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ABSTRACT OF THE THESIS

Machine Learning-Based Operational Modeling of an Electrochemical Reactor:

Handling Data Variability for Experimental Data

by

Vito Anthony Canuso IV

Master of Science in Chemical Engineering

University of California, Los Angeles, 2022

Professor Panagiotis D. Christofides, Chair

Electrochemical reduction of carbon dioxide (CO2) has received increasing attention with

the recent rise in awareness of climate change and the increase in electricity supply from clean

energy sources. However, due to the complexity of its reaction mechanism and the largely un-

known electron-transfer pathways, the development of a first-principles-based operational model

of an electrocatalytic CO2 reactor is still in its infancy. This work proposes a methodology to

develop a feed-forward neural network (FNN) model to capture the input-output relationship of

an experimental electrochemical reactor from experimental data that are obtained from easy-to-

implement sensors. This FNN model is computationally-efficient and can be used in real time to

determine energy-optimal reactor operating conditions. To further account for the uncertainty of

the experimental data, the maximum likelihood estimation (MLE) method is adopted to construct a

statistical neural network, which is demonstrated to be able to address a usual overfitting problem

that occurs in the standard FNN model. Additionally, by comparing the neural network with an
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empirical first-principles-based model, it is demonstrated that the neural network model achieves

improved prediction accuracy with respect to experimentally determined input-output operating

conditions. The insights obtained from the FNN model are applied to propose specific modifica-

tions to the empirical, first-principles model (EFP model) to improve its prediction capability and

to propose optimal set points for future experiments based on the FNN predictions of operating

cost and profit. The FNN model is also used as the system model to perform relative gain array

analysis to determine controllability for multi-input-multi-output control schemes.
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Chapter 1

Introduction

The electrochemical transformation of carbon dioxide (CO2) into carbon-based fuels and

chemicals has received growing interest in this century due to its potential to reduce CO2 emissions

and facilitate the production of energy from renewable sources [20]. The biggest challenge for

research in this area is the difficulty in determining and quantifying the products that result from

the reduction of CO2. Specifically, the CO2 reduction pathways constitute a complex web of

reactions that result in the production of various alkanes, alkenes, and oxygenate species [23]. The

complexity of the electrocatalytic reduction pathway poses challenges when attempting to quantify

and model the reaction kinetics. In addition, recent small-scale experiments on this process show

varying levels of experimental uncertainty caused by the minimum measurable limit of the sensors

and other inevitable experimental errors. This can introduce a level of uncertainty into the data,

which can increase the difficulty of data analysis.

Although developing mathematical models, such as first-principle models, is a classical and

reliable way to describe and predict a physical process, the uncertainty and complexity of most

engineering systems make it challenging to implement. To overcome this problem, various data-

driven models and artificial intelligence (AI) approaches have been proposed historically. In the

1960s, Zadeh proposed an epochal AI logic, fuzzy logic, to approximate uncertain features [38].
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From then on, machine learning techniques for real-time process operation were investigated

in the 1990s [30], such as the expert system [16]. Additionally, auto-regressive models—such

as the autoregressive-moving-average model (ARMA) proposed by Peter Whittle in the early

1950s [32]—provided statistical strategies to develop data-driven models based on recorded ob-

servations.

With the development of open-source deep-learning libraries and availability of large datasets

from experimental electrochemical reactors (as well as other chemical reactor systems), machine

learning modeling of electrochemical reactors and other reactor systems has become a growing

field of interest within chemical engineering. Specifically, various versions of artificial neural

network (ANN) models have demonstrated their ability to address regression and classification

problems in the context of chemical process modeling [7, 18, 24, 28, 36, 37].

In recent years, ANNs have been used to model chemical engineering manufacturing pro-

cesses in several studies. For example, Wu et al. used a recurrent neural network (RNN) model to

model a chemical reactor using data from a large-scale process simulator, Aspen Plus dynamics.

This RNN was used in a model predictive controller (MPC) to stabilize the process under specific

steady-state operating conditions [35]. Additionally, a feed-forward neural network (FNN) model

was developed by Ding et al. to correlate the input and output variables of a SiO2 atomic layer

deposition (ALD) process to calculate optimal half-cycle times to achieve full surface coverage,

which is an important parameter for industrial ALD processes [5]. Furthermore, a methodology

was discussed by Jadid and Fairbairn, wherein neural networks were used for parameter estimation

from experimental data. Neural-network applications in predicting moment-curvature parameters

from experimental data [11]. These research investigations provide strong support for the use of

neural network models as a reliable approximation for analyzing complex nonlinear relationships

from experimental data and simulation data for electrochemical reactors.

Other works have applied deep learning methods to improve operational aspects of industrial

chemical processes. ANNs have been used as process models to replace traditional models to
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further optimize the control and operation of chemical and industrial processes. Bangi and Kwon

developed a deep reinforcement learning controller to control a hydraulic fracturing process to

improve the safety and optimization of system operation [2]. In addition, an operational model

was constructed for this process using a hybrid approach of a deep neural network and a first-

principle model [1]. ANNs were further used to determine the optimal operating conditions for

chemical and industrial processes [9, 10, 13, 14, 19, 25], which contributed to maximizing the

feasibility of novel processes from economic and safety perspectives.

Motivated by the aformentioned considerations, this work develops an FNN regression model

using steady-state, input-output data generated from an experimental electrochemical reactor. The

model is determined by solving a nonlinear regression problem that accounts for data variability.

This FNN model is computationally-efficient and can be used in real time to determine safe and

energy-optimal operating conditions for the electrochemical reactor. Specifically, the maximum

likelihood estimation (MLE) method was integrated with the FNN model development algorithm

to account for the uncertainty and variability of the experimental data by determining each data

points’ respective confidence interval and weighing each point accordingly in the FNN training

process. Therefore, the FNN model is able to account for the data variability and provide the sta-

tistically most likely trajectory of the experiment output over a broad set of operating conditions.

This probabilistic method decreases the chance that the model will overfit to specific training points

with large variation. The key novelty of this work is the development of an operational model for

a state-of-the-art electrochemical reactor using a statistical machine learning method. In addition,

the insights obtained from the FNN model are used to propose specific modifications to a classical

empirical, first-principle model (EFP model) of electrochemical phenomena to improve its predic-

tion capability, which can contribute to the investigation of the unknown first-principle chemical

reactor equations.

The rest of this manuscript is organized as follows. In the chapter “Preliminaries”, the ex-

perimental setup of the reactor and the kinetics of the electrochemical reactions are described.
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In the chapter “Development of the Machine Learning Model”, the formulation and construction

methods of the FNN model are discussed. In the chapter “Maximum Likelihood Estimation in ML

Reactor Modeling”, the methodology of the maximum likelihood estimation is integrated with the

FNN modeling method. In the chapter “Machine Learning Model Results and Analysis”, the per-

formance of the FNN models is evaluated, and the statistical FNN model predictions and insights

are demonstrated for various applications in further research.
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Chapter 2

Preliminaries

This chapter introduces the background of the electrochemical reactor used in this work and

the background of the mathematical derivations of the analysis used in Chapter 5. Specifically,

the experimental setup and the basic operating mode of the reactor are presented in this chapter.

Then, an overview of the input-output behavior for this process is used to further explain the

data structure used in the neural network model. Then, some traditional kinetic and mass transfer

models are derived for the electrochemical reactor. Finally, the theory of relative gain array analysis

is discussed for multi-input-multi-output control.

2.1 Experimental Electrochemical Reactor

The experimental reactor and microscopic transport diagrams are shown in Fig. 2.1. The

reactor was designed to study the effect of mass transport on electrochemical CO2 reduction while

keeping the electrochemical cell hermetically gas-tight for the online detection of gas products.

The reactor has two chambers separated by an ion-exchange membrane to prevent products from

crossing between the chambers. The main chamber contains the working electrode (cathode),

and the other chamber contains the counter electrode (anode). The CO2 gas is directly bubbled
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Figure 2.1: A diagram showing (a) the electrochemical reactor and (b) the reaction and mass
transfer processes involved in the transformation of CO2 to further reduced products on the poly-
crystalline copper electrode surface.

into both chambers, where the electrodes are submerged in a 0.2 M potassium bicarbonate buffer

electrolyte. The cathode is a rotating cylinder electrode (RCE) made of polycrystalline copper.

