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ABSTRACT OF THE DISSERTATION

Single neuron modeling and data assimilation in BNST neurons

by

Reza Farsian

Doctor of Philosophy in Physics with Specialization in Computational Science

University of California, San Diego, 2013

Professor Henry D. I. Abarbanel, Chair

Neurons, although tiny in size, are vastly complicated systems, which are

responsible for the most basic yet essential functions of any nervous system. Even

the most simple models of single neurons are usually high dimensional, nonlin-

ear, and contain many parameters and states which are unobservable in a typical

neurophysiological experiment. One of the most fundamental problems in exper-

imental neurophysiology is the estimation of these parameters and states, since

knowing their values is essential in identification, model construction, and forward

prediction of biological neurons.

Common methods of parameter and state estimation do not perform well

for neural models due to their high dimensionality and nonlinearity. In this disser-

tation, two alternative approaches for parameters and state estimation of biological

xv



neurons have been demonstrated: dynamical parameter estimation (DPE) and a

Markov Chain Monte Carlo (MCMC) method. The first method uses elements

of chaos control and synchronization theory for parameter and state estimation.

MCMC is a statistical approach which uses a path integral formulation to evaluate

a mean and an error bound for these unobserved parameters and states.

These methods have been applied to biological system of neurons in Bed

Nucleus of Stria Termialis neurons (BNST) of rats. State and parameters of neu-

rons in both systems were estimated, and their value were used for recreating a

realistic model and predicting the behavior of the neurons successfully. The knowl-

edge of biological parameters can ultimately provide a better understanding of the

internal dynamics of a neuron in order to build robust models of neuron networks.
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Chapter 1

Preface

One of the most fundamental problems in experimental neurophysiology is

the identification of different ion channels and their dynamics in a neuron. In a

typical single neuron experiment, membrane potential and injected current can

be observed, but the amount of different ionic currents and their specific parame-

ters is usually not measurable. The identification of these hidden parameters and

states has been traditionally done by performing current clamp experiments. This

method uses step currents of various magnitudes to depolarize and hyperpolarize

neurons and record their membrane potential. This data is analyzed by naked

eye and only an experienced neurophysiologist would be able to identify the signa-

ture of various currents. An alternative approach uses pharmacological blockers to

deactivate specific channels, and provides information about the remaining ones.

The main disadvantage of this method is the unknown effect these blockers can

have on the dynamics of the cell. In both methods, it is not possible to measure

the amount of currents present, or identify hidden parameters or states.

The main purpose of my dissertation research has been to develop quan-

titative methods of parameters and states estimation in neural systems. Most of

my research has been done in direct collaboration with an experimental groups

University of California, San Diego. This lab works on Bed Nucleus of Stria Ter-

mialis (BNST) of rats. These neurons are a part of the extended amygdala and

play an important role in the regulation of stress and reward related behavior. The

neurons from BNST are categorized into three types. I have mainly analyzed type

1
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II and III neurons for their consistent behavior.

We have developed two methods to solve the above problem, namely, dy-

namical parameter estimation (DPE) method and a Markov Chain Monte Carlo

(MCMC) approach. The first method uses elements of chaos control theory for

estimation of parameters and states. The conventional approaches of parameter

and state estimation, such as least square optimization, fail in a nonlinear regime

due to embedded instabilities in the search space. DPE, however, can handle non-

linear systems by coupling data to the model of such systems (Chapter 3). This

method also uses a new cost function designed to guarantee that the coupling to

the model does not override the mathematical form of the equations of motion.

To ensure the robustness of DPE, we used lower dimensional chaotic and

nonlinear systems such as Lorenz and Colpitts oscillator as test examples. In a

chaotic system, the number of observables needs to be at least equal to the number

of positive Lyaponov exponents for the estimation procedure to work. There is only

one positive Lyaponov exponent in both Lorenz and Colpitts models, hence, one

observable is sufficient for a successful estimation. Using these models, data was

synthetically generated and one of the states was picked as the “observable”. The

time series from this state was treated as “data” for the estimation method. This

procedure is also known as a twin experiment. After DPE successfully reproduced

all parameters and hidden states of these systems, we shifted our focus on twin

experiments of neuron models (Chapter 4).

I worked directly with each experimental group to taylor realistic biophysi-

cal models for specific neuron types, and used these models to estimate the hidden

parameter and states. In each case, the model and its estimated parameters were

used to predict the behavior of the neuron outside of the estimation window. This

led to several successful predictions of neurons’ membrane potential (Chapter 5).

Although the analysis of neural data using DPE has generated outstanding

results, this method has two main disadvantages. It does not incorporate model

error, and the final results of estimation have no error bounds on them. In order

to avoid these problems, we have incorporated statistical methods of parameters

and state estimation using various MCMC methods. These methods are used for



3

integration of a path integral defined for each model. The action of this path

integral is small when the estimated states and measurements are close, and these

states follow the given dynamics within a defined bound. Due to statistical nature

of the MCMC method, the convergence is not as fast as DPE.



Chapter 2

Biophysical Models of Single

Neuron

2.1 Inrtoduction

Neurons dynamic, just as any other biological system, are highly complex.

Several models describe the function of neurons and generation of action potential

and sub-threshold behavior. In this chapter, our main focus is on single compart-

mental models of neurons. Different conductance based models are introduced,

and a standardized form is introduced which will be used throughout our studies

of neurons.

2.1.1 Cell Membrane and Ions

Like other biological cells, neurons have a lipid bilayer which allows differ-

ent concentration of ions inside and outside of the cell. The plasma membrane

is selectively permeable to specific ions such as Na+, K+, Cl−, and Ca2+. The

concentration difference of the ions inside and outside of the cell determines neu-

ron’s membrane potential, which is responsible for electric properties of the neuron.

Na+, Cl−, and Ca2+ ions have a greater concentration outside the cell, and K+

ions has a greater concentration inside the cell. These ionic concentrations are,

however, subject to change due to the movement of these charged particles. The

4
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inflow and outflow of ions is regulated via pore-forming proteins better known as

ionic channels. When the cell membrane is sitting at a specific voltage ions will

flow in and out until the cell reaches equilibrium potential (See section 2.1.3). If

the neuron stays at this the extracellular and intracellular concentrations of ions

remains unchanged. As the membrane potential deviates from equilibrium, how-

ever, the membrane’s permeability to ions will also change, hence, currents of ions

start flowing in and out of the cell until equilibrium is reached again.

Consider K+ ions around an open ion channel that allows them to freely

move in and out of the neuron. Due to diffusion, ions will be flowing down the

concentration gradient, therefore, K+ ions will be flowing outside of the cell. As

these charged particles accumulate outside of the cell, the arriving ions have to

face more positive ions, therefore, the outward flow of K+ ions will slow down.

Eventually, the current of ions will cease and the neuron’s membrane will be at a

new potential.

2.1.2 Nernst Potential

The two main forces which move ions across membrane are the difference

in ionic concentration and electric potential across the membrane If we define the

flux of ions diffusing from the high concentrate side of the membrane to the low

concentration side as Jdiff , and the flux of ions drifting from one side to the other

due the electric potential difference as Jdiff , then the total flux J can be written

as:

J = Jdrift + Jdiff (2.1)

The above equation can be rewriting as total current I:

I = −
(
uZ2F [C]

∂V

∂x
+ uZRT

∂[C]

∂x

)
(2.2)

where u is µ/NA molar mobility, µ is mobility, Z is the valence of the ion, [C] is ionic

concentration, R is the gas constant, F is Faraday’s constant, NA is Avogadro’s
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number, and I is surface current density. Equation (2.2) is also known as Nernst-

Plank equation.

When the forces resulting from ionic concentration difference and electric

potential difference are equal and in opposite directions, the total current of an

ion type would be zero. When this equilibrium state is reached, the membrane

potential of the neuron is equal to Nernst potential of a specific ion type. In the

case of potassium ions, Nernst potential of K+ is given by the following equation:

EK =
RT

ZF
ln

[
[K+]o
[K+]i

]
(2.3)

EK is also known as the reversal potential of K+ ions. The value of Nernst

potential depends valence of the ion and the intracellular and extracellular con-

centration, therefore, each ion has a specific reversal potential. Note that this is

not independent of neuron type, since the concentrations of ions are different for

different neurons. A list of typical extracellular and intracellular concentration of

ions and their reversal potentials are given in table (2.1).

Table 2.1: List of concentration and reversal potential of some ions

Extracellular Intracellular Reversal
Ion Concentration Concentration Potential

(mM) (mM) (at 36◦C) (mV )
K+ 5 to 20 140 to 400 -150 to -80
Na+ 145 to 460 5 to 50 +50 to +90
Ca2+ 1 to 2 1 to 2 ×10−4 +110 to +130
Cl− 110 to 540 4 to 100 -90 to -40

2.1.3 Equilibrium Potential

In a realistic representation of a neuron, several ionic channels exist which

allow different types of ions to enter and exit the cell. This creates a more compli-

cated picture than what we described in the case of a single ion channel in previous

section. The overall potential of a neuron depends on all ionic channels, the con-

centration of ions inside and outside of the cell, and the ionic currents. If the
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ions are allowed to flow freely, after a long enough time, the ionic currents would

be zero and the neuron would be at equilibrium potential or resting potential Vr.

Given the concentration of ions across the cell membrane, the value of Vr is given

by Goladman-Hodgkin-Kats (GHK) equation:

Vr =
RT

ZF
ln

[∑
x Px[x]o∑
x Px[x]i

]
(2.4)

where Px is the permeability of the ion x. For example, in the presence of Na+,

K+, and Cl− ions, the neuron will have a resting membrane potential given by the

following equation.

Vr =
RT

ZF
ln

[
PK[K+]o + PNa[Na+]o + PCl[Cl−]i
PK[K+]i + PNa[Na+]i + PCl[Cl−]o

]
(2.5)

In a typical neuron, the resting membrane potential can be anywhere be-

tween -80 to -60 mV .

2.2 Model of Ion Channels

The presence of long protein in the neuron membrane make it permeable to

specific ions as described in section 2.1.1 Ion channels are selectively allow one or

more types of ions to freely move through their water-filled pores. These channels

are sensitive to electric potential of the membrane and their permeability changes

with voltage.

To simplify the modeling of ion channels, we assume that a channel can

either be in open stateO, or closed state C. At any given time, there is a probability

associated with each of these states. Depending on these probabilities, an ensemble

of channels will have some fraction of it in open state and the rest in closed state.

Individual channels, however, go from open state to closed and vice versa with

some transition rate. We define these two transition rates as α to go from closed

to open state, and β to go from open to closed state.

C
α

�
β
O
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2.2.1 Transition Rates

A free energy is associated with transition between open and closed states.

(Figure 2.1) The shape of this free energy is usually a function of membrane po-

tential and has a complicated form. Transition rates, α and β, are proportional to

an exponential functions of the free energy barrier’s amplitude based on the theory

of reaction rates.

α(V ) ∝ exp [−∆Gα(V )/RT ]

β(V ) ∝ exp [−∆Gβ(V )/RT ] (2.6)

where ∆Gα and ∆Gβ are the height of free energy barrier going from closed to open

state and open to closed state respectively. Free energy G is usually a complicated

function of membrane voltage, therefore, ∆G is not easily determined. We can use

a Taylor expansion of this function around voltage V to approximate the shape of

∆G:

∆G(V ) = c0 + c1V + c2V
2 +O(V 3) (2.7)

where c0, c1, c2, . . . are constants. Using this equation along with the expression

for α we have:

α(V ) = exp
[
−(c0 + c1V + c2V

2 +O(V 3))/RT
]

(2.8)

Here we will keep only the linear terms and drop out all other terms in the

above expansions. Therefore, we can re-write the transition rates.

α(V ) = a0e
−a1V

β(V ) = b0e
−b1V (2.9)

where a0, a1, b0, and b1 are new constants, and both α and β are functions of

membrane voltage. Constants a0 and b0 are independent of membrane voltage and

are equal to each other when in the absence of membrane potential. The constants
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∆G0

∆Gβ

∆Gα
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α

β

Vin

Vout
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α

β
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Potential

Difference

A B

Figure 2.1: Free energy

inside the exponential function, however, do depend on the voltage. a1 and b1

are equal when the potential difference across the membrane is zero, hence, the

opening rate α is identical to the closing rate β. Defining the height of the energy

barrier in the absence of membrane potential as ∆G0, we have:

α(V ) = k0e
−∆G0(V )/RT

β(V ) = k0e
−∆G0(V )/RT (2.10)

where both a0 and b0 are defined as k0 here.

