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ABSTRACT
‘The low temperature thermally-avctivatedv deformation mech’ani'sms~ |
in polycrystalline aluminum are investiga_ted through measurements of ‘
flow stress vs temperature for various strain- hardened states, |

At low temperatures the results are in nommal agreement W1th

the intersection mechanism., At higher temperatures a thermal recovery

i

mechanism operates,




| 1. INTRODUCTION. . .
It has now been well-established that the plastic" deformation of pure -‘ -
- F.C.C. metals at low temperatures is fac111tated by thermal fluctuatlons. :
Most mvestlgatlons on the thermally actlvated process appear to
substantlate the assumption that the Operatlve strain rate controllmg '
mechamsm is that dictated by intersection of d1slocat10ns. 1,2,3, 4
Although various 1ntersectlon energ1es are involved dependmg on the '

stat1st1cal d1str1but10n of dlslocatmns, 1t is now generally agreed that on _

' the average, the strain rate can be reasonably accurately described by

P

o o 'Y = Ke kT - - i R - | (1)/
where: : .;, = shear strain rate, - | | ‘ SURREE I
K - a frequency factor tnat 1s de'penclent on the statistlcal .
distribution of intersection disloc,a“tio_ns., o
' \:'{ k = the Boltzmann constant | | o
T = the absolute temperature“ and ',

U = the energy, on the average, that must be. supplled by a

thermal fluctuat1on to complete an mtersectlon. ‘.\ ;

- 'I‘he value of K is estlmated to- be aboutl' 5 6

x=NaAb[R] / e

o ~_vwhere.‘_'_' : N the number. of pomts per umt volume where rntersectlon -"4;'{:

| : ‘is 1mm1nent ,:‘ R _}.{ . o

A = the average area swept out per actlvated dlslocatlon “
| "“-segment. : R ’

L ‘b = the Burgers vector | '’ . |
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" by Seeger's apprdximationl o

U=U - -7 *) Lp? U. - r-r v SRR '; 3) .

'shear modulus of elast101ty6 so that

: than can be deduced from S1mp1e mechanlcal tests that 1nvolve only

"y = the Debye frequenej (‘abouti 8 Ox lO_;lgs_'ec'l for ‘aluminum)
L = the average distan'c‘e'between points of intersection , .
Where dislo‘cations' are temporarily .arrested.
f‘urthermore, the value of U is a_function of the applied stress, the - -
dislocations patterns and arrays andlthe constriction and jog" e‘nergies.

For high stacking fault metals, such as high purity aluminum,' where -

- the constriction energy is small, the activation energy, U, can be given o

i

where - U; = the total energy for mtersectmn a5 p
= the applied shear stress,
"r* = the equivalent stress needed to overcome the athermal

interactions between d1slocat1ons ,
N

'

r-7 )Lb = approx1mate1y the work done by the apphed stress in-

fac111tat1ng the completmn of 1ntersect10ns and o

= the apparent activation volume : 5 " o ." \

—

5 Furthermore both U and 'r* vary W1th the test temperature as doe: the

:U’ Uloc——a-nd'f"‘é"ro 'G—"‘

where - U, the total 1ntersect10n energy at the absolute zero

o T
- '1""‘< = the equ1va1ent athermal stress at the absolute zero

G = the shear modulus of elastlclty at T, and R

- Go = the shear modulus of elast1c1ty at the absolute zero.

A brlef reflectlon reveals that Eqs. 1 4 have more parameters E
' 1
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changes in the externally ad;ustable vamables of stram rate and tempera- e

ture. Consequently, in prev1ous dlscussmns of the problem certam
.simplifying assumptlons which were not necessarlly vahd were made j J

to facilitate analyses., A strlkmg example of this concerns the frequentlyv !
' ~applied assumption that K is mdependent of the strain-hardened state, 3 44 N o
It was the major objective of this investigation to ascertain how K, v, and o o
- actually vary with the strain hardening. It will b’e_ demonstrated that
Eqgs. 1-4 describe the thermally activated iovv-temoerature strain-rate .
' _mechamsm for hlgh purity polycrystallme alu.mmum W1th good accuracy, z[
| and it will be shown that the parameters of Eqgs. 1-4 agree well with those -

