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Abstract

A technique for the iterative selection of 3D points with associated function values (trivariate
data) is presented. The selection algorithm is based on assigning weights to the given data and
selecting the most important ones. Weights are assigned using a local least square polynomial
approximation to the data based on a triangulation of the 3D points. The absolute curvature
of the graph of such a local approximant defines the weight for the associated data point. The
boundary (convex hull) of the original point set is preserved by keeping boundary points defining
the convex hull. Interior data points are selected according to their weights. The insertion of a
selected data point requires a local modification of the triangulation.

Keywords: Approximation; Curvature; Data dependent triangulation; Data reduction

1. Introduction

This paper is concerned with the reduction of trivariate, scalar-valued data given as
finite sets, denoted by

X*={x?=(xi,}’i,2i,fi)|i=1»---,n}- (1)

Quite often, such data sets are redundant in the sense that function values f; might vary
(nearly) linearly in certain regions. Based on this observation, a data selection algorithm
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is developed for trivariate data sets. The algorithm requires an initial triangulation of the
given 3D points. In addition, the polyhedron defined by the boundary of this triangulation
must be convex. Obviously, a Delaunay triangulation of the given 3D points satisfies
this condition. The original point set is denoted by

X={xi=(xi,yiz) |i=1,...,n}, (2)

and its initial triangulation is written as

T =\ J{T; = (irjrinjuiajnia )}, (3)

which is the union of all tetrahedra identified with their index quadruples referring to
their vertices in (2).

Given a triangulation of the original point set, one constructs local least square
polynomial approximations to the data by considering data in some neighborhood around
a particular vertex. Each original data point x} is weighted according to the absolute
curvature of the graph of such a local approximant evaluated at x;. Thus, absolute
curvature determines a data point’s significance. Once the set of triangles defining the
convex boundary polyhedron of the initial triangulation is extracted, interior data points
are selected in descending order of their weights. At the end of the procedure, the local
density of data points reflects the curvature of the graph of an underlying piecewise
polynomial approximant. The density of data points is expected to be maximal in
regions having maximal curvature.

Triangulation schemes are discussed in detail in (Barth et al., 1992) and (Lawson
1977, 1986). Data dependent triangulations for bivariate data can be found in (Dyn
et al., 1990a,b; Quak and Schumaker, 1991; Rippa 1989). Knot removal strategies for
spline curves and tensor product surfaces are described in (Arge et al., 1990; Goldman
and Lyche, 1993; Lyche and Mgrken 1987, 1988). An iterative knot removal algorithm
for bivariate data is given in (Le Méhauté and Lafranche, 1989). A data point selection
scheme for curves is described in (Hamann and Chen, 1994), and an iterative method for
reducing surface triangulations is given in (Hamann, 1994a). The data point selection
algorithm developed in this paper requires the approximation of principal curvatures for
graphs of trivariate functions. Curvature approximation for trivariate data is discussed
in (Hamann, 1994b). For more general topics regarding curve/surface modeling and
differential geometry see (do Carmo, 1976; Farin, 1992; Spivak, 1970).

2. Absolute curvature approximation

In this section, the main concepts of differential geometry required for curvature
approximation of trivariate data are briefly summarized (see (Hamann, 1994b)). The
graph of a trivariate function f(x,y,z), f in class C™, m > 2, mapping an open
set S C R? into R can be viewed as a regular parametric “surface” X* = {s(x) =
(x1,X2,%3,%4) } C R* with the parametrization

s(x)=s(x,y,2) =(x,,2, f(x,5,2)). (4)
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The partial derivatives of this surface are

a

—s(x) =5, =(1,0,0, fy),

dx

ad

550 =8, = (0.1,0.£)), and (5)
ad

Egs(x) =5, =(0,0,1, f;).

The tangent space at the point so = s(xg) is defined as the set of all points y € R*
satisfying

y=So+as;+ Bsy+vs:l,, apByeER, (6)
and the unit outward normal vector at sg is
(=fo. =Sy, = fe D)
JUH 2+ 52+ f e

The Gauss-Weingarten map for this particular surface is defined by the matrix —A,
given as

ng=n(xp) =

(7)

(e Fo f\ (1455 ffy
~A=—lay) =7 fo Su fe|| Ly 1A AL ] ®)
fo fu fo) \ fufe Hfe 4SS

where [ = \/1 + i -i—fy2 + f,%

It is a well-known fact in differential geometry that the three (real) eigenvalues ki,
k7, and k3 of —A are the principal curvatures of the graph of f(x,y,z). Therefore,
the principal curvatures are the (real) roots of the characteristic polynomial of —A, the
cubic polynomial

det(—A — KI)=K3 + (a1 +axy+ a3,3)K2
+ (ar a2+ a1 1433 + az 0033 — @1 22,1 — A1303,1 — A23432) K
+a1,1a22033 + a1 2023031 + 1,302,103 2
—a1,1023G32 — G1202,103 3 — 01,342,203 ] - (9)
The sum K of the absolute values of the principal curvatures is the absolute curvature,
K = k| + k2| + |Ks]. (10)

See (do Carmo, 1976) and (Spivak, 1970) for more detail.