Copper is the only known single transition metal that can reduce CO2 into hydrocarbons and

oxygenates with more than two carbons (C2+) at an appreciable rate, and it plays a critical role as

the catalyst in the overall reaction scheme [22]. In order to keep the reactor airtight, the modulated

speed rotator (MSR) uses magnetic coupling to drive the RCE. The driver magnet is attached to

the MSR shaft, and it transmits torque to the follower magnet inside the reactor without requiring

a direct shaft connection between the MSR and RCE (Fig. 2.1). As the RCE shaft continuously

stirs the electrolyte solution, the hydrodynamics formed around the electrode can be systematically

controlled by setting a rotation speed from the MSR. Finally, gas and liquid products are analyzed

by gas chromatography (GC) and nuclear magnetic resonance (NMR) spectroscopy, respectively,

to determine the product composition under well-controlled mass transport characteristics. Further

details on the reactor design and experimental setup have recently been reported [12].

The product compositions quantified using GC and NMR are then used to determine the

production rate of each species and the reaction selectivity with respect to the desired products.
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Polycrystalline copper produces various products at a quantifiable level, as tabulated in Table 2.1.

Here, competing reactions—such as the hydrogen evolution reaction and the formate production

reaction—are excluded from the table and from the selectivity calculation, as they do not share the

same reaction pathway as the products in Table 2.1. Although carbon monoxide and formate are

both 2-electron reduction products, carbon monoxide is the main reaction intermediate that leads

to further reduced products, while formate cannot be reduced further. The desired products are the

C2+ oxygenate species (labeled in Table 2.1), because they are of high value and are commonly

used as liquid fuels and reagents. Therefore, the selectivity for this experiment is defined as the

ratio of the rate of C2+ oxygenate production to the rate of hydrocarbon production.

Since the reactions are catalytic, the reactions only occur on the surface of the electrode.

Therefore, the reactor operation is dictated by the balance between the surface kinetics and the

fluid phase mass transfer. The CO2 gas is bubbled in from the bottom of the reactor and dissolves

in the buffer solution. The dissolved CO2 is carried to the electrode surface by convective mass

transport from the rotating electrode. Subsequently, the CO2 molecules are adsorbed onto the

electrode surface and reduced to oxygenate and hydrocarbon products through consecutive proton-

coupled electron injection steps. Therefore, the surface reaction rate is determined by the electron

density on the copper surface and the adsorption rate of CO2 molecules on the copper surface.

The electron density is dictated by the applied potential, and the CO2 adsorption rate is the result

of mass transport and reaction kinetics at the electrode/electrolyte interface (Fig. 2.1). Then, the

products are carried away from the electrode surface by convective mass transfer. The liquid

products remain in the solution until the end of the experiment, while the gaseous products diffuse

into the gas phase and are carried out by the excess CO2 carrier gas. The liquid phase is removed

from the reactor at the end of the experiment, and samples are taken for NMR. The gas products

are measured by the GC every 20 minutes throughout the experiment.
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Table 2.1: Various reactions that are part of the CO2 reduction mechanism on copper.

Index Reaction Classification
1 CO2 + 6H2O + 8e− −→ CH4 + 8OH− C1 hydrocarbon (HC)
2 2CO2 + 8H2O + 12e− −→ C2H4 + 12OH− C2+ hydrocarbon (HC)
3 CO2 + 5H2O + 6e− −→ CH3OH + 6OH− C1 oxygenate (OX)
4 2CO2 + 9H2O + 12e− −→ C2H5OH + 12OH− C2+ oxygenate (OX)
5 2CO2 + 5H2O + 8e− −→ CH3COO− + 7OH− C2+ oxygenate (OX)
6 2CO2 + 8H2O + 10e− −→ (CH2OH)2 + 10OH− C2+ oxygenate (OX)
7 2CO2 + 6H2O + 8e− −→ HOCH2CHO + 8OH− C2+ oxygenate (OX)
8 2CO2 + 7H2O + 10e− −→ CH3CHO + 10OH− C2+ oxygenate (OX)
9 3CO2 + 13H2O + 18e− −→ C3H7OH + 18OH− C2+ oxygenate (OX)

10 3CO2 + 11H2O + 16e− −→ C3H5OH + 16OH− C2+ oxygenate (OX)
11 3CO2 + 11H2O + 16e− −→ CH3COCH3 + 16OH− C2+ oxygenate (OX)
12 3CO2 + 11H2O + 16e− −→ C2H5CHO + 16OH− C2+ oxygenate (OX)
13 CO2 +H2O + 2e− −→ CO + 2OH−

2.2 Electrochemical Kinetics and Mass Transport

This section will go into more detail on electrochemical kinetics and specific mass transfer

models relevant to electrochemistry. In the context of electrochemistry, the rates of kinetics and

mass transfer are defined in terms of the current because the current represents the measurable

rate of electron transfer in the process. The current is defined as the rate of charge transfer in the

system. The reactive species in electrochemical reactions are ions, so the current is proportional

to the rate of mass transfer of these charged species in the system. For a given reaction, the rate of

mass transfer is simply a unit conversion from the current

i = nF
dNj

dt
(2.1)

where Nj is the moles of species j, n is the number of electrons per molecule of species j, and F

is the Faraday constant. Since electrochemical reactions are catalytic surface reactions, the overall

reaction rate is a balance between the rate of kinetics and the rate of mass transfer. If the surface

reaction is slow compared to the mass transfer, the system is said to be kinetically limited, so the
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rate of reaction can be described by a kinetic model. If the mass transfer is slow compared to the

surface reaction, the system is said to be mass-transfer-limited, and the measured current is called

the limiting current. In either case, models exist to describe the behavior of the current in the

system.

From a kinetics perspective, the Butler-Volmer equation describes the current for a single-

step, single-electrode reaction [3]. The general form of the Butler-Volmer model works for re-

versible and irreversible reactions, and it is valid for systems with mass transfer if the surface con-

centration can be determined explicitly. For simplicity, the CO2 reduction reactions are assumed

to be irreversible, which gives the equation

i = FAk0CO (t) e−
αF
RT (E−E0′) (2.2)

where F is the Faraday constant, A is the electrode surface area, k0 is the standard rate constant, CO

is the surface concentration of the reactant (i.e., CO2), R is the gas constant, T is the temperature,

E is the applied potential, α is the symmetry factor, and E0′ is the standard reduction potential

of the reaction. This equation holds for any surface concentration CO (t), even if it changes as a

function of time. Under kinetically limited conditions, the surface concentration CO is the same

as the bulk concentration C∗
O and is assumed to be constant, since the mass transfer rate is much

faster than the kinetic rate. When the reverse reaction is ignored, it can be helpful to simplify the

analysis by defining the forward rate constant kf as

kf = k0e−
αF
RT (E−E0′) (2.3)

Under mass-transfer-limited conditions, the surface reaction is assumed to be very fast relative

to the mass transfer. Therefore, the current is completely described by the mass transfer of the

system. A common mass transfer model for electrochemistry is the Levich equation [3] which

describes the mass transfer around a rotating disk electrode (RDE) under steady-state and mass-
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transfer-limited conditions. An RDE is a flat disk electrode covered with insulation so that the

flat, circular face is the only surface exposed to the electrolyte solution. When rotated at sufficient

speeds, the mass transport is dominated by convection, so the rate of mass transfer is determined

by the rotation speed of the electrode. The mass transfer is determined by solving the convective-

diffusion equation in cylindrical coordinates [3].

vr

(
∂CO

∂r

)
+

vϕ
r

(
∂CO

∂ϕ

)
+ vy

(
∂CO

∂y

)
= D

[
∂2CO

∂y2
+

∂2CO

∂r2
+

1

r

∂CO

∂r
+

1

r2

(
∂2CO

∂ϕ2

)]
(2.4)

Here, r, ϕ, and y refer to the radial, angular, and vertical coordinates; vr, vϕ, and vy refer to the

velocity in each coordinate direction; CO is the concentration; and D is the diffusivity. In this

analysis, the concentration, diffusivity, etc. refer to the reactant species. Since the reactions are

reduction reactions, the reactant species are the oxidized species (CO2). This equation can be

substantially simplified because CO is not a function of r or ϕ at the surface of the electrode (based

on the symmetry of the system), so Eq. 2.4 simplifies to

vy

(
∂CO

∂y

)
= D

∂2CO

∂y2
(2.5)

This equation can be solved analytically, and the current is found from the mass transfer rate at the

surface by

il,c = nFAD

(
∂CO

∂y

)
y=0

(2.6)

il,c is defined as the current under completely mass-transfer-limited conditions (also called the

limiting current). The Levich equation is the solution to Eqs. 2.5 and 2.6, and states

il,c = 0.62nFAD2/3ν−1/6ω1/2C∗
O (2.7)

where ν is the kinematic viscosity of the electolyte, ω is the rotation speed of the RDE, C∗
O is the
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bulk CO2 concentration, and the other quantities are defined previously.

