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Data Descriptor: A cloud-free
MODIS snow cover dataset for the
contiguous United States from
2000 to 2017
Hoang Tran1, Phu Nguyen1,2, Mohammed Ombadi1, Kuo-lin Hsu1, Soroosh Sorooshian1 &
Xia Qing1

This article presents a cloud-free snow cover dataset with a daily temporal resolution and 0.05° spatial
resolution from March 2000 to February 2017 over the contiguous United States (CONUS). The dataset was
developed by completely removing clouds from the original NASA’s Moderate Resolution Imaging
Spectroradiometer (MODIS) Snow Cover Area product (MOD10C1) through a series of spatiotemporal
filters followed by the Variational Interpolation (VI) algorithm; the filters and VI algorithm were evaluated
using bootstrapping test. The dataset was validated over the period with the Landsat 7 ETM+ snow cover
maps in the Seattle, Minneapolis, Rocky Mountains, and Sierra Nevada regions. The resulting cloud-free
snow cover captured accurately dynamic changes of snow throughout the period in terms of Probability of
Detection (POD) and False Alarm Ratio (FAR) with average values of 0.955 and 0.179 for POD and FAR,
respectively. The dataset provides continuous inputs of snow cover area for hydrologic studies for almost
two decades. The VI algorithm can be applied in other regions given that a proper validation can be
performed.
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modeling and simulation objective • process-based data transformation
objective

Measurement Type(s) snow

Technology Type(s) digital curation
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Background & Summary
The Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover area (SCA) product1 serves
as a reliable source of snow measurements for hydrologic studies as well as for data assimilation in
climate models. Researchers used and evaluated the product in various regions including the Columbia
and Missouri river basins2, Austria3, Xinjiang, China4, and in Sierra Nevada5,6. The datasets were also
incorporated into a land surface model7 and a hydrology model8 for data assimilation.

Nevertheless, cloud obscuration limits the product's usage. Clouds block satellites from capturing the
ground state of the earth surface (i.e. snow/land), especially during snow accumulation periods when
clouds gather and block the snow cover extent information from the ground. Major concerns about
MODIS snow maps polluted by clouds and snow/cloud discrimination have been repeatedly mentioned
in its assessment studies9,10 as well as in the MODIS product user guide11. Hence, researches focus on the
removal of clouds from snow images have been conducted for years and have been classified into two
main categories: model-driven methods and data-driven methods. To estimate snow extent beneath
clouds, the model-driven methods rely on the relationships between snow and other factors such as:
energy and mass exchanges12,13, temperature14, and grain size15.

On the other hand, data-driven methods take into account the persistent characteristics of snow to
remove clouds. For example, Dozier et al.16 considered snow data as a sparse space-time cube that could
be filled by temporal cubic spline interpolation. Their results demonstrated that the interpolated and
smoothed product has more consistent snow-covered area in the Tuolumne and Merced River basins
throughout the water year 2005 than the raw, cloud cover filtered data. However, Dozier et al. approach is
limited to 1-D interpolation primarily because of frequent zenith angles oscillation and slow
computation. Later on, Gafurov and Bardossy17 introduced a series of six spatiotemporal filters to
mitigate cloud cover from MODIS images in the Kokcha River basin in Afghanistan, detailed information
of this study will be presented in subsequent sections. Parajka et al.18 proposed a regional snow-line
method (SNOWL) utilizing elevation information for de-clouding; the method robustly recovered snow
cover maps from cloud over Austria18. In another study, Hall et al.19 suggested a cloud-gap-filled (CGF)
method to produce a snow cover map with cloud-persistence count (CPC) for each grid where lower CPC
snow grids are more likely to have snow. While approaches from Parajka et al.18 and Hall et al.19 are
simple and proven to be suitable for use in hydrological and global models, persistent cloudy conditions
during snow accumulation periods may reduce their reliability significantly. More recently, Dong et al.20

employed information from snow stations to estimate ground states of cloud-cover areas from MODIS in
south-western Germany. Although this approach is effective in areas with dense snow networks, it
requires manually determining thresholds for each stationʼs predicting capability of nearby snow cover
based on station location and elevation.

