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BACKGROUND:  Breast cancer risk models guide 
screening and chemoprevention decisions, but the 
extent and effect of variability among models, particu-
larly at the individual level, is uncertain.
OBJECTIVE:  To quantify the accuracy and disagree-
ment between commonly used risk models in categoriz-
ing individual women as average vs. high risk for devel-
oping invasive breast cancer.
DESIGN:  Comparison of three risk prediction models: 
Breast Cancer Risk Assessment Tool (BCRAT), Breast 
Cancer Surveillance Consortium (BCSC) model, and 
International Breast Intervention Study (IBIS) model.
SUBJECTS:  Women 40 to 74 years of age presenting 
for screening mammography at a multisite health sys-
tem between 2011 and 2015, with 5-year follow-up for 
cancer outcome.
MAIN MEASURES:  Comparison of model discrimina-
tion and calibration at the population level and inter-
model agreement for 5-year breast cancer risk at the 
individual level using two cutoffs (≥ 1.67% and ≥ 3.0%).
KEY RESULTS:  A total of 31,115 women were included. 
When using the ≥ 1.67% threshold, more than 21% of 
women were classified as high risk for developing breast 
cancer in the next 5 years by one model, but average 
risk by another model. When using the ≥ 3.0% thresh-
old, more than 5% of women had disagreements in risk 
severity between models. Almost half of the women 
(46.6%) were classified as high risk by at least one of 
the three models (e.g., if all three models were applied) 
for the threshold of ≥ 1.67%, and 11.1% were classified 
as high risk for ≥ 3.0%. All three models had similar 
accuracy at the population level.
CONCLUSIONS:  Breast cancer risk estimates for indi-
vidual women vary substantially, depending on which 
risk assessment model is used. The choice of cutoff 
used to define high risk can lead to adverse effects for 
screening, preventive care, and quality of life for misi-
dentified individuals. Clinicians need to be aware of the 
high false-positive and false-negative rates and variation 
between models when talking with patients.

KEY WORDS:  breast cancer; risk models; screening; mammography; 
chemoprevention
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INTRODUCTION
Breast cancer risk models estimate a woman’s risk of devel-
oping invasive breast cancer over a defined period, most 
commonly 5 years. These models have been developed and 
validated at a population level,1 and their use for individual 
patients in clinical practice is encouraged. These risk models 
differ in the number and weighting of variables included in 
their calculations. While age is the strongest predictor in 
all models, other components are variable and may include 
family history, genetic carrier status, and nongenetic risk 
factors such as breast density and previous breast biopsy.2 
These commonly used risk prediction models have similar 
accuracy and good discrimination when assessed in large 
populations.3–5

While current breast cancer risk assessment tools work 
well at a population level, little attention has been paid to 
how they perform at an individual level or to the impact 
of different thresholds for defining high risk. As we move 
toward a precision medicine approach in healthcare, these 
risk models are increasingly being used to identify women 
who would benefit from chemoprevention6–11 and supple-
mental MRI screening.12–15 In 2019, the US Preventive 
Services Task Force recommended that clinicians offer 
risk-reducing medications, such as tamoxifen, raloxifene, 
or aromatase inhibitors, to women who are at high risk for 
breast cancer in the next 5 years and at low risk for adverse 
medication effects.10 While prior recommendations and 
clinical trials have supported using a 5-year risk cutoff of 
1.67%, the Task Force in 2019 recommended a new cutoff of 
3%. Previous publications have not adequately assessed the 
variation in risk estimates for the ≥ 3.0% 5-year threshold 
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at the level of the individual. The few studies evaluating 
differences in model performance at the level of the indi-
vidual woman have used small sample sizes and only evalu-
ate lifetime risk,16,17 or report results for a 5-year threshold 
of ≥ 1.67%.18 Since key screening and medical intervention 
decisions are based on a woman’s estimated risk of devel-
oping invasive breast cancer, a consistent and accurate risk 
estimate is essential.

