

WP_001872365.1 8  

WP_000474006.1 9  

WP_000258802.1 10  

Streptococcus agalactiae  

strain RBH12 
NZ_CPVQ01000026.1 

WP_000650503.1 1  

WP_000164461.1 2  

WP_079261174.1 3  

WP_050198474.1 4  

WP_001058281.1 5  

WP_079454162.1 6  

WP_050199334.1 7  

WP_000612386.1 8  

WP_000963485.1 9  

WP_000206191.1 10  

Streptococcus agalactiae 

strain ST 618 
NDGB01000030.1 

OTG45472.1 1  

OTG45475.1 2  

OTG45496.1 3  

OTG45484.1 4  

OTG45499.1 5  

OTG45477.1 6  

OTG45479.1 7  

OTG45483.1 8  



OTG45481.1 9  

OTG45480.1 10  

Streptococcus oralis strain 

DD14  
NZ_KQ969340.1 

WP_061420077.1 1  

WP_061420097.1 2  

WP_061420111.1 3  

WP_061420115.1 4  

WP_061420334.1 5  

WP_061420080.1 6  

WP_061420123.1 7  

WP_061420133.1 8  

WP_061420073.1 9  

WP_061420062.1 10  

Streptococcus 

pasteurianus strain 

GED7275A 

NZ_KQ961462.1 

WP_061100257.1 1  

WP_061100237.1 2  

WP_061100224.1 3  

WP_061100243.1 4  

WP_061100244.1 5  

WP_061100249.1 6  

WP_082731474.1 7  

WP_061100238.1 8  

WP_061100250.1 9  

WP_061100233.1 10  

Streptococcus pyogenes 

GA03805 
NZ_AWTL01000007.1 

WP_011528797.1 1  

WP_011888786.1 2  

WP_023079933.1 3  

WP_023079900.1 4  

WP_023079918.1 5  

WP_002985387.1 6  

WP_011528776.1 7  

WP_023079897.1 8  

WP_011017565.1 9  

WP_023079923.1 10  

Streptococcus pyogenes 

strain SST2091-1 
NZ_LRGN01000012.1 

WP_011889039.1 1  

WP_011285632.1 2  

WP_010922455.1 3  

WP_010922464.1 4  



WP_002994106.1 5  

WP_002994744.1 6  

WP_063629031.1 7  

WP_080464960.1 8  

WP_063629030.1 9  

WP_063629029.1 10  

Streptococcus pyogenes 

strain SST2097-1 
LRGT01000330.1 

OAC70929.1 1  

OAC70939.1 2  

OAC70918.1 3  

OAC70933.1 4  

OAC70928.1 5  

OAC70915.1 6  

OAC70921.1 7  

OAC70941.1 8  

OAC70938.1 9  

OAC70937.1 10  

Listeria monocytogenes 

strain R2-502 
NC_021838.1 

WP_003731672.1 1  

WP_003733710.1 2  

WP_003731277.1 3 ML2 

WP_003731276.1 4 ML3 

WP_023553812.1 5 AcrIIA3 

WP_014601509.1 6  

WP_003733721.1 7  

WP_003731655.1 8  

WP_003725074.1 9  

WP_014601388.1 10  

WP_023553814.1 34 AcrIIA2 

WP_003722518.1 71 AcrIIA1 

WP_012581438.1 95 AcrIIA1 

 

 

 

  



Table S12. BLAST vs. AcRanker rankings for the selection candidates ML1-ML10. After selecting the 10 

candidate proteins for biochemical investigation, we performed a blastp ranking to determine the ability of BLAST 

to predict new Acr proteins. The three validated anti-CRISPRs are indicated with tan shading and in all three cases, 

AcRanker gives a much higher ranking than BLAST. 

 

Candidate Prophage 
proteome size 

Blastp rank 
(e-value) 

AcRanker 
rank 

ML1 (AcrIIA20) 56 12 (0.38) 1 

ML2 190 155 (4.85) 1 

ML3 (AcrIIA12) 190 132 (2.48) 2 

ML4 26 4 (0.16) 9 

ML5 26 16 (0.7) 12 

ML6 75 37 (1.3) 2 

ML7 32 29 (5.84) 29 

ML8 (AcrIIA21) 32 27 (3.24) 5 

ML9 11 11 (0.5) 12 

ML10 74 74 (4.5) 3 
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