When a potential difference is applied across the membrane, there is a shift

in free energy barrier height, which makes transition rates asymmetric. Figure

(2.1) represents how the presence of voltage membrane affects the free energy.

Equation (2.10) transforms to:

α(V ) = k0e
−(∆Gα(V )/RT )

β(V ) = k0e
−(∆Gβ(V )/RT ) (2.11)
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Voltage

α(V )

β(V )

Figure 2.2: Opening and closing transition rate α(V ) and β(V )

2.2.2 Gating Variables

All of the above can be applied to any single channel; however, if we consider

an ensemble of similar channels the same transition rates can be used. Here we

define m as the ratio of channels which are open.

m =
[O]

[C] + [O]
(2.12)

where [O] denotes the number of open channels and [C] denotes the number of

closed ones. m is often referred to as gating variable of a channel.

At any given time t, the fraction of channels which are open is m(t), and

since there are only two possible states, the fraction of closed channels are (1 −
m(t)). The open channels are going from open to closed state at a transition rate

β(V ), and the closed channels are going from closed to open state at a rate α(V ).

Therefore, the rate at which m(t) is changing over time is the fraction of channels

going from closed to open minus the closed channels which are opening. This time

evolution can be mathematically represented as an ordinary differential equation

for the gating variable m(t):

dm

dt
= α(V ) · (1−m)− β(v) ·m (2.13)
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An alternative way to interpret gating variable m is to take is as a proba-

bility of a single channel being open or closed. m is a function of voltage and time,

where the voltage dependence is imbedded in opening and closing transition rates

α(V ) and β(V ). Depending on the parameters a1 and b1 in equation (2.9), α(V )

and β(V ) may increase or decrease as a higher value of voltage. a1 and b1 always

have opposite signs meaning as α(V ) increases β(V ) will decrease or vice versa.

Gating variables can be categorized into two groups activating and inac-

tivating gating variables. A gating variable is activating if its opening rate α(V )

increases with voltage, meaning at higher voltages a channel is more probable to

be open. In contrast, in an inactivating gating variable α(V ) decreases as voltage

increases, hence, the channel has a higher probability of being closed at higher

voltage values. Traditionally, activating gating variables are represented by m,

and deactivating gating variables are represented by h. A Channel can have one

of both of these gating variables. (See section 2.5)

2.2.3 Steady State and Time Constant

When a neuron is kept at a constant voltage, after a long enough time m

will reach a steady state, denoted as m∞. Using equation (2.13), and the fact that

at steady state the change in m is zero (dm/dt = 0), we have:

m∞ =
α(V )

α(V ) + β(V )
(2.14)

This equation can be re-written:

dm

dt
=

[
α

α + β
−m

]
· (α + β) (2.15)

The first term in the bracket is equal to m∞, and the inverse of the last term,

(α + β), has dimensions of time. 1/(α + β) is defined as the activating time

constant of gating variable m, and is denoted as τm. The time evolution of m in

equation (2.13) can be rewritten in terms of m∞ and τm.

dm(t)

dt
=
m∞(V )−m(t)

τm(V )
(2.16)
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Figure 2.3: Typical shape and range of steady states of activating and inactivating

gates m (blue) and h (green)

where,

τm(V ) =
1

α(V ) + β(V )
(2.17)

Note that both m∞ and τm are functions of membrane voltage. Steady state and

time constant of m can be re-written using the exponential form of transition rates

from equation (2.9).

m∞(V ) =
1

1 + exp[−(V − v0)/k0]
(2.18)

τm(V ) =
1

exp[−(V − v1)/k1] + exp[−(V − v2)/k2]
(2.19)

with vi and ki where i = 0, 1, 2 as new parameters. The steady state of a gating

variable has the shape of a sigmoidal function given by equation (2.18). Time

constant is a measure of how quickly a gating variable responds to a change in

voltage. The functional form of τm is usually bell-shaped.
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For activating gating variables m, the value of m∞ at high values of V is

either close or equal to one. At low voltage values, the steady state is near zero

at lower voltage. Inactivating gating variables h respond in the exact opposite

way to voltage change as expected. Figure (2.3) shows steady states of a typical

activating and inactivating gating variables.

12

2.3 Hodgkin-Huxley Model

Main neuron features such as spike generation and sub-threshold behavior

can can be modeled using simple electrical elements such as resistors and capac-

itors. Although the resistive behavior of the membrane is not ohmic, in cases

where the intracellular and extracellular concentrations of a type of ion are not

dramatically different, the cell’s membrane can be assumed to operate as a linear

resistor. The presence of ions and potential difference across the cell membrane

can be represented as cell capacitance Cm. The flow of these charged particles

across the membrane is regulated by ion channels which are permeable to specific

kind of ions. The activity of these ion channels can be represented as an electrical

resistor and can be represented mathematically as following:

Iion = gion(V − Eion) (2.20)

The dynamics of these currents depend on the type of channel and its kinetic

as described in section 2.2.

2.3.1 Electrical Circuit Model of a Neuron

Figure (2.4) represents a simple circuit model of an idealized point neuron

including three different currents and a cell capacitance. Capacitance Cm and leak

current IL describe the passive behavior of a neuron, and are responsible for sub-

threshold of a neuron. Sodium and potassium currents, INa and IK, are required

for action potential generation.
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Figure 2.4: Representation of Hodjkin-Huxley model as an electrical circuit

In the definition of membrane voltage, the extracellular environment is

treated as ground.

V = Vin − Vout (2.21)

We can use Kirchhoff’s voltage law to find INa in terms of sodium con-

ductance and reversal potential. Starting from inside the cell where the potential

is defined to be V . This potential drops by Nernst potential of Na+ ions and

conductance of sodium channel.

INa = gNa(V − ENa) (2.22)

The above equation is only true when the direction of current is defined

outward. Changing this direction will obviously introduce a negative to the right-

hand side of this formula. A similar formula can be written for potassium and

leak currents, IL and IK. The change of membrane voltage introduces another

current proportional to the membrane capacitance Cm. Adding up all these cur-

rents according to Kirchhoff’s current law, we get an expression which described

the evolution of membrane potential over time.
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Cm
dV

dt
= − gNa(V − ENa)︸ ︷︷ ︸

INa

− gK(V − EK)︸ ︷︷ ︸
IK

− gL(V − EL)︸ ︷︷ ︸
IL

(2.23)

Here, Cm is the membrane capacitance, and its value is close to 1.0 with

units of µF/cm2. gNa, gK and gL are conductances in mS/cm2. Reversal potentials

ENa, EK, and EL represent the equilibrium potentials for Na+, K+ and leak currents

and have units of mV . The units of time are ms over which the voltage is changing.

Na and K Currents and Gating Variables

Sodium and potassium ion conductances, gNa and gK, are not constants.

This is a representative of the voltage gated nature of these currents. Ion conduc-

tance can be represented using the following general form:

gion(V ) = ḡionm
a(V )hb(V ) (2.24)

where ḡion is the maximal conductance, m and h are activating and deactivating

gating variables, and a and b are the corresponding powers of those gating variables.

The gating variables follow similar dynamics described in section 2.2. The

equation of motion for a gating variable X(t) is:

dX(t)

dt
=
X∞ −X(t)

τX

where X(t) is the probability of a channel being open at time t. X∞ and τX are

commonly functions of membrane voltage. Given this formalism, the potassium

and sodium ion currents can be written as:

INa = ḡNam
3h(ENa − V ) (2.25)

IK = ḡKn
4(EK − V ) (2.26)

Here ḡNa and ḡK are maximal conductances, m and n are activating gating variables

for sodium and potassium channels respectively, and h is the only deactivating

gating variable which is present in sodium channel. m3h term can be interpreted as

3 activating gates present versus one deactivating gate in a sodium channel. Same
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interpretation is valid for n4 term in potassium current equation. The equation of

motion of these three gating variables are of general form described above.

dm

dt
=

m∞(V )−m
τm(V )

(2.27)

dh

dt
=

h∞(V )− h
τh(V )

(2.28)

dn

dt
=

n∞(V )− h
τn(V )

(2.29)

These equations together with equation (2.23) are referred to as Hodgkin-Huxley

model. Kinetics of steady states and time constant have similar forms to that of

equations (2.18) and (2.19).

Alternatively, the dynamical equations of m, h, and n can be written in

terms of opening and closing transition rates, α and β. The three differential

equations follow the general form introduced in equation (2.13).

dm

dt
= αm(V )(1−m)− βm(V ) ·m

dh

dt
= αh(V )(1− h)− βh(V ) · h

dn

dt
= αn(V )(1− n)− βn(V ) · n (2.30)

This is the formalism adopted by Hodgkin and Huxley in their original paper of

1952. Section 2.3.2 provides a detailed discussion of this model.

Passive Properties

In the absence of sodium and potassium currents, the neuron behaves as a

simple RC circuit and equation (2.23) will reduce to:

Cm
dV

dt
= gL(EL − V ) (2.31)

This equation represents a battery (EL) and resistor in series connected to

a capacitor (Cm) in parallel. Leak current represents the pore channels that are

always open and are responsible for constant leakage of ions across the membrane.
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The passive flux of ions through different ion leak channels is represented as one

leak channel. Cell’s permeability to each ion can be represented as a constant leak

conductance for that ion. If g∗ion represents the conductance of a specific ions leak

channel, the reversal potential of the combined leak channel EL can be written as:

EL =

∑
ion g

∗
ionEion∑

ion g
∗
ion

(2.32)

This is equivalent to resting potential of a neuron described by Goladman-

Hodgkin-Kats equation (2.4). The total conductance of a leak channel is equal to

sum of all present leak channels, gL =
∑

ion gion. The permeability of the membrane

to specific ion is an intrinsic property of the neuron, hence, both gL and EL are

constant and independent of membrane voltage.

Injected Current

In addition to the intrinsic leak and ionic currents of a neuron, an external

current can be injected into a cell. This current is usually referred to as injected

current, Iinj, and can be added to equation (2.23).

Cm
dV

dt
= gNa(ENa − V ) + gK(EK − V ) + gL(EL − V ) + Iinj (2.33)

In the absence of Iinj, neuron’s potential will eventually reach its resting

value Vr. Injected current is a driving force which can bring a neuron to different

voltage regions. The response of a neuron to various types of injected currents

facilitates characterization of a neuron. If a constant injected current is applied

the resting potential will change to:

Vr =
gNaENa + gKEK + gLEL + Iinj

gNa + gK + gL

(2.34)

A positive current will result in a higher resting potential Vr, in this case

the neuron has been depolarized On there other hand, a negative current will lower

Vr and hyperpolarizes the neuron.
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Input Resistance

Another intrinsic property of a neuron is the total resistance of the mem-

brane commonly referred to as membrane input resistance, Rinp. Given the total

area of the cell A in cm2, and conductance of the leak current gL in mS/cm2, Rinp

is equal to:

Rinp =
1

AgL

(2.35)

and has units of kΩ.

2.3.2 Original Hodgkin-Huxley Model

In this section, we will introduce the original Hodgkin-Huxley model with its

exact functional forms and parameter values. This model was was first published

by Hodgkin and Huxley in 1952. In their study, Hodgkin and Huxley used data

from giant squid axon, and constructed a phenomenological model based on their

observations. Their model had voltage and three gating particles as the state

variables described by the following equations:

dV

dt
=

1

Cm

[
− ḡNam

3h(V − ENa)− ḡKn
4(V − EK)− ḡL(V − EL)

]
dm

dt
= αm(V )(1−m)− βm(V ) ·m

dh

dt
= αh(V )(1− h)− βh(V ) · h

dn

dt
= αn(V )(1− n)− βn(V ) · n (2.36)

The evolution of gating variables m, h, and n are described in terms of transition

rates α and β here. The voltage dependence functional form these transition rates

are described in following equation set (2.37). All of the specific parameter values

in these equations are purely phenomenological and were estimated to match the

observed data.
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αm(V ) =
−0.1(V − 25)

exp[−(V − 25)/4]− 1
βm(V ) = 4 exp[−V/18]

αh(V ) = 0.07 exp[−V/20] βh(V ) =
1

1 + exp[−(V + 30)/10]

αn(V ) =
−0.01(V + 10)

exp[−(V + 10)/10]− 1
βn(V ) = 0.125 exp[−V/80] (2.37)

2.4 Constant Field Equation

Hodgkin-Huxley model is a sufficient model for ions whose intracellular

and extracellular concentrations are not dramatically different. This is usually the

case for ions such as Na+, K+, and Cl−. For Ca2+, however, the inside and outside

concentrations can be several orders of magnitude different. (See table 2.1). Under

these conditions, we cannot assume that the membrane acts as an ohmic resistor,

and a different formulation of ion currents is necessary. In this regime, current

equation (2.20) cannot properly represent the ion current. The ohmic current

equation is replaced with constant field equation:

Iion = P̄ionm
ahbG(V, [ion]o, [ion]i) (2.38)

where P̄ion is the maximum permeability of an ion. m and h are activating and

inactivating gating variables, respectively, a and b are the corresponding powers of

those gating variables. The gating variables follow similar dynamics as explained

in section 2.2. G is a function of membrane potential and ion concentrations inside

and outside the cell.

