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Abstract

In this paper, we describe a new method for simulating nonadiabatic dynamics using

stochastic trajectories. The method, which we call quantum trajectory surface hopping

(QTSH) is a variant of the popular fewest switches surface hopping (FSSH) approach,

but with important differences. We briefly review and significantly extend our re-

cently described consensus surface hopping (CSH) formalism, which captures quantum

effects such as coherence and decoherence via a collective representation of the quan-

tum dynamics at the ensemble level. Using well-controlled further approximations,

we derive an independent trajectory limit of CSH that recovers the FSSH stochastic

algorithm but rejects the ad hoc momentum rescaling of FSSH in favor of quantum

forces that couple classical and quantum degrees of freedom and lead to nonclassical

trajectory dynamics. The approach is well-defined in both the diabatic and adiabatic

representations. In the adiabatic representation, the classical dynamics are modified by

a quantum state-dependent vector potential, introducing geometric phase effects into

the dynamics of multidimensional systems. Unlike FSSH, our method obeys energy

conservation without any artificial momentum rescaling, eliminating undesirable fea-

tures of the former such as forbidden hops and breakdown of the internal consistency

of quantum and ensemble-based state probabilities. Corrections emerge naturally in

the formalism that allow approximate incorporation of decoherence without the com-

putational expense of the full CSH approach. The method is tested on several model

systems. QTSH provides a surface hopping methodology that has a rigorous founda-

tion and broader applicability than FSSH while retaining the low computational cost

of an independent trajectory framework.

1 Introduction

Trajectory surface hopping is a popular and efficient method for simulating the coupled elec-

tronic and nuclear dynamics of molecular systems in a quantum-classical framework.? ? ? ? ? ? ? ? ? ? ?

The most commonly used implementation is the fewest switches surface hopping (FSSH)
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method, originally introduced by Tully in 1990,? and its many subsequent variants (see,

e.g.,? ? ? for reviews). In the FSSH approach, the evolving multicomponent nuclear quan-

tum wavepacket is approximated by an ensemble of independent classical trajectories, each

of which carries its own copy of an electronic Schrödinger equation that evolves under the

influence of the time dependent classical variables and determines the probability of sudden

stochastic transitions of the trajectory between the quantum states. Fewest switches surface

hopping has proven to be a simple and robust method for simulating classical molecular

dynamics with quantum electronic transitions.

The FSSH method has a number of well-known shortcomings which limit its applica-

bility. In particular, the original implementation does not treat quantum coherence—and

especially decoherence—properly, leading to a representation of the quantum evolution that

is overcoherent, in the sense that the off-diagonal quantum density matrix elements of in-

dividual trajectories can be spuriously large in magnitude compared to the exact quantum

coherence. Attempts to improve FSSH have focused mainly on corrections to this problem.

Another issue is related to the strict classical energy conservation imposed on the individual

trajectories in FSSH. When a trajectory undergoes a transition between electronic states, the

corresponding difference in electronic state energies at the transition point is accomodated

in the nuclear dynamics by an ad hoc rescaling of the momentum along the nonadiabatic

coupling vector. This algorithm, although quite physically reasonable prima facie, has no

rigorous foundation based on first principles. The FSSH algorithm also results in practical

problems, such as the spurious closing of classically-forbidden channels allowed by the full

quantum evolution and the presence of “frustrated hops”, transitions that are dictated to

occur by the surface hopping stochastic process but rejected by the ad hoc imposition of

classical energy conservation. These events break the consistency of surface hopping—the

agreement between the evolving quantum density matrix probabilities and the state pop-

ulations reflected by the hopping trajectory ensemble. Further, use of the nonadiabatic

coupling vector in the momentum rescaling is only well-defined in the adiabatic represen-
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tation of electronic states, limiting the applicability of FSSH to dynamics in the adiabatic

representation.

Recently, we proposed an alternative surface hopping framework, consensus surface hop-

ping (CSH),? which avoids the independent trajectory approximation and more rigorously

incorporates the nonclassical effects of nonlocality, uncertainty, and quantum coherence.?

The advantages of CSH come at a cost, however, and the method is numerically more ex-

pensive than FSSH due to the interdependence of the trajectories in the ensemble. Its use as

a computational approach is thus limited to low dimensional model systems. The greatest

value of the CSH formalism, in our opinion, is not as a numerical method for simulations but

as a framework for developing additional approximations and more economical methodology

in a well-controlled and rigorous manner.

In this paper, we describe such an approximate approach, quantum trajectory surface hop-

ping (QTSH). The theory develops from a rigorous quantum-classical limit of the multi-state

quantum Liouville equation? ? ? ? ? ? ? in the context of the computationally efficient inde-

pendent trajectory-based FSSH method. We take an approximate independent trajectory

limit of the full CSH method, yielding an algorithm that is equivalent to the standard FSSH

stochastic trajectory hopping approach. The main difference with FSSH is the abandonment

of ad hoc momentum rescaling to conserve the classical kinetic-plus-potential energy at the

individual trajectory level and its replacement by quantum forces derived rigorously from the

semiclassical-limit quantum-classical Liouville equation. This feature of the method restores

the consistency of surface hopping that is broken by the frustrated hops of the standard

FSSH approach. In addition, the energetics of the system are treated correctly: the full

quantum-classical energy is conserved rigorously at the ensemble level. The ensemble aver-

age energy conservation is the correct behavior required by quantum mechanics; individual

trajectory conservation of the classical energy is a constraint that is too restrictive and too

classical, and so precludes important quantum effects. Further corrections are developed

and implemented to incorporate average ensemble level decoherence as an approximation to
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the full CSH treatment of coherence. The approach is tested on standard one-dimensional

models. For cases where FSSH works well, the QTSH approach gives similar results for

an equivalent computational cost. In situations where FSSH fails due to spuriously frus-

trated hops, the QTSH method continues to give results in close agreement with quantum

mechanics.

The organization of the rest of this paper is as follows. In Sec. 2 we review the stan-

dard FSSH methodology. We then briefly summarize the full CSH approach as reported

previously? and significantly extend its treatment of energy conservation through electronic

state-dependent nonclassical forces. The QTSH approach, the quantum trajectory modifi-

cation of FSSH, is developed in both the diabatic and adiabatic representations. Numerical

results comparing the methods for a number of model systems are presented in Sec. 3. Fi-

nally, a summary and discussion is given in Sec. 4.

2 Theory

2.1 Fewest Switches Surface Hopping (FSSH)

We begin by briefly reviewing the fewest switches surface hopping (FSSH) method proposed

by John Tully in 1990.? The total Hamiltonian describing the electronic and nuclear degrees

of a molecular system is given by

Ĥ = T̂q + Ĥo(r,q). (1)

Here, r and q are the electronic and nuclear coordinates, respectively. T̂q is the nuclear

kinetic energy while Ĥo(r,q) is the electronic Hamiltonian, which depends parametrically

on the nuclear coordinates q. An electronic basis is chosen in terms of states φn(r;q) which

are functions of the electronic coordinates r and may also depend parametrically on the
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nuclear coordinates q. Matrix elements of the electronic Hamiltonian are given by

Vmn(q) =

!
φ∗
m(r;q)Ĥo(r,q)φn(r;q)dr. (2)

In the adiabatic representation, the electronic wavefunctions depend on q, and the derivative

coupling matrix element dmn(q) results from off-diagonal matrix elements of the nuclear

kinetic energy:

dmn(q) =

!
φ∗
m(r;q)∇qφn(r;q)dr. (3)

The FSSH formalism approaches the problem of nonadiabatic dynamics by using classical

trajectories and ensemble averaging to approximate the nuclear quantum dynamics of a

multicomponent wavepacket. These classical trajectories capture the quantum electronic

transitions by stochastic “hops” between the electronic surfaces. The electronic degrees of

freedom are, in turn, driven by the time-dependent nuclear trajectories q(t) which appear in

the nuclear coordinate dependence of the electronic Hamiltonian. For a given classical path

q(t) the electronic wavefunction can be expanded in the chosen electronic basis as

ψ(r, t) =
"

n

cn(t)φj(r;q(t)). (4)

Substitution of this expression into the time-dependent Schrödinger equation yields a set of

coupled equations for the expansion coefficients:

i!ċm(t) =
"

n

(Vmn − i!q̇ · dmn)cn(t). (5)

It is convenient to use the quantum density matrix amn = cmc
∗
n rather than the wavefunction

amplitudes cm. The quantum equations of motion then become

i!ȧmn(t) =
"

l

[(Vml − i!q̇ · dml)aln − aml(Vln − i!q̇ · dln)] . (6)
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Here, the following relations hold:

d∗
ln = −dnl (7)

d∗
nn = 0. (8)

The equation of motion for the population of the nth state, represented by the diagonal

density matrix element ann, is then given by:

ȧnn =
"

l ∕=n

bnl, (9)

where

bnl =
2

!
Im(a∗nlVnl)− 2Re(a∗nlq̇ · dnl). (10)

It should be remembered that Vnl(q(t)) and dnl(q(t)) as well as q̇(t) all depend on the

time-dependent classical path q(t).