To completely remove clouds and delineate dynamic snow boundaries, Xia et al.21 implemented the
Variational Interpolation (VI) method22 for interpolating the three-dimensional space-time cube of snow
cover proposed by Dozier et al.16. Evaluation results in the Sierra Nevada mountain range demonstrated
that the method was robust and accurate since during the accumulation period (25–27) March 2007, the
“Cleared” images obtained from VI had an average omission error and commission error of about 22.5
and 2.1% respectively since the initial omission errors from the original Terra and Aqua images were 14.3
and 20.2% respectively. Meanwhile during the melting period (14–16) March 2009, original satellite
observations were not obscured by clouds as severely as accumulated ones, hence the errors of omission
and commission between ʽClearedʼ and MODIS images were similar (5.7 to 5% of omission errors and
0% for commission errors). However, the main drawback of the original VI method is the system
instability which limits its implementation on a larger scale. In this study, an improved VI version is
introduced by integrating MINimum RESidual (MINRES) iterations23 to prevent the system from
breaking up when applied to much broader scales.

The procedure of developing the cloud-free snow cover dataset consists of two parts. First, estimation
of the ground states (i.e. snow/land) of cloud-hindered grids via five filters adopted from Gafurov et al.17.
The resulting images are still obstructed by clouds but provide more details about snow boundaries which
is beneficial to the second step. In the second stage, the improved VI method is implemented to
reconstruct a three-dimensional time-varying snow cover boundary. Subsequently, this 3-d surface can be
used to obtain cloud-free snow cover images.

Methods
The spatial domain of the dataset developed in this study is the contiguous United States (CONUS) which
covers about 8,080,464.3 km2, ranges between 24o30N and 49o25N in latitude and from 66o57W to
124o46W in longitude. During winter seasons, from November to the end of February, the snow cover
extent for the whole CONUS varies from one million km2 to four million km2 which plays a crucial role
in energy and hydrological cycles24,25.

The main inputs in this study are products from MODIS/Terra Snow Cover Daily (MOD10C1) and
MODIS/Aqua Snow Cover Daily (MYD10C1) version 6 (Data Citation 1) released in July 2016 by the
National Snow & Ice Data Center (NSIDC). These daily Climate Modeling Grid (CMG) products are in a
sequence of MODIS snow product suite11, beginning with the 500 m resolution swath product
(MOD10_L2).
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As reported in Riggs and Hall11, the swath level snow mapping algorithm is based on the Normalized
Difference Snow Index (NDSI)26,27. NDSI is calculated for Terra/MODIS using band 4 and band 6, for
Aqua/MODIS using band 4 and band 7.

NDSI ¼ Band4 -Band6
Band4þ band6

ð1Þ
The global criteria for snow is NDSI greater than 0.4 and near-infrared reflectance (band 2) greater than
0.11 and band 4 reflectance greater than 0.10. To increase snow detection sensitivity in forested
landscapes, the MOD10_L2 product combines the Normalized Difference Snow Index (NDSI) range
from 0.1 to 0.4 with the Normalized Difference Vegetation Index (NDVI)11. After a pixel is classified as
snow, “it is subjected to a series of screens to alleviate snow commission errors and flag uncertain snow
detections”11. More details about the screens can be found in the product user guide11. Here, we only
summarized the screens main thresholds: (1) Version 6 combines surface temperature and height screen,
if snow pixels are in low elevation (o1300 m) and warm surfaces (>283 K), they are reversed to no-snow.
This new surface temperature screen solves the problem of detecting snow in mountain ranges during
spring and summer brought up by Rittger et al.5,10; (2) If snow pixels have low reflectance (Very High
Visible (VIS) of band 2 is ≤0.10 or band 4 is ≤0.11) or low illumination (solar zenith angles > 70°), they
will be set as no-snow or night pixels; (3) Low NDSI or unusually high Short-Wave Infrared (SWIR)
reflectance snow pixels will be converted back to no-snow pixels.

The next product in the sequence, MOD10A1, only selects one 'best' observation from all the
MOD10_L2 swaths over a location using strict criteria including solar elevation, distance from nadir, and
observation cover. Selecting an observation closest to nadir with maximum coverage of the cell9 could
solve problems from the off nadir viewing from the MODIS reflectance product (MOD09) mentioned by
Dozier et al.16.

The main input of the study, MOD10C1/MYD10C1, “maps 500 m MOD10A1 observations into 0.05o

CMG cells. Outputs for a grid cell are determined by the percentage of counts of observations, snow or
cloud, mapped in the cell”11. The daily MODIS snow product suite has “an overall accuracy of about 93%,
lower accuracy is found in forested areas”9. More recent studies from Liu et al.26 and Rittger et al.5 also
highlighted scenarios in which dense canopy limits the product ability to detect snow cover.