G(V, [ion]o, [ion]i) =
Z2F 2V

RT
× [ion]i − [ion]o exp(−ZFV/RT )

1− exp(−ZFV/RT )
(2.39)

where Z is the valence of the ion, [ion] is ionic concentration inside or outside the

neuron, R is the ideal gas constant, F is Faraday’s constant, and T is temperature.

Equation (2.38) and (2.39) are also known as Goldman-Hodgking-Katz (GHK)

equations. These equations are usually used when a more precise model of ion
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current is desired. Nernst equation (2.3) is an approximation to GHK equations

and is only used in cases where the ion concentrations are not considerably different

across the membrane.

In Hodgkin-Huxley model, the only state variables are voltage and gating

variables, and we have assumed that ionic concentrations inside and outside of the

cell are approximately constant over time. Ionic concentrations show up explicitly

in GHK models, and are introduced as new state variables. For ions such as

Ca2+, the extracellular does not change significantly over time. The intracellular

concentration of Ca2+ ions, however, changes due to calcium currents and active

transport of these ions.

2.5 Zoo of Ionic Channels

The main features of a neuron such as spiking and sub-threshold behavior

can be modeled using a simple Hodgkin-Huxley neuron. Kinetic parameters in

sodium and potassium currents, INa and IK, are responsible for spike generation,

shape, and height of the spike. Leak current, on the other hand, models the passive

behavior of the cell in sub-threshold regions. In our study of real neurons, however,

we had to add other currents in order to capture the real behavior of a neuron.

2.5.1 Na Currents

Two types of Na currents, transient sodium and persistent sodium currents,

exist in a large family of neurons. The main different between these two currents

are the activation time and their magnitude. Transient sodium current, |Na,T is a

fast current that inactivates within a few milliseconds. This current is present in

all neurons and is essential for spike generation. Persistent sodium current, INa,P ,

is a slower current which contributes to stead state firing.
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2.5.2 K Currents

Potassium currents are a large and diverse family of currents. The main

current which is essential in spike generation is delayed rectifier potassium current

IKDR. The activation time of this current is slower than INa,T , and is responsible

for depolarization of neuron’s membrane potential during an action potential.

Hyperpolarization-activated current, h current, is a special type of current

which activate with hyper polarization of a neuron. Features of this current can

be observed in sub-threshold region of voltage. This current is important in the

rhythmic generation of oscillation and the slow depolarization of cell.

2.5.3 Ca Currents

Calcium currents are present in almost all neurons. We have used two main

types of Ca currents, hight threshold Ca current IL and low-threshold Ca current

IT . High-threshold current IL is activated at -40 mV , in contrast, low-threshold

current IT is activated at around -65 mV .

2.5.4 Ca-activated channels

The activation of some channels are sedative to Ca2+ ions. This current is

activated by increase of intracellular concentration of Ca2+ ions.



Chapter 3

Parameter Estimation and

Synchronization

3.1 Introduction

One of the most important problems scientists face in dealing with complex

biological systems is identifying the hidden parameters and states of such systems.

Conventional methods of system verification fail in extremely nonlinear regimes.

In this chapter, we will discuss method methods that can be used for parameter

and state estimation of highly nonlinear and chaotic systems.

3.2 Parameter and State Estimation

A dynamical system can be described by a set of first order ordinary dif-

ferential equations (ODE) as shown in equation (3.1). The state variables of this

D dimensional dynamical system are represented by vector x = {x1, x2, . . . , xD},
and L parameters q are denoted by vector q = {q1, q2, . . . , qL}. F are the set of

functions which dictate the time evolution of state variables x, and can take any

mathematical form.

dx

dt
= F

(
x,p

)
(3.1)

22
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Parameter vector p, by definition, is a constant over time:

dp

dt
= 0 (3.2)

In a real experimental system, only a few of the state variables are observ-

able. Imagine only the first state variable, x1, is observable and we are interested

in finding the value of the unobserved state variables and parameters. We can

re-write the original equations in terms of the observable state x1, and all other

states which are unobservable, x⊥:

dx1

dt
= F1

(
x1,x⊥,p

)
dx⊥
dt

= F1

(
x1,x⊥,p

)
(3.3)

In the case of a Hodgkin-Huxley like model, x1 would be membrane voltage

which is directly measured in a lab experiment, and x⊥ are gating variables which

cannot be directly observed. The assumption is that we are able to construct a

model based on our physical knowledge of the system which describes the above

experimental system. As a first step, we will assume that it is possible to design a

model which has the exact same form as the one described in equation (3.3). This

new system is the model that would be used for our estimation procedure. The

state variable of the new system are y and its parameters are q.

dy1

dt
= F1

(
y1,y⊥,q

)
dy⊥
dt

= F1

(
y1,y⊥,q

)
(3.4)

If we have information on x1 between time 0 and T , then the objective is to estimate

the time series of all hidden states x⊥ and q.

Since any real measurement is taken at discrete time we need to discretize

the above equations. If we have N + 1 measurements, then equations (3.3) and

(3.4) can be discretized using the following general form:

x(n+ 1) = F
(
x(n),p

)
(3.5)
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where G is the discretization rule and n is any time point between 0 and N + 1.

Equation (3.5) is an exact mapping from time point n to n + 1. In other words,

x(n+ 1) has will have the exact value starting with identical x(n).

Our estimation, therefore, is a search over initial conditions y(0) and q.

The only given initial condition is x(0) and all other initial conditions are not

given. Once all initial conditions for the experimental system x and model y are

the same and parameters p and q match, our estimation problem is solved.

One approach is to design a cost function to minimize the distance between

the two systems. A conventional cost function is a least square distance between

the two systems as shown in equation (3.6).

C
(
q,y(0)

)
=

1

2T

∫ T

0

dt
(
x1(t)− y1(t)

)2

(3.6)

This equation can be written for discrete time as the following:

C
(
q,y(0)

)
=

1

2N

N∑
n=0

(
x(n)− y(n)

)2

(3.7)

Various optimization routines are used to minimize the above cost function.

The global minima of cost function C happens at the point where q and p are equal,

and the two systems start at the same initial conditions. By looking for minima of

C, we are essentially searching for zeros of cost function’s derivatives with respect

to parameters and initial conditions.

dC
(
q,y(0)

)
dp

= 0 (3.8)

dC
(
q,y(0)

)
dy(0)

= 0 (3.9)

These derivatives involve the following terms:

∂y(t)

∂q
and

∂y(t)

∂y(0)

The time evolution of these derivatives is:
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Figure 3.1: Lorenz attractor

d

dt

(∂y(t)

∂q

)
=

∂F(y, p)

∂y(t)

(∂y(t)

∂q

)
+
∂F(y,q)

∂q

d

dt

(∂y(t)

∂q

)
=

∂F(y, p)

∂y(t)

( ∂y(t)

∂y(0)

)
(3.10)

where
∂F(y, p)

∂y(t)
and

∂F(y, p)

∂y(t)

is the Jacobian of the system. The second formula in equation (3.10) clearly shows

that if this Jacobian has positive Lyapunov exponents, the sensitivity of time

evolution of a chaotic system grow exponentially.

3.3 Chaos and Sensitivity on Initial Conditions

The method described in last section is a conventional method used in

many disciplines of science for estimating a systems parameters and states. This

approach, however, does not perform very well when the equations of an experi-
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mental system is highly nonlinear or chaotic. As an example we will use the famous

Lorenz system to demonstrate this fact.

Lorenz system is a 3 dimensional ODE system, introduced by Edward

Lorenz in 1963 as a simplification of atmospheric convection. (Equation 3.11)

dx

dt
= σ(y − x)

dy

dt
= Rx− y − xz

dz

dt
= xy − bz (3.11)

For the following set of parameter values this system is chaotic.

σ = 10 R = 28 b =
3

8
(3.12)

Figure (3.1) shoes the famous butterfly attractor for this system.

Figure 3.2: Identical Lorenz systems (red and blue) starting at slightly different

initial point diverge quickly due to chaos
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Chaos refers to the characteristic of dynamical systems where little changes

in initial conditions is magnified in the state of the system at a later time. This

is due to the presence of positive eigenvalues in the Jacobian of these systems,

also referred to as Lyapunov exponents. If there are two systems following Lorenz

equations of motion (equation 3.11) but have slightly different initial conditions,

as shown in figure (3.2), the trajectory of the two systems will diverge very quickly.

The sensitivity on initial condition in chaotic systems makes the search over

the cost function manifold extremely hard. The surface of the cost function has

many sharp local minima, and any search routine will get stuck in those minima.

The probability of finding the global minima, hence the correct values of parameters

and states is very small.

3.4 Synchronization

One method to get around the above problem is to synchronize the two

chaotic systems. We can couple the measured state x1 of our experimental system

to the equations of motion of the constructed model ([15], [3]). Equation (3.4) will

take the following form:

dy1

dt
= F1

(
y1,y⊥,q

)
+K(x1 − y1)

dy⊥
dt

= F1

(
y1,y⊥,q

)
(3.13)

where the coupling term, K, determines the strength coupling x1 to y equations

of motion. The presence of this new term changes the Jacobain of the system.

The new eigen values of this Jacobian are usually known as conditional Lyapunov

exponents (CLE). A large enough K will make all CLEs non-positive, therefore,

eliminating all instability due to little changes in initial conditions. We took K to

be a constant here, but it be taken to be a function of time.

Figure (3.3) shows the regularization of cost function as control term grows.

In this picture two Hogdkin-Huxley models were used. The only difference between

these two models were values of their capacitance C1 and C2. The two systems
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will synchronize when C1 = C2. In the absence of K, it will be much harder to

search for the right values of C2. Larger values of K, however, smooth the cost

function which can be search over easier.

0.0

0.2

0.4

0.6

0.8

Control

0.6

0.8

1.0

1.2

1.4

Ratio

0

200

400

Cost

Figure 3.3: Surface of the cost function as the control changes between 0 and 1

and the ratio of C/C ′ changes between 0.5 and 1.5

If the value of K is too small, it would not eliminate positive Lyapunov ex-

ponents. In contrast, if this value is too large, the mathematical form of equations

in the experimental system and model does not play a role. We need to find the

smallest value of K that makes all CLEs non-positive. This can be achieved by

introducing a new term into the cost function:

C
(
q,y(0)

)
=

1

2T

∫ T

0

dt
(
x1(t)− y1(t)

)2

+K2(t)

=
1

2N

N∑
n=0

(
x(n)− y(n)

)2

(3.14)

in continuos and discrete time.



29

3.5 R-value Test

Very large values of K will make x1 and y1 synchronous regardless of the

mathematical form of their models. As discussed in previous chapter, one method

to ensure this value does not get too large is to penalize for it in the cost function.

If we do not know the exact form of the experimental equation, however, we would

like to have a method to compare the size of control term to the output of the

model. We use the following quantity R to ensure that the values of K is not too

large compared to the

R(t) =
F 2

1

(
y(t),q

)
F 2

1

(
y(t),q

)
+K2(t)

(
x1 − y1

)2 (3.15)

The value of R is between zero and one. If K is much larger than F1, the

system is being mainly driven by the control term. When the equations of motion

of the two systems are identical or close to each other, K will be small. Hence, the

value of R would be close to unity.



