
UC Davis
UC Davis Previously Published Works

Title
Monitoring activity in neural circuits with genetically encoded indicators

Permalink
https://escholarship.org/uc/item/5vr2p4pw

Journal
Frontiers in Molecular Neuroscience, 7(DEC)

ISSN
1662-5099

Authors
Broussard, Gerard J
Liang, Ruqiang
Tian, Lin

Publication Date
2014

DOI
10.3389/fnmol.2014.00097
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5vr2p4pw
https://escholarship.org
http://www.cdlib.org/


REVIEW ARTICLE
published: 05 December 2014

doi: 10.3389/fnmol.2014.00097

Monitoring activity in neural circuits with genetically
encoded indicators
Gerard J. Broussard 1,2 , Ruqiang Liang1 and Lin Tian1,2*

1 Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, CA, USA
2 Neuroscience Graduate Group, University of California Davis, Davis, CA, USA

Edited by:

Katsuhiko Mikoshiba, RIKEN Brain
Science Institute, Japan

Reviewed by:

Mazahir T. Hasan,
Charité-Universitätsmedizin-Berlin,
Germany
Bernd Kuhn, Okinawa Institute of
Science and Technology Graduate
University, Japan

*Correspondence:

Lin Tian, Department of Biochemistry
and Molecular Medicine, University of
California Davis, Davis, CA 95817,
USA
e-mail: lintian@ucdavis.edu

Recent developments in genetically encoded indicators of neural activity (GINAs) have
greatly advanced the field of systems neuroscience. As they are encoded by DNA, GINAs
can be targeted to genetically defined cellular populations. Combined with fluorescence
microscopy, most notably multi-photon imaging, GINAs allow chronic simultaneous optical
recordings from large populations of neurons or glial cells in awake, behaving mammals,
particularly rodents. This large-scale recording of neural activity at multiple temporal and
spatial scales has greatly advanced our understanding of the dynamics of neural circuitry
underlying behavior—a critical first step toward understanding the complexities of brain
function, such as sensorimotor integration and learning. Here, we summarize the recent
development and applications of the major classes of GINAs. In particular, we take an in-
depth look at the design of available GINA families with a particular focus on genetically
encoded calcium indicators (GCaMPs), sensors probing synaptic activity, and genetically
encoded voltage indicators. Using the family of the GCaMP as an example, we review
established sensor optimization pipelines. We also discuss practical considerations for
end users of GINAs about experimental methods including approaches for gene delivery,
imaging system requirements, and data analysis techniques. With the growing toolbox of
GINAs and with new microscopy techniques pushing beyond their current limits, the age
of light can finally achieve the goal of broad and dense sampling of neuronal activity across
time and brain structures to obtain a dynamic picture of brain function.

Keywords: in vivo imaging, mammalian and rodent brain, neural activity, genetically encoded sensors, calcium

sensor, voltage sensor, synaptic activity reporter

INTRODUCTION
Within the mammalian brain, neuronal and glial cells communi-
cate at spatial and temporal scales spanning orders of magnitude.
One of the fundamental challenges with which modern neuro-
science is currently grappling is the development of tools that can
record this communication as it occurs at the relevant scales. Fur-
thermore, it is desirable that these tools should be deployable in
living animal models. Such probes will aid the study of neural
communication within the context of phenomena such as experi-
ence dependent plasticity, sensorimotor integration, learning, and
memory.

An extensive set of tools for studying brain function in vivo cur-
rently exists, and each of these possesses its own set of strengths
and weaknesses. For example, recordings of intracellular voltage
or transmembrane current can be made using patch clamp (Liu
et al., 2009; Crochet et al., 2011) or extracellular potential record-
ings can be achieved with fine-tipped metallic electrodes (Hubel
and Wiesel, 1959; Reid et al., 1997; Mante et al., 2013). These meth-
ods provide an exquisitely detailed temporal signal, but are limited
by the number of cells that can be recorded simultaneously. Simul-
taneous neural recordings with near-cellular resolution can be
achieved using multiple electrode arrays (Buzsaki, 2004). However,
this technique cannot precisely localize cell position and yields
limited information about cell types. Optical imaging of bolus

loaded AM ester dyes allows recordings at high spatial resolution
from many cells simultaneously (Stosiek et al., 2003; Helmchen
and Denk, 2005). But this technique results in high background
due to residual fluorescence in the extracellular space as well as the
lack of genetic control (Stosiek et al., 2003). A lack of genetic con-
trol can in particular lead to increased fluorescent background due
to unspecific staining of non-neuronal cells as well as neurons not
pertinent to a given study. In addition, small molecule-based dyes
are not compatible with chronic imaging (Aramuni and Gries-
beck, 2013). Both small-molecule dyes and electrode methods are
highly invasive and can negatively impact the health of recorded
cells (Polikov et al., 2005; Dombeck et al., 2010) making chronic
recordings from the same cell population difficult.

Genetically encoded indicators combined with modern
microscopy (such as multi-photon microscopy), can potentially
overcome these challenges to allow non-invasive, ultrasensitive
and chronic measurement at specific synapses and within or
across circuit elements in behaving animals. A large array of
protein based indicators has been created to monitor neuro-
transmission, synaptic spillover, excitable membrane potential,
calcium dynamics, vesicle trafficking, receptor mobilization and
other essential biochemical events related to neural activity. A
subset of these—detecting changes in intracellular calcium con-
centration, synaptic signaling events, and changes in membrane
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potential—have been successfully deployed for the imaging of
action potentials (APs) in vivo. Here, we refer to this group
of probes as genetically encoded indicators of neural activity
(GINAs). For a more exhaustive review of available fluores-
cent sensors of cellular activity, please see VanEngelenburg and
Palmer (2008), Ibraheem and Campbell (2010). Application
of GINAs have facilitated large-scale recording of neural activ-
ity in genetically identified populations over multiple spatial
and time scales in living neurons in vitro, ex vivo, and in
vivo.

Here we review advances in design and engineering of GINAs.
We discuss various properties of genetically encoded calcium indi-
cators (GECIs) and their optimization for improved detection of
single and multiple APs in in vivo imaging. In particular, as a
case study, we present protein engineering efforts to incrementally
improve intrinsic properties of the GCaMP family to match with
challenging signal to noise ratio (SNR) in in vivo imaging. We fur-
ther discuss technologies developed to aid in vivo imaging in the
rodent brain. Finally, we briefly summarize recent findings based
on the strength of GINAs as a toolbox for analyzing neural circuit
function.

DESIGN OF GENETICALLY ENCODED INDICATORS OF
NEURAL ACTIVITY
The first protein used to detect functionally relevant changes
within a cell was an aequorin protein which was purified from
jellyfish (Shimomura et al., 1962) and introduced exogenously to
muscle fibers of a barnacle to sense changes to intracellular calcium
that occur during fiber contraction (Ashley and Ridgway, 1968).
The era of the modern GINAs, however, began in earnest with
the introduction of biosensors based on fluorescent proteins (FPs)
which were able to detect changes to intracellular calcium levels
(Miyawaki et al., 1997; Romoser et al., 1997), membrane voltage
(Siegel and Isacoff, 1997) and synaptic vesicle secretion (Miesen-
bock et al., 1998). A guide to the general design of several GINA
families is presented in Figure 1.