It should be noted that the launch dates of the two satellites, Terra and Aqua, are different with
December 18, 1999 and May 4, 2002 for Terra and Aqua respectively. In this study, the term MODIS-
SCA product will be used to represent both products, MOD10C1 and MYD10C1, from Terra and Aqua
whenever the text refers to 2002 or later. When referencing prior to 2002, the term only represents
products from Terra satellite.

Overall, the process of creating the cloud-free product from the MOD10C1/MYD10C1 product starts
with reclassifying MODIS into one of three categories, namely snow, land (no-snow), and cloud based on
the threshold of 50% fractional: if a grid has a percentage of snow greater than 50%, it is set as snow. If the
sum of the snow and cloud fractions in one location is smaller than 50%, a grid is marked as land (no-
snow). If neither snow nor no-snow, a grid is set as cloud. Next, the reclassified MODIS images passed
through two subsequent steps based on a series of filters and the VI algorithm. These two steps are
discussed in the following subsections.

Mitigated filters
The filters are used as a first step to retrieve cloud-free snow cover images. This method has been adopted
from Gafurov and Bardossy17 and it consists of five filters to mitigate cloud obstruction: (1) combining
Terra and Aqua snow cover images in a same day, (2) short-term temporal filter, (3) elevation filter, (4)
neighborhood spatial filter, and (5) long-term temporal filter. Fig. 1 illustrates the flow of cloud polluted
images through the filters and the functions applied by the filters. The importance of using the filters is
that they provide the necessary information about snow boundaries in order for the VI algorithm to be
applied.

The first filter implies an assumption that no snowmelt or snowfall occurred within two observations
of MODIS in one day. Thus, as long as one satellite views a pixel as snow (or land), this ground status will
be assigned to the pixel in the combined image. The formula is given as follows in equation (2):

Sðx;y;tÞ ¼ maxðSAx;y;tð Þ; S
T
x;y;tð ÞÞ ð2Þ

Where x and y are spatial (i.e. longitude and latitude) coordinates of pixel S; t is the day index of pixel S.
SA and ST represent pixels from Aqua and Terra respectively. The second filter assigns the cloud grids as
snow (or land) if the cloud covered pixel showed both snow (or land) in the preceding and succeeding
days. This step is formulated as equation (3):

Sðx;y;tÞ ¼ 1if ðS x;y;t-1ð Þ ¼ 1 and S x;y;tþ1ð Þ ¼ 1Þ ð3Þ
In the third filter, a maximum and a minimum elevation lines defined as the highest and lowest elevation
of snow grids in the image are determined. To ensure the snow lines are correctly determined, the
condition of this filter is that at least 70% of the image is cloud free17. Otherwise this filter will be skipped.
The filter assigns grids with a lower elevation than the minimum elevation line HS

minðtÞ as land. Likewise,
grids with a higher elevation than the maximum elevation line HS

maxðtÞ are assigned as snow. The
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formulas are given as follows in two equation (4) and (5):

Sðx;y;tÞ ¼ 0 if ðHðx;yÞ<HS
minðtÞÞ ð4Þ

Sðx;y;tÞ ¼ 1 if ðHðx;yÞ > HS
maxðtÞÞ ð5Þ

where H(x,y) is the elevation of a pixel (x,y) location. The last two filters apply spatial and temporal
processing respectively. Firstly, the fourth filter merges two neighborhood spatial filters of Gafurov and
Bardossy into one. Specifically, if three out of four direct “side-bordering” pixels of the cloudy pixel
indicate snow/land, the cloudy pixel will be set as snow/land. Furthermore, when considering all eight
neighboring pixels, if any pixel both has lower elevation than the centre elevation and shows snow, the
center pixel will also be assigned as snow. This step is formulated as equation (6):

Sðx;y;tÞ ¼ 1 if ðS xþk;yþk;tð Þ ¼ 1 and H xþk;yþkð Þ kA - 1;1ð Þð Þ<Hðx;yÞÞ ð6Þ
In the last filter, a new long-term temporal filter was developed based on the fact that the annual snow-
status time series can be separated into three types of periods: snow, land, and transition periods. For a
snow period, the grids either show snow or cloud, therefore, cloudy pixels would be assigned as snow. On
the other hand, for a land period, the grids either show land or cloud, therefore, cloudy pixels would be
assigned as land. The selection of length of the period is subjective, but must be long enough to avoid
phase change or long-lasting cloudy periods. For this study, we chose a 30-day window period. Interested
readers should refer to (Gafurov and Bardossy17) for detailed information about the filters.

