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Abstract

Fetal heart rate (fHR) is an important indicator for monitoring of fetal cardiac health and 

development. The widely-used method based on ultrasound, however, is not continuous and often 

requires an expert to perform; thus, it is mostly used in clinics during checkups. The advances in 

wearable technology have paved the way for home assessment of fHR via the extraction of the 

mother’s abdominal electrocardiogram (ECG) acquired by novel patches. Several methods have 

been developed for such; however, the computation is either too slow for real-time monitoring 

or too heavy to be performed in a wearable. In this work, we develop and validate the Lullaby 

algorithm - a novel method for fetal QRS extraction from aECG. The results showed that Lullaby 

is almost 7 times faster than existing methods with a better F1-score of 0.815, holding promise to 

transform perinatal monitoring.
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I. INTRODUCTION

COVID-19 has incentivized the minimization of our interactions with others as the best 

protection against infection. Pregnant women are at the forefront of the most at-risk groups 

with higher likelihoods of hospitalization and death in contrast to non-pregnant women after 

COVID-19 infection according to the CDC [1]. While some medical services have been 

able to adapt using technologies that support telemedicine, but not as easily with regard to 

pregnancy. For pregnant women, certain services still require a clinical visit which creates a 

dilemma between guaranteeing the unborn child’s wellbeing and risking COVID-19 related 

complications. Fetal heart rate (fHR) monitoring is one such service that currently requires a 

clinical visit. The service uses a Doppler ultrasound device to detect fetal heart beats which 

require a specialist to operate and interpret. fHR itself is an important indicator of fetal 
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wellbeing as it is commonly used to determine complications regarding fetal oxygenation, 

arrhythmia, and fetal acidosis [2].

Home-based fHR systems include over-the-counter Doppler-based and fetal ECG-based 

devices. The Doppler ones are simple and affordable, however, they are not easy to use and 

FDA issued a warning in 2014 on the repeating use of such [3]. ECG-based systems use 

the mother’s abdominal electrocardiogram (aECG) to extract fHR or fQRS[4], [5]. These 

systems are somewhat unreliable because they either employ algorithms that are not simple 

enough to compute in real-time or cannot be computed directly on wearable devices [4], 

[5]. Real-time analysis of fHR is critical for life-saving intervention. Computation on the 

wearable device is free unlike fee-based high-end computing systems and negates latency 

issues associated with WiFi communication. Currently, the most common algorithms used 

for fQRS extraction are template subtraction (TS), Independent Component Analysis (ICA), 

and Extended Kalman Filtering (EKF). ICA is a method of extracting independent signal 

components from a multivariate signal. ICA is applied to the aECG signal and separates the 

aECG into the mECG, noise, and fetal ECG (fECG) components from which the fQRS are 

extracted [6]. Template Subtraction (TS) estimates the mECG component of the aECG and 

subtracts the estimated mECG from the aECG to yield the fECG [7]. From the estimated 

fECG component of the fQRS component of the fECG can be easily detected. Similarly to 

TS, Extended Kalman Filtering (EKF) is a non-linear adaptation of the Kalman Filter that 

extracts the fQRS by estimating the mECG and subtracting it from the aECG [8]. These 

methods are well suited for the extraction of the fQRS from noisy aECG [9], but do not 

demonstrate reliability for deployment for at-home fHR monitoring.

The Lullaby algorithm is proposed as a completely unique fQRS extraction method that is 

suited for real-time computation on a wearable device. It utilizes the periodic rhythm of the 

fetal heartbeat as a simple yet novel feature for the extraction of the fQRS. Using simple 

peak detection and matrix manipulations, the algorithm performs light computations with 

better accuracy and significantly greater speed than standard methods.

II. MATERIALS & METHODOLOGY

A. Data Set

Lullaby is evaluated on the Physionet 2013 challenge dataset [10] set A which contains 

75 1-minute abdominal ECG recordings sampled at 1000 Hz (fs). The data also includes 

annotations of the fECG taken directly from the fetus using fetal scalp electrodes.

B. Process Flow

Lullaby operates in two phases called the ‘Calibration’ and ‘Real-Time’ phases. The 

calibration phase calculates the prominence and width of the fQRS. The prominence and 

width of the fQRS calculated in the calibration phase are used as features for fQRS detection 

in the real-time phase. The real-time phase simulates the extraction of the fQRS in real-time 

with a 1-second delay from the recording time. These are illustrated in Fig. 1.
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C. Preprocessing

The aECG (Xa) can be considered a linear combination of the fECG (Xf), mECG (Xm), and 

noise (Xn):

Xa = Xf + Xm + Xn (1)

To maximize the effectiveness of the fQRS extraction, the aECG’s baseline wander (BW) 

and maternal QRS complexes (mQRS) are removed from the signal.

BW is a low frequency noise component that causes the aECG to oscillate along a low 

frequency sinusoidal wave. To model BW, a 100-point moving average filter is applied to the 

aECG and then subtracted from the aECG:

Y [n] = Xa[n] − 1
N ∑

k = 1

N
Xa[n − N + k], N ≤ 100 (2)

where Y represents the aECG with the baseline removed, and N is the number of observable 

samples.