expected when the rate- controllmg mechamsm is that for mtersectlon of

- dislocations; a.nd K W1ll be shown to depend on the stram—hardened state
‘«furthermore the vamatlon of the apparent actlvatlon volume and the approx1-‘
mate variation of 'rz with stram-hardemng W111 also be deduced; and 1t will . ‘
be further demonstrated that a moderately low-temperature recovery of

the stram-hardened state,, wh1ch had not been prev1ously recogmzed also -

complicates the analys1s. P , ‘ e ;} IR
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.cold rolhng and machmmg, all spemmens were annealed in a potassmm '

grain diameter was 0 26 mm,’

. the tensile stram rate in accordance w1th a' Mohr 's c1rcle stram trans- )

.two shear strain rates of 3 06 x 10

N states |

II. EXPERIMENTAL METHODS AN D RESULTS

High purity (99 99 wt %) alummum was selected for thlS |

N

_ mvestlgatlon because the constr1ct10n energy of. 1ts d1slocat1ons 1s small

and, therefore, Seeger's approx1mat1on Eq. 3, is expected to bevgood... '

© 0,004 Cu, 0.002 Fe, 0.001 Si, and less than 0,001 of the remaining

elements, The material was received in the form of 0. 10‘0 inch 'thick l =

p—

" sheet cold rolled to the H-18 temper from which sheetr .tensile'spe‘é'i"rhens_"

having a 0,250 inch width and a 1, 625.inch gage'. length were machined

- with the tensile axis in-the rdlling' direétion' .. To‘ remove the effects of

nitrate-nitrite bath at 680°K for 10 mmutes._ The resulting average

O

The testing was conducted on . an Instron Tens1le Testing Machlne," s

one-half of the tens1le stress and the. shear straln rate at three-halves of

formation for a plastic deformation with Poisson 's ratlo taken as one- -

half, Varlous cold- worked states deS1gnated by the flow' stress at a to e

in F1g 1, were prepared by straining prehmmary to determmatlon of the

-5 and 3 06 x 10 -3 per second In

S ’

Spectroche‘mmal analyses gave the followmg 1mpuriti'es in weight percent:_"

a typ1cal shear stress vs shear stram curve at 370°K for a shear-strain L
-rateof § =3.06x 10 -5 per second for the annealed material is shown in ';’-‘j
| i

' F1g 1. The shear stress was taken to be the maximum shear stress or _ f ”

'subsequent yleld strengths at a series of lower temperatures and at the S

- this way, the spec1mens were placed in a ser1es of well defmed cold-worked
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'F-‘ollowing prestress‘ing' at a strain rate' of' "

second at 370°K the controlled temperature warm water bath was |

" removed and subst1tuted by var1ous constant temperature 1sothermal

baths. The tests at 11qu1d helium temperature were conducted with the

aid of a specially deS1gned 11qu1d hehum cryostat whlch was fitted to the b_. _

A.fter reachmg thermal equ111br1um at the

Instron Te stmg Machine,

reduced temperature testing was resumed to determme the y1e1d stressl 1

for the various f:xed cold-worked states as a functlon of temperature for

‘The flow stress at y1e1d1ng

the two prev1ously des1gnated stram rates,

was determmed by applymg the 0, l% offset from the modulus hne -

conc ept.