Variational Interpolation algorithm
The time-varying snow cover boundaries resulted from previous filters are modeled by the VI algorithm22

using a three-dimensional implicit function formulated as:

f x!� � >0
¼0
<0

inside snow cover
at snow boundaries
outside snow cover

8<
: ð7Þ

where x!¼ x1 x2 tð ÞTAR3, x1 and x2 are spatial coordinates on the projection plane, and t is the time. In
three spatial dimensions, implicit functions deliver relatively simple techniques to generate complicated
but useful surfaces27. Once the snow cover implicit surface in space and time is determined, cloud-free
images from selected days can then be obtained through cross sections of the surface21.

One thing to note is that interpolation from implicit surfaces depends heavily on the surface
smoothness. In order to apply VI for snow cover, we have to make a hypothesis about the dynamic
property of snow cover boundaries. Numerous theories in Physics such as the Principle of Least Action28,
Principle of Least Forcing29, and the Variational Principle30 proved that a natural process always operates

Figure 1. Flow chart of cloud mitigation filters. The process consists of five filters: (1) combining Terra and

Aqua snow cover images in a same day, (2) short-term temporal filter, (3) elevation filter, (4) neighborhood

spatial filter, and (5) long-term temporal filter.
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in its most efficient way. As energy cost is one of the most crucial factors of efficiency, a natural surface
should hold the minimum energy cost. Hence, it can be represented as a linear combination of the radial-
basis function established at selected constraint points on the surface according to the following
equation21,31:

f x!� � ¼ 0 )
XN
i¼1

wiR x!- xi
!� � ¼ 0 ð8Þ

where w is a set of N weights and R x!- xi
!� �

is a selected radial-basis function established at N
constraints points. We decided to use the thin plate function R(.) = r2 log r with r ¼ x! - xi

! to present
the radial-basis function. With constraint points collected on snow boundaries in discrete times, the
weights of those points can be computed by solving the linear system to create the implicit surface.

To provide VI with necessary constraint points, the Douglas-Peucker algorithm has been used32. This
one parameter method is simple and widely used in vector graphics simplification and cartographic
generalization. Given a relative distance dimension ε (0oεo1) and a starting curve of an ordered set of
points, the algorithm recursively divides the curve to discard points closer than ε to line segments. The
larger ε, the less points will be kept32. After experimenting a wide range of ε, a value of ε= 0.2 has been
chosen to preserve shapes of snow boundaries and reduce the number of points fed into the VI algorithm.

Improving the system stability for the VI algorithm
The performance of the original VI algorithm21 is unstable when a massive amount of constraint points is
collected. For example, if constraint points were collected for the CONUS region in January 2009 (i.e.,
~130,000 points), the original linear system (3) will become singular and the whole system will break
down. A proposed solution for this problem is using MINRES algorithm by Paige and Saunders23.
MINRES is a Krylov subspace method for solving large symmetric systems. When applied to an
inconsistent system (i.e., a singular symmetric linear problem), Paige et al.33 and Choi34 reported that
MINRES maintains the system stability and provides a least-squares solution.

Paige et al.33 analyzed the convergence behavior of the MINRES method in singular systems and
concluded its residual monotonically decreases toward the origin satisfying several convergence
properties. Interested readers should refer to Paige et al.33.

In our implementation of the MINRES algorithm, to ensure both the system stability and accuracy,
besides setting the tolerance threshold of 1e-08 (i.e. the smaller the threshold is, the more reliable the
results become), we also specified the maximum number of iterations as 1000. Hence, when either of
these conditions was reached, the algorithm terminated. In a small experiment, we compared the system
stability of VI using both traditional LU decomposition and the MINRES method over the CONUS
region in January 2009. The performance was measured by the time elapsed over the increment of the
interpolation period. Both methods started by using five consecutive days as a calculation unit. However,
as more points were collected, the ordinary LU decomposition resulted in a system broke down (Fig. 2).
In contrast, the MINRES method demonstrated its superiority by maintaining the system stability and
accelerating the computation time. It is worth noting that, in all singular cases, the MINRES terminated
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Figure 2. Results of computational efficiency comparison between the VI algorithm integrated with LU

decomposition and the MINRES iteration. Computation time to solve a linear equation using LU

decomposition (red) and MINRES iteration (blue) regarding the number of points collected into the equation.
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before reaching the maximum number of iterations. This termination indicated that the system accuracy
was also guaranteed.