The objective of this study was to evaluate the accuracy 
and extent of disagreement of three common clinical risk 
models at the individual level when using these two different 
cutoffs (≥ 1.67% and ≥ 3.0%) to define high risk of breast 
cancer at 5 years. We focused on the models most likely 
to be used across all clinical specialties including, impor-
tantly, primary care and general internal medicine provid-
ers. The three risk models evaluated in this paper are the 
Breast Cancer Risk Assessment Tool (BCRAT, also called 
the Gail model),19 the Breast Cancer Surveillance Consor-
tium (BCSC),20,21 and the International Breast Intervention 
Study (IBIS, also called the Tyrer-Cuzick model).22 The 
BCRAT and IBIS are thought to be the two most commonly 
used models in clinical practice in the USA.23,24 Moreover, 
these three models all have readily accessible simple online 
calculators and are recommended for use in primary care.25 
In addition to assessing inter-model disagreement at the level 
of the individual, we used a subset of women with long-term 
cancer outcomes from cancer registry linkage to assess the 
accuracy of the risk models, as well as model calibration and 
discrimination at the population level.

METHODS
Data from UCLA Health, a diverse, multisite US health system 
serving a large geographic region of Southern California, were 
used for this study. Data were collected as part of the Athena 
Breast Health Network, a statewide quality improvement ini-
tiative across the University of California medical and cancer 
centers.26 Women participated at the time of mammography 
screening by completing informed consent and digital surveys 
that assessed their health history, lifestyle behaviors, and family 
history of cancer (IRB #10-001083). If a woman had multiple 
mammography examinations during the study period and thus 
filled out multiple surveys, the earliest most complete survey 
with the least amount of missing information was used. Over-
all, 50 variables were extracted from the survey and electronic 
health record to generate a dataset to use for the three risk mod-
els in this study. The key variables are listed in Table 1 and 
Supplementary Table 1. As data on body mass index (BMI) and 
mammographic density were not included in the original self-
reported survey data, we acquired these data from participants’ 

Table 1   Patient Characteristics and Risk Factors for Women 
Presenting for Screening Mammography Between 2011 and 2015 

(N = 31,115)

Unless otherwise indicated, data are number of patients with percent-
ages in parentheses. Age is recorded in years
NA not applicable, SD standard deviation
*Data are means ± standard deviation, with range in parentheses

Characteristic All patients (N = 31,115)

Age, mean ± SD (range)* 55.3 ± 9.6 (40–74)
Age at menarche, mean ± SD (range)* 12.7 ± 1.5 (9–17)
Age at first live birth, mean ± SD (range)* 31.9 ± 7.3 (19–41)
Age groups
   40–49 10,350 (33.3%)
   50–59 9699 (31.2%)
   60–69 8335 (26.8%)
   70–74 2731 (8.8%)
Race or ethnicity
   Non-Hispanic White 16,776 (53.9%)
   Non-Hispanic Black 2545 (8.2%)
   Hispanic 3053 (9.8%)
   Asian 3418 (11.0%)
   Other 2718 (8.7%)
   Unknown 2605 (8.4%)
Age at menarche
   11 and younger 5844 (18.8%)
   12–13 17,168 (55.2%)
   More than 13 8103 (26.0%)
Body mass index (kg/m2)
   18–24 14,007 (45.0%)
   25–29 6552 (21.1%)
   30 and above 5066 (16.3%)
   Unknown 5490 (17.6%)
Age at first live birth
   < 20 1914 (6.2%)
   20–24 3334 (10.7%)
   25–29 5667 (18.2%)
   30 and above 9087 (29.2%)
   Nulliparous 10,754 (34.6%)
   Unknown 359 (1.2%)
Menopausal status
   Pre-menopausal 10,950 (35.2%)
   Peri-menopausal 1268 (4.1%)
   Post-menopausal 18,110 (58.2%)
   Unknown 787 (2.5%)
Menopausal hormone therapy use
   Never or unknown 29,412 (94.5%)
   Ever 1703 (5.5%)
Personal history of benign breast disease
   No 3278 (10.5%)
   Yes 235 (0.8%)
   Unknown 27,602 (88.7%)
Mammographic density
   Almost entirely fatty 4445 (14.3%)
   Scattered fibroglandular 16,181 (52.0%)
   Heterogeneously dense 8397 (27.0%)
   Extremely dense 2092 (6.7%)
Result of biopsy
   No prior biopsy 27,335 (87.9%)
   Prior biopsy but diagnosis unknown 3545 (11.4%)
   Atypical hyperplasia 235 (0.8%)
First-degree relatives with breast cancer
   0/NA 26,158 (84.1%)
   1 4619 (14.8%)
   2 and above 338 (1.1%)
Second-degree relatives with breast cancer
   0/NA 23,995 (77.1%)
   1 5923 (19.0%)
   2 and above 1197 (3.8%)
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electronic health records. We calculated BMI by using height 
and weight recorded within 1 year of the survey date. Mam-
mographic density (BI-RADSTM) was acquired from the mam-
mography report. If multiple mammography screening exams 
were available for a woman, we used the one closest to the date 
when the woman completed the survey.