Chapter 4

Twin Experiments

4.1 Introduction

Twin experiment is a method to verify a new estimation procedure. The

basic idea is to generate synthetic data, and use the data to estimate the hidden

parameters and states. In this chapter, we have constructed several neuron models

with various currents. These models are the basis of our twin experiments.

The neuron models are integrated forward using a Runge-Kutta integration

method. We call this our experimental system. Using the exact form of equations

as in experimental system, we construct our estimation system. The output voltage

of the experimental system is coupled to the estimation model. The estimation

model, however, has no information about the gating variables and parameters.

At this point, we apply our synchronization method along with an optimization

routine to find the minima in the cost function. The estimated parameters and

state are then compared to their true values.

4.2 Standardized Single Neuron Model

In chapter 2, we discussed the biophysics of single neurons and various

models which can describe its dynamics. Several different Hodgkin-Huxley like

models were used in previous chapter to show how the method of synchronization

can help with parameter and state estimation. These models, however, are purely

30
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phenomenological and the kinetics take several different form. In order to have a

consistent model, we have generalized the form of our kinetics in all the models

that will be discussed in this chapter.

In general, steady state of gating variables have a sigmoidal shape, and the

time constant is a bell-shaped curve as a function of voltage. (See 2.2.3) This is

true for most of the currents that we have analyzed, hence, we have been able to

use a standardized model based on the original Hodgkin-Huxley model.

Equation 4.1 shows the generalized form of a single neuron model that will

be used in this chapter and also chapter 5.

dV

dt
=

1

Cm

[∑
j

Ij + IDC + Iinj

]
(4.1)

Here X and Y are gating variables for activation and inactivation of different

channels. Current Ij is defined as:

Ij = ḡjX
λY γ(Ej − V ) (4.2)

ḡj is the maximal conductance for each channel, and Ej is the reversal potential

for the corresponding ion. The dynamical equation of the gating variable X could

be written as the following:

Ẋ = (X∞(V )−X)/τX(V ) (4.3)

where steady state, X∞(V ), and time constant, τX(V ), are defined as:

X∞(V ) =
1

2

[
1 + tanh

(
V − vX
dvX

)]
τX(V ) = tX0 + tX1

[
1− tanh2

(
V − vXt
dvXt

)]

4.3 Electrophysiological Experiments

In the absence of injected current, a neuron’s voltage will reach equilibrium

over long enough time. To study the behavior and dynamics of a neuron, however,

we are interested in variations in sub-threshold behavior and features of action
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potentials. In our analysis of neuron models, we have used two main techniques

used by experimental electrophysiologists as described in the following sections.

4.3.1 Voltage Clamp

When the voltage of a neuron is kept constant, there will be different cur-

rents flowing in and out of the cell in order to compensate for this fixed voltage.

Mathematically, the derivative of voltage in equation (4.1) will be zero, and all

the ionic currents on the right hand side have to balance each other out. When

a neuron is at rest the amounts of ionic flow is a constant. If a non-zero voltage

is applied to cell, ion channels open and a flow of different ions will move across

the membrane. These currents will eventually reach equilibrium at a new value.

This is also known as a voltage clamp experiment, and was originally also used by

Hodgkin and Huxley in the construction of their model. The shape and sign of

the current reveals informations about a specific channel such as presence of acti-

vating or deactivating gating particles. This method has been used in our model

construction, to show a more biologically basis for currents.

4.3.2 Current Clamp

A slightly different way to study a neuron is to control the injected current

and let the membrane voltage to change and compensate the injected current. In

this experimental method, also known as current clamp, square waves of current

with different amplitude is applied. If the amplitude of these waves is big enough,

it will produce spikes. When a current with positive sign is applied the neuron is

depolarized. In contrast, applying a negative current to a neuron is called hyper-

polarizing it. Applying a complicated wave form is also common, especially when

trying to estimate parameters of a model. Complicated wave forms can push the

neuron the different parts of its state space.

In a simple case, where Hodgkin-Huxley model reduces to an RC circuit in

the absence of gated ion channels (such as Na and K), voltage can be simplified to

equation (2.31). When a constant non-zero current is applied to the neuron, the



33

response is that of an RC circuit. These are the growing and decaying curves that

can be observed when a neuron is depolarized or hyper-polarized.

V (t) = V0 + (Vr − V0) exp

[−t
τ

]
(4.4)

4.4 Currents

Table 4.1: List of ionic currents used in twin experiments

Current form
INa,t ḡNa,tm

3h(ENa − V )
IKDR ḡKDRn

4(EK − V )
IIR ḡIRr(EK − V )
IA ḡAa

3b(EK − V )
Ileak ḡleak(Eleak − V )

Table (4.1) shows a list of currents used in this chapter. A detailed descrip-

tion of these currents and their dynamics is given in the following sections.

4.4.1 Transient sodium current INa,t

Current equation:

INa,t = ḡNa,tm
3h(ENa − V ) (4.5)
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Table 4.2: Parameters of INa,t

gbarNa 50
ENa 55
vm -30
dvm 15
tm0 0.1
tm1 1.5
vmt -40
dvmt 30
vh -50
dvh -15
th0 1
th1 10
vht -50
dvht 40

0 50 100 150 200 250 300
time (ms)

−150

−100

−50

0

50

100

V
(m

V
)

Figure 4.1: Current clamp simulation. Current base is at 0 mV, a 100 ms long

step is applied starting at -50pA to 50pA at 10pA steps
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Figure 4.2: Time constant of activation (blue) and inactivation (green) gating

variables of INa,t current.

4.4.2 Delayed rectifier potassium current IKDR

Current equation:

IKDR = ḡKDRn
4(EK − V ) (4.6)

Table 4.3: Parameters of IKDR

gbarK 70
EK -77
vn -25
dvn 25
tn0 1
tn1 10
vnt -75
dvnt 50
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Figure 4.3: Steady states of activation (blue) and inactivation (green) gating

variables of INa,t current.

4.4.3 Inwardly rectifying potassium current IIR

Current equation:

IIR = ḡIRr(EK − V ) (4.7)

Table 4.4: Parameters of IIR

gbarKIR 5
EK -77
vm -80
dvm -15

This current has a time constant which is approximately 15mV throughout

the interested voltage range. τr is written as a constant for this model
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Figure 4.4: INa,t of a voltage clamp simulation with voltage base at -70mV , where

a 100 ms step voltage was applied from -50mV to 20mV at 10mV steps
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Figure 4.5: Time constant of activation gating variable of IKDR current.
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Figure 4.6: Steady states of activation gating variable of IKDR current.

0 50 100 150 200 250 300
time (ms)

0

1000

2000

3000

4000

5000

6000

7000

I
(p

A
)

Figure 4.7: IKDR of a voltage clamp simulation with voltage base at -70mV ,

where a 100 ms step voltage was applied from -50mV to 20mV at 10mV steps
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Figure 4.8: Steady states of activation gating variable of IIR current.
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Figure 4.9: IIR of a voltage clamp simulation with voltage base at -70mV , where

a 100 ms step voltage was applied from -50mV to 20mV at 10mV steps
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4.4.4 Potassium current IA

Current equation:

IIR = ḡAa
3b(EK − V ) (4.8)

Table 4.5: Parameters of IA

gbarA 20
va -30
dva 15.
ta0 0.1
ta1 1.5
vat -40
dvat 30
vb -55
dvb -15.
tb0 1.
tb1 10.
vbt -50
dvbt 90
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Figure 4.10: IA of a voltage clamp simulation with voltage base at -70mV , where

a 100 ms step voltage was applied from -50mV to 20mV at 10mV steps

4.4.5 Leak current Ileak

Current equation:

Ileak = ḡleak(Eleak − V ) (4.9)

Table 4.6: Parameters of Ileak

gl .4
El -30

4.5 Twin experiment Results

Using the standardized HH-like model described in this chapter and the

their set of parameters, we performed a twin experiment. Data was generated using

an RK4 integration scheme, and the voltage from this synthetic data was then fed
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into ipOpt along with the injected current. The reversal potentials (Ej), offset

current (IDC), and specific cell capacitance (Cm) were taken as known parameters,

but all the other parameters in the voltage equation and functions of steady states

and time constants were treated as unknown parameters.

4.5.1 Five dimensional model

In this twin experiment, a five dimensional model was constructed using

currents in table (4.7). 3,000 data points from the voltage trace of this model

were used for this twin experiment at 20 kHz. Estimated and original traces are

shown in figures (4.11) and (4.12), and all the observed and unobserved states are

matched very well.

The value of estimated and original variables of this model are also given

in table (4.7). The estimated parameter values were used and integrated using the

same injected current and model. These traces also followed the original traces as

well as shown in figures (4.13) and (4.14).

Table 4.7: List of currents (5D)

Current form
INa,t ḡNa,tm

3h(ENa − V )
IKDR ḡKDRn

4(EK − V )
IIR ḡIRr(EK − V )
Ileak ḡleak(Eleak − V )

4.5.2 Seven Dimensional Model

This seven-dimensional model includes all channels present in the five-

dimensional model plus an extra potassium current, IA. A list of current present

in this model are shown in table (4.9). This current has two gating particles a and

b, and it appears in the voltage equation exactly in the same form as INa,t with a

different reversal potential. The twin experiment for this model was repeated four

times as described in here.
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Table 4.8: Estimated parameters of 5-D model

Parameter Original Value Estimated Value % error
1 gbarNa 50 47.4247 5.150620
2 gbarK 70 71.2515 1.787800
3 gbarKIR 5 4.9675 0.649520
4 gl 0.4 0.4005 0.117025
5 vm -30 -29.9781 0.072967
6 dvm 15 15.0373 0.248533
7 tm0 0.1 0.1000 0.002030
8 tm1 1.5 1.4973 0.179133
9 vmt -40 -40.0446 0.111400

10 dvmt 30 30.0917 0.305800
11 vh -50 -49.0780 1.844000
12 dvh -15 -14.8195 1.203533
13 th0 1 1.0662 6.623000
14 th1 10 10.0247 0.247300
15 vht -50 -48.1969 3.606260
16 dvht 40 38.1372 4.656950
17 vn -25 -24.9394 0.242520
18 dvn 25 25.0769 0.307720
19 tn0 1 0.9850 1.502870
20 tn1 10 10.0078 0.077800
21 vnt -75 -75.5836 0.778133
22 dvnt 50 50.7642 1.528320
23 vm -80 -79.9055 0.118075
24 dvm -15 -14.9998 0.001067
25 mTau 15 14.9779 0.147067

Table 4.9: List of currents (7D)

Current form
INa,t ḡNa,tm

3h(ENa − V )
IKDR ḡKDRn

4(EK − V )
IIR ḡIRr(EK − V )
IA ḡAa

3b(EK − V )
Ileak ḡleak(Eleak − V )
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Figure 4.11: HH-like model twin experiment including INa,T , IKDR, IIR, and Il.

Original and estimated trace for V

Run 1

7,000 data points have been used at 100 kHz (0.01 ms) for this estimation.

Figures (4.16) to (4.22), show the first four estimated (blue) and original (green)

state variables It is clear from these results that only voltage is estimated well here,

and the original state variables and parameters were not recreated successfully.

It is very interesting that R-value, figure (4.15), is almost always one

throughout the estimation. The estimated hidden states, however, are not nearly

perfect. This is a good example of solution degeneracy as the dimension of the

search space increases increases. The optimization has solved the problem, but the

solution it provides is different than true solution.

Run 2

A second estimation was done on the same model described above. For this

estimation I included three spikes (one more spike compared to run 1) and a region
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Figure 4.12: HH-like model twin experiment including INa,T , IKDR, IIR, and Il.

Original and estimated traces for all gating particles
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Figure 4.13: Comparison of prediction and original voltage trace
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Figure 4.14: Comparison of prediction and original gating variables trace
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Figure 4.15: R value for the measurement time window
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Figure 4.16: HH-like model twin experiment including INa,T , IKDR, IIR, IA, and

Il. Original and estimated trace for V

of hyperpolarization. The bound on some of the parameters was widened to avoid

the estimation of those ending up at the boundaries. 10,000 data points were used

in this estimation is 10,000, which is 3,000 more than the run 1. The time step

is set at 0.01 ms as before. The estimation of V , figure (4.24), is still excellent.

Also, R-value, figure (4.23), is essentially one throughout the estimation window.

The estimation of hidden state has definitely improved compared to the previous

run, as can be verified from figures (4.25) to (4.30).