The results of the tests are recorded m Flg.




e 7'=3.06 X103 PER SEC.. |
0.7 =3.06x10°% PER SEC.. |
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_from the data of Fig. 2 usmg the data of Su’cton7 for determmmg the

' linear decrease of 'rG /G with T over the low temperature range and an

III DISCUSSION OF RESULTS

. Eqs.-= 1, 3 and4 suggests that

'So that above T ‘the thermal fluctuat1ons are suff101ent1y frequent and s

great to induce 1ntersect1on w1thout requ1r1ng the mechamcal a1d of an -

\

*
’ overstress T =Ty " Curves of 'rG |G vs T for the two stram rates and -

for the various stram-hardened states, glven in Fig, 3, were deduced RLE o

shear modulus on the (111) slip plane in the dlrectlon of the Burgers

vector a/2 [101] as a function of T Whereas the general trends of a ..

agreement W1th the dictates of Eqs 5 and 6, minor variations from the

theoretical predictions are ev1dent FlI‘St the values of ‘TG /G over the

higher temperature range ( exceptmg the intermediate temperature range;\_-fij:

>

for state e) decrease slightly w1th‘an mcrease in temperature; further- '7-’ .

more, the flow stress is slightly strain rate sensitive over the same

wholly accurate. Smce the decrease in 'rG / G with mcrease in tempera- g

I

“ :
"} i3 2 . : I P ;& . - .
N L el : - PSR LRI * RO SN SO S SIS .

'_- 9._.,,24.» v1°‘~.1‘_,<2 _GQ _IS_ for T<T o 8y
‘where Tc' is defined as ;I |
U, = - XT —G- ‘m K T R RN ¢ ) B

: 1nsen51t1v1ty of 'rG /G over the hlgher temperature range are 1n nommal IR

ranges; Therefore, over the higher temperature 'range Eq. 6isnot .

ture appears to be more pronounced for the hlgher work hardened states, - ... -

- a recovery mechamsm appears to.be operatlve over the higher temperature_i EaE
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L , low temperatures for the two strain rates that were employed permlt the

]

range. But the magmtude of th1s recover)t decreases as the temperature
decreases especially as shown for the hlghest stram-hardened state e,
- suggestmg that it has only a modest 1nf1uence on the lower temperature o 4
flow stress data. Second the linear portlon of 'rG /G vs T at low R
' temperatures appears to fair into the more or less horlzontal TG, /G o RS R
vs T trends at the higher temperatures. This may arise from the effectds'_"‘ ;5', .
of stress on the small cornstriction energy in aiuminum. Eouation 5, |
.. 'jwhowever represents the .experime‘utal data 'vver'y well over‘ the“ lowest L
: ‘temperature region, ‘ | | |

As shown by Eq. 5,,the slopes of the 'rG /G vs T curves at the

determination of K and v for the various prestressed states, Because S

- of the introduction of recovery over the higher temperature range 'rz' S
was not so easily obtained, However the 1nsenS1t1V1ty of 'rG /G to
temperature and strain rate for state e over the 1ntermed1ate range
B of temperatures reveals that this is also the approprlate value of 'r:
- for this state, Furthermore 1t follows from Eq. 5 that for the
extrapolated value of T at the absolute zero, namely To ' |
U =vilrg =7 o (8)

v'where, on the average Ui o is a constant, Therefore for any state a

ValTo - Tf;) = V ("' v ‘TZ)e - R : (9)

R v | .
Thus smcev ('r' - 'r) is known andv and 'r' g ore also known vro a

could be estlmated for each stram-hardened state a, 'I‘he values of '

To and 'r deduced in th1s way are glven as funct1ons of the prestress

7 in Flg. 4, were as shown T

b 'r 1sU /v. Smce U, 1s constant B

o

i
-
|
¢
l
v
l
1
I
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B probably responsible for this trend.

" determined for each strain-hardened state by equating the slopes of
>47"G°/_G vs T curves for the tWo‘ strain rates that were employed to the. .