All women aged 40 to 74 years presenting for screening 
mammography between January 1, 2011, and December 31, 
2015, were considered for inclusion for the primary analysis. 
For a subgroup of women who entered the study from 2011 
to 2013, a minimum of five full years of follow-up data were 
available and breast cancer outcome data for these women 
were collected from the health system and regional cancer 
registry linkage. For women with invasive breast cancer, the 
last follow-up date is the date of diagnosis. For non-cancer 
cases, a full 5 years of follow-up data were available from 
the date of their survey. We identified 382 cases of invasive 
cancer in these asymptomatic women presenting for screen-
ing mammograms, of which 16 women died within 5 years, 
making the 5-year survival 97%. This 5-year survival is simi-
lar to that reported in other studies reporting the survival of 
women with invasive breast cancer detected by screening 
mammography.27–29

The study population included a mix of women on annual 
and biennial screening intervals, with more women screened 
in the health system in later years as capacity expanded. 
Patients were offered enrollment into the Athena Breast 
Health Network at each screening exam; therefore, patients 
may have only answered the survey questionnaire once but 
may still have had more than one subsequent screening exam 
during the study period. Women were excluded from our 
analysis if they had a previous diagnosis of invasive breast 
cancer or ductal carcinoma in situ (DCIS), prior breast aug-
mentation, or prior mastectomy.

BCRAT software (Breast Cancer Risk Assessment SAS 
Macro, Version 4, Gail Model) was downloaded from the 
National Institute of Health, Division of Cancer Epidemiol-
ogy & Genetics.30 BCSC software was downloaded from 
the Breast Cancer Surveillance Consortium.31 IBIS soft-
ware (IBIS Breast Cancer Risk Evaluation Tool, version 8) 
was downloaded from the Wolfson Institute of Preventative 
Medicine.32 Missing data for the IBIS model were prepared 
according to the instructions provided on the IBIS website 
(https://​ems-​trials.​org/​riske​valua​tor/).

Statistical Analysis
Five-year breast cancer risk was calculated using the three 
different models for each woman. Women were divided into 
average- or high-risk groups for 5-year risk estimates using 
the cutoffs of ≥ 1.67% and ≥ 3.0%, the two values used by 
clinicians when considering chemoprevention treatment rec-
ommendations.10 The “average-risk” group includes what are 
likely to be both low- and average-risk women, two terms that 

are not well defined for 5-year risk by the existing models. 
Therefore, for the purpose of this study, we have grouped any 
women who were not high risk under the term “average risk.”