In the FSSHmethod, an ensemble of independent trajectories (qj(t),pj(t)) (j = 1, 2, · · · , N)

are sampled from a distribution representing the initial nuclear quantum state, where pj is

the canonical momentum conjugate to the jth trajectory’s nuclear coordinate qj. Each

trajectory so generated is initiated on one of the electronic states and then evolves under

Hamilton’s equations that correspond to the instantaneous occupied state. Stochastic tran-

sitions occur between these states with a probability that is proportional to the relative rate

of change of the quantum populations associated with the trajectory.

To illustrate, we consider a system with two electronic states and a trajectory currently

evolving on state 1 (here we suppress the trajectory index j). In the FSSH method, this

trajectory has a probability of hopping from surface 1 to surface 2 if ȧ11(t) is negative. In

that case, P FSSH
hop (t), the probability of hopping at time t during a time step of duration ∆t

is then given by

P FSSH
hop (t) =

####
1

a11(t)
b12(t)∆t

#### . (11)

The hop is realized or not by generating a random number between 0 and 1 and comparing
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it with P FSSH
hop (t). An analogous procedure is used for trajectories currently on state 2.

Strict energy conservation at the individual trajectory level is imposed by rescaling the

momenta at the instant of the hop so that the total kinetic plus potential energy of the

trajectory remains unchanged during the transition. In multidimensional systems, the mo-

mentum rescaling is performed along the direction of the nonadiabatic coupling vector d12. If

insufficient energy is available for an upward hop in energy, the event is termed “frustrated”

and does not occur despite the stochastic algorithm dictating the transition. Such aborted

events lead to a breakdown of the consistency between the density matrix populations and

the trajectory ensemble statistics.

2.2 Consensus Surface Hopping (CSH)

The FSSH method is a sensible but ad hoc solution to the problem of modeling nonadiabatic

dynamics with trajectories. The algorithm was proposed based on physical reasoning rather

than derived systematically from the underlying exact quantum dynamics. The Consen-

sus Surface Hopping (CSH) approach seeks to go beyond this and build a trajectory-based

method for nonadiabatic dynamics simulations with a rigorous foundation.? The CSH for-

malism focuses on solving the multistate quantum Liouville equation for coupled electronic

and nuclear dynamics in the semiclassical limit using trajectory ensembles to represent phase

space densities.? ? ? ? ? These states evolve quantum mechanically, and so the trajectory dy-

namics must correspondingly become nonclassical.

An initial description of the approach was given in Ref.? Here we provide a review of that

work and, in addition, significantly extend the formalism to give a more rigorous treatment of

the energy conservation by the inclusion of nonclassical terms in the phase space dynamics.

This additional aspect will be a key component of the QTSH approach that is the focus of

this paper and developed below.
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The quantum mechanical Liouville equation for the density operator ρ̂(t) is given by?

i!
dρ̂(t)

dt
= [Ĥ, ρ̂(t)], (12)

where Ĥ is the Hamiltonian of the system. For dynamics on a single potential surface, the

classical limit of Eq. (12) is the well-known classical Liouville equation of nonequilibrium

statistical mechanics,?

∂ρ

∂t
= {H, ρ}, (13)

where ρ(q,p, t) and H(q,p, t) are now functions of the 2f -dimensional (for f nuclear degrees

of freedom) phase space variables Γ = (q,p) and time t, and {H, ρ} is the Poisson bracket

of H and ρ: {H, ρ} = ∂H/∂q ·∂ρ/∂p−∂ρ/∂q ·∂H/∂p. This correspondence can be derived

systematically from Eq. (12) by performing a Wigner-Moyal expansion? ? of the quantum

mechanical Liouville equation. To lowest order in !, this involves replacing commutators by

Poisson brackets: [Â, B̂] → i!{A,B}+O(!2).

Diabatic representation

The semiclassical limit of Eq. (12) can be generalized to two coupled quantum states cou-

pled to classical degrees of freedom. The approach is general for mixed quantum-classical

problems. Here we consider two quantum electronic states in the diabatic electronic repre-

sentation coupled to classical limit nuclear dynamics. The Hamiltonian and density matrix

are given by 2× 2 matrices:

Ĥ =

$

%&
Ĥ11 V̂

V̂ Ĥ22

'

() (14)

and

ρ̂(t) =

$

%&
ρ̂11(t) ρ̂12(t)

ρ̂21(t) ρ̂22(t)

'

() , (15)

respectively. The elements of these matrices are nuclear operators. With the replacement of
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the quantum mechanical operators by the corresponding classical phase space functions this

becomes a set of coupled classical-like Liouville equations:? ? ? ? ? ? ? ? ? ? ?

∂ρ11
∂t

= {H11, ρ11}+ {V,α}− 2V

!
β (16)

∂ρ22
∂t

= {H22, ρ22}+ {V,α}+ 2V

!
β (17)

∂α

∂t
= {H0,α}+ ωβ +

1

2
{V, ρ11 + ρ22} (18)

∂β

∂t
= {H0, β}− ωα +

V

!
(ρ11 − ρ22) . (19)

Here, we have written the coherence ρ12(Γ, t) = α(Γ, t) + iβ(Γ, t) in terms of its real and

imaginary parts and have defined the average Hamiltonian H0 = (H11 + H22)/2 and the

frequency ω = (H11 −H22)/!. All higher order terms in ! have been neglected, leading to a

classical-limit formalism that retains only the most important nonclassical corrections.

The CSH method employs a trajectory ensemble representation of the phase space func-

tions describing the density matrix in the coupled semiclassical Liouville equations. Quan-

tum population transfer is represented by stochastic trajectory hops between the diagonal

surfaces while quantum coherence is represented collectively at the ensemble level by inter-

relationships between nonclassical amplitudes and phases associated with each trajectory.

The phase space densities corresponding to the populations of states 1 and 2 are together

represented by a single ensemble of N trajectories, each of which is characterized by a point

in phase space Γj(t) = (qj(t),pj(t)) and a binary integer σj(t), which can take on the values

1 or 0, indicating whether the trajectory is associated with quantum state 1 or 2, respectively.

The state 1 and 2 phase space densitites are then given by

ρ11(Γ, t) =
1

N

N"

j=1

σj(t)δ(Γ− Γj(t)) (20)
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and

ρ22(Γ, t) =
1

N

N"

j=1

(1− σj(t)) δ(Γ− Γj(t)), (21)

respectively. The δ functions represent the discrete points of the trajectories in phase space,

while the coefficients σj denote which state the trajectory currently occupies. In the numer-

ical implementation involving finite trajetory ensembles, the δ functions are smoothed using

phase space Gaussians, as described in Ref.? This results in the replacement of the delta

functions by the Gaussian basis g(Γ): δ(Γ− Γj) → g(Γ− Γj).

The coherence ρ12(Γ, t) is also represented in terms of the trajectory ensemble. Unlike

the populations, however, the coherence is a complex quantity and thus the coefficients of

the trajectories are complex numbers. The populations and the real and imaginary parts of

the coherence are given in terms of the smoothed trajectory ensemble as:

ρ11(Γ, t) =
1

N

N"

j=1

σj(t)g(Γ− Γj(t)) (22)

ρ22(Γ, t) =
1

N

N"

j=1

(1− σj(t)) g(Γ− Γj(t)) (23)

α(Γ, t) =
1

N

N"

j=1

αj(t)g(Γ− Γj(t)) (24)

β(Γ, t) =
1

N

N"

j=1

βj(t)g(Γ− Γj(t)). (25)

The coefficients σj(t) are stochastic binary integers, while αj(t) and βj(t) (j = 1, 2, . . . , N)

are continuous real numbers. (We note that it is not necessary to make such a distinction;

in a recent paper, we describe an alternative approach to the general problem of quantum

state hopping that represent both populations and coherence in terms of separate stochastic

processes.? )

The equations of motion for the trajectories Γj(t) and state parameters (σj(t),αj(t), βj(t))

(j = 1, 2, . . . , N) are determined by subtituting the trajectory representations, Eqs. (22)–
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(25), into the semiclassical Liouville equations (16)–(19). In the uncoupled (V = 0) case, the

evolution of the populations reduces to purely classical Liouvillian dynamics corresponding

to trajectory ensemble evolution under the appropriate electronic state Hamiltonian. In the

presence of coupling, two types of nonclassical terms appear. The first are sink and source

terms ±2V β/!, which are responsible for the population transfer between states. The second

type of nonclassical terms are the Poisson brackets {V,α}, which appear symmetrically in

the equations for both ρ11 and ρ22. These interactions modify the shape of the evolving dis-

tributions, but do not change the total state populations. Conservation of population under

these terms results from the fact that the classical trace (integral over phase space volume)

of a Poisson bracket vanishes for functions satisfying appropriate boundary conditions.