The Levich equation can also be combined with Butler-Volmer kinetics to model RDE reac-

tions in more general situations, even when the reaction is not mass-transfer-limited. The mass

transfer and kinetics effects are combined to give the Koutecký-Levich equation [3]

1

i
=

1

iK
+

1

il,c
(2.8)

where i is the total current and iK is the current in the absence of mass transfer effects. In this

equation, iK is given by combining Eqs. 2.2 and 2.3, and il,c is given by Eq. 2.7 (the Levich

equation). This gives the equation

1

i
=

1

FAkfC∗
O

+
1

0.62nFAD2/3ν−1/6ω1/2C∗
O

(2.9)

Solving for i in this equation gives the general current relationship for the RDE

iRDE =
FAkfC

∗
O

1 +
kf

0.62D2/3ν−1/6ω1/2

(2.10)

Since the physical reactor uses a cylindrical electrode, rather than a disk electrode, the Levich

model must be adapted to the cylindrical geometry to apply these results to the real system. There-

fore, Sherwood analysis is used to nondimensionalize the RDE analysis so that it can be converted

into an analogous solution for the RCE system. The Sherwood relation for the RDE can be found

analytically from Eq. 2.7 (the Levich equation)

ShRDE =
mO

D/rdisk
= 0.62Re0.5RDESc

0.33 (2.11)

where mO is the mass transfer coefficient, rdisk is the radius of the disk, ReRDE is the Reynolds

number for the disk geometry, and Sc is the Schmidt number. Here, the Reynolds number is
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defined as ReRDE =
ωr2disk

ν
, with rdisk serving as the characteristic length scale. The Sherwood

relation for the cylindrical geometry is found empirically by fitting parameters to data collected

from experiments at varying rotation speed. The analysis is discussed in more detail by Jang et

al. [12]. The empirical Sherwood relation is

ShRCE =
mO

D/dcyl
= 0.204Re0.59RCESc

0.33 (2.12)

where dcyl is the diameter of the cylinder and ReRCE is the Reynolds number for cylindrical ge-

ometry. In this equation, the Reynolds number is defined as ReRCE =
ωd2cyl
2ν

, with dcyl serving as

the characteristic length scale. This analysis is used to create the empirical models discussed in

Chapter 5.

2.3 Relative Gain Array Analysis

Relative gain array (RGA) analysis is used to determine the controllability of a system under

multi-input-multi-output control. Specifically, RGA analysis determines whether multiple PI con-

trollers (multi-PI control) are sufficient to perform MIMO control on the given system, or if more

complex nonlinear control schemes, such as model-predictive control, are required. The relative

gain array is a square matrix that compares the relative effect of each manipulated variable on each

output variable. Each column of the RGA corresponds to a manipulated variable mi, and each row

corresponds to an output variable yi. The relative gain of each loop is defined as the ratio of two

gains between the input and output variables: the gain when holding the other inputs constant and

the gain when holding the other outputs constant. By this definition, the relative gain compares the

relative effects of the manipulated variables on the specific output variable when all the other loops

are open versus when all the other loops are closed. The relative gain of the output variable with
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respect to the manipulated variable is defined as

λij =
(∂yi/∂mj)m
(∂yi/∂mj)y

(2.13)

where yi is the output variable, mj is the manipulated variable, and λij is the relative gain of yi

with respect to mj . The subscript m in the numerator denotes that all manipulated variables are

held constant, except for mj . Similarly, the subscript y in the denominator denotes that all output

variables are held constant except for yi [29]. The relative gain can be found either by conducting

experiments or by calculating the gradients from a steady-state model. The experimental procedure

is described by Stephanopoulos [29]. Riggs and Woolf explain how to use the steady-state model

gradients to calculate the relative gain [26, 33]. For this system, the RGA analysis is carried out

with the steady-state model approach with the FNN serving as the steady-state model.

For any size RGA, the first step of the steady-state model approach is to calculate the steady-

state gain matrix G, which contains the gradient of each output variable with respect to each ma-

nipulated variable. The gain matrix is defined as

Gij =
∂yi
∂mj

(2.14)

where Gij is the element in the ith row and jth column of the G matrix, and the partial derivatives

are determined with all other manipulated variables held constant. This is the same as the numer-

ator in Eq. 2.13. Then, the matrix R is defined as the inverse transpose of the steady-state gain

matrix G

R =
(
G−1

)T (2.15)

Finally, the relative gain array is calculated by multiplying G and R elementwise, as in, each
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element of the RGA is calculated by

λij = Gij ×Rij (2.16)

where λij is the element in the ith row and jth column of the RGA. Given this definition of the

RGA, the relative interactions of the various control loops can be determined based on the magni-

tude of the elements in the RGA.

As an example, the RGA calculations are shown for the case of a two-by-two RGA. First, the

steady-state gain matrix is calculated at a given set point

G =

G11 G12

G21 G22

 =


∂y1
∂m1

∂y1
∂m2

∂y2
∂m1

∂y2
∂m2

 (2.17)

Then, the corresponding matrix R is given by

R =
(
G−1

)T
=


G22

G11G22 −G12G21

−G21

G11G22 −G12G21

−G12

G11G22 −G12G21

G11

G11G22 −G12G21

 (2.18)

where Gij is the element in the ith row and jth column of the G matrix (the parital derivative of

output i with respect to input j). Finally, the RGA is calculated by the elementwise multiplication

of G and R as follows

RGA =

λ11 λ12

λ21 λ22

 =


G11G22

G11G22 −G12G21

−G12G21

G11G22 −G12G21

−G12G21

G11G22 −G12G21

G11G22

G11G22 −G12G21

 (2.19)

The results of the RGA are then analyzed based on the values of each element in the array.

First, it is important to note some special properties of the RGA. All rows and all columns in the
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RGA sum to 1. For a two-by-two RGA, this means that the diagonal elements are always equal, and

the off diagonal elements are always equal. Additionally, only one element needs to be specified in

order to know all values of a two-by-two RGA. Once the RGA is calculated at a specific set point,

each element in the RGA can be interpreted by the following cases:

1. If λij = 0, then yi does not respond to mj

2. If λij = 1, then yi is only affected by mj . All other manipulated variables do not affect yi.

3. If λij < 0, then the system is unstable if yi is paired with mj .

4. If 0 < λij < 1 or λi,j > 1, then there are interactions between the control loops.

The interactions in Case 4 are further classified into different types of interactions.

• If 0 < λij < 0.5, then mj has a weak effect on yi. The combined effect of all the other

control loops is larger than the influence of mj on yi. Avoid pairing yi with mj .

• If 0.5 < λij < 1, then mj has a strong effect on yi, but the other loops have some effect.

• If λij > 1, then mj has a strong effect on yi, but some other control loops affect yi in the

opposite direction.

It is preferential to pair yi with mj in the latter two cases because mj has a dominant effect on

yi. When λij < 0.5, the influence of mj is too small relative to the other control loops, so the

interference from the other loops will overpower the control action of mj . In the case where

λij > 1, the control will still work, but the other control loops will push yi in the opposite direction

of the control action of mj , so the gain for mj may need to be increased to overcome the other

loops’ interactions. The best control loop pairing will be the combination that gives the λi,j value

closest to 1.
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Chapter 3

Development of the Machine Learning

Model

In this chapter, a neural network model is constructed to capture the steady-state behavior of

the reactor at various applied potentials and electrode rotation speeds using experimental electro-

chemical reactor input-output data. The neural network model formulation, training process, and

data collection process are presented in the following sections.

3.1 FNN Learning Algorithm

The general structure of an FNN model is shown in Fig. 3.1 and can be mathematically

represented by the following equations:

Y = FNN(X) =



h
[1]
j = σ[1](

p∑
i=1

ω
[1]
ji xi + b[1])

h
[2]
j = σ[2](

p∑
i=1

ω
[2]
ji h

[1]
i + b[2])

yj = σ[l](
p∑

i=1

ω
[l]
jih

[l]
i + b[l])

(3.1)
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where X = [x1, . . . , xn] ∈ Rn and Y = [ŷ1, . . . , ŷm] ∈ Rm are the input and output vectors of

the FNN model, respectively. ω
[k]
ji (i = 1, . . . , p, j = 1, . . . , p, and k = 1, . . . , l) stands for the

weight connecting the ith input from the prior layer to the jth neuron in the kth layer. Here, l is

the total number of layers, and p represents the number of neurons used in each layer. Therefore,

i = 1, . . . , n for the first hidden layer, because there are n units in the input layer. b[k] and σ[k](·)

denote the bias and activation function used in the kth layer.