Genetically encoded indicators of neural activity typically con-
sist of an analyte-binding or sensing domain and a reporter
element which is based on either a single FP or two FPs. In the case
of single FP GINAs, changes in the cellular environment detected
by the analyte-binding or sensing domain result in changes in
the chromophore environment of the FP leading to an incre-
ment or decrement of fluorescence intensity (Siegel and Isacoff,
1997; Baird et al., 1999; Nakai et al., 2001). For example, as illus-
trated diagrammatically in Figure 1A, in the scaffold of GCaMPs,
calmodulin (CaM) binds the M13 peptide from myosin light chain
kinase in the presence of calcium; this coupling reverses when cal-
cium is absent (Nakai et al., 2001). The sensor domain transduces
conformational changes of analyte binding to a change in the flu-
orescence intensity through its coupling with the reporter FP(s).
Additionally, some single FP-based GINAs contain FPs in which
fluorescence intensity is environmentally sensitive (e.g., pH sen-
sitive FPs; Figure 1D; Miesenbock et al., 1998). In the case of
two FP based sensors, the conformational changes in the analyte-
binding or sensing domain lead to Förster resonance energy
transfer (FRET) between two FPs with overlapping excitation and
emission spectra. For example, the Cameleon family contains

both M13 and CaM in between a blue/green or cyan/yellow FP
pairs as shown for Yellow Cameleon-Nano (YC-Nano; Figure 1B).
Upon calcium binding, the relative distance and orientation of
the FPs are altered, resulting in a change in the non-radiative
transfer of energy between the donor and acceptor chromophores.

Single-FP based GINAs are prone to motion artifacts, which
can be corrected by algorithms (e.g., Dombeck et al., 2007) and
using a reference fluorophore. On the other hand, the FRET based
GINAs, by virtue of ratiometric imaging can cancel the motion-
related artifacts (Wallace et al., 2008; Lütcke et al., 2010) and are
thus highly suitable for imaging neuronal activity in freely mov-
ing animals. However, the SNR of FRET-based probes are lower
than their single FP counterparts in probing higher numbers of
APs (see, e.g., Tian et al., 2009). Single-FP based probes also pre-
serve spectral bandwidth for applications in multiplex imaging
and optogenetics. Although the currently used FRET sensors can
be coupled with red-shifted FPs and optogenetic tools, the broad
emission and excitation spectra of FRET sensors reduce some
flexibility.

Relative to other methods for recording neural signals, GINAs
possess several advantages. First, they can be targeted to genet-
ically defined cell populations of interest. As such, they can
be introduced via minimally invasive interventions such as viral
mediated gene delivery or transgenesis (permanent genomic mod-
ification). Genetic control also reduces background signal from
sources not under scrutiny, increasing SNR (Stosiek et al., 2003),
and can permit targeting to a population that is anatomically
or functionally related. For example, GINAs allow for specific
labeling of direct and indirect pathway neurons in the stria-
tum (Cui et al., 2013) as well as excitatory (Bozza et al., 2004;
Ziv et al., 2013) and inhibitory (Kaifosh et al., 2013) neurons
which co-localize within the same local neural circuit. Second,
GINAs make it possible to record from a large population of cells
simultaneously with better spatial resolution than the best elec-
trophysiological techniques (Knöpfel, 2012). Studies exploiting
this strength have demonstrated neural network characteristics
that were not previously apparent from single cell recordings
(Dombeck et al., 2010; Harvey et al., 2012). Finally, GINAs allow
for chronic interrogation of the same cells for long periods of
time (Mank et al., 2008; Tian et al., 2009; Kuhn et al., 2012; Mar-
golis et al., 2012). As a result, studies which track dynamics of
neural circuitry such as learning and memory induced changes
to neural ensembles have been made possible (Huber et al., 2012;
Petreanu et al., 2012).

Used in conjunction with modern microscopic techniques—
most notably two photon (2P) imaging—GINAs are now routinely
employed in the interrogation of neural activity under a wide
variety of contexts in awake, behaving mammals (Helmchen and
Denk, 2005; Bovetti et al., 2014).

GENETICALLY ENCODED CALCIUM INDICATORS
Calcium dynamics are a proxy to monitor APs in neurons (Tank
et al., 1988; Miyawaki et al., 1997) and represent excitable states
in astrocytes (Perea and Araque, 2005). In neurons, APs lead
to calcium transients in the cytosol through voltage-gated cal-
cium channels (Hille, 2001). This rise is reversed as calcium
is buffered, extruded, and pumped back into internal stores
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FIGURE 1 | Continued
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FIGURE 1 | Continued

Schematic representation of selected members of genetically encoded

indicators of neural activity (GINA). (A–C) Calcium indicators.
(A) GCaMP6 consists of circularly permuted green fluorescent protein
(cpGFP) inserted between calmodulin (CaM) and an M13 peptide. Upon
calcium binding, conformational changes in the CaM–M13 complex induce
fluorescence changes in the circularly permuted enhanced green
fluorescent protein (cpEGFP). (B) YC-Nano contains CaM–M13 complex
sandwiched between the donor FP (ECFP) to the acceptor FP (cp173Venus).
Upon calcium binding, conformational changes of CaM–M13 complex
increases Förster resonance energy transfer (FRET) between the FP pair.
The result is an increase in the ratio of the fluorescence in the yellow to blue
channels. (C) Likewise, Twitch-2B increases FRET upon calcium being
bound by its calcium sensitive domain, tsTnC. (D–F) GINAs reporting
synaptic activity. (D) SynaptopHluorin consists of a ecliptic pHluorin FP
fused to the C-terminus of the vesicular protein. Vesicular release places the
FP in the low pH environment of the extracellular space, which leads to the
deprotonation of the fluorophore and increases pHluorin fluorescence. (E)

SuperGluSnFR is a linear fusion of CFP, the Escherichia coli glutamate
binding domain, GltI, and mCitrine. Upon glutamate binding, the
conformational changes of GltI result in FRET between CFP to mCitrine. (F)

iGluSnFR contains a cpGFP fused to the glutamate binding domain. The
conformation changes of Gltl induced upon glutamate binding results in
deprotonation and increased fluorescence of cpGFP. (G–J) Genetically
encoded voltage indicators. (G) Upon membrane depolarization, the
voltage-sensing domain of Ci-VSP enters its activated state. The FPs of
voltage sensitive fluorescent protein (VSFP)-Butterfly 1.2 are thus drawn
into close proximity to one another, increasing FRET. (H) The opsin-based
MacQ-mCitrine reduces fluorescence output upon membrane
depolarization. This effect is driven by enhanced FRET from the mCitrine FP
to the weakly fluorescent retinal caused by a shift in the cofactor absorption
spectrum upon protonation of the Schiff base. (I) ArcLight consists of
Ci-VSD and super ecliptic pHluorin carrying the point mutation A227D.
Depolarization of the membrane results in a decrease in the fluorescence
output of the pHluorin, but the mechanism of this change remains elusive.
(J) ASAP-1 contains cpGFP fused into an extracellular linker (S3–S4 linker)
of the Gag-VSP voltage sensitive domain. Depolarization quenches the
fluorescence of the cpGFP.

in a process which generally lasts on the order of 100 ms
(Helmchen et al., 1996; Koester and Sakmann, 2000). Astro-
cytes, a prevalent type of glial cell in the brain implicated to
play important roles in synaptic plasticity, also propagate intra-
cellular signals by means of calcium transients. The source
of these calcium events in astrocytes largely overlaps those
found in neurons, but due to differential expression levels—
particularly a dearth of voltage-dependent calcium channels—and
relative cellular location of these sources, calcium events in
these cells are longer (generally seconds in duration) and in
some cases more highly localized (Ben Achour et al., 2010; Ding,
2013) or show waves of activity in other cases (Hoogland et al.,
2009).

Of all GINA classes, GECIs are currently the most widely uti-
lized for in vivo imaging in model systems including worm (Kerr
et al., 2000; Boulin and Hobert,2012), zebrafish (Higashijima et al.,
2003), fly (Wang et al., 2003), rodent (Hasan et al., 2004; Tian et al.,
2009), and recently non-human primate (Heider et al., 2010; Yin
et al., 2014). In large part, the success of GECIs has been due to
their high SNR (Mank et al., 2008; Chen et al., 2013b) via extensive
protein engineering efforts to significantly improve their intrinsic
properties, such as brightness (Tian et al., 2009), pH insensitivity
(Miyawaki et al., 1999), stable folding (Tallini et al., 2006), pho-
tostability (Tian et al., 2009), large dynamic range (Chen et al.,

2013b), fast kinetics (Sun et al., 2013) and appropriate expression
level (Miyawaki et al., 1999), to match with extrinsic parameters
of calcium dynamics in neurons. A summary of GECI design is
shown in Figures 1A–C.