Creating the cloud-free dataset
The cloud-free dataset was developed by applying the mitigating filters and the VI algorithm introduced
in the previous subsections. Regarding the use of VI algorithm, wide ranges of interpolation periods were
examined to obtain the optimum results in terms of accuracy; a period of 30 days has been selected. This
interpolation period is used in a moving window approach such that the window is centered around the
day under consideration in order to efficiently utilize information about snow boundaries. The
interpolation period started from February 24, 2000; the whole dataset was created in more than one
month, using the High Performance Clusters (HPC) of the University of California, Irvine.

Code availability
The code is developed using Python 2.7 programming language; specific toolboxes used for code
development include image processing toolbox (http://scikit-image.org/) and scientific computing
toolbox (https://www.scipy.org/).

Due to the immense computation and the required memory size, the code was developed to be
implemented in High Performance Clusters (HPC) of the University of California, Irvine. Therefore,
sharing the code is of limited practical usage. However, interested readers who plan to develop cloud-free
snow product using the approach described in this article can contact the corresponding author. The
corresponding author will help in the adaptation of code to other computing systems.

Moreover, we are planning to build a complete package that fully utilizes the code. Any update can be
found on the corresponding author's github page (https://github.com/hoangtv1899).

Data Records
The cloud-free snow cover dataset is available to the public through an unrestricted data repository
hosted by Figshare (Data Citation 2).

The characteristics of the dataset are provided in Table 1. It should be noted that there is a number of
12, 17, and 9 days missed in the years 2000, 2001, and 2002 respectively due to the unavailability in the
original MODIS record.

Technical Validation
In this study, Landsat 7 ETM+ was used as a baseline to validate the snow cover dataset spatial continuity
since Landsat has high spatial resolution (30 m) and full coverage of the dataset time range (2000 to
2017). To avoid a potential saturation of ETM+ visible bands15, only Landsat 7 Tier 1 images have been
utilized. Data from October to March of each year with a cloud threshold of less than 15% was obtained
from the U.S. Geological Survey website (https://landsat.usgs.gov). Landsat 7 Tier 1 product ensures the
highest available data quality for time-series processing analysis (LEDAPS35). Tier 1 Landsat data has
RMSE no greater than 12 m and can be considered consistent and inter-calibrated across the full
collection (https://landsat.usgs.gov).

In order to map snow cover from Landsat images, the SNOWMAP algorithm26,36 was used. It is based
on the NDSI index which is calculated for Landsat using band 2 and band 5:

NDSI ¼ Band2 -Band 5
Band 2þ band 5

ð9Þ

When the NDSI is greater than or equal to 0.4 and band 4 reflectance value is greater than 11%, the pixel
is classified as snow37. The resolution of the Landsat snow cover is then up-scaled into 0.05o and
reprojected into the geographic coordinate system with the spheroid of WGS84 to match with the
MODIS-SCA product resolution and projection. The evaluation was conducted in four regions with
different climate condition, elevation, and land cover, namely, the Seattle region, the Minneapolis region,

Characteristic Variables

Data type Binary data (0 - for ground and 1 - for snow)

Data format NetCDF

Spatial Coverage 23.90oN–50.30oN; 130.75oW–63.95oW

Spatial Resolution 0.05o ´ 0.05o

Temporal Coverage March 10, 2000 to February 28, 2017

Temporal Resolution 1 day

Table 1. Descriptive characteristics of the cloud-free snow cover dataset.

www.nature.com/sdata/
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Region Landsat no. and path/row Date POD FAR Initial cloud ratio in MODIS

