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High-speed particle-laden flows are studied through a combination of high-order

Eulerian Lagrangian (EL) method development, multi-scale modeling and the analysis of

normal, shear and wake instabilities. The EL code is based on a Weighted Essentially

Non-Oscillatory (WENO) discretization, which captures discontinuities sharply while

ensuring higher-order resolution in smoother areas. The favorable characteristics of

WENO methods are extended to the EL framework with an Essentially Non-Oscillatory

(ENO) scheme to interpolate the carrier phase from the Eulerian grid to the particle
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location.

A high fidelity multi-scale method is introduced that couples full-resolution micro-

scale statistics with the macro-scale. Using a Taylor expansion of the drag correction

factor and Reynolds averaging of the particle transport equation, the Subgrid Particle

Reynolds Stress Equivalent (SPARSE) model is derived. A mantle is constructed to

provide closure for the particle drag and subgrid particle dynamics models. The efficacy

of several metamodeling techniques in building a mantle with a target uncertainty using

the least number of support points is compared.

Grid aligned shocks at high mach numbers create normal instabilities that bleed

into the particle phase. These so-called “carbuncles” have a predominantly numerical

nature and can be mitigated by adjusting the nonlinear WENO power parameters.

Instabilities that are induced by the accelerated flow behind a moving shock in the

wake of a cloud of particles are analyzed. The initial shape, orientation and dimensionality

of the particle cloud with respect to an oncoming normal shock determines the particle

dispersion at later times. Dispersion characteristics are matched with results reported in

literature. Streamlined cloud shapes exhibit a lower dispersion as compared to clouds

with an initially blunt shape. Lower particle number density areas away from the heavily

populated cloud core accelerate more.

Growth rates of shear instabilities computed with the EL code are compared with

the results of a linear stability analysis of particle-laden shear layers. The growth rate

of shear layers with non-uniformly laden low Stokes number particles is greater than an

unladen shear layer whereas a shear layer with high Stokes number particles dampens

the growth.
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Chapter 1

Introduction

1.1 Motivation

Particle-laden and droplet-laden flows play an important role in high-speed tech-

nologies such as solid rocket propulsion systems and high-speed liquid-fuel combustors.

Shock waves occur in scramjet combustors and interact with fuel particles in the su-

personic flow. These environments exhibit tremendous physical complexity requiring

the simultaneous resolution of particle-turbulence, shock-turbulence, and shock-particle

interactions. Capturing finite shock discontinuities without oscillations and resolving tur-

bulence while simultaneously tracing particle paths through the high-speed flow requires

complex models and advanced methods. The large range of spatial and temporal scales,

furthermore, pose high demands on both experimental and computational analysis.

Because of the high velocities, experimental analysis is limited to large scale

observation or the examination of a single short term event. Experiments studying

instabilities such as Richtmeyer Meshkov [3] and those encountered when a shock

impacts an initially stationary cloud of droplets [151] have elucidated some of the

fundamental mixing occurring on small scales at early times in the interaction of a shock
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and particles. Later time analysis of the interaction of a blast wave and metallic particles

[163, 48, 47] show unique instabilities, which cannot be fully resolved using current

measurement techniques. To understand the fundamental interactions occurring in the

mixing and transport of both the carrier and particle phases on a process-scale problem,

computational analysis is needed.

However, first principle computations are expensive and models are not optimal.

The direct analysis of particle-laden shocked flow requires the computation of the en-

tire flow over each particle, the tracking of individual solid or liquid complex particle

boundaries along their paths, and the capturing of shock waves in the moving framework.

These individual components are difficult to resolve on their own and currently barely

within reach, even with current advances in computational architecture. The combined

difficulty of resolving shocks and particle paths has an immense complexity, scale range

and size, which can currently only be realistically analyzed in highly idealized situations

with only a few particles [119, 90].

1.2 Numerical Scheme

Process-scale computations typically demand simplified macro-scale governing

equations and simulation techniques. For example, in the problem of a shock wave

interacting with a dusty gas, a common practice is to define a computational particle as an

agglomerate of a number of dust particles [28]. The system is then modeled using a mixed

Eulerian-Lagrangian (EL) viewpoint [18, 68]. Particle paths are traced in a Lagrangian

reference frame while the fluid governing equations are solved in a fixed Eulerian frame.

In this approach, the computational particles are modeled as singular point sources, which

couple with the carrier fluid through momentum exchange modeled via source terms in

the fluid equations [30, 68, 34, 33]. In high-speed particle-laden flows, the small time
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scales and range of interphase velocity differences causes the particle phase to rapidly

disperse. Although an Eulerian-Eulerian approach is effective at capturing the large scale

mixing of the particle and fluid phase [127, 128], dissipation errors arise while tracking

the number density in low particle volume fraction environments. EL methods are better

able to compute the dispersion patterns in sparse flows because individual computational

particles are tracked.

In the Eulerian frame, discontinuities arise, which necessitate the use of shock

capturing methods that can accurately model the sharp jump across a shock in a flow field

in a stable manner. Traditionally, robustness considerations constrained shock-capturing

schemes to only those which rely on low-order methods [50, 149, 83]. Although this is

often good enough to capture the short time dynamics of the shock, numerical diffusion

dissipates important smaller scale flow structures in the resultant wake. These dissipation

errors extend throughout the domain, smearing both shocks and turbulence over longer

time periods. The high resolution computation of particle-laden flows with a large range

of spatial and temporal scales is limited by the use of lower order methods. Dispersion

and diffusion errors plague the accuracy of the solution.