Figure 3.1: General structure of an FNN model, where subscript p is the index of neurons in the
kth hidden layer.

In this study, a centralized two-input-multi-output FNN model is constructed to capture the

nonlinear relationships between the two input states in Table 3.1 (i.e., rotation speed and applied

potential) and the fourteen outputs listed in Table 3.2. The input and output training data are

scaled by the maximum value of each respective state such that all the normalized states fall in the

range from 0 to 1. The input layer is densely connected to 64 neurons in the hidden layer using the

Rectified Linear Unit (ReLu) activation function, as defined in Eq. 3.2. The hidden layer is densely

connected to the output layer using the Softplus activation function, S(x) = log(1 + ex). Both the

ReLu and Softplus functions are used to restrict the output predictions to be strictly non-negative
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and introduce nonlinearity to the model.

ReLu(z) =

 z for z > 0

0 for z ≤ 0
(3.2)

Remark 3.1 A single hidden layer is used for this model because it is the simplest structure to

sufficiently capture the data trends. Additionally, we apply a grid search for the number of neurons

in the FNN, with 64 neurons having the best prediction. Specifically, neural networks with fewer

than 64 neurons underfit the data, while networks with more neurons would overfit the data. In this

work, both the prediction accuracy (in terms of mean-squared-error) and the output trajectories

are considered to design the hyperparameters of the FNN model. Classical hyperparameter tuning

algorithms did not perform effectively to capture reasonable trajectories due to the difficulty of

developing an explicit formula to evaluate the prediction trends. However, hyperparameter tun-

ing algorithms, such as Bayesian optimization and random forest methods, are powerful tools to

optimize the neural network structure [34]. We recommend that other users consider using those

methods to develop their machine learning models.

3.2 Data Generation and Dataset

As listed in Table 3.2, the oxygenates considered are Outputs 3-12, and the hydrocarbons

are Outputs 1 and 2 (methane and ethylene). Therefore, the selectivity defined in Section 2.1 is

calculated as follows:

Selectivity :=

12∑
i=3

yi

2∑
i=1

yi

(3.3)

where yi refers to the production rate of species i, as defined in Table 3.2. Data are collected for

the range of potentials and rotation speeds within which the reactor will operate. Specifically, the

potential is varied from -1.2 to -1.47 volts versus the standard hydrogen electrode (V vs. SHE),
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and the rotation speed is varied from 100 to 800 revolutions per minute (rpm).

For the data collection process, the potentiostat is set to a constant potential, and the electrode

is rotated at a constant angular speed. The reactor is allowed to equilibrate for twenty minutes

prior to the data collection. Then, product samples are taken every twenty minutes to determine

the concentration of the thirteen relevant products, and the selectivity is calculated from the results

of each sample.

Each experiment takes 80 minutes to collect three to four GC measurements and one NMR

sample. The GC is sampled three times per experiment to ensure that the measurements are consis-

tent over time. Each experiment is repeated two to five times to ensure that the data are consistent

and to obtain the statistical information for the experimental results under the same operating con-

ditions. Subsequently, the data points are grouped into a single data vector based on the similarity

of the operating conditions to compute the mean and standard deviations. As a result, 21 data points

with mean and standard deviation information are collected from approximately 100 experiments.

3.3 Design of the Experiment

The range of potentials is limited by the overall resistance of the electrochemical cell between

the working and counter electrodes. This issue is resolved in the second generation of the cell by

removing the channel that connects the two chambers to shorten the distance between the two

electrodes and to increase the surface area of the ion-exchange membranes [12]. However, in this

work, the first generation of the reactor is used, which is not able to apply potentials more negative

than -1.47 V vs. SHE. The potential range is chosen to see appreciable rates of product genera-

tion considering the detection limits of the sensors (GC and NMR). The maximum rotation speed

possible is 2000 rpm, as provided by the vendor of the RCE (Pine Research Instrumentation). We

restricted the maximum electrode rotation speed to 800 rpm mainly due to the mechanical insta-

bility of the custom-machined parts of the electrochemical cell. Additionally, the chosen range of
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rotation speed is appropriate for studying mass transport effects from the perspective of mass trans-

port characteristics around the RCE. The film mass transfer coefficient decreases as the electrode

rotation speed increases with a 0.59 order dependency—as shown by the Sherwood relationship in

Section2.2—so increasing the rotation speed beyond 800 rpm has a negligible effect on the mass

transport properties of the cell [12]. The lower bound of the rotation speed range is 100 rpm, below

which the relationship between the film mass transfer coefficient and the rotation speed starts to

flatten out due to the convection created by the bubbling of CO2 in the bulk of the electrochemical

cell.

3.4 Standard FNN Training

The mean-squared-error (MSE) is used in the standard FNN training as the loss function that

minimizes the difference between the experimental data value and the predicted value. The MSE

loss function is given below:

Loss =
1

d

1

m

d∑
i=1

m∑
j=1

|yi,j − ŷi,j|2 (3.4)

where d is the number of data points in the training dataset, and m is the number of output states.

To generate the training and testing sets, 4 points are reserved from the original 21 data points

to be the testing dataset, and the remaining 17 data points are used for training. Then, the 17

points are randomly split into training and validation sets with 80% used for training and 20%

used for validation. The testing procedure compares the mean square difference between the FNN

prediction and the testing data, using the loss function of Eq. 3.4 to evaluate the performance of

the model. During this process, the parameter vector W, which contains all the weights and bias
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of the neural network, is optimized using Eq. 3.5 to minimize the loss function.

W = W − η
Vdw√
Sdw + ϵ

(3.5)

where η is the learning rate, and ϵ is a small positive number to prevent the denominator being zero.

Vdw and Sdw introduce the momentum and root-mean-square factors of the parameters gradient to

facilitate the optimization process. In practice, ϵ, Vdw, and Sdw can be set up by the machine

learning API (e.g. Keras) automatically by specifying the optimizer. Tuning the value of ϵ does

not have significant impact to the model performance. Additionally, the user can tune the learning

rate η to improve the model performance. η is usually a small positive number from 0 to 1.

Table 3.1: Input states of the FNN model.

Index Input State Units
1 Applied Potential V vs. SHE
2 Rotation Speed rpm

Table 3.2: Output states of the FNN model.

Index Output State Chemical Formula
1 methane production rate CH4

2 ethylene production rate C2H4

3 methanol production rate CH3OH
4 ethanol production rate C2H5OH
5 acetate production rate CH3COO−

6 ethylene glycol production rate (CH2OH)2
7 glycolaldehyde production rate HOCH2CHO
8 acetaldehyde production rate CH3CHO
9 n-propanol production rate C3H7OH

10 allyl alcohol production rate C3H5OH
11 acetone production rate CH3COCH3

12 propionaldehyde production rate C2H5CHO
13 carbon monoxide production rate CO
14 selectivity
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Chapter 4

Maximum Likelihood Estimation in ML

Reactor Modeling

Despite the standard FNN’s capability of correlating the input and output variables of a

complex nonlinear process, it treats all the data points equally, which might lead to overfitting

when the data contains inconsistent levels of random experimental error. To address this issue, the

MLE method, originally developed by R.A. Fisher in the 1920s, is integrated in the FNN model

to optimize the parameter set that maximizes the likelihood function of a probabilistic model [21].

Specifically, the likelihood function L(·) is used to correlate an unknown parameter vector θ with

a random variable set z based on its probability-density function f(z, θ). The maximum likelihood

method can search for an optimum parameter set θ∗ by maximizing the “likelihood of the sample”,∏n
i=1 f(z, θ), and it has been shown that this method can provide a solution to this optimization

problem [8]. The MLE method assumes that the data are from a single population with the same

standard deviation. However, this chapter proposes a modification that assumes each set of input

parameters corresponds to a different population. Thus, each data point with its associated standard

deviation is treated as an independent random variable.

To apply this method in our study, we first consider the experimental dataset to be a pseudo-
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probabilistic sample following the Gaussian distribution with an associated standard deviation.