The evolution of the dynamical variables is detemined by integrating numerically the

ordinary differential equations for the trajectories and the coefficients. Each time step of

duration ∆t is divided into two parts. First, the coefficients are updated and then the phase

space trajectories are propagated forward in time.

We first consider the population sink and source terms responsible for the evolution of

the stochastic variables σj(t). To derive a probabilistic algorithm for updating the former we

consider the subsets of trajectories on surfaces 1 and 2 separately. For surface 1, substitution

into the semiclassical Liouville equations yields

1

N

N"

k=1

σk∆σkg(Γ− Γk) = − 1

N

N"

k=1

2V (Γ)

!
βkg(Γ− Γk)∆t, (26)

with a similar expression for surface 2. We can evaluate the left and right sides of these

expressions at each of the trajectory points of interest, Γj, yielding coupled linear equations

for the change in coefficients. This gives, for the surface 1 coefficients,

1

N

N"

k=1

σk∆σkg(Γj − Γk) = − 1

N

N"

k=1

2V (Γj)

!
βkg(Γj − Γk)∆t, (27)

for j = 1, 2, . . . , N . In general, this presents a linear algebra problem for determination of
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the ∆σj. We can simplify its solution by making the following approximation that becomes

exact as N becomes infinite and the Gaussian functions g(Γ) become localized:

1

N

N"

k=1

σk∆σkg(Γj − Γk) ≃ 〈ρ11〉j ∆σj, (28)

where 〈ρ11〉j, the local density at point Γj on surface 1, is given by

〈ρ11〉j =
1

N

N"

k=1

σkg(Γj − Γk). (29)

Similarly, we evaluate the value of the coherence at point j as

〈β〉j =
1

N

N"

k=1

βkg(Γj − Γk). (30)

The equation for updating the coefficients of trajectories currently on surface 1 becomes:

∆σj = − 1

〈ρ11〉j
2V (Γj)

!
〈β〉j ∆t. (31)

For trajectories currently evolving on surface 2, the corresponding result is

∆σj = − 1

〈ρ22〉j
2V (Γj)

!
〈β〉j ∆t. (32)

These are then identified as the hopping probabilities for the trajectories in the ensemble.

For instance, for the jth trajectory currently evolving on state 1, if ∆σj(t) is negative, then

trajectory has a nonzero probability of undergoing a hop to state 2 during the time step ∆t.

The CSH probability for this event is

PCSH
hop =

#####
2

! 〈ρ11〉j
V (Γj) 〈β〉j ∆t

##### . (33)

These equations form the basis of a stochastic hopping algorithm. A random number ξ
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between 0 and 1 is generated for each trajectory at each time step and compared with the

appropriate value of PCSH
hop = |∆σj| corresponding to the occupied state. The value of σj(t)

is changed by ±1 or kept at its current value depending on the outcome.

The result in Eq. (33) is strongly reminiscent of the FSSH hopping probability given in

Eq. (11). But we emphasize the essential difference between this approach and the FSSH

method. Here, the ensemble collectively determines the stochastic hopping probabilities of

each of its members. The local densities 〈ρ11〉j and 〈ρ22〉j and the coherence 〈β〉j at point

Γj depend on the ensemble of evolving trajectories Γk(t) (k = 1, 2, . . . , N). They are not

independent dynamical variables associated with independent trajectories, as in the FSSH

formalism. Quantum transitions are thus determined by a “consensus” among the members

of the ensemble representing the full entangled electronic-nuclear quantum state, rather than

by the independent trajectories of FSSH.

The electronic coherence evolves in parallel with—and coupled to—the evolving popula-

tion densities. A similar analysis that includes the approximate neglect of terms in Eqs. (18)

and (19) that leave the trace of ρ12 unchanged yield expressions that describe the evolution

of the coefficients over the time step ∆t.? As these equations are solved deterministically

rather than by a stochastic hopping algorithm, the limit ∆t → 0 can be taken, yielding the

coupled differential equations:

α̇j = ω(Γj)βj (34)

β̇j = [−ω(Γj)αj +
1

!
V (Γj)(2σj − 1)]. (35)

These differential equations are integrated numerically using standard methods.

The CSH equations for the coherences are identical to the FSSH density matrix equations

for coherences in the diabatic representation if we identify the CSH parameters αj and βj

with the real and imaginary parts of the jth independent trajectory coherence in the FSSH

method.

We emphasize that no artificial decoherence is added to the evolving system in the CSH
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formalism. The role played by coherence and its decay is treated accurately through the

collective nature of the method as highlighted by Eq. (30). In particular, decoherence is

represented naturally via cancellation of the signed terms βk in the summation over Γk in

the local vicinity of the hopping trajectory j to yield 〈β〉j. If these terms exhibit destructive

interference due to either the nature of the pure state evolution of the multicomponent

nuclear wavepacket or by environmental fluctuations in difference potential ω(Γk) over the

ensemble, then this summation will be “decayed” by decoherence. The individual βk values

may be quite large; it is only the weighted sum of their values, 〈β〉j, that becomes small with

decoherence. In contrast, FSSH determines hopping probabilities by using the independent

individual values of each trajectory’s quantum density matrix. This difference is the origin

of the overcoherence problem of FSSH.

The rest of this Section describes further developments of the CSH formalism that were

not included in our earlier publication.?

We now consider the terms in the evolution equations that involve trace-preserving Pois-

son brackets. These include both the homogeneous classical phase space evolution terms

of the form {H, ρ} and the inhomogeneous nonclassical terms {V,α} coupling the density

matrix elements.

It is convenient to consider the total nuclear density ρ = ρ11 + ρ22:

ρ(q,p, t) = ρ11(q,p, t) + ρ22(q,p, t) =
1

N

N"

j=1

g(Γ− Γj(t)). (36)

This quantity is independent of the stochastic parameters σj(t) (j = 1, 2, . . . , N) (although

we will see below that its evolution depends on the quantum state parameters). The total

nuclear density ρ(q,p, t) obeys the partial differential equation obtained by adding Eqs. (16)

and (17):

∂ρ

∂t
= {H11, ρ11}+ {H22, ρ22}+ 2{V,α}. (37)

Note that the terms involving V β responsible for population transfer between states 1 and
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2 cancel from the evolution equation. Equation (37) conserves the total population, given

by the phase space trace of ρ, as it should.

The equations of motion for qj(t) and pj(t) (j = 1, 2, . . . , N) are derived by substituting

Eq. (36) into Eq. (37). We have for the left hand side of the resulting expression

LHS = − 1

N

N"

k=1

*
q̇k ·

∂g(Γ− Γk)

∂q
+ ṗk ·

∂g(Γ− Γk)

∂p

+
. (38)

The right side of the equation becomes

RHS =
1

N

N"

k=1

*
−∂Hk

∂p
· ∂g(Γ− Γk)

∂q
+

,
∂Hk

∂q
+ 2

∂V (Γk)

∂q
αk

-
· ∂g(Γ− Γk)

∂p

+
, (39)

where

Hk = σkH11(Γk) + (1− σk)H22(Γk) =
p2
k

2m
+ σkU1(qk) + (1− σk)U2(qk), (40)

which defines the diagonal diabatic potentials Un(q) (n = 1, 2).

Equating the coefficients of the terms ∂g(Γ − Γk)/∂q and ∂g(Γ − Γk)/∂p of the LHS

and RHS expressions yields the modified classical equations of motion for the trajectory

ensemble:

q̇j =
pj

m
(41)

ṗj = −∇Uj(qj)− 2αj∇V (qj) (42)

for j = 1, 2, · · · , N , where ∇ ≡ ∂/∂q. In addition to the classical force acting on the jth

trajectory resulting from the instantaneous Hamiltonian Hj an additional quantum force

appears, which depends on both the gradient of the off-diagonal diabatic coupling V (qj)

and the real part of the coherence parameter αj(t) corresponding to that trajectory. The

nonclassical force contribute whenever coupling and coherence are present. In CSH, these
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continuous quantum forces replace the sudden impulsive momentum rescaling of FSSH. Each

trajectory does not conserve the classical energy Hj(t). Rather, the total energy expectation

value E(t) = Tr(Ĥ ρ̂(t)) is conserved on average over the ensemble. We have discussed the

energy budget of nonadiabatic dynamics in detail in a recent paper.? We will examine this

point in more detail below in the description of the approximate QTSH method.

The expression LHS = RHS resulting from equating Eqs. (38) and (39) is a single

equation for the 2f unknowns q̇j and ṗj (j = 1, 2, . . . , N). One possible solution is given by

our quantum trajectory equations of motion, Eqs. (41) and (42). Other solutions are also

possible. This is related to the general ambiguity associated with trajectory representations

of quantum state evolution in any quantum trajectory approach. We have discussed this

issue in other contexts in previous publications.? ? ? ?

We note that the quantum trajectory equations of motion, Eqs. (41) and (42) (as well as

the corresponding adiabatic expressions described below) appear also in other non-surface

hopping trajectory-based approaches to nonadiabatic dynamics, such as in the Meyer-Miller

classical analogue approach? ? ? and in the recent work of Tao.? ?