Run 3

In this run, 16,000 data points were used at 100kHz frequency. Figure (4.32)

and (4.33), show the estimated (blue) and original (green) state variables Table

(4.10) shows the values of original and estimated parameters. Although, many of

the parameters are not matching very well to the original values, the estimated

traces match very well with the original traces of the state variables. As expected,

R-value is always at 1 as shown in figure (4.31).
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Figure 4.17: HH-like model twin experiment including INa,T , IKDR, IIR, IA, and

Il. Original and estimated trace for m

The estimated parameters in table (4.10) was then used and the equations

were integrated using the same injected current and initial condition. The integra-

tion did not produce a similar path, which might be due to the difference in the

value of many estimated parameters, and use of a different numerical integration

scheme.

Run 4

In this twin experiment, instead of using a step current for polarization and

depolarization, a Lorenz current is used as an injected current. 24,000 data points

were used at 100kHz. Figure (4.35) and (4.36), show the estimated (blue) and

original (green) state variables. Figure (4.34) shows the R-value for the estimation

time window. Compared to the estimation results using a step current as injected

current, the estimation accuracy has diminished here. The estimated value for

parameters also did not match the original values very well.
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Figure 4.18: HH-like model twin experiment including INa,T , IKDR, IIR, IA, and

Il. Original and estimated trace for h
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Figure 4.19: HH-like model twin experiment including INa,T , IKDR, IIR, IA, and

Il. Original and estimated trace for n
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Figure 4.20: HH-like model twin experiment including INa,T , IKDR, IIR, IA, and

Il. Original and estimated trace for r
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Figure 4.21: HH-like model twin experiment including INa,T , IKDR, IIR, IA, and

Il. Original and estimated trace for a
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Figure 4.22: HH-like model twin experiment including INa,T , IKDR, IIR, IA, and

Il. Original and estimated trace for b
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Figure 4.23: R value for the measurement time window
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Figure 4.24: HH-like model twin experiment including INa,T , IKDR, IIR, IA, and

Il. Original and estimated trace for V
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Figure 4.25: HH-like model twin experiment including INa,T , IKDR, IIR, IA, and

Il. Original and estimated trace for m
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Figure 4.26: HH-like model twin experiment including INa,T , IKDR, IIR, IA, and

Il. Original and estimated trace for h
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Figure 4.27: HH-like model twin experiment including INa,T , IKDR, IIR, IA, and

Il. Original and estimated trace for n
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Figure 4.28: HH-like model twin experiment including INa,T , IKDR, IIR, IA, and

Il. Original and estimated trace for r
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Figure 4.29: HH-like model twin experiment including INa,T , IKDR, IIR, IA, and

Il. Original and estimated trace for a
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Figure 4.30: HH-like model twin experiment including INa,T , IKDR, IIR, IA, and

Il. Original and estimated trace for b
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Figure 4.31: R-value for the measurement time window
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Table 4.10: Estimated parameters of 7-D model

Parameter Real Value Estimated Value % error
1 Ifact 1 0.9956 0.44
2 gbarNa 50.000 48.0391 3.92
3 gbarK 70.000 62.2570 11.06
4 gbarKIR 5.000 4.9549 0.9
5 gbarA 20.000 21.1175 5.59
6 gl 0.400 0.3996 0.09
7 vm -30.000 -30.3020 1.01
8 dvm 0.067 0.0674 0.62
9 tm0 0.100 0.2287 128.74

10 tm1 1.500 1.3928 7.15
11 vmt -40.000 -40.3513 0.88
12 dvmt 0.033 0.0364 10.29
13 vh -50.000 -49.3040 1.39
14 dvh -0.067 -0.0733 9.92
15 th0 1.000 0.3848 61.52
16 th1 10.000 10.6342 6.34
17 vht -50.000 -54.0721 8.14
18 dvht 0.025 0.0209 16.27
19 vn -25.000 -25.6666 2.67
20 dvn 0.040 0.0403 0.83
21 tn0 1.000 0.9968 0.32
22 tn1 10.000 10.0195 0.19
23 vnt -75.000 -74.4855 0.69
24 dvnt 0.020 0.0206 3.07
25 vm -80.000 -79.9392 0.08
26 dvm -0.067 -0.0671 0.6
27 mTau 15.000 14.9760 0.16
28 Iva -30.000 -30.9961 3.32
29 Idva 0.067 0.0647 3.01
30 ta0 0.100 0.0717 28.27
31 ta1 1.500 2.0000 33.33
32 Tva -40.000 -45.5533 13.88
33 Tdva 0.033 0.0229 31.29
34 Ivb -55.000 -61.0994 11.09
35 Idvb -0.067 -0.0505 24.32
36 tb0 1.000 2.0000 100
37 tb1 10.000 13.4789 34.79
38 Tvb -50.000 -10.0157 79.97
39 Tdvb 0.011 0.0100 10
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Figure 4.32: HH-like model twin experiment including INa,T , IKDR, IIR, IA, and

Il. Original and estimated trace for V

4.6 Summary

The various twin experiments performed on neuron models of different di-

mensions has recreated the hidden parameters and states. As the dimension of the

search space increases, however, more data is needed to be coupled to the desinged

model to recreate the true values of parameters and states. Based on results from

run 1 and 2 of seven-dimensional neuron model, it is not garaunteed that the state

and parameters are correctly estimated as the dimension of the estimation problem

grows. This is a manifestation of degeneracy in the search space as the model gets

more complicated and the number of parameters grow.
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Figure 4.33: HH-like model twin experiment including INa,T , IKDR, IIR, IA, and

Il. Original and estimated traces for all gating particles
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Figure 4.34: R-value for the measurement time window
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Figure 4.35: HH-like model twin experiment including INa,T , IKDR, IIR, IA, and

Il. Original and estimated voltage traces
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Figure 4.36: HH-like model twin experiment including INa,T , IKDR, IIR, IA, and

Il. Original and estimated traces for all gating particles



Chapter 5

Estimation of BNST Neurons

5.1 Introduction

Bed Nucleus of Stria Termialis neurons (BNST) neurons are a part of ex-

tended amygdala of rats brain. These neurons play an important role in reward

related behavior and regularization of stress. Studying the biological properties of

these neurons is essential in understanding behavior such as alcoholism and drug

addiction.

This family of neurons has three types (I, II, III). Type II and III neurons

have the most reproducible voltage traces when presented with similar injected

current. We will present results from parameters and state estimations of these

neurons. Two type II neurons have been used for estimation analysis and pre-

diction, and a type III neuron is used to investigate the generality of the model

used.

5.2 Model Construction

The model for BNST neurons was based on neurophysiological information

for each specific neuron ([48], [24]). The main type of ionic channels are that

present in the biological neuron were recreated in the model as a current (Table

5.1). The form of the current equation is that of the standardized model introduced

in section 4.2.

61
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dV

dt
=

1

Cm

[∑
j

Ij +
Iinj + V/Rs

Area

]
(5.1)

where Ij are various currents shown in table (5.1), Iinj is injected current, and Rs

is the input resistance of the neuron.

The dynamic of calcium currents depend on the extracellular and intracel-

lular ionic concentration of calcium. These ions take a similar form described by

equations (2.38) and (2.39), also known as GHK model. We have re-written these

equations in a new form:

GCa = VT ×
gout − gin exp(−V/VT )

exp(−V/VT )− 1
(5.2)

with the following definitions:
Thermal voltage of Ca2+ ions: VT = kBT/Z ≈ 13mV
Outer calcium concentration: gout = FP [Ca]out
Inner calcium concentration: gin = FP [Ca]in
Membrane permeability: P
Faraday Constant: F

Table 5.1: List of Ion Channels

Current Equation
Transient sodium INaT = gNam

3h(ENa − V )
Persistent sodium INaP = gPn(ENa − V )
Potassium IA = gA1b

4(EK − V )
Direct rectifying potassium IDR = gA2p

4q(EK − V )
Calcium activated potassium IK2 = gcu(EK − V )
High threshold calcium IL = r2GCa

Low threshold calcium IT = stGCa

Hyperpolarization activated Ih = ghz(Eh − V )
Leak IL = gL(EL − V )

There are a total of 11 gating variables present in this model (m, h, n, b,

p, q, u, r, s, t, z). All of these gating variables follow the standard mathematical

form described in section 4.2. For a gating variabel X we have:

Ẋ = (X∞(V )−X)/τX(V ) (5.3)
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where steady state, X∞(V ), and time constant, τX(V ), are defined as:

X∞(V ) =
1

2

[
1 + tanh

(
V − vX
dvX

)]
τX(V ) = tX0 + tX1

[
1− tanh2

(
V − vXt
dvXt

)]
(5.4)

Here vX , dvX , vXt, dvXt,

The above form for time constant of a current is symmetric. In order to

incorporate asymmetry of time constant for some currents, an additional term was

introduced to equation (5.4).

τX(V ) = tX0 + tX1

[
1− tanh2

(
V − vXt
dvXt

)]
+
δi
2

[
a+ tanh

(
V − vXt
dvXt

)]
(5.5)

Appendix C shows the exact form we used in our model.

5.3 Control Term and Cost Function

To couple the measured membrane voltage of the neuron to our model, the

following term was added to the end of voltage equation (equation 5.1).

K(t, V )
(
Vdata − V

)
(5.6)

where Vdata is the measured voltage and control term K is a function of voltage

and time (equation 5.7).

K
(
t, V
)

= K

[
1 + c1

(
1 + tanh

[
V − Vth

5

])]
(5.7)

where c1 is a constant that will set the strength of coupling and was fixed at 5, Vth

is the spike threshold and was taken to be about 40 mV .

5.4 Estimation and Prediction Workflow

In all of the following runs, an initial learning window was used to estimate

the parameters and states of that neuron. These parameters and states are then
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used to integrate the model forward. In the prediction window, the control term

K is off and the trajectory of the system is purely based on the learned parameters

and states.

The data for each neuron is taken at different sweeps. These sweeps are

the voltage trace of the neuron at different times. The first sweep is always used

to learn that parameter values and hidden states. The final values of states from

estimation is used as initial condition for forward integration using the model

constructed based on estimated parameters.

In sweeps after the first one, a shorter window is used only to estimate the

hidden states while parameters are fixed to the values found in sweep one. The

initial condition based on estimated states are used again to integrate forward.

5.5 Type II BNST Neuron 1

This is a summary of estimation and prediction runs on BNST neuron

11a08 C2 08 T2. All the data is recorded at 20 kHz frequency. For all the following

runs, the model described in section 5.2 is used. The main difference between these

runs are the ranges over which the estimation was done for four parameters Cm,

ENa, EK, and El. All runs except run1 include INaP . For each run, a graph

shows the data versus estimation and prediction. The prediction models are all

based on parameters found during estimation for that specific run.

Table (5.2) shows a summary for each run, including number of data points

used, number of parameters, number of states, and sweep number used.

Table 5.2: Summary of runs

Run Sweep data points Starting Number of Number of
# # used Point States Parameters
1 1 50,000 0 11 67
7 1 50,000 0 12 69
8 1 50,000 0 12 69
9 2 20,000 0 12 0
11 4 20,000 0 12 0
13 3 20,000 0 12 0
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Run 1

Initial run using the model described in section 5.2. Table 5.3 shows limits

on some of the parameters, initial guess, and their estimation.

Table 5.3: Run7-Sweep1

Parameter Unit Lower Bound Upper Bound Initial Guess Estimation
Cm pF 0.3 4 1 0.3
ENa mV 42 50 50 50
EK mV -90 -80 -85 -90
El mV -110 -40 -80 -110

Run 7

In this run, INaP was added to the model used in run 1. Table 5.4 shows

limits on some of the parameters, initial guess, and their estimation.

Table 5.4: Run1-Sweep1

Parameter Unit Lower Bound Upper Bound Initial Guess Estimation
Cm pF 0.3 4 1 0.3
ENa mV 42 50 50 50
EK mV -90 -80 -85 -90
El mV -110 -40 -80 -81.49492

Run 8

Some of the parameters search limits are changed in this run compared to

run 7. (Table 5.5)

Table 5.5: Run8-Sweep1

Parameter Unit Lower Bound Upper Bound Initial Guess Estimation
Cm pF 0.8 1.2 1 0.8
ENa mV 45 55 50 55.0
EK mV -82 -72 -77 -82.0
El mV -60 -50 -55 -60
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Run 9

In this run, all the parameters found in run 8 are fixed in the model. 20,000

data points were used for the estimation of state variables only. The end point of

estimation window was used as initial condition for forward integration. For the

value of parameters used in this run, refer to table 5.6 and look for parameters of

run 8.