The mQRS are usually the most prominent morphological feature in the aECG signal, and 

thereby need to be removed in order to reliably detect the less prominent fQRS. This is done 

by first re-orienting the mQRS to face upwards:

Y = Y , if min(Y ) ≤ max(Y )
−Y , if min(Y ) > max(Y ) (3)

A peak finding algorithm is applied which detects the K most prominent peaks in Y , where 

K is the duration in seconds of the ECG segment being processed. A secondary peak finding 

algorithm is applied which detects peaks at a height higher than 75% of the median height 

of the first set of peaks. This second set of peaks are mostly the mQRS within aECG. The 

duration of the mQRS complex is on average 100ms, therefore all indexes within 50ms (50 

samples) of the mQRS are set to zero. In total these prepossessing steps reduces the aECG 

signal down to its fECG component.

D. Periodic Trend Feature

The fECG can be approximately modeled as a periodic signal with the fQRS being the 

repetitive morphology. A period To can be used to approximate the separation of the fQRS, 

and likewise be used to distinguish between true and false fQRS. Consider a B-length vector 

ψB which contains a mix of true and false fQRS indexes in ascending order. By determining 

the permutation of all delays between the fQRS in ψB with respect to To, the indexes of true 

fQRS in ψB which best follow the periodic trend To are distinguishable:

ΨB, B = ψB − ψB
T

T o
(4)
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The row and column of elements of ΨB,B within 0.15 of an integer value can be used to 

identify the indexes of ψB which correspond to the fQRS as shown in Fig. 2.

To determine the best value of To to approximate the fQRS separation, Lullaby tries all 

integer To values. The fHR can be between 80 and 180 bpm. This corresponds to a range 

of fQRS intervals between 333 ms (333 sample) to 750 ms (750 sample) which can be 

expressed as a set L:

L = 333 334 … 749 750 (5)

The rows and columns of ΨB,B lie along the i-th and j-th dimensions respectively. However 

if ΨB,B was divided by L along a k-dimension perpendicular to the ij-dimensions, all 

possible ΨB,B would be computed in a single 3-D matrix G:

Gk, i, j = ψB − ψB
T

Lk
(6)

To determine which index of G would yield the best ΨB,B the difference between the 

elements of G to the nearest integer must be computed and summed along the i-th 

dimension:

G = |⌊G⌉ − G| (7)

Zk, j = ∑
i = 1

B
Gk, i, j (8)

Elements of Z represent the total deviation of the fQRS from the periodic trend To grouped 

along the i-th dimension. The row (r) and column (c) indexes of the smallest group deviation 

of Z thereby correspond to the indexes of the best value of To and best ΨB,B column to 

evaluate along respectively:

r, c = argmin
k, j

Zk, j (9)

W i = Gr,i,c (10)

The indexes where W is less than 0.15 correspond to the true fQRS indexes in ψB.

E. Calibration

The ‘calibration’ phase (Fig. 3) of Lullaby determines the range of desired widths and 

prominence that correspond to the fQRS. The process begins by prepossessing the first 

12-seconds of the aECG. Peak finding is applied to detect a set of peaks and valley with 

widths between 5 and fs
35 . This set is then trimmed down by only keeping peaks and valleys 
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with prominence greater than 1
3  of the most prominent peak or valley. Peaks and valleys 

are finally required to be at least 50 samples apart. The periodic trend feature (PTF) is 

applied to the remaining peaks to remove the false fQRS. From these calibrated peaks, the 

upper and bottom bounds of the width feature for the desired fQRS are computed as 2 

standard deviations above and below the median width respectively. The same calculations 

are applied for the prominence.

F. Real-Time

The ‘real-time’ phase (Fig. 4) of Lullaby extracts the fQRS from the most recent 1 second 

of data, in-order to simulate real-time extraction. During the real-time phase, the aECG is 

processed in 4-second batches with the aECG being shifted 1 second in time after each 

completed cycle. During each cycle, the aECG segment is first preprocessed followed by 

the application of two peak detection algorithms PDA and PDB. PDA detects all peaks and 

valleys within the acceptable range of widths and prominence determined in the calibration 

step with a required separation of 300 samples. PDB detects all peaks and valleys that 

surpass the lower bounds of the width and prominence only. PDA determines which peak 

and valley features meet the specifications for the fQRS detected in the calibration step, 

while PDB attempts to recover fQRS that may have fallen outside those specifications. 

PTF is applied to PDA with the best period to model the fQRS being TA. The peaks and 

valleys detected in PDB that are within 0.75TA of a peak or valley in PDA are removed. 

The remaining peaks and valleys of PDB are inserted into PDA and PTF is recalculated on 

PDA for the period TA. The fQRS in PDA within the last 1-second the aECG segment are 

outputted and the aECG is shifted by 1-second for the next cycle.

G. Evaluation

Lullaby is evaluated on the ‘clean’ data sets of the Physionet 2013 Challenge Dataset. The 

chosen records demonstrated a sensitivity score (SE) above 0.5 as calculated by:

SE = TP
TP + FN (11)

where TP represents the number of true fQRS detected and FN represents the number of true 

fQRS that were not detected.