We emphasize that no momentum rescaling is performed in the CSH method when elec-

tronic transitions occur. In general, individual trajectories representing a quantum system

have no requirement to separately conserve energy,? ? ? and they do not do so in this

method. We believe that energy conservation of individual trajectories imposed by mo-

mentum rescaling is too classical from a physical perspective. The trajectories in a surface

hopping ensemble comprise a statistical representation of an underlying quantum density

matrix, and should not separately be over-interpreted as being “real”. In particular, there

is no reason why they should individually conserve energy. In quantum mechanics, it is the

expectation value of the Hamiltonian (and its moments) that should be conserved by the

time evolution. While adoption of momentum rescaling can lead to accurate results in some

situations by imposing correct asymptotic properties by hand, as it were, it also leads to

serious problems such as spuriously frustrated hops and corresponding forbidden processes
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that are allowed by exact quantum dynamics.

From a mathematical perspective, momentum rescaling is undesirable because it violates

the phase space locality of the underlying coupled semiclassical Liouville equations. This

locality is readily apparent in Eqs. (16)–(17), which highlights the symmetrical appearance of

the transition-inducing terms in the equations: every element of population that is induced

to leave surface 1 by the term −2V (Γ)β(Γ)/! appears on surface 2 as +2V (Γ)β(Γ)/! at the

same point Γ = (q,p) in phase space. Momentum rescaling to impose energy conservation

induces a spurious shift of the probability in phase space upon transition that is unjustified

by—and in conflict with—the mathematical form of the underlying semiclassical Liouville

equation.

Adiabatic representation

The CSH method can be implemented equally well in the adiabatic representation, where

electronic state coupling appears through off-diagonal terms in the kinetic energy.? ? ? We

start with the quantum mechanical Hamiltonian and density matrix in the adiabatic repre-

sentation. These are given by

Ĥ =

$

%&
Ĥ++ Ŵ

Ŵ † Ĥ−−

'

() (43)

and

ρ̂(t) =

$

%&
ρ̂++(t) ρ̂+−(t)

ρ̂−+(t) ρ̂−−(t)

'

() , (44)

respectively. The adiabatic eigenstates {|+〉 , |−〉} are defined in terms of the diabatic basis

{|1〉 , |2〉} as

|+〉 = |1〉 cos(φ/2) + |2〉 sin(φ/2) (45)

|−〉 = − |1〉 sin(φ/2) + |2〉 cos(φ/2), (46)

18



where the mixing angle φ(q) is given by

tanφ(q) =
2V (q)

U1(q)− U2(q)
. (47)

Here, U1(q) and U2(q) are the diagonal diabatic state potentials and V (q) is the off-diagonal

diabatic coupling.

In terms of these states, the off-diagonal nonadiabatic couplings are

Ŵ = 〈+| T̂ |−〉 = i!
2m

∇φ(q) · p̂+
!2

4m
∇2φ(q) (48)

and

Ŵ † = 〈−| T̂ |+〉 = −Ŵ . (49)

The nonadiabatic coupling vector matrix element d(q) is defined as

d(q) ≡ 〈+|∇ |−〉 . (50)

This can be evaluated for the nonadiabatic states in terms of the diabatic states and position-

dependent angle φ(q), yielding the result

d(q) = −1

2
∇φ(q). (51)

In terms of this quantity, the off-diagonal element Ŵ = 〈+| Ĥ |−〉 can be written as

Ŵ = − i!
2

,
d(q) · p̂

m
+

p̂

m
· d(q)

-
(52)

with Ŵ † = 〈−| Ĥ |+〉 = −Ŵ . In the semiclassical limit employed below this becomes,

W (Γ) = −i!d(q) · p
m

(53)

19



with W ∗(Γ) = −W (Γ) .

By evaluating the Wigner transform of the quantum Liouville equation in the adiabatic

representation, Eq. (12), to lowest order in ! we obtain the corresponding semiclassical

Liouville equations in the adiabatic representation:? ? ?

∂ρ++

∂t
= {H++, ρ++}− !

.
d · p

m
, β

/
− 2d · p

m
α (54)

∂ρ−−

∂t
= {H−−, ρ−−}− !

.
d · p

m
, β

/
+ 2d · p

m
α (55)

∂α

∂t
= {Ho,α}+ ωβ + d · p

m
(ρ++ − ρ−−), (56)

∂β

∂t
= {Ho, β}− ωα− !

2

.
d · p

m
, ρ++ + ρ−−

/
, (57)

where H++(Γ) = p2/2m + E+(q), H−−(Γ) = p2/2m + E−(q), Ho = 1
2
(H++ + H−−),

and ω(Γ) = (E+(q) − E−(q))/!; here E+(q) and E−(q) are the adiabatic potentials—the

position-dependent eigenvalues of the diabatic potential matrix. The density matrix elements

ρmn(Γ, t) are now phase space functions, and we have written the coherence ρ+− = α + iβ

in terms of its real and imaginary parts.

The phase space generalized densities in the adiabatic representation are written in terms

of an ensemble of N trajectories as:

ρ++(Γ, t) =
1

N

N"

j=1

σj(t)g(Γ− Γj(t)) (58)

ρ−−(Γ, t) =
1

N

N"

j=1

(1− σj(t)) g(Γ− Γj(t)). (59)

α(Γ, t) =
1

N

N"

j=1

αj(t)g(Γ− Γj(t)) (60)

β(Γ, t) =
1

N

N"

j=1

βj(t)g(Γ− Γj(t)). (61)
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A similar analysis to the one performed above for the diabatic case then yields the CSH

equations of motion for the quantum state parameters and phase space trajectories.

The stochastic parameters {σj} (j = 1, 2, . . . , N) are updated as follows. For the jth tra-

jectory at phase space point Γj = (qj(t),pj(t)) currently occupying state |+〉, the probability

of hopping to state |−〉 at time t during a time interval ∆t is given by

PCSH
hop = ∆σj =

####
2

〈ρ++〉
d(qj) · pj

m
〈α〉j ∆t

#### (62)

with an analogous expression for hops from |−〉 → |+〉. The equations of motion for the

coherence parameters yield the differential equations

α̇j = ω(Γj)βj +
d(qj) · pj

m
(2σj − 1) (63)

β̇j = −ω(Γj)αj(t). (64)

The trajectory equations of motion for qj(t) and pj(t) can be derived from the equation

of motion for the total nuclear density ρ = ρ++ + ρ−− using the same procedure employed

above in the diabatic case. The result is

q̇j =
pj

m
− 2!βj

d(qj)

m
(65)

ṗj = −∇Uj(qj) +
2!
m

βj (pj ·∇)d(qj) (66)

for j = 1, 2, · · · , N . The second term can also be written in terms of the time derivative

of the nonadiabatic coupling vector along the resulting trajectories ḋ = (v · ∇)d, where

v = p/m is the trajectory velocity:

ṗj = −∇Uj(qj) + 2!βjḋ(qj). (67)

In numerical implementation, it is much easier to determine the time derivative of d along
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a trajectory than to evaluate the spatial derivatives directly.

These equations of motion are closely related to those appearing in the Miller-Meyer treat-

ment of coupled electronic-nuclear dynamics.? ? ? In Ref.? Miller and coworkers introduce

a non-Hamiltonian “kinematic momentum”, given in our notation by pkin,j = pj−2!βjd(qj)

and show that its use simplifies numerical calculations by avoiding the appearance of ∇d.

This approach may also be useful in the numerical application of the present method.

The quantum forces acting on the classical trajectories in the adiabatic representation

are in the form of Hamilton’s equations in the presence of a vector potential A(q, β(t)):

H(Γ, σ, β) =
(p−A(q, β(t)))2

2m
+ Uσ(q), (68)

where A(q, β(t)) = 2!β(t)d(q) (neglecting terms of order !2 ). This vector potential de-

pends on the quantum subsystem dynamics through the appearance of the imaginary part

of the coherence, βj(t). Interesting geometric phase effects resulting from these nonclassical

forces may result in systems with two or more dimensions in the presence of, e.g., conical

intersections.? ? ? ? ? This will be explored in future work.

The CSH method is based on a systematic derivation of the equations of motion for a

trajectory ensemble representation of the nonadiabatic dynamics from the underlying quan-

tum Liouville equation in the semiclassical limit. CSH eliminates the ad hoc instantaneous

momentum rescaling and strict energy conservation of FSSH by incorporating continuous

state-dependent quantum forces into the trajectory equations of motion. In addition, a cor-

rect treatment of quantum coherence emerges naturally in the CSH formalism through the

collective and interdependent nature of the trajectories across the ensemble in determining

hopping probabilities. The numerical implementation of the method can be quite accurate

for model systems. However, the interdependent nature of the trajectories greatly increases

the numerical cost of the method in direct implementations. For multidimensional systems,

the CSH method quickly becomes prohibitively expensive with increasing size. Further,
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the complexity of the method can lead to errors if conditions and parameters such as the

Gaussian smoothing width are not chosen carefully. The main value of CSH is not as a

practical method per se, but as a framework for introducing further approximations in a

well-controlled manner

2.3 Quantum Trajectory Surface Hopping (QTSH)

We now describe a new surface hopping approach based on an independent trajectory limit

of the full CSH formalism. We provide a derivation of the individual trajectory quantum

electronic state density matrix dynamics and stochastic hopping algorithm for the indepen-

dent trajectories of the FSSH method by employing additional well-defined approximations

to CSH. The ad hoc impulsive momentum jumps of FSSH are abandoned, however, and re-

placed by the continuous quantum forces that emerge from the CSH formalism. We call the

resulting method quantum trajectory surface hopping (QTSH), a quantum trajectory-based

variant of FSSH with a rigorous foundation.