We describe self-reported demographics and key breast 
cancer risk factors obtained at the time of imaging. Two-
sided hypothesis testing on descriptive statistics employed 
chi-squared testing for categorical variables and non-para-
metric Wilcoxon test for continuous variables. We calcu-
lated population-level model performance based on calibra-
tion and discrimination for the subset of women with full 
cancer outcome data at 5 years. We assessed each model’s 
ability to discriminate between women who did and did not 
develop invasive breast cancer within 5 years by estimating 
and testing for differences in the C-statistic and plotting ROC 
curves. Calibration was assessed using both observed prob-
ability and predicted scores for 5-year breast cancer outcome 
from three models and plots by risk decile. Expected value 
is calculated as the sum of the predicted 5-year absolute 
risk estimated from each risk model. Observed value and 
the 95% confidence interval were calculated for a Poisson 
distribution. To compare binary 5-year risk between breast 
cancer risk models, we describe pairwise comparison in 2 
× 2 tables. SAS version 9.4 (SAS Institute, NC) was used to 
perform all statistical analyses.

RESULTS
Over the 5-year study period, 48,980 women presenting for 
mammography were surveyed, of which 36,438 women met 
the eligibility criteria for risk models, with 85.4% (31,115) 
of eligible women having the minimum recorded risk data to 
run all three models (age, age at menarche, breast density, and 
history of breast biopsy [Supplementary Figure 1]). The clini-
cal variables included in each risk model and percentage with 
complete data for each risk factor are shown in Supplementary 
Table 1. Overall, 26,170 women (84.1%) had complete data 
on the 7 BCRAT risk factors, 26,391 (84.8%) had complete 
data on the 5 BCSC risk factors, and 26,170 (84.1%) had com-
plete risk factor data for both BCRAT and BCSC models. No 
woman in our cohort had complete data for the IBIS model, 
which uses 84 questions about immediate and non-immediate 
family members as inputs. Among the subgroup of women 
who had 5 years of follow-up (N = 11,589), 382 (3.3%) had 
an invasive breast cancer diagnosis within 5 years.

Patient Characteristics and Population‑Level 
Breast Cancer Risk Assessment
Characteristics of the 31,115 women are shown in Table 1. 
For the overall population, the percentage of women identified 
as having ≥ 1.67% 5-year risk for developing invasive breast 
cancer was 35.5%, 20.0%, and 27.4% for BCRAT, BCSC, and 
IBIS, respectively, while the percent identified as having ≥ 3.0% 
5-year risk was 6.6%, 2.6%, and 6.6%, respectively, for the same 
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three models (Table 2). To test for the impact of missing data, 
a sensitivity analysis was conducted to examine the high-risk 
proportion for patients with complete data (N = 26,170) for both 
the BCRAT and BCSC models. The percentages of 5-year high 
risk from this complete data were similar to that from the full 
data (Supplementary Table 2).

Discordance Between the Models at the 
Level of the Individual
Pairwise comparisons of the individual women’s 5-year risk 
estimates across the three risk models are shown in Figure 1. 

When the risk cutoff was ≥ 1.67%, and two models were used, 
more than one in five women received a different risk classi-
fication (discordance values ranging from 21.0 to 26.0%). For 
example, when comparing the risk estimates from BCSC ver-
sus BCRAT models, 23.6% discordance was noted (i.e., almost 
one in four women were labeled “high risk” by one model but 
not the other). IBIS versus BCRAT models had 26.0% discord-
ance. IBIS versus BCSC models had 21.0% discordance. When 
using the cutoff of ≥ 3.0% and two models were used, more 
than 5% of women received a different risk classification (with 
discordance values ranging from 5.7 to 7.9%).

Table 2   Five-Year Risk Estimates for Women Assessed Across Three Different Breast Cancer Risk Models (N = 31,115)

Data are number of patients with percentages in parentheses
BCRAT​ Breast Cancer Risk Assessment Tool, BCSC Breast Cancer Surveillance Consortium, IBIS International Breast Cancer Intervention Study 
model

Risk model Cutoff ≥ 1.67% Cutoff ≥ 3.0%

Average risk (< 1.67%) High risk (≥ 1.67%) Average risk (< 3.0%) High risk (≥ 3.0%)

BCRAT​ 20,069 (64.5%) 11,046 (35.5%) 29,067 (93.4%) 2048 (6.6%)
BCSC 24,903 (80.0%) 6212 (20.0%) 30,295 (97.4%) 820 (2.6%)
IBIS 22,604 (72.6%) 8511 (27.4%) 29,052 (93.4%) 2063 (6.6%)

Panel a. Dashed lines in the scatter plots indicate a 1.67% cutoff for binary 
classification of high- vs. average-risk.