The accuracy of the fQRS detection of Lullaby is evaluated cumulatively along the entire 

aECG using the F1-score:

F1 = 2TP
2TP + FN + FP (12)

where FP are the number of false fQRS that were detected. Additionally, the average 

computation time for each segment processed during the real-time processing is measured. 

The computation time is measured from the beginning of the prepossessing step to the 

determination of the fQRS.
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Bland-Altman [11] analysis is used to directly validate the PTF by comparing the average 

fHR along the entire aECG segment to the average fHR derived by converting all PTFs in 

processed windows to heart rate and averaging them.

Lullaby was evaluated on a machine with the following specifications: Intel(R) Core(TM) 

i7-6500U CPU @ 2.50GHz 2 cores 4 logical processors, 16 GB RAM. The Matlab R2021a 

software was used to conduct the evaluation.

III. RESULTS

Lullaby has an average F1-score of 0.815 on clean data sets and a computation time of 

17.8 ms for the real-time phase of the algorithm. Additionally, by determining the memory 

allocated for the largest data structure we estimate the memory usage to be on average 

246.45kB, which can plausibly fit directly on a microcontroller. Compared to ICA, TS, EKF, 

and their hybrid/modified models [9], Lullaby is approximately 7 times faster than the next 

fastest algorithm (Table 1). Furthermore Lullaby had a better average F1-score for clean data 

sets than EKF and ICA, and a comparable score to TS for all data sets (Table 1).

Additionally, the PTF exhibits a fairly accurate representation of the fHR. Bland-Altman 

analysis (Fig. 5) shows the average PTF deviates from the true heart rate by approximately 8 

BPM with 95% confidence and almost zero bias.

IV. DISCUSSION AND CONCLUSIONS

The ongoing COVID-19 pandemic has accentuated the need for home-based fHR 

monitoring using a wearable device. However, current wearable devices using aECG are 

unreliable because they either use fQRS extraction algorithms that cannot run in real-time or 

too computationally heavy to run directly on the wearable device. In this paper, the proposed 

Lullaby algorithm addresses the former concern while the latter was a design consideration 

but otherwise will be validated in future works. Comparatively Lullaby is significantly faster 

than all other comparison algorithms with it being 7 times faster than TS, approximately 17 

times faster than RobustICA, approximately 56 times faster than FastICA, and more than 

1000 times faster than EKF. In addition, it demonstrated both superior and comparable F1 

accuracy to the comparison algorithms.

The novelty of Lullaby stems from the core idea of approximately modelling the fQRS 

as a periodic occurrence. Using this simple concept, the PTF is able to classify true and 

false fQRS quickly. Bland-Altman analysis confirms the PTF by itself is able to fairly 

accurately determine the true fHR within 8 BPM with 95% confidence and no bias. In terms 

of real-time classification of fQRS in an aECG, PTF demonstrates a strong affinity for the 

task.

However, for PTF to function the importance of the peak detection steps cannot be 

discounted. Lullaby heavily uses peak width and prominence features in-order to detect 

fQRS, which is not a standard method compared to methods such as Pan-Tompkins[12]. 

The schema is inspired by a similar detection method by Zhang and Yu [13]. Zhang and 

Yu [13] used the horizontal and vertical distance of peaks as k-means clustering features 

Jilani et al. Page 6

IEEE Sens Lett. Author manuscript; available in PMC 2023 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for classifying noise, mQRS, and fQRS peaks with an F1-score of 0.9547. The width and 

prominence feature are inherent to peak finding algorithms and can be used specify peak 

conditions thereby simplifying the Zhang and Yu implementation [13].

Undeniably, Lullaby is at the forefront of real-time fHR computation and demonstrates a 

high degree of potential for operation on a wearable device. In future works, the Lullaby 

algorithm will be implemented on a micro-controller to demonstrate direct computation on 

a wearable device. We aim to use this opportunity to further quantify its’ low-computational 

complexity with regard to its computation time, power consumption, memory usage for 

individual functions which cannot be measured appropriately in MATLAB. The accuracy 

of Lullaby can surely be improved while retaining it’s real-time capabilities by optimizing 

standard methods for real-time implementation and improving detection steps. Although 

in it’s infancy, Lullaby marks the first steps in developing a wearable home-based fHR 

monitoring system that resolves the aforementioned issues of reliability.
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Fig. 1. 
Flow chart of Lullaby at a global level.
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Fig. 2. 
An aECG segment with a set of detected peaks containing true and false fQRS. The true 

fQRS are extracted as the peaks that fit the period To = 459 samples.
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Fig. 3. 
Flowchart of the calibration phase of Lullaby.
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Fig. 4. 
Flowchart of the real-time phase of Lullaby.
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Fig. 5. 
Bland-Altman Analysis of average heart rate derived by the true fQRS and the average PTF.
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TABLE 1.

Average F1-score and Computation time of Lullaby and standard fQRS extraction methods.

F1-Score Computation Time (ms)

Lullaby 0.815 17.8

FastICA 0.6008 ~1000

RobustICA 0.5960 ~300

TS 0.8265 128

EKF 0.5434 ≫1000
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