The algorithmic aspects of approximating the absolute curvature K for each point
in X* are described in (Hamann, 1994b). In summary, the curvature approximation
scheme is based on constructing a triangulation of all given 3D points, computing
a local least square approximation for each data point, deriving the first and second
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partial derivatives of this approximation (required for the Gauss-Weingarten map), and
computing the absolute curvature K. Once absolute curvature estimates are known for
each data point, the points are sorted in descending order of their curvatures.

3. Data point selection

There are two alternatives for terminating the data point selection algorithm. Either
a specified number/percentage of all data is specified, or an error measure is used to
determine the number of data points required to approximate the original data within
the allowed tolerance. Original data points lying on the boundary of the domain of
the discretized function f(x,y,z) require a different treatment than data lying in the
interior of the domain. Here, the term boundary is used as a synonym for convex hull.
In order to preserve the convex hull of the original point set, the points defining the
convex hull must be preserved by the data point selection algorithm. These points can
be extracted directly from a Delaunay triangulation of all original 3D points.

The data selection algorithm assumes that the boundary of the initial triangulation
of all 3D points is a convex polyhedron. Obviously, the points on the convex hull
of a Delaunay triangulation of the initial point set imply such a convex polyhedron.
In order to preserve the boundary of the given point set, a Delaunay triangulation of
all points is constructed first (see (Preparata and Shamos, 1990)). The boundary of
this triangulation is a convex polyhedron whose faces are divided into triangles. These
triangles are extracted from the Delaunay triangulation and kept for the insertion process
of selected interior points. The triangles defining the convex boundary polyhedron are not
necessarily preserved when inserting selected points into the triangulation at a later time.

Extracting the boundary triangles in this way might lead to redundancy. Redundancy
occurs when an n-sided face of the boundary polyhedron is divided into more than (n—2)
triangles. In other words, if there are original points lying in the interior of a face or
the interior of an edge of the boundary polyhedron, the number of triangles extracted
directly from the Delaunay triangulation is not minimal. Unfortunately, it is extremely
difficult to detect such collinearities/coplanarities due to numerical problems. Redundant
boundary points can be removed without any problem if a 3D point set’s convex hull
is a cuboid (rectilinear data). The examples given in Section 5 take advantage of this
fact.

Once the points/triangles describing the boundary polyhedron are extracted, the in-
terior data point with maximal absolute curvature is determined. This interior point is
used in combination with the boundary triangles to construct a first triangulation of
the domain. The initial set of tetrahedra is defined by connecting the selected interior
point with each point on the boundary polyhedron. This triangulation changes whenever
another data point is selected and inserted. Definition 1 is needed for the extraction of
the set of triangles defining the convex boundary polyhedron.

Definition 1. Given a Delaunay triangulation of a set of 3D points, a face belonging
to exactly one tetrahedron is called boundary triangle; its edges and vertices are called
boundary edges and boundary vertices.
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The set of boundary triangles is extracted from the initial Delaunay triangulation of
all given 3D points, and the boundary vertices are kept. The set of preserved boundary
data points is denoted by

B* = {x,’: = (Xi;» Vi Zip» fi,) | J=1,...,np, i€ {1,...,n}}. (1)
The set of interior data points is denoted by
" =X"\B* = {x} = (X, Vie» 2%x fir) | k=1,...,np, ik € {1,...,n}}, (12)

Absolute curvature estimates are computed for interior data points only, since all
boundary data points are preserved by construction. The fact that the boundary triangles
form a convex polyhedron simplifies the iterative insertion of interior points. Knowing
absolute curvatures for all elements in Z*, the interior data points are sorted in descend-
ing order of these values and inserted according to this order. As already mentioned
above, the interior data point with maximal absolute curvature K is inserted first.

4. Data dependent triangulation

The initial data dependent triangulation consisting of all boundary vertices and the
first selected interior data point is constructed by connecting the interior point with
each boundary vertex. Additional interior data points are inserted until a certain num-
ber/percentage of them has been reached or some error criterion is satisfied. When a
point is inserted into the triangulation, local modifications (swapping edges) are per-
formed in order to minimize a local approximation error. This process leads to a data
dependent triangulation.

The construction of a data dependent triangulation requires an error measure for each
tetrahedron refining an intermediate triangulation.