      BCSC vs. BCRAT
           23.6% Discordance

           IBIS vs. BCSC
           21.0% Discordance

          BCRAT vs. IBIS
           26.0% Discordance

Panel b. Dashed lines in the scatter plots indicate a 3.0% cutoff for binary classification 
of high- vs. average-risk.

         BCSC vs. BCRAT
        5.7% Discordance

         IBIS vs. BCSC
        6.3% Discordance

       BCRAT vs. IBIS
       7.9% Discordance

4,965

18,822

(16.0%)

(60.5%)
6,081

1,247

(19.5%)

(4.0%)

0 0.8 1.67 2.4 3.2

BCRAT Risk

0

0.8

1.67

2.4

3.2

BC
SC

 R
isk

4,090

20,482

(13.1%)

(65.8%)
2,122

4,421

(6.8%)

(14.2%)

0 0.8 1.67 2.4 3.2

BCSC Risk

0

0.8

1.67

2.4

3.2

IB
IS

 R
isk

5,732

17,290

(18.4%)

(55.6%)
2,779

5,314

(8.9%)

(17.1%)

0 0.8 1.67 2.4 3.2

IBIS Risk

0

0.8

1.67

2.4

3.2

BC
RA

T 
Ri

sk

552

28,799

(1.8%)

(92.6%)
1,496

268

(4.8%)

(0.9%)

0.0 1.5 3.0 4.5 6.0

BCRAT Risk

0.0

1.5

3.0

4.5

6.0

BC
SC

 R
isk

464

28,696

(1.5%)

(92.2%)
356

1,599

(1.1%)

(5.1%)

0.0 1.5 3.0 4.5 6.0

BCSC Risk

0.0

1.5

3.0

4.5

6.0

IB
IS

 R
isk

829

27,833

(2.7%)

(89.5%)
1,234

1,219

(4.0%)

(3.9%)

0.0 1.5 3.0 4.5 6.0

IBIS Risk

0.0

1.5

3.0

4.5

6.0

BC
RA

T 
Ri

sk

Figure 1   Pairwise comparisons of an individual woman’s risk of being told she is at “high risk” of a breast cancer diagnosis within 5 
years when using the three commonly used risk models (N = 31,115). * Panel a. Dashed lines in the scatter plots indicate a 1.67% cutoff for 

binary classification of high- vs. average-risk. Panel b. Dashed lines in the scatter plots indicate a 3.0% cutoff for binary classification of 
high- vs. average-risk. *The sum of the percentages may not add up to 100% due to rounding. 
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Agreement of the risk model results for individual women 
identified as high risk within 5 years on one, two, or all three 
of the models is shown in Figure 2. When evaluating the 
individual’s risk of being categorized as high risk using all 
three models, and using a cutoff of ≥ 1.67%, 46.6% (14,495) 
of women were identified as having high 5-year risk by at 
least one of the models, 24.9% (7761) were identified as 
having high 5-year risk on at least two of the models, and 
11.3% (3513) were identified as having high 5-year risk by 
all three models. The proportion of women noted as high risk 
for the cutoff point of ≥ 3.0% was lower, with 11.1% (3445) 
of women identified as having high 5-year risk by at least 
one of the models, 3.6% (1127) by at least two models, and 
1.2% (359) by all three models.

Accuracy of Risk Classification in the 
Subgroup of Women with 5 Years of 
Follow‑Up
All three models performed similarly at a population level 
with similar discriminatory power and calibration plots 
in the subgroup of women with 5 years of follow-up data 
(Fig. 3 and Supplementary Figure 2). Supplementary Table 3 
summarizes baseline characteristics between women with 
and without subsequent breast cancer diagnosis.