Seattle L7: 46/27 03/28/2004 0.886 0.280 0.035

10/04/2009 0.896 0.130 0.012

03/24/2014 0.886 0.236 0.133

03/29/2016 0.882 0.280 0.027

Minneapolis L7: 27/29 01/10/2001 1.000 0.130 0.063

02/27/2001 0.999 0.019 0.285

03/15/2001 0.988 0.005 0.762

02/17/2003 0.864 0.063 0.288

12/23/2005 0.996 0.210 0.223

01/27/2007 0.994 0.270 0.777

01/14/2008 1.000 0.195 0.103

01/30/2008 0.982 0.220 0.856

12/15/2008 0.999 0.245 0.858

02/01/2009 1.000 0.186 0.001

01/06/2011 0.993 0.268 0.110

03/27/2011 0.959 0.208 0.110

03/06/2015 0.916 0.246 0.140

12/03/2015 1.000 0.269 0.021

Rocky L7: 35/31 01/02/2001 0.994 0.111 0.021

03/07/2001 0.948 0.168 0.179

01/13/2005 1.000 0.178 0.113

12/15/2005 0.995 0.175 0.440

12/18/2006 1.000 0.228 0.250

01/22/2008 0.998 0.086 0.046

03/10/2008 0.981 0.192 0.164

12/23/2008 0.999 0.215 0.358

03/29/2009 0.950 0.246 0.389

11/24/2009 0.993 0.215 0.083

12/10/2009 0.991 0.134 0.052

02/15/2011 0.964 0.149 0.115

02/18/2012 0.998 0.095 0.104

01/03/2013 1.000 0.134 0.063

12/05/2013 0.995 0.092 0.072

01/06/2014 1.000 0.222 0.265

03/30/2015 0.903 0.149 0.011

12/27/2015 1.000 0.120 0.024

02/15/2017 0.860 0.240 0.169

Sierra Nevada L7: 43/33 03/28/2000 0.924 0.127 0.183

02/27/2001 0.904 0.144 0.033

03/05/2003 0.909 0.204 0.033

03/21/2003 0.923 0.202 0.652

03/07/2004 0.935 0.135 0.023

03/10/2005 0.940 0.162 0.023

02/15/2008 0.909 0.250 0.039

03/02/2008 0.902 0.151 0.100

03/18/2008 0.933 0.181 0.221

03/05/2009 0.985 0.155 0.176

03/16/2013 0.928 0.230 0.040

03/19/2014 0.878 0.224 0.256

03/24/2016 0.889 0.164 0.464

0.955 0.179 0.199

Table 2. Landsat validation for the performance of cloud-free dataset.
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the Rocky Mountain, and the Sierra Nevada of California. The subsequent subsection illustrates the four
regions and their characteristics.

Validation regions for snow-covered area
Landsat images from March 28, 2000 to February 15, 2017 were used for validation (See Table 2). The
four selected regions for validation in this study include two high altitude regions, namely the Rocky and
Sierra Nevada Mountains. The Rocky Mountains located between 40.80o and 42.73oN in latitude, 105.51o

and 108.25oW in longitude. It has a high average altitude of 2500 m with a large area of grasslands. The
region's snow regime is “predominantly continental with some pockets of intermountain character-
istics”15. On the other hand, the Sierra Nevada Mountains (37.95o to 39.89oN, 118.84o to 121.45oW) is
under great influence of maritime snow climates. Elevation ranges from 2m at the foothills to around
2800 m on the mountain (in the sample area) with equal portions of needle leaf forest, savannas, and
grasslands.

Moreover, two additional regions were selected for validation. Firstly, a region around Minneapolis
located between 43.62o and 45.60oN in latitude, 92.09o and 94.97oW in longitude was selected. It has an
average elevation of 330 m and a land use pattern primarily consisting of cropland/natural vegetation
mosaic and urban. Snow is the main form of precipitation from November through March with an
annual state-wide average of 110 snow-cover days. Secondly, a region around Seattle located between
46.46o and 48.42oN in altitude, 123.32o and 123.04oW in longitude was selected. The region is known for
its rainy climate with the Cascade Mountain range located on the east side, winters in this region are
typically wet with significant snow accumulation in the mountain area. Land cover is mostly evergreen
needle leaf forest and mixed forest.

From these four regions, we selected a final set of 50 tiles from over 150 Landsat tiles for best
representing an overall snow climate. This selection is affected by a great variation in number of qualified
Landsat tiles for each regions. In regions where snows occur frequently (i.e. Rocky Mountain, Sierra
Nevada, and Minneapolis), there were small variations in Landsat tiles during each snow seasons,
especially during snow melt periods when there were less clouds. On the contrary, in the Seattle region,
there were many fewer Landsat tiles which were not contaminated by clouds but also contained
significant snow boundaries.