The first GECIs to gain wide usage were the FRET-based
Cameleons which contain M13 and CaM in between a blue/green
or cyan/yellow FP pair, conceptually similar to YC-Nano as pic-
tured in Figure 1B. Several incrementally improved variants of
Cameleon have since been engineered, e.g., the YCs series (for
review, see Miyawaki, 2011; Palmer et al., 2011), the computa-
tionally redesigned variants D1cpv, D2cpv, D3cpv, and D4cpv to
reduce impact on endogenous calcium handling and interaction
with endogenous proteins (Palmer et al., 2006), and the high-
affinity YC-Nano series (Horikawa et al., 2010). Additionally, a
family of GECIs has been developed based on the muscle-specific
Ca 2++ -binding protein Troponin C: TN-L15, TN-XL (Mank
et al., 2006), TN-XXL (Mank et al., 2008), and the recent Twitch
sensor (Thestrup et al., 2014). The troponin family in theory
has the lowest probability of having interaction with endoge-
nous proteins in cells. In addition, FP pairs have been optimized
or replaced as newer, more advantageous FPs became available
(Ai et al., 2014).

Meanwhile, a proliferation of single wavelength calcium probes
(Camgaroo, Pericam, Case, and GCaMP family) based on
enhanced yellow fluorescent protein (EYFP) or circular permu-
tated green fluorescent protein (GFP) have been engineered (Baird
et al., 1999; Nagai et al., 2001; Nakai et al., 2001; Souslova et al.,
2007). Since then, several papers have been published on the
iterative improvement of the GCaMP scaffold, which include
GCaMP1.6 (Ohkura et al., 2005), GCaMP2 (Tallini et al., 2006),
GCaMP3, and recently developed highly sensitive GCaMPs such
as GCaMP-HS (Muto et al., 2011), Fast-GCaMPs (Sun et al., 2013)
and GCaMP5 and GCaMP6 series (i.e., GCaMP6s, GCaMPm, and
GCaMPf; Chen et al., 2013b). It is noted that a different group uses
a distinct numbering system for GCaMP variants which include
GCaMP6 (Ohkura et al., 2012), GCaMP7a (Muto et al., 2013), and
GCaMP8 (Ohkura et al., 2012). However, these GCaMPs are not
incremental improvements upon the GCaMP6 series (Chen et al.,
2013b).

With the demonstration that a YC (D3cpv) can readily detect a
single AP in mammalian neurons, both in vitro and in vivo (Wallace
et al., 2008), various members of the YC [especially YC3.60 (Nagai
et al., 2004)], TN-L [especially TN-XXL (Mank et al., 2008)], and
GCaMP [especially GCaMP3 (Tian et al., 2009) and GCaMP5
(Akerboom et al., 2012)] lineages have seen extensive use in in vivo
preparations. Recent additions to the YC [YC-Nano (Horikawa
et al., 2010)], TN-L [Twitch (Thestrup et al., 2014)], and GCaMP
families [GCaMP6(s,m,f) (Chen et al., 2013b)] have achieved the
long-standing goal of single spike detection in pyramidal neurons
on par with or surpassing synthetic dyes in the neurons of living
rodents. A summary of performance of GECIs for spike detection
in in vivo mammalian preparations is presented in Table 1.

Another exciting advance in GECI development in the past few
years has been the expansion of new color-palette variants, such
as the red-shifted variant R-GECO (Zhao et al., 2011) based on
mApple and RCaMP based on mRuby (Akerboom et al., 2013).
Extending the color-spectrum has greatly increased the potential
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Table 1 | Selected examples of modern genetically encoded indicators and their degree of utility in in vivo imaging in the mammalian brain.

Genetically

encoded indicator

lineage/member

Mammalian system

in vivo

Spontaneous

activity detection

Single spike

detection

No population or

trial averaging

Example reference

Genetically encoded calcium indicators

GCaMP

GCaMP3 Yes Yes No Yes Tian et al. (2009)

GCamP5 Yes Yes Yes Yes Akerboom et al. (2012)

Fast-GCaMPs No Yes Yes Yes Sun et al. (2013)

GCaMP6(s,m,f) Yes Yes Yes Yes Chen et al. (2013b)

Yellow Cameleon

YC2.60 Yes No Yes Yes Yamada et al. (2011)

YC3.60 Yes No Yes Yes Lütcke et al. (2010)

D3cpV Yes Yes Yes Yes Wallace et al. (2008)

YC-Nano Yes Yes Yes Yes Horikawa et al. (2010)

TropininC-based

TN-XXL Yes ND ND ND Mank et al. (2008)

Twitch Yes Yes Yes Yes Thestrup et al. (2014)

Reporters of synaptic activity

pHluorin-based

synaptopHluorin

GluSnFR

Yes Yes ND No Bozza et al. (2004)

SuperGluSnFR No ND ND ND Hires et al. (2008)

iGluSnFR Yes Yes ND Yes Marvin et al. (2013)

Genetically encoded voltage indicators

FlaSh

Flare Yes Yes ND No Ahrens et al. (2012)

VSFP

VSFP2.3 Yes Yes No Yes Akemann et al. (2010)

VSFP-Butterfly 1.2 Yes Yes ND No Akemann et al. (2013)

ArcLight

ArcLight No Yes Yes Yes Cao et al. (2013)

Rhodopsin-based

MacQ Yes Yes Yes* Yes Gong et al. (2014)

ASAP

ASAP1 No ND ND ND St-Pierre et al. (2014)

*Detected long-lasting Ca2+ spikes only. Shorter duration Na+ spikes were not resolved.
ND, not determined.

of GECIs in multiplex imaging. Multi-color imaging allows simul-
taneous assay of diverse cell types. For example, different color
probes will aid in the elucidation of the interplay between neu-
rons and astrocytes in shaping the neural circuitry. Red-shifted
indicators will additionally reduce tissue scattering (for both exci-
tation and emission), phototoxicity, and background fluorescence,
facilitating deep imaging. Finally, color-shifted indicators will
seamlessly integrate into imaging experiments with other types of
indicators and optogenetic tools (for review, see Akerboom et al.,
2013).

For the past years, GECIs have driven the expansion of knowl-
edge about the dynamics of neural circuitry gained through in
vivo imaging of the intact brain (For details, see Recent Find-
ings through GINA Technologies). GECI variants continue to
open up new applications in neuroscience. Transgenic expression
of inverse pericam and camgaroo-2 allowed the first detection
of calcium signals evoked via sensory manipulation in a single
trial in mouse (Hasan et al., 2004). D3cpv produced the first
recordings of single spikes from mouse cortical cells in vivo (Wal-
lace et al., 2008). Several GINAs have been deployed under a glial
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fibrillary acidic protein (GFAP) promoter in mice to allow read-
out of astrocytic activity in acute slice (Haustein et al., 2014) and
in the intact, anesthetized animal (Atkin et al., 2009; Hoogland
et al., 2009). Members of the TN-L (TN-XXL; Heider et al., 2010)
and GCaMP (GCaMP5; Yin et al., 2014) lineages have recently
been deployed for imaging studies in non-human primates. Future
work within this model organism will produce results more per-
tinent to the human nervous system. GCaMP6 was used to report
calcium transients from dendritic spines of excitatory and the
dendrites of inhibitory interneurons located in primary visual
cortex (Chen et al., 2013b). All of these milestones continue to
demonstrate that GECIs have been a useful tool for breaking down
barriers to advance our understanding of the dynamics of neural
circuitry.

Despite the fact that calcium transients are an indirect measure
of systems level circuit function, their superior SNR values relative
to other GINA classes have assured their continued dominance in
this arena for the near future. Though the advance of monitor-
ing circuitry function depends on the improvement of genetically
encoded voltage indicators (GEVIs) and other sensors probing all
kinds of neural activity—for example transient changes to neuro-
modulator concentration in the extracellular space—GECIs will
continue to find utility in the study of electrically silent cells which
interact with brain circuitry, such as astrocytes.