Definition 2. Given a tetrahedron with vertices vy, vy, v3, and v4 with associated

function values f;, f2, f3, and f4 and a set of points x;, i = 1,..., N, with associated
function values F;, i = 1,..., N, such that each x; can be written as a convex combination
4
xi=Y uvj, (13)
=

where Z;l uij=landu;; >0, j=1,...,4, the tetrahedral root-mean-square (RMS)
error is given by

N
exws = | O (Fi— Lw))2, (14)
i=1

and the tetrahedral maximum error is given by

eco = max |F; — L(u;)l, (15)
1<i<N
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(1) (ii) (iii)

Fig. 1. Inserting point into triangulation.

where L(u;) = L(u;;,u;2,u;3,u;4) is the linear polynomial

4
L(w) =Y uijf;. (16)

j=

The data dependent triangulation algorithm can use either error measure. Depending
on the particular application, one of the two measures might be more appropriate than
the other one. In general, when an interior point is inserted into the triangulation, three
cases must be considered:

(1) The point to be inserted lies in the interior of a tetrahedron.
(i1) The point to be inserted lies in the interior of a face of at least one tetrahedron
(and at most two tetrahedra).

(iii) The point to be inserted lies in the interior of an edge of at least one tetrahedron.

Case (i) yields four new tetrahedra, which are constructed by connecting the point
to be inserted with the vertices of the tetrahedron containing it. Case (ii) requires all
tetrahedra sharing the face containing the point to be split into three new tetrahedra.
This is accomplished by connecting the point with the vertices of all tetrahedra (at most
two) sharing the face. Case (iii) makes it necessary to split all tetrahedra sharing the
edge containing the point into two tetrahedra by connecting the point with the vertices
of all tetrahedra sharing that edge. The three cases are illustrated in Fig. 1.

Once a selected data point has been inserted into the triangulation, the triangulation is
still subject to local modifications. The triangulation is changed locally if this results in a
smaller error. This is the analog to edge swapping algorithms leading to max-min angle
triangulations (see (Lawson 1977, 1986)). A data dependent triangulation algorithm,
on the other hand, attempts to minimize the approximation error by considering function
values.

Fig. 2 shows the two possible triangulations for a convex region bounded by six
triangles (configuration 1). The triangulation of this region is obtained by choos-
ing one among two possible triangulations, the first one defined by the two tetrahe-
dra {v),vy,v3,v4} and {v1,v7,v3,vs}, the second one defined by the three tetrahedra
{v1,v2,v4,05}, {v1,v3,04,05}, and {vs,v3, 04,05},

Fig. 3 shows the three possible triangulations for a convex region bounded by eight
triangles (configuration 2). The triangulation of this region is determined by choosing
one among the three possible edges v1v;, U303, and Usvs.

When inserting a point into the triangulation leads to configuration 1, the edge 7305
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Vs

V4

Fig. 2. Triangulations of convex region (configuration 1).

v6 vﬁ

V4 QY4 V4

Fig. 3. Triangulations of convex region (configuration 2).

might be inserted into or taken out of the local triangulation. When the insertion of
a point leads to configuration 2, the common edge of the four tetrahedra might get
replaced by one of the other two possible edges. The algorithm searches for these two
configurations and, depending on the resulting errors, constructs the (locally) optimal
triangulation. Both configurations are different generalizations of convex quadrilaterals,
which are identified in planar edge swapping algorithms. The edge swapping procedure
is restricted to a certain neighborhood, which requires the following definition.

Definition 3. Given a triangulation, the neighbor set N; associated with tetrahedron 7;
is the set of tetrahedra 7; sharing exactly one face with 7;, formally

M = U{']} = (il,jsiz,j’i3,j’i4,j)’i == j ‘ {l'],j,iz,j,i:;,j} C {il,ia i2,iai3,is i4,i}
V{1 i,y iaj} C {ini i i3, 0a} V {i1,), i3, 0a} C {ini i, 83,0 04,i}
V {iz,j 13,04} C {in,is 02,05 83,0 04} }- (17)

The tetrahedra in N; are called neighbors of T.

When inserting a selected point into the triangulation, an existing tetrahedron 7; is split
into several new tetrahedra. The potential swapping of edges is restricted to its neighbor
set N; and the new tetrahedra replacing 7;. Configuration 1 and configuration 2 are
identified in this set of tetrahedra and considered for edge swapping. Overall, the edge
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swapping process is characterized by these steps:
(i) Determine the union of the neighbor set A; and the set of new tetrahedra
replacing 7;; denote the union by O;.
(i1) If O; contains configuration 1 or configuration 2, perform (iii) and (iv); other-
wise, retain the triangulation and stop.
(iii) Construct the other possible triangulations for the identified convex polyhedra
and select the triangulation minimizing the sum of the single tetrahedral RMS
(or maximum) errors.