The accuracy of classifications when using these risk mod-
els is shown in Table 3. When using the ≥ 1.67% threshold, 
the sensitivity of the models ranged from 37.7 to 56.3% and 
specificity ranged from 63.7 to 77.9%. As an example, when 
the BCRAT was applied to the 11,589 women, about half of 

Figure 2   Agreement of breast cancer risk model results for individual women identified as high risk within 5 years on at least one of the 
breast cancer risk prediction models (N = 31,115). The Venn diagram at the bottom presents data for all women identified as high risk by 

at least one model, using shaded overlapping regions to represent the Boolean operation. The size of each Venn diagram circle corresponds 
to the number of women identified as high risk by each risk model. 
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the women diagnosed with breast cancer within 5 years were 
correctly identified as high risk using the ≥1.67% threshold 
(215/382; true-positive rate: 56.3%) while over 4000 women 
who did not develop invasive breast cancer were classified 
as high risk (false-positive rate: 36.3%). When using the 
more conservative ≥ 3.0% cutoff, the sensitivity of the three 
models dropped to a range of 6.3 to 17.0% and specificity 
increased to a range of 91.3 to 96.7%. When the BCRAT 
was used, a much smaller number of women with breast 
cancer were identified as high risk (49/382; 12.8%), thus 
misclassifying most of the women with breast cancer, yet 
there was also a much smaller number of women who did 
not develop invasive breast cancer incorrectly classified as 
high risk using this cut-point (N = 740; 6.6%).

DISCUSSION
Breast cancer risk models are increasingly used in clinical 
care to provide more personalized, risk-based screening and 
prevention recommendations. In our analysis, we found sub-
stantial variability in categorizing individuals as high risk for 
developing invasive breast cancer based on the risk model 
and the 5-year cutoff used. Thus, women are likely receiv-
ing vastly different recommendations depending on which 
breast cancer risk model is used and which cutoff is used to 
define “high risk.” While these models perform similarly 
at the population level, as noted in our study and in prior 
studies,3–5,18,33,34 our analyses highlight marked disagree-
ment between models in who they identify as “high risk.” 
For example, more than 20% of women would be classified 
as high risk of developing invasive breast cancer in the next 
5 years by one model but average risk by a second model if 
using the ≥ 1.67% threshold. We found that if all three mod-
els were used, almost half of women would be considered 
at high 5-year risk by at least one model when using the ≥ 
1.67% cutoff. However, most women will not be diagnosed 
with breast cancer within 5 years, thus leading to many 
women being incorrectly classified as high risk.

These findings highlight the tradeoff of sensitivity and 
inaccurate classification as being “high risk” when using the 
two different thresholds currently recommended to define 
high risk. For example, when using the ≥ 1.67% cutoff for 
considering chemoprevention, about half of the women 
diagnosed with a future breast cancer might be correctly 
identified as high risk, yet many more women will be falsely 
classified as high risk. When using the more conservative ≥ 
3.0% cutoff, there will be a much smaller number of women 
incorrectly classified as high risk, yet most of the women 
with a future breast cancer diagnosis will be missed.

We focused on the BCRAT, BCSC, and IBIS models as 
they are commonly used models, readily accessible online, 
and recommended for use in primary care.23–25 In contrast, 
more specialized models such as BOADICEA (CanRisk) 

Figure 3   Receiver operating characteristic curve (ROC curve) 
illustrating the similar population-level performance of the three 
models for 5-year breast cancer risk prediction (N = 11,589 with 

5 years of follow-up data). 