In the CSH methodology, the underlying focus is on solving the coupled evolution of the

phase space functions ρmn(Γ, t) using a trajectory ensemble representation. This leads natu-

rally to the appearance of ensemble level quantities in the equations of motion for the phase

space trajectories and quantum parameters. Consider for example the stochastic hopping of

the jth trajectory from state 1 to state 2 in the diabatic representation. The local values of

the functions representing state 1 population density ρ11(Γ, t) = (1/N)
0

j σj(t)g(Γ− Γj(t))

and imaginary part of the coherence β(Γ, t) = (1/N)
0

j βj(t)g(Γ−Γj(t)) at the phase space

point Γ = Γj determine the CSH hopping probability of trajectory j through the expression

PCSH
hop =

#####
1

〈ρ11〉j
2V (Γj)

!
〈β〉j ∆t

##### , (69)

where 〈ρ11〉j = ρ11(Γj) and 〈β〉j = β(Γj).

This “consensus” involvement of the entire ensemble in the hopping decision-making
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emerges systematically from first principles. The rigor of the methodology comes with a

relatively high cost of numerical effort, however, as the local values of these quantities at every

trajectory point Γj for (j = 1, 2, . . . , N) must be determined from the ensemble as a whole at

each time step. It is therefore desirable to introduce further well-controlled approximations

to seek a “disentangling” of the ensemble to yield an approximate independent trajectory

method, perhaps with ensemble level corrections. One such approximate method, QTSH,

will now be described.

The FSSH algorithm proposed by Tully relies on an assumption of consistency between

two complementary representations of the quantum evolution—the trajectory populations of

the electronic states and the corresponding individual trajectory auxiliary quantum density

matrix populations.? We seek to establish a rigorous connection between Tully’s ensemble

of auxiliary density matrices and the local values of the CSH phase space functions and its

relation to surface hopping consistency.

Returning to the hopping of the jth trajectory in our example, recall that the ensemble

representation of the local phase space population density at phase space point Γ = Γj on

state 1 is:

〈ρ11〉j =
1

N

N"

k=1

σkg(Γj − Γk). (70)

We now make the assumption that the stochastic variables σk have a well-defined local

average 〈σ〉j in the phase space region |Γj − Γk| ≤ ∆Γ, where ∆Γ is the width of the

Gaussian function g(Γ). This suggests the approximation

〈ρ11〉j ≃
1

N

N"

k=1

〈σ〉j g(Γj − Γk) = 〈σ〉j 〈ρ〉j , (71)

where 〈ρ〉j is the local value of the total nuclear density ρ = ρ11 + ρ22 at point Γj. Now

consider the local value of the phase space function representing the imaginary part of the

24



coherence at Γj,

〈β〉j =
1

N

N"

k=1

βkg(Γj − Γk). (72)

Here, we make the simplifying assumption that the system is fully coherent, in the sense

that the parameters βk are slowly varying in the vicinity of Γj with values of the index k

corresponding to |Γj − Γk| ≤ ∆Γ. For small enough ∆Γ we can then make the replacement

βk → βj in the expression, giving the approximation

〈β〉j ≃
1

N

N"

k=1

βjg(Γj − Γk) = βj 〈ρ〉j . (73)

Under these approximations, the CSH hopping probability becomes

PCSH
hop (t) ≃

#####
1

〈σ〉j 〈ρ〉j
2V (Γj)

!
βj 〈ρ〉j ∆t

##### =

#####
1

〈σ〉j
2V (Γj)

!
βj∆t

##### , (74)

with the total nuclear density at point Γj canceling from numerator and denominator.

The connection between the independent limit of CSH and the conventional FSSH for-

malism can now be made. Within the consisteny assumption underlying FSSH, the pop-

ulations of the auxiliary density matrix elements of each trajectory should agree with the

state population statistics of the trajectory ensemble. We assume the proper correspondence

should hold locally in phase space, so the independent trajectory population a11,j(t) should

be equated with the appropriate local average behavior of the ensemble. In our notation,

a11,j(t) = 〈σ〉j (t). (75)

With these identifications, we arrive finally at the QTSH hopping probability expression

PQTSH
hop (t) =

####
1

a11,j

2V (Γj)

!
βj∆t

#### , (76)

which is identical to the corresponding FSSH result, Eq. (11). The consistency assumption
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of FSSH further assumes that the akl(t) parameters can be computed by solving the auxiliary

quantum equations of motion for each trajectory, Eq. (6).

A similar line of reasoning gives the QTSH hopping probability in the adiabatic repre-

sentation:

PQTSH
hop =

####
2

a++,j

d(qj) · pj

m
αj∆t

#### . (77)

In this independent trajectory limit, 〈ρ++〉j → a++,j 〈ρ〉j and 〈α〉j → αj 〈ρ〉j
The numerical implementation of the QTSH method uses the following procedure (given

here for the adiabatic representation): The continuous equations, Eq. (6), for the quantum

subsystem of each trajectory is integrated to determine the smoothly varying quantities

a++,j, a−−,j, αj, and βj. In addition, the stochastic variable σj is propagated using the

probabilistic algorithm in Eq. (77). The classical variables are propagated under the influence

of the instantaneous Hamiltonian Hj = σjH++ + (1 − σj)H−− augmented by the CSH

nonclassical terms derived above, Eqs. (65) and (66). The classical forces in the equations

of motion change discontinuously at the points of transition while the nonclassical forces are

continuous there. The resulting phase space path (qj(t),pj(t)) is continuous, unlike in the

FSSH method, as we do not rescale the momenta to impose energy conservation.

Energy conservation

The FSSH method for surface hopping imposes strict conservation of the classical en-

ergy of each independent trajectory Hj(Γj(t), t) = Ej, where in our notation Hj(Γ, t) =

σj(t)H1(Γ) + (1− σj(t))H2(Γ) and Ej is the initial classical energy. This is accomplished by

the ad hoc rescaling of the individual trajectory momenta at the time of each hop, which

imposes energy conservation on each trajectory by hand.

Quantum mechanics of course requires energy conservation as well, but at the state

level. Further, the full Hamiltonian Ĥ and density matrix ρ̂ are involved, not just the

diagonal elements. The total conserved energy of the quantum system is the operator trace
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E = Tr(Ĥ ρ̂) and its quantum-classical limit is given by the correponding classical trace

E(t) = TrHρ =

!
H(Γ)ρ(Γ, t)dΓ, (78)

where the integral is over the 2f -dimensional phase space. Here, both H(Γ) and ρ(Γ, t) are

2 × 2 matrices of the corresponding classical-limit phase space functions. Writing this out

in terms of the matrix elements in the diabatic representation gives

E(t) = Tr(Hρ) = Tr(H11ρ11) + Tr(H22ρ22) + 2ReTr(V ρ12) (79)

or

E(t) = Tr(H11ρ11) + Tr(H22ρ22) + 2Tr(V α). (80)

The total energy consists of three terms:

E = E1 + E2 + Edia
coh. (81)

In terms of the trajectory representation, this becomes

E =
1

N

N"

j=1

σjH11(Γj) + (1− σj)H22(Γj) + 2V (Γj)αj, (82)

which defines the terms

E1 =
1

N

N"

j=1

σjH11(Γj) (83)

E2 =
1

N

N"

j=1

(1− σj)H22(Γj) (84)

and

Edia
coh =

2

N

N"

j=1

V (Γj)αj. (85)

The diagonal energy is the sum Ediag = E1+E2. It should be noted that the total energy E
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is not equal to Ediag. This diagonal energy is the quantity that FSSH rigorously conserves

at the individual trajectory level by momentum rescaling. When coherence αj ∕= 0 and the

coupling V (Γj) is present, a third coherence energy term Edia
coh is required to balance the

energy budget.?

We can write the total energy as the sum over single trajectory contributions:

E(t) =
1

N

N"

j=1

Ej(t). (86)

The QTSH method conserves this energy on average at the level of the consistency of the

FSSH approach. To prove this, we take the time derivative of Eq. (82). This gives

Ė(t) =
1

N

N"

j=1

Ėj(t), (87)

where

Ėj(t) = ṗj ·
pj

m
+ σ̇j [U1(qj)− U2(qj)]

+ q̇j · [σj∇U1(qj) + (1− σj)∇U2(qj) + 2∇V (qj)αj] + 2V (qj)α̇j.