Therefore, the FNN outputs ŷi,j need to follow the same distribution as the reference data yi,j ,

which means the joint likelihood of the neural network output is a Gaussian distribution and can

be expressed as follows:

L(X;W, σ) =
d×m∏
k=1

fY(yk)

=
d×m∏
k=1

(2πσ2
k)

−0.5 × exp

[
−1

2

d∑
i=1

m∑
j=1

∣∣∣∣yi,j − ŷi,j(X,W)

σi,j

∣∣∣∣2
] (4.1)

where σi is the standard deviation for each data point. Subsequently, we find the optimum weight

matrix W∗ by maximizing the logarithm of the joint likelihood function:

W∗ : = argmax
W

logL(X;W, σ)

= argmax
W

(
−1

2

d×m∑
k=1

log(2πσ2
k)−

1

2

d∑
i=1

m∑
j=1

∣∣∣∣yi,j − ŷi,j(X,W)

σi,j

∣∣∣∣2
)

= argmax
W

(
−

d×m∑
k=1

log(2πσ2
k)−

d∑
i=1

m∑
j=1

∣∣∣∣yi,j − ŷi,j(X,W)

σi,j

∣∣∣∣2
) (4.2)

Since the first term of Eq. 4.2 is independent of W, the maximum likelihood estimation of this

model can be simplified further into Eq. 4.3.

W∗ = argmin
W

(
d∑

i=1

m∑
j=1

∣∣∣∣yi,j − ŷi,j(X,W)

σi,j

∣∣∣∣2
)

(4.3)

The maximum likelihood estimation FNN model (MLE-FNN) is constructed using the same

architecture and dataset as the standard FNN. However, the MLE-FNN model considers the stan-

dard deviation of each data point in its training process. Specifically, the sample standard deviation

is calculated for each data point. Then, the coefficient of variance (v) of each data point is deter-

mined by the ratio of standard deviation and the respective output mean. This normalizes the data
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variability to allow for unbiased comparison between quantities of different magnitudes. The loss

function, shown as Eq. 4.4, integrates Eq. 3.4 and Eq. 4.3. Therefore, the MLE-FNN weight matrix

is optimized to maximize both the accuracy of the prediction and the likelihood function during

the training process.

Loss =
1

d

1

m

d∑
i=1

m∑
j=1

1

v2i,j
|yi,j − ŷi,j|2 (4.4)

Remark 4.1 In this study, error bars are constructed to represent the region of one standard devi-

ation of uncertainty with respect to the mean, which is approximately the 70% confidence interval

for Gaussian-distributed variables. Any statistical model can be used to develop an MLE-FNN

model if it can provide reasonable statistical information of the experimental observations.

Remark 4.2 As shown by Dorling et al. and Kumar et al. [6, 15], the simplified log-likelihood

function (Eq. 4.3) can be used directly as the loss function of an MLE-FNN model, since it contains

the sum of squared error in the loss function. We integrate it with Eq. 3.4 to demonstrate its

similarity to the mean-squared error (MSE) loss function.

Remark 4.3 Bayesian optimization is another acknowledged method to develop statistical ma-

chine learning model. Similarly to the MLE method, Bayesian optimization also considers the

likelihood function model, which can account for data variance. Instead of focusing on the like-

lihood function, the Bayesian method implements optimization based on the posterior distribution

of the machine learning model, which is defined by Bayes’ rule [27]. Therefore, the prior distri-

bution of the parameter vector p(θ) and the marginal likelihood of the observed data p(D) can be

adopted to develop the statistical model.
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Chapter 5

Machine Learning Model Results and

Analysis

In this chapter, we demonstrate the MLE-FNN model’s ability to provide accurate predictions

of the reactor operation and demonstrate the future research areas that have made use of its predic-

tions. First, we compare the prediction performance of the standard FNN and MLE-FNN models.

Then, we compare the MLE-FNN model predictions with a classical EFP model to determine

the MLE-FNN model’s ability to capture the physical phenomenon behind the reactor operation.

The results of the MLE-FNN model are then used to improve other empirical models, to deter-

mine economically optimal operating conditions, and to determine the reactor’s controllability for

multi-input-multi-output control.

5.1 FNN vs. MLE-FNN

We first compare the performance of the MLE-FNN against the standard FNN. To account for

the stochastic nature during the neural network training process, a Python script is used to train 100

FNN models in parallel with the structure discussed in Section 3.1 and with randomly partitioned
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Table 5.1: Process parameters for EFP models with units.

Quantity Value Units
EFP model (limiting conditions)

k0 2.32× 10−12 cm · s−1

α 0.5
F 96485 C ·mol−1

R 8.314 J ·mol−1 ·K−1

T 298 K

E0′ -0.52 V
CCO2 3.40× 10−5 mol · cm−3

DCO2 1.91× 10−5 cm2 · s−1

dRCE 1.2 cm
νH2O 1.03× 10−2 cm2 · s−1

EFP model

k0,5 2.02× 10−28 mol · cm−1 · s−2

k0,6 7.47× 10−32 mol · cm−1 · s−2

k0,7 2.61× 10−13 mol−
1
2 · cm · s− 1

2

α5 0.7
α6 0.85
α7 0.665

EFP model (updated)

k0,5 7.2× 10−22 mol · cm−1s−2

k0,6 1.6× 10−17 mol
1
4 · cm 3

2 · s 5
4

k0,7 9.5× 10−23 mol · cm−1 · s−2

α5 0.42
α6 0.53
α7 0.49
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training and validation sets. The best FNN and MLE-FNN are chosen to minimize the MSE for the

training dataset. This training method ensures the selected models are trained consistently follow-

ing the same criteria. Then, the selected FNN and MLE-FNN models are evaluated with respect

to the testing dataset, using the MSE between the normalized FNN outputs and the normalized

testing set. The MSEs for the standard FNN and MLE-FNN are 0.0751 and 0.0791, respectively,

demonstrating marginally better performance by the standard FNN. It is shown in Fig. 5.1 that both

models give accurate predictions across the majority of the data points, but the overall MSE for

the MLE-FNN prediction increases, since it ignores the data points with high variance. However,

the MSEs of the two methods are sufficiently small, which implies that both models capture the

input-output relationship well.

To further compare the performance of the two models, the predictions for CO production

rate are plotted in Fig. 5.2. This figure shows the predicted CO production rate and known out-

lier points, which came from experiments with a slight drift in operating conditions. As shown in

the figure, the MLE-FNN weighs the data points with higher experimental uncertainty less, while

the standard FNN overfits these points. This demonstrates the ability of the MLE-FNN model to

improve its prediction by accounting for data variance. The goal of MLE method is to generate

models with a higher statistical significance that are suitable to be implemented with an experi-

mental dataset. The MLE-FNN model demonstrates that it can provide an accurate approximation

of the experimental data while outperforming the standard FNN in its ability to mitigate the im-

pact of experimental uncertainty. To simplify the discussion, only the MLE-FNN will be used in

the remainder of this chapter (i.e., henceforth the FNN will only refer to the MLE-FNN, and the

standard FNN will not be included).

In the following sections, the FNN model will be compared with other modeling techniques

to further assess its performance. Additionally, various applications of this model are discussed

to demonstrate the importance of accelerating the modeling process. One simple use case of this

model is to provide comprehensive selectivity predictions over the range of realistic operating
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Figure 5.1: Comparison between the observed experimental outcome and the neural network pre-
dictions from (a) standard FNN and (b) MLE-FNN models.
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Figure 5.2: The CO production rate predictions are shown for various applied potentials in the unit
of V vs. the standard hydrogen electrode (V vs. SHE). The solid points are known experiments that
had a drift in potential. The open point is from the testing set. (a) The CO prediction of standard
FNN model overfits the labeled uncertain data points. (b) The MLE-FNN model successfully
accounts for the experimental uncertainty, even though this introduces additional error to the testing
results.
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Figure 5.3: Selectivity of oxygenate species with respect to rotation speed and applied potential,
in the units of V vs. the standard hydrogen electrode (V vs. SHE), as predicted by the machine
learning model.
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conditions, as shown in Fig. 5.3. This selectivity is defined in Section 3.2 with the purpose of

maximizing the selectivity of oxygenate species. Maximizing the selectivity of the desired products

can save energy for the operation of the reactor and minimize waste generated from disposal of the

unwanted side products.

Remark 5.1 The outlier points are included in the dataset since they are valid even if they have

higher variability. The predictive models are developed on the basis of the experimental observa-

tions, even if some points are less likely to be reproduced than others. On the other hand, invalid

data points from a failed experiment should not be included in the dataset.