To accurately trace discontinuities while simultaneously resolving small-scale

turbulence in the flow, high-order shock-capturing methods have been devised. Essentially

Non-Oscillatory (ENO) schemes, first presented by Harten et. al. [56], provide a

framework for the implementation of robust high-order finite difference methods for the

solution of hyperbolic equations. These schemes maintain a high-order of accuracy while

adaptively adjusting the stencil near discontinuities to avoid spurious Gibbs Oscillations.

The stencil is adaptively chosen to provide the “smoothest” reconstruction, thereby

avoiding stencils containing discontinuities [83].

Weighted ENO (WENO) schemes, first introduced in [85], improve upon on the

adaptive stencil techniques of the ENO scheme. An optimal order of accuracy is obtained
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at smooth parts of the solution while enough dissipation is retained over discontinuous

stencils to damp out oscillations [70]. This is accomplished through a convex combination

of all the possible ENO substencils. Improved WENO methods have also been derived,

such as the WENO-Z scheme [5, 18, 49, 35], with enhancements to decrease dissipation

errors and ensure a high-order accuracy in smoother regions of the flow.

In the Lagrangian frame, Particle-Source-in-Cell (PSIC) methods, introduced

by Crowe et. al. [30, 28], have proven to be effective models for solving larger scale

problems. In the case where the number of physical particles to trace is prohibitively

large, groups of physical particles are amalgamated into a single computational particle

with an increased source factor, this scheme has been deemed the Cloud-In-Cell (CIC)

method [10]. In PSIC and CIC methods, particles are modeled as points and their motion

is forced by the drag exerted on them by the fluid [68, 66, 34, 33]. The fluid velocity

and temperature are interpolated from the Lagrangian frame and used explicitly in the

particle governing equations. To maintain the high-order accuracy of the solver and

avoid oscillations in the interpolation, a high-order method is required [137]. The ENO

method, discussed above, preserves both the high-order accuracy and robustness of the

fluid solver [68].

The motion of the solid phase is governed by drag laws derived from Stokes’

drag law [136], which assumes very low Reynolds number, Re << 1. More complicated

heuristic drag laws governing the motion of particles in higher Reynolds number particle-

laden flows and even accounting for compressibility have been formulated [26, 89].

Additional terms such as the slip coefficient [141], various shape factors [143], viscosity

ratios for droplets [43], etc. have also been incorporated into these empirical models.

In recent studies summarized in books such as Crowe et. al. [28], significant effort

has gone towards modeling particle drag in shocked, accelerated flows. Boiko et. al. [15,

13] determined the drag of a droplet behind a shock by comparing the known relaxation
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times of a hard sphere to their experimentally measured droplet relaxation times. Sun et

al. [139] numerically studied the dynamic drag coefficient of a spherical particle behind

a shock wave. A reflected bow shock was observed in front of the spherical particle,

and, as the shock wave traversed over the sphere, a Mach reflection formed. The Mach

reflection proceeded to the rear center of the sphere before converging with the Mach

reflection from the other side. This caused shock focusing to occur and a region of very

high pressure at the rear of the spherical particle. This region of high pressure resulted

in a brief negative drag. Their numerical data matched experimental data within 10%.

Loth [88] investigated the effect of compressibility and rarefaction on a spherical particle.

Boiko et al. [14] also studied different shaped particles. In a comparison of a cubical and

a spherical particle they found that the drag is predominantly a function of the frontal area

of the particle. They conclude that the relative bluntness of the shapes do not significantly

affect the particle dynamics.

In addition to improving the closure models for the particle drag, small scale

perturbations in the particle phase must be accounted for to accurately trace particle

dispersion patterns. Much effort has gone into modeling the complex sub-grid turbulent

structures in the fluid governing equations [80, 99, 39, 134, 4]. By contrast, little effort

has been devoted to the study of sub-scale particle fluctuations under the computational

particle assumptions of CIC. Several articles [22, 102, 146] have studied the inclusion

of small-scale particle-fluid energy transfer in their turbulence models. However, these

studies focus on the effect that the particles have on the fluid rather than the influence of

individual modeled particles on the averaged computational particle dynamics.

By coupling micro and macro-scale methods, closure models for the drag and

sub-scale particle perturbation terms can be obtained using small-scale, full resolution

computations. For example, Hasegawa et. al. [57] used the statistics determined from

DNS computations to close modeled terms in macro-scale large eddy simulations (LES)
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to study mass transfer across turbulent flows with high Schmidt numbers. Other methods,

such as the energy minimization multi-scale method [154] use multi-scale methods to

study gas-solid two-phase flows. The closure of these terms with statistics generated

directly from the meso-scale creates a highly robust and accurate method.

The complexity of the relationship between the particle drag and fluid motion as

well as the requirement that numerous coupling parameters be considered, necessitates

an accurate, efficient algorithm to represent the behavior of the system. Improving the

accuracy of the sub-grid model in the macro-scale code requires additional full-resolution

experiments, which consume significant computational resources. The requirement to

limit the time and expense of performing supplementary DNS studies necessitates an

efficient, accurate coupling algorithm to interpolate the sub-grid particle drag statistics

and generate a representative mantle. The required number of input points to build this

mantle must not grow exponentially as new parameters are added i.e. the scheme cannot

suffer from the curse of dimensionality. Because the drag model function is not known a

priori, the coupling algorithm must also show defined convergence. Methods such as the

Stochastic Collocation (SC) [7, 160, 93], Kriging [84, 145, 86, 133], and Radial Basis

Function Artificial Neural Networks (RBFANN) [23, 110, 58] fit these requirements.