SENSORS REPORTING SYNAPTIC ACTIVITY
Rapid information flow in the brain is mediated by anatom-
ical connections at synapses between cells. During the course
of an AP, membrane depolarization invades the presynaptic ter-
minal. As noted above, this results in intracellular calcium
transients, which in turn drive the fusion of neurotransmitter
containing vesicles with the presynaptic cell membrane. This
fusion event results in an immediate increase in the vesicular
pH, which is maintained at an acidic level, as the lumenal vol-
ume is expelled into the extracellular space. The contents of
the vesicle are also released into the synaptic cleft, leading to
a local increase in the concentration of neurotransmitter (Hille,
2001).

To better access synaptic transmission with optical tools, a
variety of GINA classes have been developed. The first of these,
synaptopHluorin, is derived from the fusion of a pH sensitive,
ecliptic GFP variant at the c-terminus of the vesicular protein,
synaptobrevin [also known as vesicular associated membrane
protein-2 (VAMP2)], which localizes the FP to the vesicular lumen.
The fluorescence of the ecliptic pHluorin is quenched by the acidic
environment of synaptic vesicles (pH 5.6). During neurotransmit-
ter release, vesicles fuse with the plasma membrane, exposing the
lumen to the neutral pH of the extracellular environment (pH 7.4),
causing a dramatic increase in fluorescence intensity. The fluores-
cence intensity is then quenched once again after reconstitution
and reacidification of the vesicle interior (Miesenbock et al., 1998;
Figure 1D). SynaptopHluorin was one of the first GINAs to be
employed for in vivo imaging in the mammalian system (Bozza
et al., 2004).

Later modifications to these probes included fusions to different
proteins which localize with higher specificity to synaptic vesicles
such as synaptophysin (Granseth et al., 2006) and the vesicular

glutamate transporter (VGLUT-1; Balaji and Ryan, 2007). Red-
shifted variants of synaptopHluorin have also been developed for
multiplex imaging. These were constructed by exchanging the
GFP based pHluorin with relatively red shifted FPs and include
VGLUT1-mOrange2 (Li et al., 2011) and sypHTomato (Li and
Tsien, 2012). Each of these probes was used concurrently with
a GCaMP indicator to simultaneously probe presynaptic cal-
cium signaling and presynaptic release at the same synapses or
in distinct pre- and postsynaptic elements. These studies serve as
early examples of the future possibilities presented by multiplex
imaging.

Genetically encoded indicators of neural activity for probing
excitatory neurotransmitter glutamate release and spillover have
also been developed. Fluorescent indicator protein for glutamate
(FLIPE; Okumoto et al., 2005) and the SuperGluSnFR (Tsien,
2005; Hires et al., 2008) are FRET-based probes which employ
the linear fusion of periplasmic glutamate binding protein of
Escherichia coli, GltI, (also known as ybeJ) with enhanced cyan
fluorescent protein (ECFP) and a yellow FP, Citrine or Venus
(Figures 1E,F). These reporters provide a sensitive optical readout
of glutamate concentration in vitro by FRET-dependent changes
in the CFP/YFP emission ratio. An improved version of GluS-
nFR, SuperGluSnFR has since been developed. Through linker
optimization (Hires et al., 2008), SuperGluSNFR permits efficient
optical measurements of the time course of synaptic glutamate
release, spillover, and reuptake in cultured hippocampal neu-
rons with centisecond temporal and dendritic spine-sized spatial
resolution. Most recently, a single-FP based glutamate sensor,
iGluSnFR, was developed. iGluSnFR is based on the fusion of
Gltl with circularly permuted enhanced green fluorescent protein
(cpEGFP; Figure 1E). Due to the superior SNR of this probe, it
allows the resolution of glutamate transients at the apical tuft den-
drites of layer V neurons in the motor cortex of awake, behaving
mice (Marvin et al., 2013).

The development of sensors probing synaptic activity greatly
expanded the kinds of neural activity that can be accessed by opti-
cal tools. The output activity of a neuron is sometimes thought
of as being the voltage transients propagated to synaptic termini
during an AP. Calcium transients are currently the most experi-
mentally accessible marker of this phenomenon. However, under
some conditions, the relationship between these signals and synap-
tic release is non-linear (see, e.g., Singer and Diamond, 2006). In
this respect, reporters of synaptic activity will sometimes be a bet-
ter choice of sensor for applications in which vesicle/transmitter
release is the primary concern. Furthermore, neurotransmitter
sensors allow detection of the presence of extra-synaptic neuro-
transmitter, which can have important functional consequences
when interacting with neuronal receptors expressed distal to
synapses (Marvin et al., 2013) and on astrocytes (Haustein et al.,
2014).

GENETICALLY ENCODED VOLTAGE INDICATORS
Membrane potential undergoes a rapid change during the course
of an AP as well as subthreshold oscillations. These changes can
be succeeded by consequent changes to intracellular calcium and
evoked synaptic signaling events (Hille, 2001). As such, voltage
is considered the primary signal of interest and the most direct
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way to monitor neural activity. Despite this fact, imaging voltage
is inherently difficult, largely due to the nature of the voltage sig-
nal itself. The short duration of the voltage change during APs
(1–5 ms) demands faster kinetics and higher sensitivity of flu-
orescent sensors to yield sufficient photon budget for imaging
(Peterka et al., 2011; Looger and Griesbeck, 2012). Additionally,
GEVIs are necessarily membrane bound or associated, which
reduces imaging volume relative to cytosolic GINAs (Peterka et al.,
2011). However, recent advances in the field of protein engineering
hold great promise for the development of GEVIs with superior
SNR.

As demonstrated in Figures 1G,I,J, most GEVIs function as
reporter of membrane voltage by tethering one or two FPs to a
voltage sensitive protein derived from natural sources. The first
genetically encoded voltage indicators—such as FlaSh (Siegel and
Isacoff, 1997), sodium channel protein-based activity reporting
construct (SPARC; Ataka and Pieribone, 2002), and voltage sen-
sitive fluorescent protein 1 (VSFP 1; Sakai et al., 2001)—were
based on intact voltage-gated potassium channels or their“voltage-
sensing” domains. However, these probes exhibit low SNR, slow
kinetics and localize poorly to the membrane of mammalian cells
(Baker et al., 2007).

The next generation of GEVIs was based on the voltage sensi-
tive domain of a phospatase (VSP) derived from the sea squirt,
Ciona intestinalis (Ci-VSP; Murata et al., 2005; Dimitrov et al.,
2007; Akemann et al., 2010; Jin et al., 2012; Figures 1G,H). These
probes include both FRET-based (Akemann et al., 2010) and sin-
gle FP-based family (Lundby et al., 2008; Perron et al., 2009), and
boasted much improved brightness, kinetics and improved mem-
brane targeting relative to the earlier generation. One of the most
advanced probes of this class, VSFP2.3, permitted in vivo record-
ing of neural activity in mouse somatosensory cortex, despite poor
cellular resolution. Recently, an improved variant, VSFP butterfly
1.2 (Figure 1G), showed increased SNR and allowed two-photon
imaging of membrane changes produced by layer2/3 neurons of
mouse barrel cortex, which represents the first reported use of
at depth cellular resolution imaging by a GEVI. However, exten-
sive trial averaging was required in order to resolve the signal
(Akemann et al., 2013).