5.2 EFP model vs. MLE-FNN

First-principle models (FP models) are a fundamental approach to describe the operation of

electrochemical reactors from the fundamental energy balance, mass balance, and reaction kinet-

ics. However, it is challenging to obtain an accurate first-principle model for this specific system

because of the complex mass transfer and reaction mechanisms of this process. As a substitute,

machine learning modeling provides an alternative approach to representing the physicochemical

phenomena in the reactor with a desired prediction accuracy. In this subsection, an empirical, first-

principle model (EFP model) of a rotating electrode reactor is developed following the derivation

by Bard [3], to determine the rate of CO production under limiting conditions. This derivation is

showin in more detail in Section 2.2. Specifically, this model assumes that only a single, first-order

reaction is occurring with no side reactions, which means it cannot capture the comprehensive

kinetics of this experiment. The reaction is also assumed to occur only on the electrode surface

following Butler-Volmer kinetics. The resulting equation is given as follows:

rCO =
kfC

∗
CO2

1 + kf/mO

(5.1)
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where C∗
CO2

is the bulk concentration of CO2, kf is the forward rate constant, and mO is the

convective mass transfer coefficient. The forward rate constant kf was defined in Section 2.2 as

kf = k0e−
αF
RT (E−E0′) (5.2)

where k0 is the standard rate constant, α is the symmetry factor, F is Faraday’s constant, R is

the gas constant, T is the temperature, E is the applied potential, and E0′ is the standard reduc-

tion potential. The mass transfer coefficient mO is determined based on the rotation speed of the

electrode, but this correlation will change depending on the type of rotating electrode. For some

simple rotating electrode geometries such as a flat disk, a mass transfer coefficient is determined

analytically [3]. However, the electrode used in this experiment has a cylindrical geometry which

is more complicated, so the mass transfer coefficient is determined experimentally from the Sher-

wood correlation as follows [12]:

mO = 0.204Re0.59RCESc
0.33DCO2

dRCE

(5.3)

where ReRCE is the Reynolds number, Sc is the Schmidt number, D is the diffusion coefficient,

and dRCE is the diameter of the RCE. This Sherwood correlation was previously discussed in

Section 2.2. The diffusion coefficient is assumed to be the same for the reactant and product

species for simplicity. Since the Sherwood number is determined experimentally, this model will

be referred to as an EFP model.

The comparison between this EFP model and the FNN prediction is shown in Fig. 5.4. As

shown, the EFP model trajectory is similar to the FNN prediction under the operating conditions

with less negative applied potentials and lower rotation speeds because the side reactions are lim-

ited at these conditions. After switching to more negative conditions, the EFP model’s assumptions

become invalid. Therefore, these two models present different predictions after passing threshold

conditions. This comparison demonstrates that the neural network can capture the input-output

31



0 200 400 600 800 1000
Rotation Speed (RPM)

0

1

2

3

4

5

6

7

8

9
C

O
pr

od
uc

tio
n

ra
te

(m
ol

/s
qc

m
/s

)
×10−9

-1.31 V
-1.37 V
-1.41 V
-1.43 V
-1.46 V

(a)

−1.50 −1.45 −1.40 −1.35 −1.30 −1.25 −1.20
Applied potential (V vs SHE)

0

1

2

3

4

5

6

7

8

9

C
O

pr
od

uc
tio

n
ra

te
(m

ol
/s

qc
m

/s
)

×10−9

100 RPM
200 RPM
400 RPM
600 RPM
800 RPM

(b)

Figure 5.4: The CO production rates for the first EFP model (dashed) and the MLE-FNN model
predictions (solid) compared with the training data points over the range of (a) rotation speed
(rpm), and (b) applied potentials in the unit of V vs. the standard hydrogen electrode (V vs. SHE).
This EFP model can capture the general trend of the reactor for low applied potential and rotation
speed. However, for more negative potentials and higher rotation speeds, the assumptions of the
EFP model become invalid.

relations from the experimental data.

5.3 EFP Model Improvement

EFP modeling is an efficient way to find out how a number of experimental variables affect

the experimental data without requiring complete knowledge of the underlying physical phenom-

ena needed for large-scale FP models [4]. Although the neural network has demonstrated its ability

to capture steady-state behavior of the electrochemical reactor, an empirical model with an explicit

form is essential to understand the reactor phenomena. However, parameter tuning and selection

for an empirical model are challenging. Therefore, we propose an algorithm to use the neural

network model results to improve the EFP model structure.

Specifically, we first develop an EFP model consisting of several regression problems that

predict the production rate of seven different classes of species produced in the reactor. This model

is derived utilizing the same reaction kinetics and transport phenomena considerations mentioned
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in Section 5.2. As shown in Eq. 5.4, the empirical regressions of interest are the production rate

of C1 products (FNN Outputs 1 and 3 listed in Table 3.2), C2+ hydrocarbons (FNN Output 2),

and C2+ oxygenates (FNN Outputs 4, 5, 6, 7, 8, 9, 10, 11, and 12), denoted as rC1, rC2+,HC , and

rC2+,OX respectively.

rC1 = k0,5CCOSh
−0.5
RCEJ

−1
HCO3

exp

(
−α5z5F

RT
E

)
rC2+,HC

= k0,6CCOSh
−0.5
RCEJ

−1
HCO3

exp

(
−α6z6F

RT
E

)
rC2+,OX

= k0,7CCOSh
−0.5
RCEJ

0.5
HCO3

exp

(
−α7z7F

RT
E

) (5.4)

The notation CCO is the concentration of carbon monoxide, and JHCO3 is the flux of bicarbonate,

both of which are calculated at the inner Helmholtz plane based on the bulk concentration, rotation

speed, and applied potential. Additionally, ShRCE is the Sherwood number of the rotating-cylinder

electrode, which relates directly to the rotation speed. The rate constants k0,i and symmetry factors

αi are obtained by linearizing the equations for rC1, rC2+,HC , and rC2+,OX with respect to the

applied potential. Furthermore, since these rate expressions each describe multiple products from

different reaction steps, the number of electrons zi is not a single value, and a modification is

necessary for this case. Specifically the parameter αi is considered as a fitting parameter for the

exponential relationship between the potential and the rates. Thus, by fixing zi to 1, αi becomes

an arbitrary positive value that can be optimized in the regression problem.

Subsequently, the EFP model is compared to the FNN model using the testing set as described

in Section 3.2. Table 5.2 shows that the FNN model outperforms the EFP model with significantly

lower MSEs for all three rates, which implies that the accuracy of the EFP model can be improved

by minimizing the deviation between the FNN prediction and EFP model prediction. In other

words, the FNN prediction can be considered as additional reference data to improve the EFP

model performance for this reactor. Additionally, by comparing the prediction trends from both

models in Fig. 5.5, the EFP model overestimates the effect of applied potential for higher rotation
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speed. Thus, the empirical model can be improved by modifying the existing terms. The process

is summarized by the following algorithm:

Algorithm 1: Empirical, First-Principle Model Improvement Procedure
X is the input data sequence, Θ contains the regression parameters in the empirical
model to be optimized, C represents any additional system parameters that can be
added to the empirical model, E and FANN are the general equations for the empirical
and FNN models respectively, D calculates the distance, and Imax is the maximum
number of iterations.

for i = 0 to Imax do
Obtain the distance between the empirical model and the FNN model:
D(Θ, X, C) =

∑
[E(Θ, X, C)− FANN(X)]2

if D(Θ, X, Cnew) < D(Θ, X, C) then
O

else
p

end
timize the regression parameters to minimize the distance:
Θnew = {θi,new ∈ Θ | D(Θnew, X, C) < D(Θ, X, C)}

end

Table 5.2: Testing data MSE results of the FNN model and the empirical, first-principle model.

Rate Index FNN EFP
rC2+,OX

0.0239 0.042
rC2+,HC

0.0098 0.042
rC1 0.003 0.021

The regression parameters, θi, can be optimized to minimize the difference between the two

models using a user-defined optimization algorithm in each iteration of the procedure. Addition-

ally, new system parameters, Ci, can be introduced to further develop the empirical model. For

example, terms that describe the influence of gas pressure and flow rate on the electrochemical re-

action can be included to further improve the current empirical model. Therefore, by following this

procedure, the improvement of an empirical model can be represented as an optimization problem,

which can be accomplished automatically by a computer.
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Table 5.3: The non-scaled MSE for the updated and original EFP models.