1.3 Physical and/or Numerical Instabilities

As discussed above, ENO and WENO schemes are used to mitigate Gibbs Os-

cillations. However, stronger shocks in very high-speed flows create other instabilities

when using high-order shock capturing methods. In situations where a very strong, slow

moving shock is aligned with the numerical grid, anomalous bumps and oscillations

can occur in the shock profile which have earned the nickname carbuncle [111]. These

phenomena are typically studied in the case of solid bodies immersed in high-speed flows
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[112, 111, 152]. Many “cures” have been proposed to eliminate carbuncles from numer-

ical solvers [108, 120]. However, these methods generally add signficant dissipation,

limiting the resolution of small-scale structures over long time periods. Experiments by

Holden [60] have revealed that carbuncle-like phenomenon may arise naturally by the

injection of dust particles along the stagnation line ahead of a blunt cylinder. Robinet

et. al. [114] exhibited a new mode in the inviscid Euler equations, which could develop

into a carbuncle. These conclusions have lead some researchers to the hypothesis that

carbuncles are incurable [38]. Aside from a few idealized cases, however, experiments

have not shown these instabilities to be naturally occurring. Therefore, using numerical

methods that mitigate the effect of carbuncles on the carrier flow is desirable.

In addition to modeling and numerical instabilities, physical instabilities arise in

the interaction between particles and fluids. Limited studies have been performed on the

dynamics of a large number of particles in high-speed flow. Olim et al. [106] studied

the attenuation of a normal shock wave in a homogeneous gas particle mixture. Kiselev

et al. [78] compared simulations based on Boiko’s empirical particle models to shock

tube experiments on the dispersion of a cloud of plexiglas and bronze particles in the

accelerated flow behind a moving shock [15]. Not only did they visualize the particle

dynamics and dispersion, they also matched some of their results quantitatively to the

experimental dispersions.

The experiment in [15] showed that the interaction of a shock and a particle

cloud produces a turbulent wake and strong shear layers, which contribute heavily to

the resultant particle dispersion. The growth rate of instabilities in particle-laden shear

layers, therefore, is of great importance to the fundamental understanding of particle

mixing and transport in high-speed multi-phase flows. The first analytical linear stability

analysis (LSA) of a viscous, incompressible particle-laden shear layer was performed by

Saffman in 1961 [118]. Saffman found that particles with a small Stokes number (St)
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destabilize a viscous flow because of an increase in the effective bulk mixture density

and therefore Reynolds number (Re) of the flow. However, large St particles stabilize the

flow because of the viscous dissipation of fluid moving around the large inertia particles.

1.4 Outline and Contributions

The primary contribution of this thesis is the elucidation and mitigation (in

the case of spurious numerical errors) of the inherent instabilities which arise in the

computation of high-speed particle laden flows. The first few chapters of the manuscript

lay the foundation for the numerical tools used in this study the particle-laden flows.

Improvements to the macro-scale modeling of computational particles by the addition

of micro-scale information is addressed in the middle portion of the thesis. In the later

chapters, the macro-scale computational method is used to study several numerical and/or

physical instabilities. Solutions to mitigate the spurious numerical instabilities while

maintaining the high fidelity of the solver are offered. The main contributions of this

thesis can be summarized as follows:

• The effect of sub-scale individual particle dynamics on the averaged computational

particle momentum is investigated. Additional terms are added to the particle

phase governing equations to capture the response of the cloud to micro-scale

perturbations in the particle phase. The inclusion of an averaged carrier phase

velocity is analyzed and compared the the classical assumption that the fluid

velocity can be interpolated at a single point.

• A multi-scale scheme, that couples a full resolution, micro-scale DNS code [119]

with a macro-scale EL code [68] to provide a dynamic closure model to solve the

particle momentum equations over all parameter spaces is developed. A series

of small-scale DNS experiments generate particle statistics, which are then used
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to close the sub-grid models in a macro-scale EL solver. A coupling algorithm

interpolates the correlation for momentum flux between the particle and fluid

phases and determines the number of realizations that are required to obtain a

target uncertainty in the data. The macro-scale code interrogates this coupling

algorithm to determine the statistics needed to close the governing equations.

• Normal instabilities called “Carbuncles,” which arise in the numerical analysis of

a very strong grid-aligned shock encountering an obstruction, are shown, for the

first time, to occur in the interaction between an high-speed flow and a cloud of

particles. Damping of these instabilities is accomplished by adjusting the power

parameters of the WENO-Z nonlinear weights.

• Wake instabilities in the interaction of a right running normal shock and a cloud of

inertial particles is studied. The influence of individual particles as well as the effect

of the full macro-scale particle cloud on the fundamental mixing and transport of

the particle phase is analyzed. Particle dispersion patterns are characterized based

on the initial shape and orientation of the particle cloud. The strong shear layers

formed by the rapid decrease in fluid velocity through blunter cloud shapes cause

greater spanwise particle dispersion.

• The effect of particles on the linear growth of shear instabilities is explored from

both a theoretical linear stability analysis and a computational approach. The

growth rate of the shear layer instability increases when non-uniformly laden with

fast responding particles as opposed to previous studies, which concluded that

the addition of particles always stabilizes the shear layer. A bulk energy budget

analysis shows a net transfer of energy from the small Stokes number particles to

the carrier phase.
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In the next section, governing equations for both the carrier phase and dispersed

phase are presented. In Chapter 3, the high-order EL method is discussed in full detail.