Figure 3. A validation example over the Sierra Nevada region on March 21, 2003. (a) Base map with state

lines in red and a cyan rectangle to indicate the validation region. (b) Table showing Probability of Detection

(POD) and False Alarm Ratio (FAR) results. (c) Merged MODIS image. (d) Cloud-free MODIS image. (e)

Landsat7 image.
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Days Filters Percentage of Cloud Elimination POD FAR

Jan 24, 2006 Short-term temporal filter 0.071 0.985 0.016

Elevation filter 0.021 0.983 0.017

Spatial filter 0.105 0.981 0.017

Long-term temporal filter 0.465 0.970 0.025

VI algorithm 0.339 0.826 0.028

Jan 26, 2007 Short-term temporal filter 0.101 0.983 0.012

Elevation filter 0.021 0.981 0.013

Spatial filter 0.104 0.980 0.013

Long-term temporal filter 0.397 0.981 0.013

VI algorithm 0.376 0.953 0.017

Jan 31, 2009 Short-term temporal filter 0.135 0.984 0.013

Elevation filter 0.025 0.981 0.014

Spatial filter 0.080 0.980 0.014

Long-term temporal filter 0.447 0.979 0.014

VI algorithm 0.313 0.944 0.016

Mar 18, 2009 Short-term temporal filter 0.317 0.964 0.031

Elevation filter 0.049 0.956 0.031

Spatial filter 0.017 0.954 0.031

Long-term temporal filter 0.530 0.949 0.031

VI algorithm 0.087 0.867 0.035

Jan 18, 2013 Short-term temporal filter 0.234 0.988 0.010

Elevation filter 0.037 0.988 0.010

Spatial filter 0.050 0.986 0.011

Long-term temporal filter 0.422 0.978 0.016

VI algorithm 0.256 0.932 0.025

Mar 13, 2014 Short-term temporal filter 0.066 0.986 0.021

Elevation filter 0.012 0.982 0.022

Spatial filter 0.116 0.980 0.022

Long-term temporal filter 0.453 0.965 0.049

VI algorithm 0.353 0.917 0.051

Mar 6, 2015 Short-term temporal filter 0.146 0.986 0.012

Elevation filter 0.035 0.981 0.013

Spatial filter 0.090 0.979 0.014

Long-term temporal filter 0.418 0.976 0.012

VI algorithm 0.310 0.931 0.018

Mar 7, 2015 Short-term temporal filter 0.451 0.980 0.030

Elevation filter 0.065 0.975 0.031

Spatial filter 0.000 0.973 0.031

Long-term temporal filter 0.377 0.971 0.028

VI algorithm 0.107 0.933 0.029

Nov 23, 2015 Short-term temporal filter 0.107 0.985 0.013

Elevation filter 0.020 0.980 0.014

Spatial filter 0.094 0.979 0.014

Long-term temporal filter 0.416 0.973 0.056

VI algorithm 0.364 0.863 0.063

Table 3. Cross validation for each filter.
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Validation results
We compared the performance of the cloud-free with Landsat using two categorical validation indices,
Probability of Detection (POD) and False Alarm Ratio (FAR).

POD ¼ Hit
Hit þMiss

ð10Þ

FAR ¼ False
Hit þ False

ð11Þ

Over the validation scenarios, POD ranged from 0.860 to 1.000 with an average of 0.955. Modest results
of POD with a mean of 0.888 came from the Seattle region since this area has a complex topography and
dense forests which hindered the original MODIS-SCA product snow detection. Meanwhile, regions in
high elevations or frequent snow areas showed high POD. Since the VI algorithm retrieved ground states
of cloud hindered pixels, it is also important to validate the FAR of the cloud-free dataset. Across 50
validation scenes, the dataset yielded a reasonable average FAR of 0.179 with the highest FAR of 0.28 for 2
days, March 28, 2004 and March 29, 2016, in the Seattle region. The dataset modest performance in the
Seattle region is justified by the rapid-varied topography and dense needle leaf forests in this region.
These characteristics impose difficulties in mapping snow for this region from satellites5,9,26,38.