Rate Index EFP (original) EFP (updated)
rC2+,OX

3.68E-19 9.20E-20
rC2+,HC

1.11E-18 2.32E-19
rC1 8.46E-18 5.76E-18

To demonstrate this procedure, we use the FNN to tune the parameters for the proposed EFP

model. The difference between the EFP and FNN models is minimized on the range of -1.47 V

to -1.30 V as this is the range for the data collected to train the FNN model. The MSE between

the EFP model and FNN is calculated at intervals of 0.01 V . For the model in Eq. 5.4, we apply a

grid search to find the optimum values for the parameters ki, αi, and the exponent of the flux term

JHCO3 . Specifically, we search the αi values from 0 to 1 with step sizes of 0.01, and the JHCO3

exponents from -1 to 1 with step sizes of 0.25. However, small changes in the αi and exponent of

JHCO3 can cause the value of ki to change by several orders of magnitude which causes problems

when attempting to use nonlinear optimization packages. Therefore, the grid search for ki must

cover a large range of magnitudes from 0 to 1. To decrease the computational complexity, the

grid search for ki is split into two subsequent searches. Given that ki can be expressed in the

form of A × 10−B, we first search for the optimum order of magnitude B, and then search for

the optimum number A. Specifically, the first search follows a geometric sequence from 10−25 to

10−10 with a geometric ratio of 10 (i.e., 10−25, 10−24, 10−23, ..., 10−10). Then, given the optimum

order of magnitude B, we search for the optimal number from 0.1 to 10 with a step size of 0.1 (i.e.,

0.1× 10−B, 0.2× 10−B, 0.3× 10−B, ..., 10.0× 10−B) for the order of magnitude B and B + 1.

Following this procedure, the optimum parameters are determined and listed in Table 5.1.

Then, the new EFP model is tested against the same reference data points, and its MSE results are

compared with the original EFP model listed in Table 5.3 . As a result, the MSE for rC1, rC2+,HC ,

and rC2+,OX are decreased by 75%, 79%, and 32%, respectively. The new empirical, first-principle

equations are updated in Eq. 5.5 to reflect the changes made from the procedure. Moreover, the
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new EFP model predictions are also shown in Fig. 5.6, which shows the overestimating problem is

solved with the new parameters.

rC1 = k0,5CCOSh
−0.5
RCEJ

−1
HCO3

exp

(
−α5z5F

RT
E

)
rC2+,HC

= k0,6CCOSh
−0.5
RCEJ

−0.25
HCO3

exp

(
−α6z6F

RT
E

)
rC2+,OX

= k0,7CCOSh
−0.5
RCEJ

−1
HCO3

exp

(
−α7z7F

RT
E

) (5.5)
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Figure 5.5: The production rates of (a) rC1 , (b) rC2+,HC
, and (c) rC2+,OX

from the EFP model
(dashed) and the MLE-FNN model (solid) compared with the reference data points over the range
of applied potentials in the unit of V vs. the standard hydrogen electrode (V vs. SHE).
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Figure 5.6: The production rates of (a) rC1 , (b) rC2+,HC
, and (c) rC2+,OX

from the updated EFP
model (dashed) and the MLE-FNN model (solid) compared with the reference data points over the
range of applied potentials in the unit of V vs. the standard hydrogen electrode (V vs. SHE).
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Remark 5.2 Minimizing the difference between the two models will not result in exactly the same

predictive model. During the optimization process, the empirical model structure derived from

physical relations should remain unaltered. Furthermore, the additional terms Ci that have not

been included in the previous empirical models should have physical meanings. Therefore, the

empirical model is modified to have a lower MSE for its prediction while retaining the physics of

the experiment.

Remark 5.3 The experimental data is used to calculate the original EFP parameters. Specifically,

the original EFP model is determined using traditional methods to extract the kinetic parameters

αi and ki. Since the reaction rate is proportional to the exponential of the applied potential, the

relationship is linearized by plotting the natural log of reaction rate against the applied potential.

A linear regression is then used to find the slope and intercept of the observed data. The value

of αi is then extracted from the slope, and ki is extracted from the intercept. Furthermore, by

using the FNN model to propose an updated EFP model, meaningful process parameters can be

extracted from the neural network regression, which provides additional explicit values to evaluate

the neural network performance.

5.4 Set Point Optimization

Set point optimization is critical for process operation as it can be used to maximize the bene-

fits of a certain process. In this work, we demonstrate how the FNN results can be used to determine

optimal operating conditions for the electrochemical reactor using results from an economic anal-

ysis of hypothetical operating costs. The results of the MLE-FNN described in Chapter 4 are used

to predict the steady-state energy consumption and the steady-state production rate of profitable

species. The energy consumption is used to calculate the electricity cost at a given set point, while

the production rate is used to calculate the total profit at a given set point. The optimal set points

found from the economic analysis are used to choose relevant operating conditions to test the con-

38



trollability of the reactor under PI control. To calculate the energy consumption, the total current

is approximated by the total rate of consumption of electrons in the reduction reactions. Therefore,

the current is given by the equation

itot =
m∑
j=1

FAejPj (5.6)

where itot is the total current, Pj is the molar production rate of species j, ej is the number of

electrons transferred per mole of species j produced (the values are given in Table 5.5), and m

is the total number of species produced. F and A are the Faraday constant and electrode area,

respectively, as defined in Section 2.2. Eq. 5.6 gives the total current used to produce the relevant

products. Then, the energy consumption is simply the equation for electrical energy consumption

which is

E = itotV t (5.7)

where V is the applied potential and t is time. In this case, the time t is simply a basis for the

operating duration, and it does not affect the results of the optimization problem. Therefore, the

time is taken to be 24 hours (86,400 seconds) of continuous operation. Since these results are

used for future control experiments, it is useful to express the results in terms of the manipulated

variable and controlled variable that will be used in these experiments. In this case, the manipulated

variable is the applied potential, and the controlled variable is the ethylene concentration in the

reactor outlet stream, as measured by the GC. Since the flowrate is assumed to be constant in the

reactor, the FNN-predicted production rate can be converted to outlet concentration using the unit

conversion

Mj =
PjAVg

F0

(5.8)

where Mj is the molar concentration of species j, Vg is the standard molar volume for gases, and

F0 is the feed flow rate of CO2.
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Table 5.4: Parameters of economic evaluation.

notations value unit

A 3 cm2

F 96485.3 C ·mol−1

Vg 22.4 L ·mol−1

F0 0.02 L ·min−1

V variable V
I variable A
E variable W
M variable ppm

To perform the economic analysis, it is assumed that electrical energy consumption is the

only major operating cost. Similarly, we approximate the revenue of the reactor from the sale of

the products without considering additional factors such as the cost of separation or purification.

Therefore, the optimal set point for operating the electrochemical reactor can be determined by

solving the following optimization problem:

J = argmax
x̂∈D

R(x̂, V )− C(itot, V ) (5.9a)

s.t. C(itot, V ) = ce × E(itot, V ) (5.9b)

R(x̂, V ) =
m∑
j=1

cj × x̂j (5.9c)

r = 100 (5.9d)

− 1.5 ≤ V ≤ −1.27 (5.9e)

where D ⊂ Rm is the bounded space of the production rates determined from the training dataset

of the FNN model [17]. The vector x̂ denotes the predicted production rates given by the FNN

model. ce is the electricity price ($/kWh), and cj, (j = 1, . . . ,m) is the sale price for the jth

product listed in Table 5.5. In this study, the rotation speed of the working electrode is set to
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be constant at 100 rpm, and the surface potential is bounded from -1.5 V to -1.27 V shown as

Eqs. 5.9d and 5.9e. Eqs. 5.9b and 5.9c use the FNN prediction to approximate the revenue and cost

of operating this reactor. itot and E are given by Eq. 5.6 and Eq. 5.7, respectively.

The optimization problem is solved using Ipopt, an open-source software for large-scale op-

timization problems. In this work, we use the forward finite difference method to approximate

the first-order derivatives of the optimization problems by adding small steps, ∆u, on the opti-

mized variables (i.e., potential and rotation speed). Additionally, the second-order derivatives are

approximated with the Quasi-Newton method, to provide information for determining the search

directions [31]. Subsequently, the derivatives and constant parameters (e.g. products and electric-

ity prices) are provided to Ipopt to optimize the operating conditions in terms of surface potential

and rotation speed. Finally, the result conditions are converted to the corresponding ethylene con-

centration set point (c) by using Eq. 5.10, where F0 is the gas inlet flowrate (0.2 L ·min−1) and a

is a constant for unit conversion (1000000).

c =
aPiAVg

F0

(5.10)

The optimization is performed for various electricity costs ranging from 0.02 to 0.03 $/kWh.