In parallel, protein engineering efforts have also led to single-FP
based GEVIs. For example, the ArcLight (Figure 1H) fluorescence
voltage sensors consist of the fusion of ecliptic pHluorin GFP to
Ci-VSP and show significantly improved sensitivity in response to
APs compared to other Ci-VSP based probes (Cao et al., 2013).
More recently, Accelerated Sensor of Action Potentials 1 (ASAP1)
has been developed in which circularly permuted green fluorescent
protein (cpGFP) is inserted in an extracellular loop of a voltage-
sensing domain of a VSP derived from a chicken (Gallus gallus).
ASAP-1 showed faster kinetics compatible with the typical 2-ms
duration of APs and is capable of probing high-frequency AP trains
(St-Pierre et al., 2014), thus permitting detection of subthreshold
potential and hyperpolarization waveforms in cultured hippocam-
pal neurons. However, voltage imaging using both ArcLight and
ASAP-1 in intact rodent brains remains to be demonstrated.

In addition, another recent class of GEVI including PROPS
(Kralj et al., 2011) and VIP1 (Kralj et al., 2012), has been devel-
oped based on voltage-induced fluorescence modulation of the

retinal cofactor of bacterial and archaeal rhodopsins. In these
probes, the rhodopsin itself acts as the sensor domain while the
retinal cofactor serves as the fluorescence reporter via direct flu-
orescence (Kralj et al., 2011, 2012; Gong et al., 2013) or acting as
FRET acceptor (illustrated in Figure 1H; Gong et al., 2014). Rela-
tive to the Ci-VSP based sensors, this class of sensor is extremely
fast with submillisecond kinetics, sufficient to resolve single AP
or subthreshold membrane voltage fluctuations in cultured mam-
malian neurons. However, because these probes rely on a retinal
cofactor as the sole fluorescence source, they exhibit extremely low
brightness. The most recent FRET-opsin sensors offer fast kinetics
(rise time ∼5 ms) as well as higher brightness, which has allowed
for reporting long-lasting complex spikes in the dendritic arbors
of Purkinje cells in the cerebellum of a living mouse. These spikes
exhibit slower dynamics than typical Na+ spikes (∼5–10 ms), but
nevertheless were apparently detected at sub-cellular resolution
with single-trial precision (Gong et al., 2014), a first for this GINA
class.

Though current state-of-the art GEVIs have been deployed
for in vivo imaging, their broad use has remained limited in
rodent brain as shown in Table 1. As incremental improvements
are made to existing and future probes, GEVIs may finally facil-
itate systems-level, cellular-resolution voltage imaging in living
behaving mammals.

Blogs discussing all GINA classes can be found at open websites
such as Andrew Hires’ Brain Windows1 and Guillame Dugué’s
OpenOptogenetics2.

CASE STUDY: FROM GCaMP3 TO GCaMP6
Extensive protein engineering efforts have improved the proper-
ties of GINAs, especially the GCaMP family, to the point that they
now rival synthetic alternatives such as Oregon Green Bapta-1 in
terms of kinetics and sensitivity. Here we review established sensor
design and optimization pipelines (rational design combined with
directed evolution) that have proven to be effective to improve
the intrinsic properties of GCaMPs, leading to a family of high
performing sensors, GCaMP3, GCaMP5, and GCaMP6(s,m,f;
Figures 2A,B).

Based on GCaMP3 scaffold, an array of GCaMP5 variants was
generated by combining improvements from site-directed muta-
genesis at cpEGFP/CaM interface and targeted library screening
at the two linkers between cpEGFP and M13/CaM (Akerboom
et al., 2012). Twelve GCaMP5s were systematically characterized
in cultured neurons, astrocytes, and in Caenorhabditis elegans,
drosophila, zebrafish, and mouse under various conditions. SNR
was improved by at least twofold to threefold; all GCaMP5s showed
improved dynamic range compared with GCaMP3. Users can
choose from different GCaMP5 variants for different applications.
Amongst these, GCaMP5A, GCaMP5G, and GCaMP5K exhibit the
highest levels of general utility.

Based on the GCaMP5 scaffold, computational design has
guided further targeting of 16 amino acid positions on the interface
between cpEGFP and CaM at 18 positions including the M13-
CaM interface (Chen et al., 2013b). Four hundred and forty seven

1https://brainwindows.wordpress.com/
2http://www.openoptogenetics.org/
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FIGURE 2 | Structure and beneficial mutations of GCaMPs. (A) Crystal
structure (Ding et al., 2014) and primary sequence of GCaMP6m. Distinct
regions of the crystal structure are indicated by color. The cooler the
color, the closer the sequence is to N-terminus. The primary sequence is
annotated such that yellow shading corresponds to ß-strands, green
shading corresponds to α-helices, and residues in red are those that do
not crystallize (i.e., pRSET domain and linkers). (B) Beneficial mutations of

GCaMPs. Crystal structure of GCaMP6m is annotated with iteratively
evolved residues. Red residues are from the cpGFP and green ones are
from calmodulin. Note that these residues are typically at the interface
between the two domains. Residue matrix shows the evolution of
GCaMP lineage with incrementally improved performance. Individual
beneficial residues are highlighted in the primary sequence of GCaMP6m
in (A).

GCaMP variants in were screened in dissociated neuronal culture
resulting in three ultrasensitive GCaMP6 sensors with a variety of
kinetics [i.e., GCaMP6s (slow), GCaMP6m (medium; Figure 2A),
and GCaMP6f (fast)]. Compared to GCaMP5G, these sensors have
1.1- to 1.6-fold increase of dynamic range and threefold higher
Ca2+ binding affinity. In addition, GCaMP6f shows the fastest
kinetics among the entire GCaMP family due to a mutation at the
M13-CaM interface (A317E).

Besides protein engineering efforts, the success of GCaMP6
development also depended on the establishment of a highly effi-
cient high-throughput screening platform (Wardill et al., 2013).
This system directly employed screening in dissociated rat cor-
tical/hippocampal neuronal culture, bypassing the screening
steps in bacterial and mammalian cells (Tian et al., 2009; Zhao
et al., 2011). Specifically, lentivirus encoding GCaMP variants
driven by human synapsin-1 promoter were produced to achieve
dense and neuron-specific labeling in cultured neurons. To
assist automated processing of imaging acquisition and anal-
ysis, internal ribosome entrance site (IRES) were introduced
downstream of GCaMP to drive the expression of a second
FP, nuclear targeted mCherry. The process of screening has
been automated from probe development to imaging analy-
sis (Wardill et al., 2013). This screening system can be easily
adapted to aid in the optimization of other members of the GINA
family.

As new members of the GCaMP family and other GINA classes
are developed, their creators will often make them available for the
larger research community. Frequently, genetic material encod-
ing the probes can be acquired through Addgene3, a non-profit

3http://www.addgene.org

plasmid repository. For ready-made application, GINAs packaged
into viral vectors can be obtained through viral core facilities
of institutions such as the University of Pennsylvania4 and the
University of North Carolina at Chapel Hill5. Finally, animals
transgenic for several GINAs have been produced and are avail-
able for purchase through services such as those provided by the
Jackson Laboratory6 and the Zebrafish International Resource
Center7.

IN VIVO IMAGING WITH GINAs IN LIVING, BEHAVING
RODENT BRAIN
Though some classes of GINAs have been optimized to the point
that they are compatible for in vivo imaging, the noise level in
vivo greatly challenges the SNR of the sensors, especially in the
mammalian brain. To make imaging experiments meaningful and
successful, consideration must be taken for proper selection of
imaging configuration, expression systems, surgical procedure,
imaging depth, and analytical techniques. To provide guidance for
the end-users for choosing most suitable experimental settings,
here we review a few important intrinsic and extrinsic parameters
that are essential to maximize SNR and to achieve best imaging
outcomes.