Table 3   Accuracy of 5-Year Breast Cancer Risk Prediction by Model in the Subgroup of Women with 5 Years of Follow-Up Data (N = 
11,580)

Data are percentages with 95% confidence intervals in parentheses
BBCRAT​ Breast Cancer Risk Assessment Tool, BCSC Breast Cancer Surveillance Consortium, IBIS International Breast Cancer Intervention Study 
model

Risk model Sensitivity Specificity Positive predictive value Negative predictive value

≥ 1.67% cutoff for binary classification of 5-year high vs. average risk
   BCRAT​ 56.3 (51.3–61.3) 63.7 (62.8–64.6) 5.0 (4.4–5.7) 97.7 (97.4–98.1)
   BCSC 37.7 (32.8–42.6) 77.9 (77.1–78.6) 5.5 (4.6–6.4) 97.3 (97.0–97.7)
   IBIS 46.9 (41.9–51.9) 68.8 (68.0–69.7) 4.9 (4.2–5.6) 97.4 (97.1–97.8)
≥ 3.0% cutoff for binary classification of 5-year high vs. average risk
   BCRAT​ 12.8 (9.5–16.2) 93.4 (92.9–93.9) 6.2 (4.5–7.9) 96.9 (96.6–97.2)
   BCSC 6.3 (3.8–8.7) 96.7 (96.4–97.1) 6.2 (3.8–8.5) 96.8 (96.5–97.1)
   IBIS 17.0 (13.2–20.8) 91.3 (90.8–91.8) 6.2 (4.8–7.7) 97.0 (96.7–97.3)
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and BRCAPRO, while well validated, are recommended for 
use by genetics specialists or designed to assess the prob-
ability of specific genetic risk factors.35–38 Whether or not 
our findings of variable high-risk categorization at the indi-
vidual level holds across these additional models should be 
explored in future studies.

While the current practice of shared decision-making 
based on women’s breast cancer risk estimates from these 
commonly used risk models is not precise, newer risk 
models are being developed. Some models are now includ-
ing information on breast cancer susceptibility genes and 
genetic susceptibility variants, while several recent studies 
suggest that quantitative imaging biomarkers and artificial 
intelligence algorithms might also supplement or supplant 
the current, subjective clinical risk assessment tools.39–42 
Risk prediction based on objective imaging-based deep 
learning breast cancer risk models has the potential to 
remove the subjectivity involved with the use of self-
reported risk information that currently drives risk-based 
screening and prevention practices.43,44 However, these 
new tools require having had a screening mammography 
examination and thus may not be useful to assess risk in 
the context of deciding what age to start screening.45

This study has several limitations. The cohort was 
drawn from women enrolled in a longitudinal screen-
ing study. Although we had extensive risk factor data 
on many participants, some family history was missing 
as was data on polygenetic risk scores. Despite this, the 
percentage of women identified as high risk was simi-
lar for both those with complete and incomplete (mini-
mum required) data for the BCRAT and BCSC models, 
suggesting that the most impactful risk factors were 
recorded for most women. Moreover, we suspect that 
the results based on the minimum number of risk factors 
required to calculate each model are more representa-
tive of how these models are likely used in real-world 
clinical practice, where risk factor data are typically 
self-reported. Several prior studies have demonstrated 
inconsistencies in a woman’s accuracy at remember-
ing age of menstruation and other historical data.46,47 
Finally, BCRAT and BCSC were developed to evaluate 
risk of invasive breast cancer, yet IBIS was developed 
to evaluate risk of invasive or ductal carcinoma in situ. 
In order to compare across models, we used the outcome 
of invasive breast cancer only for all three models.48,49

Our study has multiple strengths. First, we considered 
the differences in model performance at the individual 
level. The few studies that have done this are limited by 
small sample size, did not evaluate disagreement between 
models when a woman uses more than one risk model, 
or did not provide comparative evaluation using the more 
conservative 5-year risk threshold of ≥ 3.0%. Our analysis 
also uses data from a large racially and ethnically diverse 
population of women.

In summary, we noted substantial discordance in how 
three commonly used clinical risk models predicted 5-year 
invasive breast cancer risk, especially when using the cut-
off of ≥ 1.67% to define high risk. While risk models are 
generally considered useful in determining eligibility for 
high-risk screening and intervention at the population 
level, they may be less useful for guiding discussions about 
screening and interventions at the individual level. Our 
findings highlight the risk of a blanket approach to using 
risk prediction models to inform individual-level medical 
screening and treatment decisions. Future research efforts 
are necessary to improve on the ability of these risk models 
to inform shared decision-making for individual patients.
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