A multi-scale method coupling drag statistics from micro-scale computations with the

macro-scale EL solver is explained in Chapter 5. Chapter 4 details the averaged sub-

grid particle momentum model, showing the improvements over existing CIC methods.

Numerical instabilities are examined in Chpater 6 and methods to mitigate these spurious

oscillations are given. In Chapter 7, physical instabilities arising from the interaction of

particles and fluid are studied. The interaction of a normal shock and a particle cloud

of differing shape and orientation is studied to elucidate the importance of both macro-

and micro-scale particle-cloud-shock interactions on the full-scale problem. The shear

layers, which cause much of the spanwise dispersion of the cloud in the above case, are

studied in greater detail through both a Linear Stability Analysis (LSA) and computations.

Conclusions and recommendations are reserved for the final chapter.



Chapter 2

The Physical Model and Governing

Equations

In the particle-source-in-cell (PSIC) method, the Eulerian continuum equations

are solved for the carrier flow in the Eulerian frame, while particles are traced along

their paths in the Lagrangian frame. In the following, we present the coupled system

of Euler equations that govern the gas flow and kinematic equations that govern the

particle motion. We shall denote the subscript p for the particle variables and f for the

gas variables at the particle position. Variables without subscript refer to the gas variables

unless specified otherwise.

2.1 Carrier Phase

2.1.1 Dimensional Form

This section presents the equations of motion for a compressible Newtonian fluid,

also known as the Navier-Stokes equations. The conservative, dimensional form of the

11
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conservation of mass, momentum and energy in Cartesian coordinates are given by

Q∗t +Fa∗
x +Ga∗

y +Ha∗
z = Fν∗

x +Gν∗
y +Hν∗

z +S, (2.1)

where the superscript ∗ denotes dimensional variables, the bold face shows a vector and

Q∗ =



ρ∗

ρ∗u∗

ρ∗v∗

ρ∗w∗

ρ∗e∗


, (2.2)

where

Fa∗ =



ρ∗u∗

p∗+ρ∗u∗2

ρ∗u∗v∗

ρ∗u∗w∗

u∗(ρ∗e∗+ p∗)


, Ga∗ =



ρ∗v∗

ρ∗u∗v∗

p∗+ρ∗v∗2

ρ∗v∗w∗

v∗(ρ∗e∗+ p∗)


, Ha∗ =



ρ∗w∗

ρ∗u∗w∗

ρ∗v∗w∗

p∗+ρ∗w∗2

w∗(ρ∗e∗+ p∗)


,

(2.3)
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are the advective fluxes and

Fν∗ =



0

τ∗11

τ∗12

τ∗13

u∗τ∗11 + v∗τ∗12 +w∗τ∗13 +κ∗T ∗x


,

Gν∗ =



0

τ∗21

τ∗22

τ∗23

u∗τ∗21 + v∗τ∗22 +w∗τ∗23 +κ∗T ∗x


,

Hν∗ =



0

τ∗31

τ∗32

τ∗33

u∗τ∗31 + v∗τ∗32 +w∗τ∗33 +κ∗T ∗x


, (2.4)

are the viscous fluxes where

τ
∗
11 = 2µ∗(u∗x− (u∗x + v∗y +w∗z )/3),

τ
∗
11 = 2µ∗(v∗y− (u∗x + v∗y +w∗z )/3),

τ
∗
11 = 2µ∗(w∗z − (u∗x + v∗y +w∗z )/3),

τ
∗
12 = τ

∗
21 = µ∗(v∗x +u∗y),

τ
∗
13 = τ

∗
31 = µ∗(w∗x +u∗z ),

τ
∗
23 = τ

∗
32 = µ∗(w∗y + v∗z ). (2.5)
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The subscript on the stress tensor, τ∗, defines the direction of τ∗ and the plane it is

acting on with 1, 2 and 3 denoting the x, y and z direction respectively. In the above

equations ρ∗ is the density; u∗, v∗ and w∗ are the velocities in the x∗, y∗ and z∗ directions

respectively; p∗ is the pressure; T ∗ is the temperature; ρ∗e∗ is the sum of the internal

and kinetic energy per unit volume given by ρ∗c∗vT ∗+ 1/2ρ∗(u∗2 + v∗2 +w∗2), where c∗v

is the constant volume specific heat of the fluid; µ∗ is the fluid dynamic viscosity; and κ∗

is the dynamic conductivity. The source term, S, accounts for the effect of the particles

on the carrier gas and will be discussed in more detail below. The fluid is assumed to be

an ideal gas where intermolecular forces are negligible, and obeys the equation of state,

p∗ = ρ
∗R∗T ∗, (2.6)

where R∗ is the gas constant.