GINA TRANSDUCTION METHODS
The expression level of a GINA influences its SNR in cells and
organisms in a complex manner. Low expression level will preclude

4http://www.med.upenn.edu/gtp/vectorcore/
5http://www.med.unc.edu/genetherapy/vectorcore
6http://jaxmice.jax.org
7http://www.zebrafish.org
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sensor visualization and decrease SNR. It also demands imaging
with higher laser power and longer exposure time, which may
lead to phototoxicity, reduced imaging speed, and increased pho-
tobleaching. On the other hand, high expression level increases
photon budget, but also increases substrate buffering (e.g., cal-
cium by GECIs) and may perturb cell signaling pathways leading
to cytotoxicity and cytomorbidity (see, e.g., Kuhn et al., 2012).
Variation of expression level from cell to cell also impacts sen-
sor performance, potentially confounding quantitative imaging
analysis. To balance all these effects, it is essential to explore
multiple promoters and regulatory sequences combined with the
most suitable gene delivery methods to maximize the SNR of
the sensor. Several methods of gene delivery have been opti-
mized for the expression and subsequent recording of GINAs
in the intact mammalian brain. These include introduction via
stereotaxic viral injection, in utero electroporation, and stable
transgenesis.

In the case of viral gene delivery, virus-encoding GINAs are
injected directly into the brain region of interest (Wallace et al.,
2008). Typically, recombinant adeno-associated virus (rAAV) has
been broadly used due to its ability to diffuse easily away from
the site of injection and relative simplicity (Grieger and Samul-
ski, 2005). But others, such as adenoviral vector (e.g., Mohamed
et al., 2013) and lentiviral vectors (e.g., Akerboom et al., 2012),
are also in use (Packer et al., 2013). Combined with tissue specific
promoters, such as synapsin-1, viral injection permits labeling of
genetically defined local populations of neurons. The efficiency
of probe expression can vary as a function of cell type, pro-
moters, brain regions, and AAV serotype (Cearley and Wolfe,
2006; Wallace et al., 2008; Kuhn et al., 2012; Aschauer et al.,
2013). For example, rAAV2 drives differential probe expression
in cerebellar interneurons (Kuhn et al., 2012). However, when
combined with specific promoter system, rAAV can be targeted
to Purkinje cells in cerebellum cortex (Kuhn et al., 2012). In
addition, rAAV9 is well suited for the transduction of cortical
neurons (Cearley and Wolfe, 2006), while rAAV8 is particularly
efficient in labeling astrocytes (Aschauer et al., 2013). Hybrid
viruses have been developed which increase potential combi-
nations of transduction efficiency and tropism. For example,
AAV2/1 encoding GINAs have been widely used because they
display a broad tropism within the central nervous system com-
bined with high transduction efficiencies (Burger et al., 2004).
Viral labeling results in long-term, relatively stable probe expres-
sion over months, during which time imaging experiments can
be performed repeatedly (Mank et al., 2008; Tian et al., 2009;
Kuhn et al., 2012; Margolis et al., 2012). The popularity of this
method of gene transfer is due in large part to its relatively easy
adoption with flexibility in choosing tool payload and injection
locations.

In utero electroporation is a process in which plasmid is injected,
usually to the ventricles of an animal during the prenatal period of
its life. The plasmid is driven into cells at the ventricular surface via
application of electrical current across the target structure. Due to
the temporal pattern of laminar development and spatial pattern
of cell lineages present in the cortex, the time and location at which
the procedure is performed can restrict probe expression to specific
layers (Tabata and Nakajima, 2001) or cell populations (Borrell

et al., 2005) within the cortex. However, the expression level of
GINAs driven by this method has been reported to cause cyto-
toxicity as expression begins during a developmentally sensitive
period (Tian et al., 2009). Furthermore, the variation of expres-
sion level in cells appears more pronounced than that using viral
transduction. Still, studies that are based around developmental
questions of circuit formation can benefit from the use of this
method.

Transgenesis refers to the permanent modification of the
genome of an organism by the use of, for example, bacte-
rial artificial chromosomes (Van Keuren et al., 2009), zinc finger
nucleases (Urnov et al., 2010), transcription activator-like effec-
tor nucleases (Joung and Sander, 2013), or clustered regularly
interspaced short palindromic repeats (CRISPR) associated genes
(Mali et al., 2013). Transgenic rodent lines that stably express
GINAs through multiple generations have been a standard tool
in neuroscience. Transgenic lines have been engineered express-
ing GINAs such as inverse pericam and camgaroo-2 (Hasan et al.,
2004), synaptopHluorin (Bozza et al., 2004), GCaMP2 (Díez-
García et al., 2005), YC3.60 (Atkin et al., 2009), the hybrid voltage
sensor (hVOS; Wang et al., 2012), and GCaMP3 under control of
the Thy1 promoter (Zariwala et al., 2012). Gene transfer through
transgenesis results in the stable and ubiquitous expression of
the genetic construct in target cells throughout the organism,
although expression levels tend to vary across lines and tis-
sue regions (Zeng and Madisen, 2012). Studies that require
dense sampling from a genetically defined population over the
life course of an organism benefit from the use of transgenic
organisms.

Targeting GINAs with adequate cell type specificity can be
achieved through recombinase systems such as the Cre/loxP and
FLP/FRT, especially by pairing recombinase-dependent viruses
with recombinase-expressing animal lines. Selective expression of
GINAs in subsets of anatomically or functionally related pop-
ulations is possible by placing the GINA construct into the
double-floxed inverted orientation (DIO) configuration (Atasoy
et al., 2008) or using recently developed INTRSECT (Intronic
recombinase sites enabling combinatorial targeting) strategy in
which expression is contingent upon the presence of Boolean
subsets of transcription factors (Fenno et al., 2014).

Pharmacological control can be exerted to achieve temporal
control of GINA expression. For example, the Tet-On(Off) system
causes expression(repression) of GINA expression in the presence
of tetracycline or one of its analog (Gossen and Bujard, 1992;
Hasan et al., 2004). Such temporal control can be important to
prevent perturbation of early developmental processes or animal
behavior, which may confound imaging results (Tian et al., 2009).

OPTICAL INSTRUMENTATION
One of the most vital components for successful in vivo fluores-
cence imaging in the mammalian brain is the microscopic system.
Brain tissue is highly scattering to light and contains fluorophores,
for example flavoproteins, with spectra which can overlap to a
high degree with those of current GINAs. At the same time, the
neural activity which is tracked by GINAs unfolds on the order of
1s to 100s of milliseconds, limiting the time-window for photon
capture. Fluorescence microscopy including systems based on
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one photon (1P) or multiple photons have been developed and
optimized to facilitate imaging experiments.

In one photon fluorescence microscopy, a fluorophore is ini-
tially bombarded with photons from a relatively high energy
excitation light source. After absorption, some of the energy of
the photon is lost through non-radiative processes. The fluo-
rophore then emits lower energy photons which can be detected.
Visible light employed in 1P microscopy scatters more easily in
tissue because mean path length of a photon increases shorter
wavelength. This effect limits the depth at which 1P systems
are capable of imaging unaided to ∼100 μm. However, charge-
coupled device and complementary metal oxide semiconductor
detectors which can be used in conjunction with this imag-
ing modality are capable of extremely fast (>kHz) full field
image acquisition rates. They are also typically relatively inexpen-
sive when compared with comparable multi-photon alternatives
(Helmchen and Denk, 2005).

In addition, 1P imaging light paths can be channeled through
endoscopes (Flusberg et al., 2008; Barretto et al., 2011) as well as
single and multimode fiber optic cable (Ferezou et al., 2006; Flus-
berg et al., 2008; Lütcke et al., 2010; Gunaydin et al., 2014) to image
cells at depth within brain tissue. These systems can be deployed
to image the brains of head-immobilized animals (Akemann et al.,
2010) or miniaturized and mounted to a freely moving animal
(Ghosh et al., 2011). As a note of caution, the introduction of an
endoscope to brain tissue is highly invasive, while fiber-optic tech-
niques generally result in data nearly devoid of fine-scale spatial
information (although see, e.g., Ferezou et al., 2006), in which a
braided fiber optic cable allowed the acquisition of coarse-grained
spatial data).