- slopes dictated by Eq. 5. .;. As shown in F1g 5, the apparent activation"‘;;:

' prestressing from (b) to (e). Consequently, the early stages of strain- -
- hardening of polycrystalline aluminum arise principally _from an increase"f_;‘:'____-

. o
ST

: documented in Fig. 4 for 0°K Contrary to the mvest1gators' expectatlons
K was found to change greatly W1th cold work As shown in Flg. 6 for~

Ky “lys 'r (vide Eq. 2) K is msenS1t1ve to prestressing from state (a)

B 'j N=~L"" and A~ L whence from Eq. 2 1t-1s expected that Kv. QU’" =
- %2 When the values of b = 2 86A and v for low’ prestresses (Fig. 5) are
v 1ntroduced Kv -1 = —13 6 in satlsfactory agreement with the values for

- the lowest prestressed states (a) and (b) glven m F1g. -'Smce_-_N is o

oy

e it ol 8 i s b e a5 40

e

A; .
FRE S

[

the increasing value of To ~ "r:writh‘ 'rp/ arises from the fact ‘that-the

apparent actlvatlon volume v decreases W1th stram hardemng due to S

“higher den81t1es of dlslocatlons. 3 The 'r vs T _ relationship dev1ates

P

. slightly from the 1dea112ed expectatlon of a stra1ght line, Shght add1t10nal

recovery during reduction of the stress at the prestress temperature is

f"

_ The apparent activation volume v, and the value of an were h

e

volume remained practi'caIly unchanged over the early stages of strain"':ff.'

hardening from (a) to (b) and then decreased rapidly with additional

o’ whereas, the decrease inv at higher prestrained conditions also" "

contributes to the strain- hardenmg at the lower test temperatures as. |

to (b), but it decreases ,prec1p1tously w1th additional prestressmg from_'_-,-

(b) to (e). For the initial prestressing conditions, it is expected that o
3 2 T TP |
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-expected to mcrease w1th the den81ty of dlslocatmns the decrease in
Kv -1 with prestressmg from (b) to the hlgher prestressed states- 1s probably -'

T attrlbutable to a rapid decrease in A, This suggests that the area A swept

.

out per activation is controlled by the distance between dislocationsinv

enta.nglementé. Thue these trends are 1n fair harmony with the dictates S

. of the intersection mechamsm.- PR L | ; \f»',
An activation energy of U 51210ea1./molewyas determtned from, 3

) the.values of Uolv given in Fig. 4 and the associated values of v given ;
in Fig. 5. 'Thus, the average activati'on energy hjas the loyv vahie of .‘ : ‘

U, = 0.058G, b3, This result is much lower than that which would be |

\

»expected for the rate controlhng mecha.msm of productlon of vacanc1es

- . or interstitials of Jogs in moving screw. dlslocatlons;;'3 9 1t is only shghtly

"lower than the expected value5 of about 0 08G b for the format1on of a’

single Jog in essent1a11y undlssoc1ated dlslocatlons. Consequently‘ thls S

result also is 1n fa1r agreement W1th the mtersectmn mechamsm the '

mmor dev1at10n from theory bemg accountable for the approxlmatlons

/ e in the theory a.nd the neglect of stat1st1ca1 factors m formulatmg Eqs. 1 ,

2 and 3,




Z_w

', temperature dependence of'thei élastie,modulus and shows a_ ;

higher ranges of temperature even when corrected for_

DR

~ corresponding strain rate dependence as a result-of recovery.’

I
P
e S 'CONCLUSIONS L
”,'Summmg up,' it may be stated- L . . S ‘
,"1. Two d1st1nct reglons of flow stress temperature dependence
exist in polycrystalhne alummum below 370°K - ' | P
2 vThe lower temperature reglon is thermally actlvated w1th an’ |
= act1vat1on energy of about 5110cal/mole. x, - |
3 .The actlvatlon volume of the lower temperature reglon ranges -
| between 1000 b3 and 250 b3 decreasmg W1th 1ncreasmg o
| prestress. | | . | , |
-4, ’ The frequency factor K varies between 10 -4 and 10"10 of the -
. " Debye frequency, decreasmg w1th hlgher prestresses. B | ’
5 " The mechamcal parameters are in nommal agreement w1th
the 1nterseet_1on mechamsm. . S o . b v
, 6;" The flow-stress elecreases v’slightl'y with temp'erature ove_r’the._;i;’,";" R
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mation, apparatus, method, or process disclosed in
this report.

As used in the above, "person acting on behalf of the
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with the Commission, or his employment with such contractor.
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