The forward integration based on model contracted from run 8 matches

very well with data.

Run 11

The same as run9, except for using sweep 4 of the same neuron.

Run13

The same as run9, except for using sweep 3 of the same neuron.

5.6 Type II BNST Neuron 2

Another type II neuron (11b09 C1 08 T2 ) is used in this section. We have

follow a very similar procedure as described in previous section. Once again, all

the data is recorded at 20 kHz frequency.

Run1

This is the initial run using the same model used in previous section. Table

5.7 shows limits on some of the parameters. Figure (5.7) shows data, estimation,

and prediction for this sweep. Table 5.8, shows the complete list of estimated

parameters for this run.

Run 2, 3 and 4

These runs are done on sweep 2, 4, and 5 of the same neuron. In all three

runs, the model and estimated parameters of run 1 is used to find initial conditions,
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Table 5.6: Estimated parameter summary

Parameter Run 1 Run 7 Run 8
c1 5 5 5

Cm 0.3 0.3 0.8
gNa 120 120 120
gP NA 2.548614e-13 2.011884e-13

ENa 50 50 55
gA1 0.04543025 1.202752 3.011381
gA2 54.77707 0.1132848 1.570486
gc 0.07914345 0.04391224 0.07357142
EK -90 -90 -82
gL 0.01204375 0.06190968 0.133207
EL -110 -81.49492 -60
gou 0.2140506 0.4275365 0.9662544
gin 0.0001 0.0001 0.0001
gh 0.03689983 0.02003147 0.005466672
Isa 0.1328072 0.1145784 0.04949765

amV1 -27 -27 -27
amV2 6.918695 7.13674 7.518999
amV3 5.283022 5 45
tm0 0.4550618 0.2596156 0.2502509
epsm 0.4096885 0.3491841 0.012
ahV1 -62.153 -68.50788 -64.32899
ahV2 -12.81243 -13.98113 -14.40966
ahV3 20.29448 21.79102 21.52385
th0 0.02 0.02 0.02
epsh 100.6137 107.6997 90.05317
anV1 NA -55.69083 -55.6469
abV1 -48.64102 -21 -21
abV2 34 5 5
abV3 8.105468 25.12213 24.71878
tb0 0.7043556 0.01 0.01
epsb 14.97476 4.646471 4.43374
apV1 -22.01061 -52.05146 -45.79392
apV2 19.54994 48 48
apV3 5 11.22868 5.701622
tp0 1.094631 1.036469 1.300378
epsp 23 12.78726 9.694104
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Table 5.6: Continued

Parameter Run 1 Run 7 Run 8
aqV1 -57.69772 -35 -63.5923
aqV2 -9.521723 -39 -24.08921
aqV3 -5 -39 -7.311486
tq0 0.5 310 0.5000002
epsq 564.5843 910 13.82116

deltasq 3.774886 990 90.67936
auV1 -25 -25 -25
auV2 31.09115 14.87297 65
auV3 70 10 70
tu0 6.674401 55 55
epsu 153.4358 3.737746 42.59988
arV1 -56 -44.79507 -55.75689
arV2 11.26361 20.89344 10.98067
arV3 15.90907 55 55
tr0 43.6 3.886651 43.6
epsr 190.2015 0.2 109.5771
asV1 -43.72096 -51.69763 -40.6082
asV2 30.98601 39 29.80298
asV3 57 57 57
ts0 0.9 0.9 0.9

eps5 5.86886 10.16027 4.125393
atV1 -55 -67.09734 -55
atV2 -34 -29.16519 -34
atV3 55 27.12836 25.88619
atV4 55 55 55
tx0 190 5 107.4154
epst 90.24318 11.55454 37.30753
azV1 -51.52867 -65.31613 -78.66565
azV2 -5 -30 -5
azV3 13.52465 10.05557 40
tz0 24.42686 4.550427 500
epsz 230.0445 5000 574.419
rlt 0.1146231 0.3237448 0.01988287
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and then using these initial conditions and the given model from run 1, a forward

integration was done. Figure (5.8), (5.9) and (5.10) shows these three runs.

5.7 Summary

The results from two different type II BNST neurons shows that it is possible

to estimate all biophysical parameters in a neuron and use their values for forward

prediction of the system. The question remains, however, if this is due to the

generality of the model that was used for these neurons, and whether it is possible

that this general neuron model has enough degrees of freedom that can match any

neuron.

These are valid concerns since we have no direct knowledge of the exact

dynamics of a neuron, and any model built at best is an approximation. We applied

the same model which was used for type II neurons to a type three neuron. These

neurons are similar but have different currents present in them, therefore, if our

model was general we should have similar results. Figure (5.11) shows estimation

and prediction for this type of neuron. Since the specific currents that are present

in a type III neuron did not exist in the model the prediction does not match the

data.
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Table 5.6: Summary of runs

Run Sweep data points Starting Number of Number of
# # used Point States Parameters
1 1 50,000 0 12 69
2 2 20,000 0 12 0
3 4 20,000 0 12 0
4 5 20,000 0 12 0

Table 5.7: Parameter bounds for run1

Parameter Unit Lower Bound Upper Bound Initial Guess Estimation
Cm pF 0.8 1.2 1 1.2
ENa mV 45 55 50 55.0
EK mV -82 -72 -77 -82.0
El mV -60 -50 -55 -60.0
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Table 5.8: Estimated parameters in run 1

Parameter Estimated Value Parameter Estimated Value
c1 5 epsp 0.5

Cm 1.2 aqV1 -59.02013
gNa 100 aqV2 -21.36911
gP 1.533136e-12 aqV3 -5

ENa 55 tq0 0.9655148
gA1 0.2128484 epsq 19.76087
gA2 8.269561 deltasq 7.227117
gc 6.93478e-12 auV1 -24.99771
EK -82 auV2 64.99414
gL 0.1251626 auV3 69.94875
EL -60 tu0 54.87325
gou 0.2897776 epsu 454.8365
gin 0.0001 arV1 -51.79377
gh 1.510254e-11 arV2 17.50003
Isa 0.0449597 arV3 10.25522

amV1 -27 tr0 4.833438
amV2 18.41729 epsr 14.35102
amV3 5 asV1 -45.33617
tm0 0.0477079 asV2 10.09359
epsm 0.012 asV3 26.92169
ahV1 -71.0094 ts0 0.02
ahV2 -26.17871 eps5 2.686672
ahV3 34.19202 atV1 -55
th0 0.02 atV2 -34
epsh 12.36842 atV3 55
anV1 -54.03087 atV4 55
abV1 -58.04182 tx0 190
abV2 21.0032 epst 7000
abV3 13.73099 azV1 -52.56297
tb0 3.72742 azV2 -25.77637
epsb 23 azV3 31.35153
apV1 -43.31915 tz0 321.4245
apV2 17.15545 epsz 4313.798
apV3 5 rlt 0.4123265
tp0 0.4506331



Chapter 6

Statistical Path Integral Method

6.1 Introduction

In chapter 3, we discussed a dynamical approach of parameters and states

estimation. The following chapter, demonstrated verification of these methods,

and in chapter 5 some successful estimation and prediction of biological neurons

were discussed. In this chapter, we will formulate and demonstrate a different

method of parameter and state estimation. This method uses idea from quan-

tum mechanical path integral formulation, to solve the similar problem of system

verification discussed in chapter 3. ([2], [40], [42], [26], [29], [32])

6.2 Probabilistic Formulation

When dealing with a real physical system, there are many hidden charac-

teristics such as the unmeasured parameters and state variables. It is often very

important to have a knowledge of these underlying features of the system.

We start with a model that to the best of our knowledge describes a real-

world physical system, which is then used to estimate the hidden states and vari-

ables of the system. Let us take a model with D dimensions and Ω parameters.

Only L of the D state variables are observable, and none of the parameters can be

measured directly. The L observable state variables are measured at M + 1 time

points during the measurement time window. Then L× (M + 1) measured points

83
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can be described as the measured path Y0:M :

Y0:M =
{

y(0),y(1), . . . ,y(M)
}

(6.1)

where y(n) = {y1(n), . . . , yL(n)} is point in the L dimensional measurement path

Y. Given the measurements Y0:M , we are interested in estimating the parameters

and the observed and unobserved state variables path X0:M . This path, X0:M , has

a definition similar to that of Y0:M , for the D dimensional model.

X0:M =
{

x(0),x(1), . . . ,x(M)
}

(6.2)

where x(n) is a point on the D dimensional path of X.

The time evolution of this system is given by a set of rules f(x(t), θ), which

is the set of ordinary differential equations below:

dx

dt
= f(x, θ) (6.3)

where the parameters θ are not changing over the measurement time window.

Parameters can be treated as additional state variables with ODEs, θ̇ = 0.

The above problem can be formulated statistically. Starting with the mea-

sured path Y0:M and given equations of motion of the system, what is the prob-

ability of being in state x(M)? Mathematically, we are interested in finding the

conditional probability distribution π(x(M)|Y0:M). Using Bayes’ rule:

π
(
x(M)|Y0:M

)
=
π
(
x(M),y(M)|Y0:M−1

)
π
(
y(M)|Y0:M−1

)
=

 π
(
x(M),y(M)|Y0:M−1

)
π
(
y(M)|Y0:M−1

)
π
(
x(M)|Y0:M−1

)
 π(x(M)|Y0:M−1

)
(6.4)

The first term in the bracket, is nothing but the exponential of the mutual infor-

mation term, MI(x(m),y(m)|Y0:M−1). Using Chapman-Kolmogorov equation, the

second term can be written as:

M−1∏
n=0

∫
dx(n)π

(
x(M)|x(M − 1)

)
π
(
x(M − 1)|Y0:M−1

)
(6.5)
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This term represents the transition probability of going from state x(n) to state

x(n+ 1).

Combining all of the above and including all the points in X0:M , we can

re-write equation (6.4):

π
(
x(M)|Y0:M−1

)
=

M∏
n=0

∫
dx(n) exp

[
− A0(X0:M ,Y0:M)

]
(6.6)

where A0 is defined as action:

A0 = −
M∑
n=0

MI

[
x(n),y(n)|Y0:n−1

]
−

M−1∑
n=0

log

[
π
(
x(n+ 1)|x(n)

)]
− log

[
π
(
x(0)

)]
(6.7)

The last term, initial path distribution, is taken to be a constant and can

be left out. The other two terms can be approximated assuming a Markov process,

and Gaussian model and measurement errors.

A0 ≈
Rm

2

M∑
n=0

[
x(n)− y(n)

]2

+
Rf

2

M∑
n=0

[
∆
(
x(n)

)]2

(6.8)

Where Rm and Rf are the inverse of the square of standard deviations of

data and model noise of each state variable. ∆(x(n)) depends on the discretization

of the dynamics and is the difference between x(n) and x(n+1) given the dynamics.

∆
(
x(n)

)
= D

(
x(n), θ

)
− x(n+ 1)

where D(x(n)) is the discretization of f(x(n)) in equation (6.3). If the ODEs are

followed exactly ∆(x(n)) would be equal to zero.

The exact form of ∆(x(n)) depends on the discretization scheme D(x(n))

and f . Here, second order Adams-Moulton was used for the discretization of the

dynamics, moving from time point n to n+ 1:

∆
(
x(n)

)
= x(n)− x(n+ 1) +

h

2

(
f(x(n)) + f(x(n+ 1))

)
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6.2.1 Metropolis-Hastings

A common method to sample from a specific distribution is the Metropolis-

Hastings method, which is one of the many Markov Chain Monte Carlo (MCMC)

methods. In our case, the desired distribution is exp (−A0). Once again, the goal

is to start with a number of measurements and a model and try to estimate the

hidden states and parameters of the system. In the model, xi(n) represents the

nth time point of the ith state variable, and there are Ω parameters. Essentially,

one has to work in a D× (M + 1) + Ω dimensional space, treating the parameters

just like the state variables.