2.1.2 Non-Dimensional Form

To solve Equation 2.1, the non-dimensional form is favored because disparity

in the physical variables’ units can generate undesirable errors. To avoid such spurious

errors, the equations are non-dimensionalized by reference length, L∗f , density, ρ∗f ,
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velocity, U∗f , and temperature, T ∗f scales, leading to the non-dimensional variables:

ρ =
ρ∗

ρ∗f
, u =

u∗

U∗f
,

v =
v∗

U∗f
, w =

w∗

U∗f
,

T =
T ∗

T ∗f
, p =

p∗

ρ∗fU
∗
f
,

x =
x∗

L∗f
, x =

x∗

L∗f
,

z =
z∗

L∗f
, t =

t∗U∗f
L∗f

. (2.7)

Substituting these non-dimensional values into Equation 2.1, yields the non-

dimensional Navier-Stokes equation in conservative form,

Qt +Fa
x +Ga

y +Ha
z =

1
Re f

(Fν
x +Gν

y +Hν
z )+S, (2.8)

where

Q =



ρ

ρu

ρv

ρw

ρe


(2.9)
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where

Fa =



ρu

p+ρu2

ρuv

ρuw

u(ρe+ p)


, Ga =



ρv

ρuv

p+ρv2

ρvw

v(ρe+ p)


, Ha =



ρw

ρuw

ρvw

p+ρw2

w(ρe+ p)


, (2.10)

are the advective fluxes and

Fν =



0

τ11

τ12

τ13

uτ11 + vτ12 +wτ13 +
1

(γ−1)M2
f Pr

Tx


,

Gν =



0

τ21

τ22

τ23

uτ21 + vτ22 +wτ23 +
1

(γ−1)M2
f Pr

Tx


,

Hν =



0

τ31

τ32

τ33

uτ31 + vτ32 +wτ33 +
1

(γ−1)M2
f Pr

Tx


, (2.11)



17

are the viscous fluxes, where

τ11 = 2(ux− (ux + vy +wz)/3),

τ11 = 2(vy− (ux + vy +wz)/3),

τ11 = 2(wz− (ux + vy +wz)/3),

τ12 = τ21 = vx +uy,

τ13 = τ31 = wx +uz,

τ23 = τ32 = wy + vz. (2.12)

with

ρe =
p

γ−1
+

ρ(u2 + v2 +w2)

2
. (2.13)

The inviscid fluxes, denoted with an ‘a’ superscript, remain unchanged from Equation

2.1. However, the viscous fluxes, denoted with the ‘ν’ superscript, give rise to three

non-dimensional parameters: the Reynolds number, Re f =
U∗f L∗f ρ∗f

µ∗ , which indicates the

influence of the viscous fluxes as compared to the advective fluxes; the Prandtl number,

Pr =
c∗pµ∗

κ∗ where c∗p is the constant pressure specific heat of the fluid, which is the ratio

of the viscous and thermal diffusivity; and the reference Mach number, M f =
U∗f
c∗ where

c∗ =
√

γR∗T ∗f is the reference speed of sound and γ =
c∗p
c∗v

. The ideal gas equation of state

in non-dimensional form is given as

p =
ρT
γM2

f
(2.14)

In the sections where we analyze high-speed shock-particle interaction, we as-

sume Re f large and neglect the viscous fluxes. We therefore do not explicitly model
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viscous effects such as boundary layers or shock waves in the governing Eulerian equa-

tions for the gas flow.

2.2 Dispersed Phase

2.2.1 Dimensional Form

Particles are tracked individually in the Lagrangian frame using the analytical

solution of the flow around a spherical particle corrected for high particle Reynolds and

Mach number. The kinematic equation describing the particle’s position xp
∗, is given as

dxp
∗

dt∗
= vp

∗, (2.15)

where vp
∗ is the particle velocity vector.

The particles’ acceleration is governed by Newton’s second law,

m∗p
dvp

∗

dt∗
= ∑F∗(t∗). (2.16)

The particle forcing term, F∗(t∗), has been the subject of many studies [28, 105, 117,

97]. In most practical cases for which the density of the particle is much greater than the

density of the carrier phase and the particle size is much smaller than the smallest length

scale of the carrier phase, it suffices to consider the quasi-steady viscous drag force of

the particle. With particles assumed spherical, we take the drag as the Stokes drag [158],

F∗Stokes =CDs6πρ
∗
f pν
∗a∗p(vf

∗−vp
∗), (2.17)

where vf
∗ is the velocity of the gas at the particle position, ν∗ is the kinematic viscosity

of the fluid, ρ∗f p the ratio of the particle to fluid densities and a∗p is the particle radius.
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The term CDS is a correction factor, which, in this study, corrects for high Reynolds and

Mach numbers. By substituting the equation for particle mass, m∗p = 4πa∗3p ρ∗p/3, and the

Stokes drag into Equation 2.16, the governing equation for particle velocity becomes,

dvp
∗

dt∗
=CDs

18ν∗ρ∗f d

ρ∗dd∗2d
(vf
∗−vp

∗) . (2.18)

The term on the right hand side describes the particle acceleration resulting from the

velocity difference between the particle and the gas.

2.2.2 Non-Dimensional Form

Equations 2.15 and 2.18 are non-dimensioqnalized with the reference variables

from (2.7). leading to the non-dimensional forms:

dxp

dt
= vp,

dvp

dt
=CDs

vf−vp

τp
. (2.19)

The particle time constant τp = Re f d2
pρp/18 is a measure for the reaction time of the

particle to the changes in the carrier gas. Here, Re f is a characteristic fluid Reynolds

number used to compute the drag on a particle.

The empirical correction factor, CDs , was introduced by Boiko et. al. [15], adjusts

the drag force to within 10% of measured particle acceleration for higher relative particle

Reynolds number up to Rep = |vf−vp|dp/ν = 1×104 and relative particle Mach number

up to M f = |vf−vp|/
√

Tf = 1.2 and is given by

CDs =
3
4
(
24+0.38Rep +4

√
Rep
)(

1+ exp

[
−0.43
M4.67

f

])
. (2.20)
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From the first law of thermodynamics and Fourier’s law for heat transfer, the

equation for temperature is derived as,

dTp

dt
=

1
3

Nu
Pr

(
Tf −Tp

τp

)
, (2.21)

where Pr = 1.4 is the Prandtl number, taken as its typical value for air in the following

study. Nu = 2+
√

RepPr0.33 is the Nusselt number corrected for high Reynolds number.