Multi-photon—and in particular 2P—microscopy has been
the workhorse for in vivo imaging in the field of systems neu-
roscience (Denk et al., 1990). This is due primarily to two
attractive, intrinsic features of these systems to reduce out of
focus emission, light scattering, and phototoxicity. First, in
multi-photon microscopy photon absorption varies non-linearly
with excitation photon density. For example, this relationship
is quadratic in the case of 2P microscopy. As a result, only
fluorophores within the focal volume of the excitation light
cone are activated. Second, the energy of multiple photons
must combine to excite the fluorophore, meaning that lower
energy (and thus, less scattering) excitation photons may be used
(Denk et al., 1990).

Traditional 2P systems are limited in acquisition speed by the
galvanometer mirrors, which give rise to low frame rate (up to
15 Hz at 512 × 512 frame size), but full flexibility of arbitrary scan
geometries within a two-dimensional plane. Such geometric pat-
terns can be extended into three dimensions by controlling axial
motion with a piezoelectric focusing element, allowing fast, sin-
gle line scans within this space (Göbel et al., 2007). Alternatively,
resonant laser scan mirrors enable very fast scanning of high reso-
lution full field frames (512 × 512 pixels) at 30 fps or higher with
8 kHz scanners (Denk et al., 1990; Helmchen and Denk, 2005;
Kerr and Denk, 2008). However, arbitrary scan patterns cannot be
accommodated with a resonant mirror.

Imaging depths of ∼500 μm using GINAs have been achieved
routinely in 2P imaging while maintaining excellent spatial

resolution in intact mammalian preparations (Helmchen and
Denk, 2005). This depth has been increased through the use
of adaptive optics, regenerative amplifiers (Theer et al., 2003;
Mittmann et al., 2011) and three photon microscopy (Ouzounov
et al., 2014) to ∼1000 μm, though the imaging depth can be
increased up to ∼1600 μm using small molecule dyes (Kobat et al.,
2011). Greater depths can be achieved by using a fiber optic light
path in conjunction with a piezoelectric driven actuator for raster
scanning through the fiber (Helmchen et al., 2001; Flusberg et al.,
2005; Sawinski et al., 2009). The relatively slow speed of image
acquisition can be addressed through random access scanning
of small regions of the volume of a cell or field of cells using
acousto-optic devices to control the excitation scan path (Grewe
et al., 2010; Katona et al., 2012; Fernández-Alfonso et al., 2014).
Alternatively, multiple excitation beams can be multiplexed for
near- simultaneous imaging of different spatial patterns (Cheng
et al., 2011).

Widefield illumination with multi-photon techniques can be
achieved through the use of spatial light patterning techniques
such as spatial light modulation (Nikolenko et al., 2008) and
the generalized phase contrast method (Palima and Gluckstad,
2008) as well temporal focusing (Oron and Silberberg, 2005;
Papagiakoumou et al., 2010). When employed in conjunction,
such techniques allow simultaneous excitation of large, 3D vol-
umes. The resultant emission patterns can then be interrogated
through a typical widefield microscopic detection apparatus
(Papagiakoumou et al., 2010).

As imaging technologies such as these become more developed
and widespread, GINAs will become ever more useful. Micro-
scopes which are mountable to an unrestrained animal will allow
recordings from animals in more ethologically relevant states.
Technologies that produce faster frame rates in 2P imaging will
allow denser sampling of neurons within a single recording epoch
with current GECIs. These technologies will further be indis-
pensable for constructing accurate recordings of future GEVIs
expressed in mammalian systems.

ACQUISITION OF MICROSCOPIC IMAGES
Due to its propensity to scatter light, the skull presents a signif-
icant barrier to imaging an intact brain. However, it also serves
to dampen pulsations arising from the movement of blood and
cerebrospinal fluid through cerebral tissue. As a result, simply
removing the cranium above the imaged region is not a common
practice in modern GINA imaging. Typically, the skull’s impact
on image quality is reduced by either thinning the skull above the
imaged region(s) (Grutzendler et al., 2002) or by inserting a glass
cover slip above a craniotomy (Holtmaat et al., 2009). Both meth-
ods stabilize cellular position within brain tissue while allowing
high-quality optical access.

Motion artifacts can further complicate imaging acquisition in
living animals. Multiple approaches have been devised to reduce
motion artifacts, including mechanical changes to the imaged
tissue, animal restraint, and online and post hoc computational
processing for maintaining image stability.

For 2P imaging, head fixation techniques to maintain the
animal’s position have been used in monkeys (Wurtz, 1968),
flies (Dahmen, 1980), and rodents (Komisaruk, 1970). Head
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and body restraint allow stable imaging while both stimulus
and behavioral response parameters can be tightly controlled.
This, in turn, eases the task of quantifying neural activity with
respect to these variables (Akemann et al., 2010; Andermann et al.,
2010; Huber et al., 2012; Petreanu et al., 2012). Head restraint
can be used in conjunction with a spherical (Dombeck et al.,
2007) or linear (Marvin et al., 2013) treadmill, which allows
the addition of assays which require locomotion on the part
of the animal. Animals restrained in this manner can then be
presented with passive stimuli (Niell and Stryker, 2010) or vir-
tual sensory environments in which they can exert control over
the stimulus via movement of the treadmill (Dombeck et al.,
2010).

The microscope objective itself can also be stabilized relative
to the imaged specimen via closed-loop designs whereby move-
ment of the animal results in registered movement of the relevant
optics. These systems function by detecting and correcting for
motion in the axial direction based on general movement of tissue
(e.g., Laffray et al., 2011) or by modeling and avoiding (Paukert
and Bergles, 2012) or counteracting (Chen et al., 2013a) move-
ment due to specific motion artifacts relevant to the experimental
settings.

In addition, a number of algorithms have been developed
for motion correction. These algorithms function by appropri-
ately reshaping images in a time series such that consecutive
frames are aligned. Algorithms developed for this purpose are
based on Hidden Markov Models (Dombeck et al., 2010), cross-
correlation based registration (Guizar-Sicairos et al., 2008), or
gradient-descent based minimization of image differences (Green-
berg and Kerr, 2009). Besides computational approaches, FRET
sensors or single FP sensors expressed along with a reference FP
can be used to cancel the effects of motion artifact.

IMAGE PROCESSING
Image processing is a necessary step, as signals must be assigned to
specific cells or subcellular compartments and described accord-
ing to their content. A large array of approaches for analyzing
and visualizing GINA data has been developed. One of the first
questions addressed using such methods was image segmenta-
tion (i.e., what parts of the imaged field contain responsive
elements) and spike or event detection (i.e., when does the flu-
orescence contained within these elements change significantly
from baseline). Such approaches reduce variability and bias intro-
duced to analysis by methods such as hand drawing of regions
of interest (ROIs). Early algorithms developed for spike detec-
tion were based on simple thresholding of the �F/F signal
[i.e., (F − F0)/F0 where F is the moment by moment spa-
tially averaged fluorescence data and F0 is typically defined as
a time-averaged, background subtracted baseline fluorescence
value] where event detection was triggered by this signal pass-
ing above the threshold (e.g., Mao et al., 2001). Later efforts
have employed linear deconvolution (Yaksi and Friedrich, 2006;
Holekamp, 2008; Vogelstein et al., 2010) or subtraction (Seelig
et al., 2010) to detect occurrence of spiking events. These algo-
rithms perform well in systems in which probe response is
linear to the input signal. Other methods have used pixel-
wise correlation in the fluorescence signal (Ozden et al., 2008),

principle components analysis followed by independent compo-
nents analysis (Mukamel et al., 2009), Monte Carlo spike detection
(Vogelstein et al., 2009), and supervised learning algorithms
(Valmianski et al., 2010).