(88)

From the equations of motion for the density matrix elements we have

σ̇j ≃ ȧ11,j = −2V (qj)

!
βj (89)

α̇j = ω(qj)βj =
1

!
[U1(qj)− U2(qj)] βj, (90)

where we have used ω = (H11 −H22)/! and have indicated that the first equation holds on

average.

For the phase space variables (qj,pj) we have the quantum trajectory equation of motion

q̇j =
pj

m
(91)
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ṗj = − [σj∇U1(qj) + (1− σj)∇U2(qj)]− 2∇V (qj)αj. (92)

By eliminating q̇j, ṗj, σ̇j and α̇j from the equation for Ėj, we can show the time derivative

of each term vanishes on average, Ėj ≃ 0, so that

Ė(t) = 0. (93)

It should be noted that this energy conservation, which holds rigorously if σj(t) evolves

continuously, is not strictly obeyed at the individual trajectory level when a stochastic

algorithm is employed to propagate σj. A sudden “hop” of σj(t) = 0 to σj(t) = 1, for

instance, leads to an instantaneous change in the Hamiltonian Hj = σjH11 + (1 − σj)H22

from H11 to H22. However, on average, σj obeys the smooth differential equation, and so

averaged over the ensemble the energy conservation of the state re-emerges. The assumptions

required for this quantum energy conservation are equivalent to the consistency assumption

underlying the surface hopping method itself.

The same approach can be followed to show the average energy conservation in the

adiabatic representation by using the adiabatic ensemble energy

E =
1

N

N"

j=1

σjH++(Γj) + (1− σj)H−−(Γj)− 2!d(qj) · pj βj (94)

and the corresponding adiabatic equations of motion for σj,αj, βj,qj, and pj. The diagonal

and coherence contributions to the total energy E are then

Eadia
diag =

1

N

N"

j=1

σjH++(Γj) + (1− σj)H−−(Γj) (95)

and

Eadia
coh = −2!

N

N"

j=1

d(qj) · pj βj, (96)

respectively. The equations of motion then lead to Ė = 0 for the ensemble within the
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consistency assumption.

Conventional FSSH surface hopping imposes energy conservation by an accompanying

rescaling of the momentum pj → pj +∆pj. We stress here that this is not necessary, and

in fact is incorrect. The nonclassical term in the equations of motion for (qj,pj) smoothly

modify the evolution of individual trajectories in phases space, and guarantee the average

conservation of the state energy. This is the only rigorous energetic requirement of quantum

dynamics.

Time reversibility

Individual surface hopping trajectories are not time reversible due to the stochastic nature

of their evolution. The time reversibility of the FSSH method is further sabotaged by two ad-

ditional features of the method. First, the presence of frustrated hops breaks the consistency

between the auxiliary quantum density matrices of individual trajectories and the popula-

tion statistics of the ensemble in a manner that erodes the consistency of these quantitites

in a time irreversible manner. Second, the energy conserving momentum jumps introduce

discontinuities in the classical phase space evolution that cannot be back-integrated, even

on average. The consequence of these features is that an ensemble of FSSH trajectories

cannot be time-reversed. The lack of time reversibility of the state evolution represented by

a time-dependent FSSH ensemble has led to much attention and effort been expended on

exploring important but less rigorous requirements such as detailed balance.? ? ?

Unlike standard FSSH, the QTSH approach is manifestly time-reversible on average,

within the consistency assumption. Individual trajectories are stochastic and thus lose strict

time reveral symmetry. These objects, however, are not “knowable” parts of a quantum

theoretical description. Quantum mechanics describes the evolution of states that in a

trajectory context places constraints only on ensemble behavior with nothing to say about

its individual members. The QTSH approach formally satisfies time reversibility: An initial

density matrix ρo(Γ, 0) propagated for a given system from t = 0 to t = T will produce
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an intermediate state ρint(Γ, T ). Reversal of the signs of all intermediate momenta and

imaginary parts of the auxiliary density matrices pj(T ) → −pj(T ) and βj(T ) → −βj(T )

(j = 1, 2, . . . , N) produces another ensemble. Propagation for an additional time period

T then is equivalent to integrating the system dynamics back to t = 0. Formally, this

will reproduce a final state ρf (Γ, 2T ) that is equivalent to the initial ensemble, ρo(Γ, 0) =

ρf (Γ, 2T ), although differing in the details of each trajectory’s dynamical variables. This is

confirmed in numerical simulations, as we will see below.

Decoherence corrections

The QTSH method is an independent trajectory limit of the CSH formalism. This rein-

troduces the problem of “overcoherence” that characterizes the standard FSSH approach.

In our notation, this corresponds to approximating the ensemble level representation of the

coherence by the individual trajectory contributions, e.g.: 〈α〉j ≃ αj 〈ρ〉. In some situations,

this is an accurate approximation, but in cases where pure state dynamics or system-bath

interactions leads to significant variation of the phase of trajectories over the local neighbor-

hoods of trajectories this approximation will lead to overestimation of the hopping proba-

bilities. Many attempts have been made to develop decoherence corrections in the context

of the FSSH approach (see, e.g.,? ? ).

Here, we propose a simple empirical ensemble level decoherence correction. Rather than

employing a theoretical approach based on approximations to the underlying equations of

motion, we estimate the quantities 〈α〉j and 〈β〉j empirically from the statistics of the evolv-

ing trajectory ensemble itself.

We define a proxy phase for each trajectory, φj (j = 1, 2, . . . , N), given by

φj(t) =

! t

0

ω(qj(t
′))dt′. (97)

This quantity is not identical to the phase of the complex number αj(t)+iβj(t) that represents

the coherence of the jth trajectory, which may be undefined or have a particular nonzero
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value at t = 0, but rather is a phase-like quantity for that trajectory that can be compared

across the ensemble. To do so, we calculate the ensemble averages of the phase and its

square:

〈φ(t)〉 = 1

N

N"

j=1

φj(t) (98)

1
φ2(t)

2
=

1

N

N"

j=1

φ2
j(t), (99)

which then allows the time-dependent phase variance δφ2(t) over the ensemble to be defined:

δφ2(t) =
1
φ2(t)

2
− 〈φ(t)〉2 . (100)

By assuming Gaussian statistics, we can define a global time-dependent decoherence factor

χ(t):

χ(t) = e−
1
2
δ2φ(t). (101)

Unlike most other approaches, which estimate decoherence corrections to independent tra-

jectory coherences from local properties, we determine χ(t) from the nonlocal chaacteristics

of the ensemble as a whole, in line with the lessons learned from the full CSH formalism.

A decoherence corrected version of QTSH can then be implemented by incorporating the

correction factor χ into the hopping probabilities of the individual trajectories.

PQTSH
hop (t) →

####
2

a++,j

d(qj)
pj
m

(χαj) ∆t

#### . (102)

This modified hopping algorithm makes the egalitarian approximation 〈α〉j ≃ χαj 〈ρ〉 for j =

1, 2, . . . , N . It should be noted that this approach retains the full coherence of the individual

trajectories during their propagation but modifies the probability of hopping during each

time step using the global ensemble level decoherence factor χ(t). Most other approaches

add dissipation to the equations of motion for the terms αj(t) themselves, introducing a pure

dephasing component to the quantum evolution which leads to a mixed state density matrix
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even for pure state dynamics. The approach here is derived from the full CSH formalism as

a well-defined approximation and, we feel, is more faithful to the underlying exact quantum

evolution.

The ensemble level correction described here is based on the simplest possible assumption

regarding the relationship between the evolving phase space function ρ12(Γ, t) (or ρ+−(Γ, t)

in the adiabatic representation) and its representation as an ensemble of trajectories: the

local interplay of the phases of individual trajectories can be represented uniformly across

the ensemble by a single average factor χ. More elaborate and complicated methods can

be imagined, where variations of the effect are estimated theoretically or statistically. The

advantage of the current proposal is its simplicity and numerical efficiency. In particular,

if the system under study is simple enough that the entire ensemble of trajectories can be

propagated in parallel, the averages required to estimate χ lead to a negligible additional

cost to the calculations. Large systems where the trajectories comprising the ensemble must

be integrated independently will require a different approach. In the next Section we will

test this simple decoherence correction.

3 Results

In this Section we briefly illustrate the numerical implementation of the QTSH method

and compare with exact quantum wavepacket results and standard FSSH for several simple

systems. We highlight both the strengths and shortcomings of the QTSH approach. More

thorough numerical benchmarking of CSH, QTSH, and decoherence corrections will be given

in a future publication.

We apply the QTSH method to two model systems originally proposed by Tully as bench-

mark problems and adopted universally by the surface hopping community as test cases.?