(iv) If the triangulation has been altered in (iii), update the set O; and goto (ii);

otherwise, stop.

The selection and insertion of data points terminates when a user-specified num-
ber/percentage of all data points has been selected or an error criterion for the implied
piecewise trilinear approximation is satisfied. At the end, it is possible to apply the edge
swapping algorithm to the set of all tetrahedra.

It must be emphasized that the geometrical characteristics of the resulting tetrahedra
(angles, edge lengths, face areas, volumes) are not considered in swapping algorithm.
The goal of this triangulation scheme is error minimization, not shape optimization.
Obviously, the data dependent triangulation can contain “long”, “skinny” tetrahedra,
which might cause numerical problems for further processing of the data. On the other
hand, the shape of tetrahedra is not that important in applications directly utilizing the
piecewise trilinear interpolant.

S. Examples

The data point selection scheme is tested for different trivariate functions. All functions
f(x,y,2), x,y,2 € [-1,1], are evaluated on a (n+ 1) x (n+ 1) x (n+1) grid with

Table 1
Total RMS errors, n =16 (“*” indicating total RMS errors without considering boundary data)

Selected points (percentage)

Function 50% 20% 10%
1. Quadratic polynomial: 0.141 0.350 0.406
0.4(x2 + y* + 22) 0.076* 0.191* 0.313*
2. Quadratic polynomial: 0.115 0.220 0.245
0.4(x2 - y? — z2) 0.057* 0.120* 0.177*
3. Cubic polynomial: 0.080 0.137 0.163
0.15(x3 + 2x2y — x22 4 2y?) 0.085* 0.140* 0.168*
4. Exponential function: 0.044 0.143 0.165
05 4y 42%) 0.017* 0.062* 0.117*
5. Trigonometric function: 0.030 0.060 0.071

0.1(cos(7x) + cos(my) + cos(mz)) 0.036* 0.067* 0.079*
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Fig. 4. Original and reduced data sets for f(x,y,z) = 0.4(x* — y* — z2), x,y,z € [-1,1].

equidistant spacing, i.e.,

. . 20—n 2j—n 2k—n
X ={xi,j,k=( s / ’ ,f(xi,j,k)>

n n n

i,j,k=0,...,n}. (18)

The initial triangulation of all (n+ 1) points is defined by splitting each cuboid given
by the eight vertices in {xi/jtserk | I, LK € {0,1}}, 4,j,k=0,...,n — 1, into six
tetrahedra yielding a Delaunay triangulation (see (Nielson et al., 1991)). Since the
given data set (18) is rectilinear, only the eight corner points x; jx, i, j, k € {0, n}, are
kept. The boundary polyhedron of the data set is defined by twelve triangles.

The total RMS and total maximum approximation errors are defined as
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Fig. 5. Original and reduced data sets for f(x,y,z) = 0.15(x3 + 2x2y — xz2 + 2y?), x,yz€[-1,1].

l n n n
Erms = m Zzzdi,j,kz (19)

k=0 j=0 i=0

and

E. = max |d;l, 20
oo Ogi,j,kén[ l,_],kl ( )

where d; jx = fijx — L(x;;x), and L is the trilinear polynomial implied by the tetrahe-
dron containing the point x; jx. Obviously, Erms = E, = 0 if all data points originate
from a single trilinear polynomial. Table 1 shows the total RMS errors for different
trivariate functions and different percentages of selected data points. Since the resolu-
tion is small (n = 16), the boundary data has a rather strong influence on the resulting
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Fig. 6. Original and reduced data sets for f(x,y,z) = e~05E 42y y 2 e [—1,1].

errors. Therefore, two total RMS errors are computed. The first one considers data on
the boundary, the second one does not.

A trivariate function can be visualized by slicing its domain with planes, evaluating
the function in these planes, and representing function values according to some color
map (see (Nielson et al., 1991)). The original and reduced data sets for the functions
2, 3, and 4 of Table 1 are visualized by slicing. In Figs. 4-6, the upper-left corner shows
the original data set, the upper-right corner 50% selection, the lower-left corner 20%
selection, and the lower-right corner 10% selection.

6. Conclusions

A new method for the reduction of trivariate, scalar-valued data has been presented.
The method is based on selecting the most important data, not on removing data.
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Significant data are identified by large absolute curvatures obtained by a local least
square approximation method. The method can be generalized to multivariate, scalar-
valued data sets {(x1,i, X2, ..., X0, (X145 X2s - ., X)) li=1,...,n}.

The boundary polyhedron/convex hull of the original data can sometimes be preserved
by choosing an appropriate subset of all points lying on the convex hull. It will be
investigated how to remove redundant data lying on the convex hull without destroying
it. Scattered data approximation methods and volume visualization techniques (e.g., ray
casting) should benefit significantly from this data reduction strategy.
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