As the size of imaging datasets grows ever larger, it becomes
increasingly critical to extract salient features within and across
populations of cells expressing GINAs, especially correlating the
activity of cells to the behavioral output of an animal. Such
approaches can correlate the activity of single cells to behav-
ioral data by simple coincidence (Seelig et al., 2010), regres-
sion (Miri et al., 2011), or machine-learning based classification
schemes (Huber et al., 2012; Petreanu et al., 2012). Addition-
ally, dynamics of entire cell populations can be visualized in low
dimensional space by methods based on factor analysis of the
dataset (Harvey et al., 2012). Recently, many of the most suc-
cessful approaches examined above have been integrated into a
suite of open source tools optimized for the analysis of large
datasets termed “THUNDER” (Freeman et al., 2014) which can
be accessed at http://thefreemanlab.com/thunder/. Taken together,
the computational approaches for imaging analysis and visualiza-
tion represent an indispensable set of tools for interpreting the
vast quantities of data acquired in the course of GINA-enabled
experiments.

RECENT FINDINGS THROUGH GINA TECHNOLOGIES
Genetically encoded indicators of neural activity attributes—
particularly genetic specificity and long-term expression—make
them excellent tools for circuit interrogation at multiple spa-
tial and temporal scales. They have thus been used in recent
years to make fundamental contributions to our understand-
ing of brain function. In addition, several GINA classes have
made important strides toward becoming standard tools for var-
ious applications in the study of mammalian neural circuitry in
vivo.

TOPOGRAPHICAL REPRESENTATIONS
Topographical maps are systematic variations in the spatial lay-
out of the response properties of a brain region which reflects the
organization of a stimulus space (Hubel and Wiesel, 1959; Felle-
man and Van Essen, 1991). While electrophysiological techniques
have generally been used to develop mesoscopic-scale [order of
100 μm (Knöpfel, 2012)] mappings of brain regions, the applica-
tion of GINAs in topographic mapping provides single cell spatial
resolution. In addition, GINAs make it straightforward to rapidly
transition between spatial scales, acquiring data from the cellular
or population level or anywhere in between by simply changing
image magnification.

The activity of genetically specified elements of a neural circuit
can be recorded using GINAs. Topographical mapping of odorant
to region of the rodent olfactory bulb has been described using
GINAs transgenic animals (e.g., Hasan et al., 2004) or by intrin-
sic optical signals. Indeed, both techniques report a systematic
olfactory map of homologous aliphatic compounds of increas-
ing length (Johnson et al., 1999; Meister and Bonhoeffer, 2001;
Fletcher et al., 2009). Only imaging studies with GINA, however,
were able to leveraged the genetic specificity of GINAs to dis-
cern that the aliphatic odorant map is formed de novo within the
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postsynaptic circuitry of the olfactory bulb (Bozza et al., 2004;
Fletcher et al., 2009).

One of the most powerful aspects of GINAs in studying topo-
graphical maps is the ability to allow for imaging cellular activity
at spatial scales ranging from subcellular to millimeter, providing
researcher to inspect the proverbial forest, individual trees, or both,
all while maintaining awareness of current location. For example,
a conspicuous lack of correlation between CA1 place cell location
and the space they encoded has been demonstrated through cellu-
lar resolution imaging of virally driven GCaMP3 (Dombeck et al.,
2010). In another recent study, optical recording auditory cor-
tex at different spatial scales has resolved coarse and then cellular
scale cortical activity in response to different tones. These results
support the existence of a tonotopic axis along primary auditory
cortex whose strength had been called into questions by previous
studies (Issa et al., 2014).

FUNCTIONAL ORGANIZATION OF NEURAL CIRCUITRY
Local circuits within different cortical regions receive inputs from
multiple distant brain regions. These inputs impact ongoing com-
putations within, and thus the output from, local circuitry. In
terms of input, a critical question is: what information is conveyed
from distal brain regions to the local area? Several recent studies
employed GECIs to record calcium transients in distal boutons
of, for example cortico-cortical (Petreanu et al., 2012) and medial
septal nucleus-hippocampal axons (Kaifosh et al., 2013) to address
this question. Such studies have allowed unprecedented access
to communication from one brain region to another with both
cellular and genetic resolution.

Genetically encoded calcium indicators have also been used
in addressing whether response properties of local cells within
a region are a function of inputs received from hierarchi-
cally lower brain regions, or if those properties arise from
local circuit interactions. For example, Glickfeld et al. (2013)
demonstrated that the response properties of boutons pro-
jected from primary visual cortex in mouse to higher visual
areas matched the response properties of cells within each
region. This finding stands in contrast to the results from
Fletcher et al. (2009) who demonstrated a de novo map of
olfactory space that arises through local circuit interaction. In
each case, GINAs were useful in disambiguating the degree
to which local circuit computations result in new response
properties.

Taken together, these studies point to the ways in which GINAs
aid decoding of communication between brain regions, espe-
cially, revealing what message is sent between regions and how
that message influences processing within the target structure.
As probes of multiple colors become available for in vivo use, it
will become possible to address such questions within a single
experiment.

STABILITY AND PLASTICITY OF NEURAL CIRCUITRY
Neural circuitry is constantly reorganized structurally and func-
tionally in response to experience and other influences on sensory
input. Much effort has been dedicated in recent decades to deter-
mining under what conditions neural responses to a stimulus
remain stable over time (Gerrow and Triller, 2010).

Genetically encoded indicators of neural activity are particu-
larly well suited to the study of how neural responses to stimuli
change over time. Because these probes express at roughly con-
stant levels for periods as long as months, identified cells from a
single organism can be repeatedly imaged over a long period of
time (Mank et al., 2008; Tian et al., 2009; Kuhn et al., 2012; Mar-
golis et al., 2012). As an example, Mank et al. (2008) showed that
layer 2/3 cells in primary visual cortex of mice expressing TN-XXL
exhibit stable tuning to orientation when imaged over the course
of weeks. Another study, in contrast, found that at a cellular level,
hippocampal place cell response to place fields is highly variable
over a similar period of time. Despite the fact that most cells did
not retain consistent mapping with respect to the place fields, at
the population level an accurate spatial map was preserved (Ziv
et al., 2013).

Genetically encoded calcium indicators has also been used to
probe the dynamic changes of neural ensembles in response to
learning. For example, it was found that as mice were trained to
perform a sensorimotor task, preferred stimuli of individual L2/3
neurons expressing GCaMPs in vibrissal motor cortex shifted over
time. At the population level, however, activity became increas-
ingly stereotyped and time-locked to the stimulus and motor
outputs (Huber et al., 2012). These results suggest that L2/3 neu-
rons in mice motor cortex integrate sensory input to task-related
motor programs.

Finally, sensory deprivation has been shown to result in a rapid
rescaling of synaptic weights that act to preserve mean levels of
neuronal activity around a homeostatically regulated set point via
in vivo calcium imaging using GCaMPs.(Turrigiano et al., 1998;
Bishop and Zito, 2013). In this study the activity of L2/3 and L5
neurons expressing GCAMP3/5 in primary visual cortex of mice
was monitored. It was shown that bilateral retinal lesion resulted
in a rapid decrease in population activity, followed by recovery to
baseline activity levels over the course of the next 24 h (Bishop and
Zito, 2013).

FUTURE PERSPECTIVES
In this review, we have presented a broad overview of the history,
current use, and future prospects for the use of GINAs in imaging
neural activity in the intact mammalian brain. Through itera-
tive optimization, GINAs—and particularly GECIs—have come
to represent an important tool set for systems neuroscientists.

Despite these gains, the power of GINAs in different exper-
imental approaches remains to be fully realized. Of particular
importance, optimizing GEVIs to the point that they are widely
applicable for in vivo imaging is an active area of protein engi-
neering research. Synaptic transmission is another rich area of
research that can be better accessed optically through develop-
ing novel GINAs that permit probing neurotransmitters, neu-
ropeptides and neuromodulators at the single neuron level as
well as at circuit level. For all GINA classes, further develop-
ment and optimization of color-shifted variants will enhance
options for multiplexing optical genetic tools within a single
experiment.

The lessons learned and disciplined methods used in optimiz-
ing GECIs can be easily adapted for optimizing properties of other
GINA classes. As these goals are achieved in the coming years,
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expect further fundamental contributions to our understanding
of brain function to be derived through the use of GINAs in awake,
behaving mammals.
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