In Table 2, we also computed the percentage of cloud in the combined MODIS images from Terra and
Aqua for each region to demonstrate the effect of the VI algorithm. In general, since we only selected Landsat
images with no or low cloud percentage, the corresponding merged MODIS images are likely to contain less
cloud (Table 2). However, days when cloud cover polluted the merged MODIS images heavily (e.g., January
30 and December 15, 2008 in Minneapolis or March 21, 2003 in Sierra Nevada), the VI algorithm effectively
recovered snow boundaries to correlate well with the Landsat snow-cover maps. Figure 3 shows an example
of snow boundary recovered from cloud cover using VI to match with the Landsat image.

Bootstrap testing
In order to evaluate the accuracy of the mitigated filters and the VI algorithm, a cross-validation method
is used. The validation process consists of three steps. Firstly, a record of synthetic cloud-covered images
was developed. This was performed by selecting combined MODIS snow images over CONUS that
satisfies two conditions, namely 20% or less cloud cover area and 4% or more snow cover area.
Subsequently, these images were overlaid by cloud cover extracted from MODIS images with a cloud
pollution rate higher than 80% to create the synthetic record. Secondly, each filter and the VI algorithm
was applied sequentially to remove clouds from images in the synthetic record. Thirdly, the resulting
image after each step was evaluated using the previously selected low cloud cover MODIS images. Table 3
shows the evaluation results for each filter and the VI algorithm for each day averaged across different
cloud cover scenarios.

Figure 4. Comparison of annual average snow cover extent area over the CONUS computed from merged

MODIS and the cloud-free snow cover product. The figure compares the annual average snow cover extent

area over CONUS (in million km2 ) as computed from (a) the cloud-free snow cover product developed in this

study (red bars) and (b) merged MODIS product (blue bars). The time period of the comparison is from 2001

to 2016.
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The metrics used for evaluation include POD, FAR and cloud removal ratio. The results shown in
Table 3 demonstrates that each filter contributes to the cloud removal while maintaining high accuracy (i.
e. POD and FAR). After complete removal of clouds, the average accuracy metrics of the images are 0.907
and 0.031 for POD and FAR respectively. Furthermore, it can be seen that the VI algorithm generally is
the main factor in clouds removal with an average percentage of 0.278. Despite of this high cloud removal
ratio, the VI algorithm maintains high accuracy with an average change of �0.075 and +0.014 in POD
and FAR respectively.

Usage Notes
The dataset produced in this study is useful in hydrological studies due to its adequate resolutions and
validated accuracy as discussed in the previous section. In this section, we provide two simple
applications of the dataset to serve as an example of the potential usages.

Figure 5. Comparison of the annual number of snow days over CONUS computed from merged MODIS

and the cloud-free snow cover product. The figure compares the annual number of snow days over CONUS

during the period 2001–2016 as computed from (a) Merged MODIS product and (b) the cloud-free snow cover

product developed in this study.
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CONUS Snow Cover Extent
The annual average snow cover extent over CONUS, measured in million square kilometers, from both
the merged MODIS and cloud-free snow cover datasets was compared. The comparison was performed
from 2001 to 2016. Results show that statistics of snow cover using the merged MODIS could be
substantially different from the cloud-free maps. As shown in Fig. 4, the merged MODIS images (blue)
show significantly less snow cover extent than the cloud-free dataset (red). The cloud-free dataset
maintains an average snow cover of 1.342 million km2 in the period (2001–2016) compared to 0.462
million km2 from merged MODIS. This shows that using this dataset has major implications in
quantifying the amount of snow for different hydrologic processes.

Annual number of snow days
In order to examine the differences in the two datasets beyond the yearly and monthly average of snow
extent, we also studied the number of snow days over CONUS. From this perspective, we could compare
the snow spatial distribution of the two products. As shown in Fig. 5, during the period (2001–2016), the
merged MODIS estimates 100 days as the annual number of snow days in the mountainous area of the
Western US which has an altitude range of (910–1830 m). However, the cloud-free images estimate the
number of snow days in the mountain states and the Sierra Nevada area as 160 to 200 days per year.

In two drought years, 2002 and 2003, there was considerably less snow days in the western mountains
and the Midwest states, such as Colorado, Wyoming, and South Dakota, as illustrated by the cloud-free
maps. Moreover, the images also show shorter snow seasons from the Northeast to the Northwest of
the CONUS.

The cloud-free dataset provides considerably different estimates regarding both the amount of snow as
well as the number of snowy days. This has considerable implications in the results of hydrologic and
climate modeling studies.
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