2.3 Source term S

Each particle generates a momentum and energy that affects the carrier flow.

The volume averaged summation of all these contributions gives a continuum source

contribution on the momentum and energy equation in (2.8) as:

Sm(x) =
Np

∑
i=1

K(xp,x)Wm, (2.22)

Se(x) =
Np

∑
i=1

K(xp,x)(Wm ·vp +We), (2.23)

where K(x,y) = K(|x− y|)/V is a normalized distribution function that distributes the

influence of each particle onto the carrier flow. This distribution function should ideally

be a dirac delta function but is most often a regularized delta function [137]. Wm =

mp f1(vf−vp)/τp and We = mp(Nu/(3Pr))(T −Tp)/τp are weigh functions describing

the momentum and energy contribution of one particle, respectively. The term mp is the

mass of one spherical particle which can be derived from τp. Np is the total number of

particles in a finite volume V .



Chapter 3

Numerical Scheme

In this section, the high-order EL numerical method employed by this thesis is

expounded upon. First, the WENO-Z scheme, introduced by Borges et. al. [18], is

summarized in Section 3.0.1, which is reprinted from [32]. The particle solver is then

described in more detail in the following sections.

3.0.1 Carrier Phase Solver

The advective fluxes in the carrier flow equations (2.8) are discretized spatially

with the high order improved WENO conservative finite difference scheme (WENO-Z

[18, 35]) on a uniform mesh. Time integration is performed with a third order Runge-

Kutta TVD scheme.

For simplicity, we describe a generic one dimensional formulation of the method

when applied to hyperbolic conservation laws in the form of

∂u
∂t

+∇∇∇ ·F(u) = 0. (3.1)

The two-dimensional formulation follows naturally by tensor extension.

21
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xi xi+1 xi+xi-1xi-2 xi+1/2

S2

S0

S1

S5 τ5

β0

β2

β1 ω1

ω0

ω2

Figure 3.1: The uniformly spaced Eulerian grid, with cell centers xi and cell
boundaries xi+ 1

2
, and the 5-points stencil S5, composed of three 3-points substencils

S0,S1,S2, used in the fifth-order WENO reconstruction step.

Consider a uniformly spaced grid, consisting of cell centers xi = i∆x and cell

boundaries xi+ 1
2
= xi+

1
2 [∆x], i= 0, . . . , N, where ∆x is the uniform cell size (see Fig. 3.1).

The conservative semi-discretized form of (3.1), by the method of lines, yields a system

of ordinary differential equations

dui(t)
dt

=− 1
∆x

(
hi+ 1

2
−hi− 1

2

)
, (3.2)

where ui(t) is a cell-averaged of u(x, t) at xi, and hi± 1
2
= h(xi± 1

2
) is the flux function h(x)

at xi± 1
2
.

At the cell faces, hi± 1
2

are interpolated from the known flux function F(x) at the

cell centers, fi = F(xi). A fifth order WENO scheme uses a five point global stencil S5,

which is subdivided into three substencils {S0,S1,S2} with each substencil containing

three grid cells. The fifth degree polynomial approximation f̂i± 1
2
= hi± 1

2
+O(∆x5) is

constructed through a convex combination of the interpolated values of the second order

interpolation polynomial f̂ k(x) at x = xi± 1
2
, multiplied by the nonlinear weights, ωk. The
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weights are defined in each one of the substencils Sk:

f̂i± 1
2
=

2

∑
k=0

ωk f̂ k(xi± 1
2
), (3.3)

and f̂ k(x) at the cell boundary xi+ 1
2

in substencil Sk can be found as

f̂ k(xi+ 1
2
) = f̂ k

i+ 1
2
=

2

∑
j=0

ck, j fi−k+ j, i = 0, . . . , N, (3.4)

where the ck, j are Lagrangian interpolation coefficients [129].

The regularity (smoothness) of f̂ k(x) in the substencil Sk is measured by the lower

order local smoothness indicators, βk, which are given by

βk =
2

∑
l=1

∆x2l−1
∫ x

i+ 1
2

x
i− 1

2

(
dl

dxl f̂ k(x)
)2

dx. (3.5)

On a substencil, Sk, containing a discontinuity, the βk term is of order O(1) whereas in

smooth regions, all βk are approximately equal and are of order O(∆x2) [35].

One can build a global optimal order smoothness indicator, τ5 for a fifth order

WENO scheme, as a linear combination of βk, that is,

τ5 = |β0−β2| , (3.6)

with a leading order truncation error of O(∆x5) [35].

Using βk and τ5, the unnormalized and normalized nonlinear weights αZ
k and ωZ

k

are defined as

α
Z
k = dk

(
1+
(

τ5

βk + ε

)p)
, ω

Z
k =

αZ
k

∑
2
j=0 αZ

j
, k = 0, . . . , r−1, (3.7)
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where dk are the ideal weights so that if the function is smooth, ωZ
k = dk and the scheme

becomes a fifth order central finite difference scheme. The sensitivity parameter ε =

10−10 is chosen in this study to avoid division by zero. The power parameter, p, amplifies

the separation of scales between the smooth and non-smooth substencils. In the presence

of a discontinuity, a larger p increases the numerical dissipation of the scheme near

the discontinuity by decreasing the weight of the substencil containing the shock as

compared to the smooth substencils. Because the substencil containing the discontinuity

is given essentially zero weight, the method becomes more biased towards a second order

upwinding ENO scheme [35].