The first is Tully’s single crossing system, which is a one-dimensional model corresponding

to two elecronic surfaces undergoing a single crossing. The system has been treated in many
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previous publications. We adopt the potentials and parameters from Tully’s original paper?

and treat ensembles of 2000 trajectories sampled randomly from an initial minimum uncer-

tainty phase space Gaussian distribution with spatial width σq = 1.0 and with mean initial

position qo = −6. A range of ensembles with varying initial mean momenta po = !k are

generated and propagated using the QTSH method. The results are compared with standard

FSSH and corresponding quantum wavepacket calculations using the method of Kosloff.?

In Fig. 1 we show results obtained for Tully’s single crossing system.? Here, calculations

are performed in the adiabatic representation for the QTSH method and compared with

standard FSSH? as well as the full CSH approach? (incorporating the modified classical

equations of motion described above) and quantum wavepacket calculations. In Figs. 1

a) and b) we show the time dependence of the population of the initially occupied lower

adiabatic state as a function of time for initial momenta !k = 10 and !k = 15, respectively.

In Fig. 1 c) the dependence of the final population of the upper adiabatic state on the initial

momentum !k is given.

All of the methods are in reasonable agreement with the exact quantum results. For

this system, the FSSH method gives superior agreement for low momenta (k less than 8),

presumably due to the explicit imposition of energy conservation; here, the presence of frus-

trated hops improves the results. For higher energies, the CSH method gives slightly better

agreement with the quantum results. For this system, the QTSH method slightly overesti-

mates the extent of nonadiabatic transition. The asymptotic energetic constraints imposed

by FSSH must emerge naturally here from the method itself, and the independent trajectory

approximation apparently leads to overcoherence and thus too extensive population transfer

that corrected for by the FSSH energy constraint. We will return to this point below in the

context of the ensemble level decoherence correction.
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Figure 1: a) and b) Time dependence of the lower adiabatic state population for Tully’s
single crossing model. The FSSH (green), QTSH (blue) and CSH (red) results are compared
with exact wavepacket calculations (black). a) !k = 10. b) !k = 15. c) The final upper state
population is shown as a function of the initial momentum !k. d) Coherence for !k = 15.
Exact (black solid) and QTSH (dashed) results for the real (blue) and imaginary (red) parts
of Trρ12 are compared. See text for details. e) The energy budget for the !k = 10 state is
shown. Exact quantum results (black solid) are compared with the QTSH ensemble (dashed
colored). See text for discussion. Calculations are done in the adiabatic representation.
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In Fig. 1 d) we investigate the agreement between exact quantum and QTSH ensemble

dynamics in more detail. For the state with initial momentum of !k = 15 we show a com-

parison of exact and QTSH values for Tr ρ12, a metric for the total coherence of the evolving

states. The exact quantum values were calculated by taking the time-dependent overlap of

the adiabatic state wavepackets. The QTSH values for the real and imaginary parts are

given by the ensemble averages of αj and βj, respectively. For this case, nearly quantita-

tive agreement is observed, indicating that the evolving ensemble of hopping trajectories is

capturing well this feature of the fully coherent quantum dynamics.

Despite the error in population transfer, the QTSH method correctly conserves the

quantum-classical energy E = Tr(Hρ). In Fig. 1 d) we show the energy budget of the

!k = 10 ensemble by separately plotting the diagonal and coherence contributions to the

total energy, given for the adiabatic representation by Eqs. (95) and (96), as well as their

sum Etot, and compare with a similar partitioning of the exact quantum energy. The QTSH

total energy is constant and in agreement with the exact value to within numerical error.

The classical diagonal energy is not constant, in contrast with the assumption of the FSSH

formalism, but is compensated by the contribution of the coherence energy. The QTSH

estimates of these are in essentially quantitative agreement with the quantum mechanical

results.

It is instructive to consider an even simpler surface hopping simulation using a pared-

down methodology defined by ignoring the energy conservation requirement and momentum

rescaling of FSSH, or equivalently, by removing the nonclassical forces from QTSH. We

compare this “energy aloof surface hopping” variant, which we denote EASH, with FSSH

and QTSH in Fig. 2 for the Tully 1 !k = 10 case in the adiabatic representation, considered

in Fig. 1. In Fig. 2 a) we show the time dependent lower state population, while Fig. 2 b)

displays the energy budget of total and diagonal (e.g., classical) contributions. Removing the

imposition of energy conservation leads to an overestimate of the nonadiabatic probability

by EASH, as otherwise frustrated hops are allowed to occur. The results are not as accurate
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as FSSH, but are still closer to the exact results than QTSH. A bigger difference is seen in

Fig. 2 b), where the energetics of the evolution are displayed. QTSH (blue dashed lines)

shows nearly quantitative agreement with the exact quantum diagonal and total energies

(solid black lines). Neglecting the nonclassical forces of QTSH yields the EASH method (red

dashed lines). The breakdown of energy conservation of EASH is clearly visible. Both the

diagonal and total energies deviate from the exact values, and asymptotically the system

has violated energy conservation by a nontrivial amount. For the FSSH method, the final

total energy would be constrained to be conserved by the individual trajectory momentum

rescaling which conserved the diagonal (classical) contribution at all times.

This example illustrates the important point that the rigorous energy conservation of the

QTSH method without momentum jumps is independent of the accuracy of the method.

For this particular initial state, the EASH results are actually more accurate than QTSH

despite its failure to conserve energy.

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0  500  1000  1500  2000  2500

exact

EASH

FSSH

QTSH

a)

time

lo
w

e
r 

st
a

te
 p

o
p

u
la

tio
n

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0  500  1000  1500  2000

E tot

Ediag

b)

time

e
n

e
rg

y

Figure 2: Comparison of FSSH and QTSH with an “energy aloof” variant, EASH. a) Time
dependence of the adiabatic lower state population for Tully’s single crossing model with
!k = 10. The FSSH (green), QTSH (blue) and EASH (red) results are compared with
exact wavepacket calculations (black). b) The energy budget for the state is shown. Exact
quantum results (black solid) are compared with the QTSH (blue) and EASH (red). The
total Etot and diagonal Ediag contributions are shown as a function of time. See text for
discussion.

In Fig. 3 we present results for the same initial states as presented in Fig. 1, but calcu-
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lated in the diabatic representation. The QTSH results are compared with FSSH and exact

quantum wavepacket calculations.
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Figure 3: a) and b) Time dependence of the diabatic state 1 population for Tully’s sin-
gle crossing model. The FSSH (green) and QTSH (blue) results are compared with exact
wavepacket calculations (black). a) !k = 10. b) !k = 15. c) The final state 1 population
vs. initial momentum !k is shown. Calculations are done in the diabatic representation.

In Figs. 3 a) and b) we show the time dependence of the population of the initially-

occupied diabatic state 1 as a function of time for initial momentum !k = 10 and !k = 15,

respectively. In Fig. 3 c) the dependence of the final population of state 1 on the initial

momentum !k is given. Again, close agreement between the methods is observed, with the

QTSH results being in better agreement at lower k values in this case.

It should be emphasized that, unlike FSSH, the applicability of the QTSH formalism is

independent of the electronic state representation. For this one dimensional problem, appli-
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cation of the FSSH in the diabatic representation is unambiguous, but in higher dimensions

the absence of the nonadiabatic coupling vector d in the diabatic formulation complicates

the momentum rescaling component of the FSSH method. QTSH, on the other hand, can

be straightforwardly and unambiguously applied in the diabatic representation.

In Fig. 4 we consider Tully’s dual crossing model.? Results obtained using the QTSH

method in the adiabatic representation are compared with FSSH and exact quantum wavepacket

calculations.
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Figure 4: a) and b) Time dependence of the adiabatic lower state population for Tully’s
dual crossing model. The FSSH (green) and QTSH (blue) results are compared with exact
wavepacket calculations (black). a) !k = 30. b) !k = 40. c) Coherence for !k = 40. Exact
(black solid) and QTSH (dashed) results for the real (blue) and imaginary (red) parts of
Trρ+− are compared. See text for details. d) The final upper state population vs. initial
momentum !k is shown. Calculations are done in the adiabatic representation.
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In Figs. 4 a) and b) the population of the initially occupied lower adiabatic state as a

function of time for initial momenta !k = 30 and !k = 40, are shown, respectively. Figure

4 c) compares the real and imaginary parts of the QTSH coherence Trρ+− for !k = 40. In

Fig. 4 d) the dependence of the final population of the upper adiabatic state on the initial

momentum !k is given. Again, close agreement is obtained except at low k, where both

surface hopping methods are slightly shifted from the exact quantum results.
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Figure 5 presents results obtained by applying the QTSH method to the one dimensional

three state superexchange model introduced by Prezhdo and coworkers.? ? In this system,
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population transfer from the lowest lying state 1 to final state 3 is calculated. These states

are not directly coupled in the diabatic representation, but are each coupled to a high ly-

ing and, for some initial momenta, classically forbidden state 2. The system consists of

three constant diagonal diabatic potentials coupled at the coordinate origin by off-diagonal

potential couplings. The potential functions and system parameters are given in the orig-

inal references.? ? We start an initial minimum uncertainty phase space distribution with

coordinate width σq = 1 and mean momentum !k to the left of the coupling region and

use the QTSH and FSSH methods to calculate the population transfer. These results are

compared with corresponding quantum wavepacket results. All simulations are performed

in the diabatic representation.