In particular, we are interested in solving an integral of the following form,

to calculate the expectation value of any function χ(x):

〈
χ(x)

〉
=

∫
dxχ(x) exp (−A0)∫

exp (−A0)
(6.9)

using Metropolis-Hastings method. Since this is a Monte Carlo method the above

integral is calculated using the following sum:

〈
χ(x)

〉
≈ 1

N

N∑
i=0

χ(x(i)) (6.10)

In a simple MCMC methods such as Metropolis Algorithm, one starts with

a current path X(s) and creates a candidate path X∗ by performing a random walk

on each element of X. Depending on whether the new path increases or decreases

the action, the candidate path is accepted or rejected and a new path X(s+1) is

now created. After this is done many times, the system reaches equilibrium and

one can start taking data and calculating the sum in equation (6.10).

The following steps summarizes this method for a specific point on the path,

x(n):

1. Start with an initial path X(0)

2. Calculate A0

(
X(0)

)
3. Add an unbiased random walk to x(n) (yields new path X∗)
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4. Calculate a =
P (X∗)

P (X(0))
= exp

[
−
(
A0(X∗)− A0(X(0))

)]
(a) If a > 1 then accept this change (X(1) = X′)

(b) Else

X(1) =

{
X′ with probability a

X(0) with probability 1− a

5. Back to step 2 using X(1)

This procedure is repeated many times until the system reaches equilibrium. At

this point, statistics can be gathered for each xk(n).

6.2.2 Hybrid Monte Carlo

One of the main problems with this methods is its convergence rate due to

its trial-and-error nature. Each candidate path is produced by blindly perturbing

the states slightly from their current position and deciding whether that was a

good or bad move. Hence, this methods uses a lot of its time wandering around in

areas that are not statistically interesting before it reaches equilibrium.

Hybrid Monte Carlo is one way to get around this problem of slow conver-

gence rate. In this method a fake momentum p is introduced to form a Hamilto-

nian:

H(p,x) = K(p) + U(x) (6.11)

where the potential energy U(x) is A0(x) and the kinetic energy has its usual

definition, K(p) = p2/2. Here, the mass m in the kinetic energy term is equal to

unity.

The elements of x and p can be treated as position and momentum of

particles with potential and kinetic energy given above. Different configuration of

these particles will result in different values of the Hamiltonian. The evolution of
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these particles in fake time s is given by the Hamiltonian equations:

dx

ds
=

∂H

∂p
= p

dp

ds
= −∂H

∂x
= −∇[A0(x)] (6.12)

These equations should be discretized in a way that preserves time re-

versibility and conserves the volume of phase space throughout the transition of x

and p in time s. Leap-frog is a symplectic numerical integration method that has

these properties. In order to iterate x forward, we need to calculate half-steps and

full-steps of p:

p(s+
ε

2
) = p(s)− ε

2
∇
[
A0(x(s))

]
x(s+ ε) = x(s) + εp(s+ ε/2)

p(s+ ε) = p(s+
ε

2
)− ε

2
∇
[
A0(x(s+ ε))

]
(6.13)

where s is the iteration time and ε is the length of the time step.

One needs to calculate the value of of ∇A0 at each specific time point of

each state variable:

dA0

dxi(n)
= Rm

∑
k,m

(
xk(m)− yk(m)

)dxk(m)

dxi(n)
+Rf

∑
k,m

∆(xk(m))
d∆(xk(m))

dxi(n)
(6.14)

where
dxk(m)

dxi(n)
= δi,kδn,m.

All the derivatives for the first term are going to be zero except for one term

including xi(n) in the action. The derivative of the second term, however, depends

on how the dynamics is discretized. Using Adams-Moulton as the discretization

scheme we can write:
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∑
k,m

∆(xk(m))
d

dxi(n)
∆(xk(m))

=
∑
k,m

∆(xk(m))
d

dxi(n)

[
xk(m)− xk(m+ 1) +

h

2

(
fk(x(m)) + fk(x(m+ 1)

)]
=

∑
k,m

∆(xk(m))

[
δn,m

(h
2

df(xk(m))

dxi(n)
+ δk,i

)
+ δn,m+1

(h
2

dfk(m+ 1)

dxl(n)
− δk,i

)]
=

∑
k

[(h
2

∆(xk(n))
df(xk(n))

dxi(n)
+ ∆(xi(n))

)
+
(h

2
∆(xk(n− 1))

df(xk(n))

dxi(n)
−∆(xi(n− 1))

)]
(6.15)

Having all the above formalism, we can now use hybrid Monte Carlo method.

Assume we start at a specific position x(s), we iterate x(s) and p(s) forward by L

steps using leap-frog integration, equations (6.13). We end up with a new x̃ which

will be accepted or rejected using the following rule:

x(s+1) =

{
x̃ if α < exp(−∆H)

x(s) otherwise
(6.16)

where α is a random number picked from a standard uniform distribution U(0, 1),

and ∆H = H(x̃s+1, p̃s+1)−H(xs,ps):

∆H =
∑
i,n

[
p̃2
i (n)− p2

i (n)

2
+Rm

[(
x2
i (n)− y2

i (n)
)2

−
(
x̃2
i (n)− y2

i (n)
)2]

+ Rf

[(
∆̃2(xi(n)) + ∆̃2(xi(n))

)
−
(

∆2(xi(n)) + ∆2(xi(n))
)]]

(6.17)

After these L steps, the new p̃ is replaced by a new momentum, which

p(s+1)is drawn from the following distribution.

P (p) =
1√
2π

exp
(−p2

2

)
(6.18)

These steps are repeated several times, and after an initialization phase

data can be collected to be used in calculations of the form of equation (6.10).
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As described above, the way candidate states are chosen in a hybrid Monte

Carlo is different than Metropolis method. However, it is still required that the

transitions from x to x∗ be symmetric so that the target distribution is invariant.

In other words, the proposal should be symmetric so that:

π(x)A(x,x∗) = π(x∗)A(x∗,x) (6.19)

This is shown to be true in [18] and [37].

6.2.3 Langevin Monte Carlo

Langevin Monte Carlo is another stochastic dynamical method which is

closely related to hybrid Monte Carlo method. In order to get Langevin Monte

Carlo from hybrid Monte Carlo, one needs to choose a new momentum after each

leap-frog step and then accept or reject x∗ using equation (6.16) based on the

change in H. If the first and second equations in equation (6.13) are combined we

get:

x(s+ ε) = x(s)− ε2

2
∇
[
A0(x(s))

]
+ εη(s) (6.20)

where we have switched p(s) with η(s) which is also drawn from a normal distri-

bution.

Equation (6.20) is the solution to the Langevin diffusion equation:

dx

ds
= −1

2

∂A0(x(s))

∂x
ds+ dW (s) (6.21)

where W (s) is the standard Brownian motion.

Although Langevin Monte Carlo is a special case of hybrid Monte Carlo,

it works very differently because of its random generating new steps as it moves

down the gradient of action.
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6.3 Estimation and Prediction in Colpitts Oscil-

lator

To verify the MCMC methods described in previous sections, Colpitts os-

cillator was used as a test model. Figure (6.1) shows the circuit diagram for this

oscillator. The equations from this diagram can be reduced to a simpler form as

shown in equations (6.22).

ẋ0 = αx1

ẋ1 = −γ(x0 + x2)− qx1

ẋ2 = η(x1 + 1− exp(−x0)) (6.22)

(6.23)

This system is chaotic with the following values of parameters:

α = 5.0 , γ = 0.08 , q = 0.7 , η = 6.3

This system of equations has three dimensions and four parameters. We

would like to measure only x0 for a total time T , and estimate the other state

variables x1, x2, and all four parameters. One way to do this is to follow the

procedure introduced for twin experiments in chapter 4. As usual, first we integrate

the equations for Colpitts oscillator. Only the the first state variable x0 is then

used as a measurement.

6.3.1 Number of Measured States

In this specific case, we have used a simple Metropolis-Hastings algorithm

to sample from the distribution exp(A0). If the system reaches equilibrium after

enough iterations, we will get statistics for all measured and unmeasured state

variables and parameters. The evolution of action over the course of iteration time

is given by 6.24.

dX(s)

ds
= −∂A0(X(s))

∂X(s)
+
√

2η(s) (6.24)
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Figure 6.1: Colpitts Oscillator

If we start from different regions of the search space, ideally we should end

up in the vicinity of the same value for minimum of A0. Starting from random

initial paths X(0), we can let the system evolve according to equation (6.24). If

we get different minima for A0, then it is not possible to successfully estimate

parameters and states of Colpitts oscillator.

Figure (6.2) shows minima of A0 starting from different initial path X(0).

If all four parameters are free, it can be seen that the shape of action does not

have one well defined minimum. When one of the parameters (α) is fixed, then all

initial paths converge to the same minimum of action. This means that it is not

possible to find estimate the hidden parameters and states if α is free to change.

6.3.2 Results

After fixing α to its original value, ODEs in equation (6.22) were used to

generate synthetic data for estimation method. Time trace of x0 is used as data

to estimate the unobserved states x1, x2, and parameters. Figure (6.3) shows the

estimation of the hidden states. At the end of the estimation window (yellow line),
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Figure 6.2: Minima of A0 for Colpitts oscillator with 3 and 4 parameters

the parameters are fixed to their estimated values and integrated forward. Table

(6.1) shows the estimated values of these parameters and the error of estimation.

Table 6.1: Estimated Parameters for fixed α. (α = 5.0)

Parameter Real Value Estimated Value
γ 8× 10−2 (9.1± 0.5)× 10−2

q 7× 10−1 (6.8± 0.4)× 10−1

η 6.3 5.7± 0.6

6.4 Metropolis Coupled Markov Chain Monte

Carlo
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Appendix A

Phenomenological Current

Equations

A.1 Current List

The currents used in our model are based on the following phenomenological

forms.

Current Description Source
INa,t Transient sodium current [35]
INa,p Persistence sodium current [46]
IK Delayed rectifier potassium current [35]
IA Transient outward potassium current [35]
IA,slow Slowly inactivating ‘delay’ potassium current [46]
IIR Inwardly rectifying potassium current [46]
IT Low-threshold calcium current [35]

A.2 Voltage Equation

Voltage different equation can be written in the following general form,

as an addition of currents from different channels (with an exception of calcium

currents) and injected current:

dV

dt
=

1

Cm

[∑
i

(
ḡiX

aY b(Ex − V )
)

+ Iinj

]

95
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where ḡi is the maximal conductance of channel i and X and Y are gating variables

for activation and inactivation, respectively. The equations for gating variables of

each channel and corresponding parameters are given in the following pages.

A.3 Transient sodium channel INa,t

Current

INa,t = ḡNa,tm
3h(V − ENa)

State equations of m and h

ṁ = (m∞(V )−m)/τm(V )

ḣ = (h∞(V )− h)/τh(V )

where

m∞ = αm(V )/(αm(V ) + βm(V ))

τm = 1/(αm(V ) + βm(V ))

Kinetics

αm(V ) = q10 × 0.32expM1(13.1− V ′, 4)

βm(V ) = q10 × 0.28expM1(V ′ − 40.1, 5)

αh(V ) = q10 × 0.128 exp((17− V ′)/18)

βh(V ) = q10 × 4/(1 + exp [(40.0− V ′)/5])

V ′ = V + 65

q10 = 3(T−30)/10 = 2.158 (at 37◦C)

expM1(x, y) =

{
y(1− x/2y) if |x/y| < 10−6

x/ [exp(x/y)− 1] Otherwise
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Units and Parameters

ḡNa = 0.300 (S/cm2)
T (◦C)
ENa (mV)
V (mV)
INa (mA/cm2)

A.4 Persistence sodium channel INa,p

Current

INa = ḡNa,Pmh(V − ENa)

State equations of m and h

ṁ = (m∞(V )−m)/τm(V )

ḣ = (h∞(V )− h)/τh(V )

Kinetics

m∞(V ) =
1

1 + exp [(V −mvh)/mve]

τm(V ) =

{
0.025 + 0.14 exp [(V + 40)/10] If V < −40

0.02 + 0.145 exp [(−V − 40)/10] Otherwise

h∞(V ) =
1

1 + exp [(V − hvh)/hve]
τh(V ) No functional form provided (from table)
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Units and Parameters

ḡNa,p = 4× 10−5 (S/cm2)
mvh = -52.6 (mV)
mve = -4.6 (mV)
hvh = -48.8 (mV)
hve = 10.0 (mV)
ENa (mV)
V (mV)
INa (mA/cm2)