As shown in Fig. 5.7a, the profit is plotted against the ethylene set point at various electricity prices.

Fig. 5.7b shows the relationship between ethylene concentration and surface potential at a rotation

speed of 100 rpm. In the plot, the optimal set point shifts to a lower ethylene concentration when

the electricity price increases. This illustrates the balance between selectivity and production rate

in this optimization. When electricity prices are cheap, the profit is maximized by maximizing the

production rate of all products, which is shown by the optimum point appearing at more negative

potentials. As the price of electricity increases, the profit is maximized by increasing the selec-

tivity of the more expensive oxygenate species, which is shown by the optimum appearing at less

negative potentials. From Fig. 5.7a, the profit decreases with increasing electricity price, but the
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Table 5.5: Chemical information of products.

Index Products Number of Transferred Electrons Chemical Formula
1 methane 8 CH4

2 ethylene 12 C2H4

3 methanol 6 CH3OH
4 ethanol 12 C2H5OH
5 acetate 8 CH3COO−

6 ethylene glycol 10 (CH2OH)2
7 glycolaldehyde 8 HOCH2CHO
8 acetaldehyde 10 CH3CHO
9 n-propanol 18 C3H7OH

10 allyl alcohol 16 C3H5OH
11 acetone 16 CH3COCH3

12 propionaldehyde 16 C2H5CHO
13 carbon monoxide 2 CO

optimization is still able to find the maximum profit for a given price, implying that the optimizer is

capable of making intelligent decisions to reduce the production rate with higher operating costs.

Based on the results of this optimization, these optimal operating conditions are utilized for future

control experiments to demonstrate the controller performance when handling changes in the op-

erating set point. This would reflect industrial scenarios in which the electricity price changes due

to Time-of-Use (TOU) pricing or seasonal price changes.

5.5 RGA Analysis using the MLE-FNN

In addition to the determination of optimal set points, future control experiments will be con-

ducted using multi-input-multi-output (MIMO) control schemes. For MIMO control, the number

of controlled variables (outputs) must be the same as the number of manipulated variables (inputs)

to ensure the control scheme has enough degrees of freedom to meet all of the set point specifica-

tions. The simplest MIMO control scheme is to use multiple PI control loops (multi-PI control),
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Figure 5.7: The approximated daily profit to operate the electrochemical reactor under various
ethylene set points with changing electricity price. (a) The approximated daily profit profile to
operate the reactor under different electricity costs (USD). The open black points are the maximum
profits that can be obtained by operating the reactor under respective electricity prices. (b) The
ethylene concentration profile under various surface potential conditions. The solid color points
emphasize the optimum ethylene set points that give the maximum profit.
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where each PI controller is assigned one manipulated variable to control one output variable, so

this constitutes one input-output variable pair. Multi-PI control becomes difficult if the controlled

variables are affected by more than one manipulated variable. This will cause some PI controllers

to influence other output variables besides their assigned variable. Relative gain array analysis is

used to determine the interaction between multiple control loops by comparing the relative effect

that each manipulated variable has on the controlled variables. Specifically, the RGA will be cal-

culated using the steady-state gain matrix method with the MLE-FNN serving as the steady-state

model. The RGA analysis procedures are described in Section 2.3.

The goal of the RGA analysis is to determine the combination of controlled variables that

have the least interaction. The RGA analysis will also determine whether multiple PI control loops

are sufficient for control or if nonlinear control schemes, such as MPC, are required. In this case,

two inputs will be used to control two outputs, so two control loops are required. For the RCE

reactor, the two manipulated variables are the applied potential and the rotation speed, since both

can be manipulated at the per-second timescale. The controlled variables can be any of the gas

products measured by the GC during the experiment. These gas products are methane, ethylene,

and carbon monoxide. As described by Stephanopoulos [29], an RGA is constructed for all three

combinations of two controlled variables—specifically, methane and ethylene, methane and car-

bon monoxide, and ethylene and carbon monoxide. For each combination, the first output variable

is paired with applied potential, and the second output variable is paired with rotation speed. Ad-

ditionally, for nonlinear systems, the RGA values change at each set point, since the relative effect

of each manipulated variable will change as a function of the other variables. Therefore, the three

RGAs are also calculated at each set point within the range of applied potentials (-1.5 V to -1.25

V ) and rotation speeds (100 rpm to 800 rpm). This gives a map of the controllable region for each

combination of controlled variables. As discussed in Section 2.3, only one value is needed in order

to specify all the values of a two-by-two RGA. Therefore, only the first element of each array is

calculated for each control pair at each set point. Each set point is considered to have stable control
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if the first element is near 1, specifically between 0.65 and 2. Alternatively, the set point is consid-

ered stable if the first element is near 0, specifically between -1 and 0.35, because this signifies that

the control is stable for the reversed input-output pairs. The steady-state gain matrix is calculated

using the MLE-FNN predictions. Since the FNN model does not have an analytical solution, the

partial derivatives are calculated using the fourth-order centered difference approximation. The

results are shown in Figs. 5.8, 5.9, and 5.10.
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Figure 5.8: The relative gain of the control loop combination of methane and ethylene under
various steady-state conditions. The relative gain describes the control stability when methane is
paired with applied potential and when ethylene is paired with rotation speed.

From the figures, it can be seen that the controllable region for each combination is different.

The controllable regions correspond to the areas where the RGA value is between 0.65 and 2 or

between -1 and 0.35 (light red or light blue, respectively). Fig. 5.8 shows the interactions between

the methane and ethylene control loops, Fig. 5.9 shows the interactions between the methane and

carbon monoxide control loops, and Fig. 5.10 shows the interactions between the ethylene and
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Figure 5.9: The relative gain of the control loop combination of methane and carbon monoxide un-
der various steady-state conditions. The relative gain describes the control stability when methane
is paired with applied potential and when carbon monoxide is paired with rotation speed.
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Figure 5.10: The relative gain of the control loop combination of ethylene and carbon monoxide
under various steady-state conditions. The relative gain describes the control stability when ethy-
lene is paired with applied potential and when carbon monoxide is paired with rotation speed.
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carbon monoxide control loops. In Fig. 5.8, the controllable region only occurs at more negative

potentials or lower rotation speeds. The lighter colors in the top left corner correspond to the value

of the RGA being around 1. At less negative potentials and higher rotation speeds, the RGA value

fluctuates dramatically as it takes on large positive and negative values, meaning that the control

interactions are very sensitive to the potential and rotation speed in this regime. In Fig. 5.9, the

pair is controllable at potentials from -1.25 V to -1.41 V and for all rotation speeds. At potentials

more negative than -1.41 V , the RGA fluctuates from large positive to large negative values, so the

control interactions are unstable. In Fig. 5.10, there are two controllable regions, but the control

pairing is different for each region. Similarly to the combination of methane and carbon monoxide,

the control is stable from -1.25 V to -1.41 V and for all rotation speeds. In addition, the control is

stable at applied potentials between -1.46 V and -1.50 V , but the input-output control pairs must

be swapped to be stable. At less negative potentials, the control is stable when ethylene is paired

with the applied potential, but at more negative potentials, the control is stable when ethylene is

paired with rotation speed.

The results of the RGA analysis show that this electrochemical reactor is highly nonlinear, so

multi-input-multi-output control is complex. The nonlinear relationships between the manipulated

variables and the output variables mean that the control loop interactions change as a function of the

set point. The relative gain array analysis shows that multi-input-multi-output control is possible

for all output variable combinations, but each combination restricts the operating conditions under

which multi-loop control is stable. Therefore, it is possible to do MIMO control with any of

the three combinations, so the combination should be selected based on the desired operating

region. For the purpose of controlling this system under all possible operating conditions, it is

recommended to use a nonlinear controller, such as model-predictive control, since each multi-PI

control loop combination has regions of unstable control.
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Chapter 6

Conclusion

This work demonstrated the application of neural network modeling to capture the steady-

state input-output relationships of operating variables for an electrochemical reactor. Since the

electrochemical reduction of carbon dioxide and the overall chemical reaction pathways are not

well understood, the kinetic and empirical, first-principle models cannot fully capture the physico-

chemical phenomena of the reactor. To address this issue, an FNN model was developed to model

the experimental reactor data over a broad range of operating conditions. Additionally, a statistical

FNN model was developed by utilizing the maximum likelihood estimation method to account for

the experimental data variability, and its predictive performance was demonstrated over a broad

range of operating conditions. The FNN model was then used for various application such as for

improving empirical models, optimizing operation parameters, and determining stable regions for

control.
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