At each grid point, the first order Lax-Friedrichs flux splitting is used as the low

order building block to split the Euler flux, ignoring the source term, into the positive

and negative fluxes. The positive and negative fluxes are then decomposed into the

characteristic variables via the left eigenvectors and eigenvalues of the Euler flux, which

are obtained via the linearized Riemann solver of Roe [115]. The characteristic variables

are then reconstructed via the improved high order weighted essentially non-oscillatory

(WENO-Z) scheme as discussed above. The reconstructed characteristic variables are

then projected back into the physical space as the numerical flux via the right eigenvectors

(see Castro et al. [18] or Shu et al. [129] for further details.)

3.1 Particle Tracing Algorithm

Simulation of the particle phase is performed with Lagrangian tracing of indi-

vidual computational particle paths using the governing equations from Section 2.2.

Lagrangian tracking of the particles consists of three stages per particle, including search-

ing the element a particle is located in, interpolating the field variables to the particle

location, and pushing the particle forward with a time integration method matching the
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WENO integration scheme.

Locating the Eulerian cell in which the particle resides, ip, is computed on the

structured grid,

ip = INT
[

xp−X0
XN−X0

]
(iN− i0)+ i0 (3.8)

where xp are the particle locations, X0 and XN are the lower and upper bounds of the

domain respectively and i0 and iN are the first and last cell node indices. The INT

function truncates the bracketed quotient to an integer, causing the searching algorithm

to the choose the lower host cell node and thereby creating an erroneous numerical bias

in the solution. For most cases, the grid cells are small enough that this numerical error

is negligible. However, for symmetric problems, the host cells below the centerline are

adjusted by adding one to ip.

Following Jacobs and Hesthaven [67], to avoid aliasing errors and an unphysical

numerical total energy increase, the order of the interpolation scheme must match the

order of the solver in the fluid phase. The time integration method of the particle phase

governing equations has to equal the the carrier phase solver as well. To determine the

field variables at the particle location the ENO interpolation introduced by Jacobs and

Don [68] suited to flows containing shock discontinuities is used. ENO interpolation [56]

was shown to prevent Gibbs oscillations which often plague the accuracy of the centered

interpolation over shocks.

In smooth flow areas without shocks, the WENO-Z method uses a central differ-

ence scheme. Under these conditions, centered interpolation to the particle position is

more accurate and therefore preferred. Lagrange interpolating polynomials of degree k,

Pk(xp) =
ip+k/2

∑
i=ip−k/2

Q(xi)li(xp), (3.9)
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where ip represents the nearest node to the particle position found in Equation 3.8 are

used to compliment the WENO scheme. The number of points k should be equal to the

number of points used as the order of the WENO scheme [67]. In the case of the fifth

order WENO scheme the Lagrange interpolating polynomials would be of degree k = 5.

In shocked regions the centered interpolation will produce undesirable Gibbs

oscillations. With an ENO interpolation [129], these oscillations are essentially removed.

ENO interpolation is only necessary in WENO-domains identified by the smoothness

indicator. In those domains, the interpolating points are determined based on the smooth-

ness of the function indicated by the divided differences. The k-th degreed divided

differences are determined first.

The 0-th order divided differences of Q are defined by:

Q[xi]≡ Q(xi). (3.10)

The j-th degree divided difference for j ≥1 are defined by

Q[xi, · · · ,xi+ j]≡
Q[xi+1, · · · ,xi+ j]−Q[xi, · · · ,xi+ j−1]

xi+ j− xi
. (3.11)

Starting from a two point stencil, xip , xip+1, the interpolation stencil is expanded to k

points based on a comparison of the divided differences of the the increasing order at ip.

The smallest second order divided differences at ip of the two potential three point stencils

min
{

Q[xip−1,xip,xip+1],Q[xip ,xip+1,xip+2]
}

indicates the smoothest interpolation stencil

and is therefore chosen. This procedure is repeated until a k point interpolant is found.

The Lagrange interpolant in (3.9) then interpolates to the particle position.

In two dimensions, the same procedure can be used along the separate dimension

on the tensor grid. The divided differences are determined along horizontal and vertical

lines in the grid. In 3D, this method is extended further to include the additional
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dimension. A note on the effectiveness of this ‘method of lines’ approach will be

discussed in Section 6.6. With the 1D approach outline above, we find the left most and

bottom most grid point of the interpolation stencil with k× k points for each grid point in

the domain.

ENO Stencil 

Shock 

Particle 

Bottom Point 

Left Point 

Back Point 

Figure 3.2: Three-dimensional ENO stencil for interpolation to a particle located near
to a shock. The back, left and bottom points of the interpolation stencil were

determined based on the divided differences along the x, y, and z grid lines at the
particle’s nearest grid point.

We give an example of a three-dimensional ENO stencil in Figure 3.2. The

particle’s nearest grid point is found to the back, bottom, and left of the particle. The

back, bottom and left points of the ENO stencil are determined by comparison of the

divided difference along the x, y, and z gridlines crossing the nearest grid point. If a

particle is located in a cell with a shock, then the ENO is one-sided to the back, bottom

and left of the particle. We note that if two shocks cross the k interpolation stencil, then

this procedure will fail to recognize the second shock. This is, however, mostly a rare

short-lived event and can be adapted by using lower-order ENO interpolation if necessary.
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3.2 Evaluating the Source Term in the Eulerian Phase

To determine the particle influence on the carrier flow from Equation 2.23, the

high-order spline interpolation discussed in [2] is used. The high-order weighing reduces

aliasing and noise in the source terms that couple the particles to the gas flow. The

spline Sk is constructed by the convolution of the square nearest-grid-point or zero order

weighting function. For large k the spline approaches a Gaussian function. The 0th mode

of the function in wave space is free of aliasing errors and the higher components of the

function in wave space are smaller than the equivalent Lagrangian interpolations.