For !k ≲ 6.3 the mean kinetic energy of the state is insufficient to reach the intermediate

state 2; the range of initial momenta between the minimum value to reach state 3 and this

value is known as the superexchange region.

Fig. 5 a) shows the state populations vs. time for an initial state with momentum !k = 5,

within the superexchange region. The QTSH results are compared with exact quantum calcu-

lations. For this initial state, virtually all FSSH hops are frustrated, leading to no population

transfer out of state 1 (results not shown). The QTSH populations are in nearly quantitative

agreement with the quantum results for this classically forbidden process. Even the “virtual”

state 2 populations are accurately represented by the ensemble of QTSH trajectories.

In Fig. 5 b) the QTSH energy budget for the state shown in a) is presented and compared

with the corresponding quantum mechanical quantities. The total energy is well-conserved

by the quantum trajectories. Again we see that the diagonal energy is not conserved by the

QTSH method or by the exact quantum evolution. This nonconservation is what allows the

nonclassical superexchange mechanism to pass through state 2 and then populate the final

state 3, and artificial imposition of energy conservation by FSSH is what leads to spuriously

frustrated hops and the failure of that method.

In Fig. 5 c) the dependence of the final population of state 3 on the initial momentum

41



!k is given. QTSH results are compared with FSSH and exact quantum simulations. For

values of k ≳ 7, above the superexchange region, both QTSH and FSSH are in nearly

exact agreement with the quantum results. As !k decreases into the classically forbidden

superexchange region, the FSSH method fails to capture the population transfer process,

while QTSH remains in good agreement with the exact results.
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batic lower state population for Tully’s single crossing model in the adiabatic representation
are shown for the FSSH (green) and QTSH (blue) methods for initial momentum !k = 10.
Simulation is run until t = 2400 (compare with Fig. 1) and then the signs of the momenta
pj and imaginary part of the coherence βj are reversed for each member of the ensemble and
the integration continued until t = 4800.

In Fig. 6 we demonstrate the time reversibility of the QTSH method. We consider the

state treated in Fig. 1 for the Tully single crossing system in the adiabatic representation.

Here, we integrate the minimum uncertainty state with initial momentum !k = 10 from t = 0

until an intermediate time t = 2400, for which the system has left the interaction region. The

momentum pj and imaginary part of the coherence βj of each trajectory are then reversed in

sign and the ensemble integrated to the final time of t = 2× 2400 = 4800. The Figure shows

the population of the initially occupied lower state as a function of time. The QTSH results

are compared with the FSSH method. The QTSH method demonstrates nearly quantitative

reversibility of the initial population, with only a slight asymmetry around the intermediate

time t = 2400 and recovery of the full initial unit population to within statistical uncertainty.
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The FSSH method, on the other hand, demonstrates strong irreversibility resulting from the

presence of frustrated hops and momentum rescaling of the trajectories.
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In Fig. 7 we investigate the efficacy of the ensemble level decoherence correction described

in the last Section. Figure 7 a) compares the decoherence corrected QTSH results with the

uncorrected QTSH and exact quantum results, reproduced from Fig. 1 a). Incorporation

of the decoherence factor χ(t) into the hopping probability brings the long time lower state

probability into close agreement with the quantum results, although the full time-dependent

populations are not superimposable. In Fig. 7 b) we show the time dependence of the

proxy phase variance δφ2(t) = 〈φ2(t)〉 − 〈φ(t)〉2 and the global decoherence factor χ(t) =

exp(−δφ2(t)/2) for the ensemble describing the state in Fig. 7 a). The effect of phase

dispersion across the ensemble is apparent, with significant variance of the trajectory phases

during the hopping process. This results in the value of χ dropping from the fully coherent
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value of 1.0 to around 0.5 during the transition period. Importantly, though, it is observed

that the ensemble recoheres to nearly full coherence by the end of the evolution. This is a

characteristic of the underlying pure state evolution of the system. Alternate methods for

decoherence correction that irreversibly cause a decay of the trajectory coherence will miss

this important feature of the ensemble dynamics.

4 Conclusion

In this paper, we reviewed the consensus surface hopping (CSH) approach, introduced in a

recent publication.? In addition, we significantly extended the formalism to include nonclas-

sical state-dependent forces that take the place of the physically sensible but ad hoc momen-

tum rescaling and resulting strict classical energy conservation of the FSSH method. The

result is a quantum trajectory based formalism for simulating molecular dynamics with elec-

tronic transitions, where the quantum and classical portions of the mixed quantum-classical

system are correctly entangled with each other.

The CSH method is based solidly on a solution of the underlying quantum Liouville

equation in a mixed quantum-classical approximation using an ensemble of trajectories. A

key aspect of the approach is that the trajectories in the ensemble are no longer indepen-

dent, but their evolution is mutually coupled by their role in propagating the phase space

representation of the full quantum-classical density matrix. Quantum coherence emerges

naturally as a characteristic of the ensemble as a whole via the interrelationships between

individual trajectory phases. Decoherence is captured by the method without externally

imposed corrections.

Despite these formal advantages, the CSH method it is too intensive numerically to be a

practical method for anything beyond simple model systems. To address this shortcoming,

we have introduced further well-defined approximations to the CSH approach to derive an

independent trajectory limit of the theory, which we call quantum trajectory surface hopping
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(QTSH). This method recovers the fewest switches stochastic algorithm for independent

trajectories employed in FSSH. However, the momentum rescaling and classical trajectory

energy conservation of FSSH is discarded in favor of the rigorously derived quantum forces

of the CSH formalism. The cost of QTSH is comparable to FSSH. We illustrated the QTSH

methodology by treating several simple model systems commonly used as benchmarks for

surface hopping approaches.

QTSH rigorously conserves the correct quantum-classical energy Tr(Hρ) without ad hoc

momentum rescaling. This is due to the presence of the nonclassical forces in the quantum

trajectory evolution. Energy conservation results without any artificial momentum rescal-

ing, eliminating undesirable features of FSSH such as forbidden hops and breakdown of the

internal consistency of quantum and ensemble-based state probabilities. In the adiabatic

representation, the classical dynamics are modified by a quantum state-dependent vector

potential, introducing geometric phase effects into the dynamics for multidimensional sys-

tems. Another advantage of the QTSH method is that it is time-reversible at the ensemble

level, unlike FSSH, where frustrated hops and momentum rescaling break the time reversal

symmetry of even pure state quantum evolution. We have proposed further approximate

corrections inspired by the underlying CSH formalism that allow incorporation of ensemble

level decoherence without the accompanying computational expense of CSH.

The present manuscript has focused mainly on the formal development of the CSH and

QTSH approaches. Detailed numerical investigations and extensions to higher dimensional

systems and realistic applications, including geometric phase effects resulting from the non-

classical forces in the adiabatic representation, will be presented in future publications.

The surface hopping approach to simulating molecular dynamics in the quantum-classical

limit is just one example of a “quantum trajectory” formalism. Methods that treat quan-

tum mechanical processes with trajectory ensembles are effectively hidden variable theories,

where the evolving quantum state—wavefunction ψ or density operator ρ̂—depend on hid-

den parameters that are not themselves immediately accessible to scrutiny.? ? ? ? In the
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quantum trajectory case, these variables are the unobservable positions and momenta of the

individual trajectories comprising the ensemble representing the quantum state.

In the classical limit, the relationship between a single trajectory and a statistical ensem-

ble of independent trajectories is a familiar example of a local hidden variable theory, where

each trajectory has a well defined and independent motion, representing a “real” realization

of the statistical state. In classical mechanics there are no problems, such as entanglement,

nonlocality, or the uncertainty principle, preventing the arbitrarily fine dissection of the

phase space probability distribution into its constituent trajectories and considering them

as independent deterministic time histories. In quantum systems, however, Bell’s theorem

shows quite generally that no local hidden variable theory is compatible with quantum me-

chanics.? ? In a quantum trajectory context, this leads to nonclassical trajectory dynamics

that cannot be treated independently from the quantum state itself—or, equivalently, from

the full trajectory ensemble. Bohm’s original causal theory is the earliest nonlocal theory,

where the system wavefunction leads to a quantum force that guides trajectories.? ? Ex-

amples of methods based on nonlocal hidden variable theories in chemical physics include

Bohmian dynamics,? ? ? many interacting worlds formalism,? ? and our work on quantum

tunneling using entangled trajectories.? ? ? ?

In the surface hopping context, the independent trajectory basis of both FSSH and QTSH

lead them to be local hidden variable theories. As such, although they may be accurate for

many problems in practice, they cannot in principle give exact agreement with quantum

mechanics generally. CSH, on the other hand, is an example of a nonlocal hidden variable

theory. Future work will focus on developing the CSH framework into an exact trajectory

representation of nonadiabatic processes, not as a practical method but as a context in which

to understand fundamental aspects of quantum theory.
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