A.5 Delayed rectifier potassium current IK

Current

IK = ḡKn
3l(V − EK)

State Equations for n and l

ṅ = (n∞(V )− n)/τn(V )

l̇ = (l∞(V )− l)/τl(V )

with

n∞(V ) = 1/(1 + α∗n(V ))

τn(V ) = β∗n(V )/ [q10a0n(1 + α∗n(V ))]

l∞(V ) = 1/(1 + α∗l (V ))

τl(V ) = β∗l (V )/ [q10a0l(1 + α∗l (V ))]

q10 = 3(T−30)/10 = 2.158 (at 37◦C)
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Kinetics

α∗n(V ) = exp

[
10−3ζn(V − Vhn)9.648× 104

8.315(273.16 + T )

]
= exp

[
3.741× 10−3ζn(V − Vhn)

]
(at 37◦)

β∗n(V ) = exp

[
10−3ζngmn(V − Vhn)9.648× 104

8.315(273.16 + T )

]
= exp

[
3.741× 10−3ζngmn(V − Vhn)

]
(at 37◦)

α∗l (V ) = exp

[
10−3ζl(V − Vhl)9.648× 104

8.315(273.16 + T )

]
= exp

[
3.741× 10−3ζl(V − Vhl)

]
(at 37◦)

β∗l (V ) = exp

[
10−3ζlgml(V − Vhl)9.648× 104

8.315(273.16 + T )

]
= exp

[
3.741× 10−3ζlgml(V − Vhl)

]
(at 37◦)

Units and Parameters

ḡK = 0.003 (S/cm2)
Vhn = -32 (mV)
Vhl = -61 (mV)
a0l = 0.001 (1/ms)
a0n = 0.03 (1/ms)
ζn = -5
ζl = 2
gmn = 0.4
gml = 1.0
V (mV)
IK (mA/cm2)
EK (mV)
T (◦C)

A.6 Transient outward potassium current IA

Current

IA = ḡK,Anl(V − EK)
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State equations of n and l

ṅ = (n∞(V )− n)/τn(V )

l̇ = (l∞(V )− l)/τl(V )

with

n∞(V ) = 1/[1 + α∗n(V )]

τn(V ) = β∗n(V )/[q10a0n(1 + α∗n(V ))]

l∞(V ) = 1/[1 + α∗l (V )]

τl(V ) = β∗l (V )/[q10a0l(1 + α∗l (V ))]

q10 = 3(T−30)/10 = 2.158 (at 37◦C)

Kinetics

α∗n(V ) = exp
[0.001ζn(V − Vhn)9.648× 104

8.315(273.16 + T )

]
= exp

[
3.741× 0.001ζn(V − Vhn)

]
(at 37◦C)

β∗n(V ) = exp
[0.001ζngmn(V − Vhn)9.648× 104

8.315(273.16 + T )

]
= exp

[
3.741× 0.001ζngmn(V − Vhn)

]
(at 37◦C)

α∗l (V ) = exp
[0.001ζl(V − Vhl)9.648× 104

8.315(273.16 + T )

]
= exp

[
3.741× 0.001ζl(V − Vhl)

]
(at 37◦C)

β∗l (V ) = exp
[0.001ζlgml(V − Vhl)9.648× 104

8.315(273.16 + T )

]
= exp

[
3.741× 0.001ζlgml(V − Vhl)

]
(at 37◦C)
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Units and Parameters

T (◦C)
ḡK,A = 0.01 (mho/cm2)
Vhn = -33.6 (mV)
Vhl = -83 (mV)
a0l = 0.08 (1/ms)
a0n = 0.02 (1/ms)
ζn = -3
ζl = 4
gmn = 0.6
gml = 1

A.7 Slowly inactivating delay potassium current

IA,slow

Current

IK = ḡA,slowm
2 [ah+ (1− a)] (V − EK)

State equations of m and h

ṁ = (m∞(V )−m)/τm(V )

ḣ = (h∞(V )− h)/τh(V )

Kinetics

τm(V ) = 0.378 + 9.91 exp
[
−((V + 34.3)/30.1)2

]
m∞(V ) =

1

1 + exp [(V −mvh)/mve]

mα = exp [−(V + 90.96)/29.01]

mβ = exp [(V + 90.96)/100]

τh(V ) = 1097.4/(mα +mβ)

h∞(V ) = 1/ [1 + exp((V − hvh)/hve)]
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Units and Parameters

ḡA,slow = 9.51×10−4 (S/cm2)
mvh = -27 (mV)
mve = -16 (mV)
hvh = -33.5 (mV)
hve = 21.5 (mV)
a = 0.996 EK (mV)
V (mV)
IK (mA/cm2)

A.8 Inwardly rectifying potassium current IIR

Current

IIR = ḡIRm(V − EK)

State equation of m

ṁ = (m∞(V )−m)/τm(V )

Kinetics

m∞(V ) =
1

1 + exp [(V −mvh)/mve]

τm(V ) No functional form provided (table)/q10

with

q10 = 3(T−35)/10 = 1.246 (at 37◦C)
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Units and Parameters

EK (mV)
ḡ = 1.4e-4 (S/cm2)
mhv = -82 (mV)
mve = 13 (mV)
V (mV)
IK (mA/cm2)
m∞
τm (ms)
T (◦C)
q10

A.9 Low-threshold calcium current IT

Current

ICa = ḡCa,Tm
2hGHK(V,Cai, Cao)

with

GHK(V,Cai, Cao) = −f
[
1− Cai

Cao
exp(V/f)

]
× efun(V/f)

where

f =
25

293.15
(T + 273.15) = 26.450 (at 37◦C)

efun(x) =

{
(1− x

2
) if |x| < 10−4

x
exp(x)−1

Otherwise

State equations of m and h

ṁ = (m∞(V )−m)/τm(V )

ḣ = (h∞(V )− h)/τh(V )

where

m∞(V ) = αm(V )/(αm(V ) + βm(V ))

τm(V ) = 1/(αm(V ) + βm(V ))
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The same equations follow for h∞(V ) and τh(V ).

Kinetics

αm(V ) =
0.2(−V + 19.26)

exp

[
(−V + 19.26)/10

]
− 1

βm(V ) = 0.009 exp
(
−V/22.03

)
αh(V ) = 10−6 exp(−V/16.26)

βh(V ) =
1

exp

[
(−V + 29.79)/10

]
+ 1

Units and Parameters

T = 6.3 (◦C)
ḡCa,t = 0.003 (S/cm2)
Cai (mM)
Cao (mM)



Appendix B

Standardization of some currents

Standardization of three current IK , IA, and IT is demonstrated here. In

each case, the phenomenological form of the current equations is used to convert

the parameters into the standard form introduced in section 4.2.

B.1 Delayed rectifier potassium current IK

Current

IK = ḡKn
3l(V − EK)

State Equations for n and l

ṅ = (n∞(V )− n)/τn(V )

l̇ = (l∞(V )− l)/τl(V )

Steady state and time constants of n and l

n∞(V ) =
1

2

[
1 + tanh

(
V − van
dvan

)]
with the following parameters:
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van = -32
dvan = 10.6923

τn(V ) = ta0n + ta1n

[
1− tanh2

(
V − vatn
dvatn

)]
with the following parameters:
ta0 = 0
ta1 = 7.88
vat = -29.89
dvat = 17

l∞(V ) =
1

2

[
1 + tanh

(
V − val
dval

)]
with the following parameters:
val = -61
dval = -26.7307

τl(V ) = ta0l + ta1l tanh

[(
V − vatl
dvatl

)]
with the following parameters:
ta0 = 231.7315
ta1 = 231.7315
vat = -61
dvat = 26.7

B.2 Transient outward potassium current IA

Current

IA = ḡK,Anl(V − EK)

State equations of n and l

ṅ = (n∞(V )− n)/τn(V )

l̇ = (l∞(V )− l)/τl(V )
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Steady state and time constants of n and l

n∞(V ) =
1

2

[
1 + tanh

(
V − van
dvan

)]
with the following parameters:
van = -33.6
dvan = 17.8205

τn(V ) = ta0n + ta1n

[
1− tanh2

(
V − vatn
dvatn

)]
with the following parameters:
ta0n = 0
ta1n = 11.8222
vatn = -37.20
dvatn = 25.5

l∞(V ) =
1

2

[
1 + tanh

(
V − val
dval

)]
with the following parameters:
val = -83
dval = -13.3654

τl(V ) = ta0l + ta1l tanh

[(
V − vatl
dvatl

)]
with the following parameters:
ta0l = 2.8966
ta1l = 2.8966
vatl = -83
dvatl = 13.35

B.3 Low-threshold calcium current IT

Current

ICa = ḡCa,Tm
2hGHK(V,Cai, Cao)

with

GHK(V,Cai, Cao) = −f
[
1− Cai

Cao
exp(V/f)

]
× efun(V/f)

where
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f =
25

293.15
(T + 273.15) = 26.450 (at 37◦C)

efun(x) =

{
(1− x

2
) if |x| < 10−4

x
exp(x)−1

Otherwise

State equations of m and h

ṁ = (m∞(V )−m)/τm(V )

ḣ = (h∞(V )− h)/τh(V )

Steady state and time constants of m and h

m∞(V ) =
1

2

[
1 + tanh

(
V − vam
dvam

)]
with the following parameters:
vam = -35.65
dvam = 16

τm(V ) = ta0m + ta1m

[
1− tanh2

(
V − vatm
dvatm

)]
with the following parameters:
ta0m = 0
ta1m = 11.494
vatm = -40.4
dvatm = 24

h∞(V ) =
1

2

[
1 + tanh

(
V − vah
dvah

)]
with the following parameters:
vah = -67.1
dvah = -12.39

τh(V ) = ta0h + ta1h

[
1− tanh2

(
V − vath
dvath

)]
with the following parameters:
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ta0h = 0
ta1h = 8303.5
vath = -70.1
dvaht = 18
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Appendix C

Detailed Model for Type II BNST

Neurons

C.1 Steady states

m∞ =
1

2

[
1 + tanh[(V − amV 1)/amV 2]

]
h∞ =

1

2

[
1 + tanh[(V − ahV 1)/ahV 2]

]
n∞ =

1

2

[
1 + tanh[(V − anV 1)/amV 2]

]
b∞ =

1

2

[
1 + tanh[(V − abV 1)/abV 2]

]
p∞ =

1

2

[
1 + tanh[(V − apV 1)/apV 2]

]
q∞ =

1

2

[
1 + tanh[(V − aqV 1)/aqV 2]

]
u∞ =

1

2

[
1 + tanh[(V − auV 1)/auV 2]

]
r∞ =

1

2

[
1 + tanh[(V − arV 1)/arV 2]

]
s∞ =

1

2

[
1 + tanh[(V − asV 1)/asV 2]

]
t∞ =

1

2

[
1 + tanh[(V − atV 1)/atV 2]

]
z∞ =

1

2

[
1 + tanh[(V − azV 1)/azV 2]

]
(C.1)
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C.2 Time constant

τm = tm0 + epsm
(

1− tanh2[(V − amV 1)/amV 3]
)

τh = th0 + epsh
(

1− tanh2[(V − ahV 1)/ahV 3]
)

τn = tm0 + epsm
(

1− tanh2[(V − anV 1)/amV 3]
)

τb = tb0 + epsb
(

1− tanh2[(V − abV 1)/abV 3]
)

τp = tp0 + epsp
(

1− tanh2[(V − apV 1)/apV 3]
)

τq = tq0 + deltasq +
1

2

[
1− tanh(V − aqV 1)

]
[epsq(1− tanh2((V − aqV 1)/aqV 3))− deltasq)]

τu = tu0 + epsu
(

1− tanh2[(V − auV 1)/auV 3]
)

τr = tr0 + epsr
(

1− tanh2[(V − arV 1)/arV 3]
)

τs = ts0 + eps5
(

1− tanh2[(V − asV 1)/asV 3]
)

τt = tx0 + epst
[
1 + tanh((V − atV 1)/atV 3)

][
1− tanh((V − atV 1)/atV 4)

]
×

1− tanh(V − atV 1) tanh
[
(1/atV 3 + 1/atV 4)(V − atV 1)

]
1 + tanh((V − atV 1)/atV 3) tanh((V − atV 1)/atV 4)

τz = tz0 + epsz
(

1− tanh2((V − azV 1)/azV 3)
)

(C.2)
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