3.3 Parallel Implementation

One additional advantage of the EL method is that it does not employ global

numerical techniques and is therefore straightforward to parallelize. Information is

passed through the element faces and only local stencils are needed for computation.

These features make the method very suitable for parallel implementation, since the

computational domain can be naturally split into smaller subdomains and allocated to

different processors. Particle paths can be trivially mapped by switching the particles

on or off as they enter or leave a domain. Message passing, which is accomplished

using the Message Passing Interface (MPI) library, is restricted to the small number of

ghost cells needed on the boundaries of a subdomain and the passage of particles across

interprocessor interfaces. The focus of this section will be on the parallel implementation

of the particle routines, for more information on the WENO libraries used see [18, 94,

92, 68, 21].

Because the computation of the fluid governing equations is much more compu-

tationally expensive, the dispersed phase is partitioned according to the carrier phase

subdomains i.e. particle governing equations are computed according to the processors
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on which their accompanying domains are allocated. Using this method, the particle

and carrier phase information does not need to be passed across processors to track

particles or to compute the particle source term in the fluid governing equations. An

obvious drawback of dividing the dispersed phase along uniform subdomains is the high

probability that the particle load balance per processor will not be uniformly spread.

However, the number of operations needed to compute the fluxes and integrate each

discrete carrier phase point significantly outweighs the computational resources required

to track a particle.

Searching for a particle within a grid partition is done trivially on the uniform

grid. The information required for the exchange of particles between processors is stored

in a ‘particle’ matrix accessible locally and a global ‘particle’ matrix available to all

processors. The two matrices share the information needed for particles to be exchanged:

• the particle number,

• the processor the particle is currently allocated on,

• the processor the particle is being exchanged to.

The local matrix contains information about each of the particles leaving the host proces-

sor while the global matrix contains assembly information for all of the local matrices at

each iteration.

To exchange particles, the local matrix is first determined on each processor for

the total number of particles leaving as follows:

1. The subdomain each particle resides on in determined.

2. If the particle is located on another subdomain than the host processor, it is deter-

mined which subdomain it has crossed into. This is a trivial task on a structured

grid.
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3. The particle number, the current host processor and the new processor are saved in

the local particle matrix.

Next, the MPI ALLGATHER operation compiles all local particle matrices into the

global particle matrix. This operation is the most computationally expensive part of the

parallel process because it requires the stoppage of all processes and the passing of data

to all processors. Currently, the local ‘particle’ matrix is the same size for all processors

and the global matrix is the size of each local matrix times the number of processors but

it is noted that a variable sized gather operation would be more efficient.

Following the gather operation, the global ‘particle’ matrix is sorted to place all

particles moving between two processors in sequential order in the global particle matrix.

With the sorted global matrix, the stored information (location, velocity, temperature,

etc.) for all particles that move between processors are exchanged with non-blocking

send, MPI ISEND, and non-blocking receive, MPI IRECV, operations. These routines

pass messages between two processors without blocking other operations from being

performed, such as the updating of all particles not being sent/received.



Chapter 4

Subgrid Particle Averaged Reynolds

Stress Equivalent Model

This chapter derives and presents a priori testing on the Subgrid Particle Averaged

Reynolds Stress Equivalent (SPARSE) model. It is not computationally feasible to trace

every particle in the domain for process-scale shocked particle-laden flow problems. In

CIC methods, groups of individual physical particles are modeled as single macro-scale

computational particles [10]. Much like the modeling of the Reynolds stress in RANS

turbulence computations, the SPARSE model includes fluctuation terms in the particle

momentum governing equation, which account for the influence of the sub-scale physical

perturbations on the averaged macro-scale particle cloud velocity. By taking a Reynolds

decomposition of the particle momentum equation and Reynolds averaging, a governing

equation for the average particle velocity is derived. Additionally, the assumption in

the CIC model that the fluid velocity can be interpolated at a single point is refuted and

an average particle cloud fluid velocity is used in the computations. The first section

presents a derivation of the SPARSE model. A description of the 1D a priori testing

follows in Section 4.2.1, where the two enhanced components of SPARSE are shown to

31
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reduce errors in the modeling of a cloud of particles with a single computational particle.

Finally, in Section 4.2.2, a full three dimensional isotropic turbulence case is studied to

examine the efficacy of the SPARSE model.

4.1 Derivation of the Model

The particle governing equations from 2.19 are defined as,

dxp

dt
= vp,

dvp

dt
= f (u−vp) · (u−vp), (4.1)

where vp is the particle velocity vector, u is the fluid velocity vector and the particle

correction factor, f (u− vp) = CDs/τp, is a function of u and vp equivalent to the drag

correction factor divided by the particle time constant. To simplify the derivation,

the interphase velocity difference, a, is defined as a = u− vp, or in vector notation,

ai = ui− vi, making the governing equations,

dxp

dt
= vp,

dvp

dt
= f (a) ·a. (4.2)

Under the assumption that a group of particles can be modeled with a single computational

particle in CIC, only the averaged velocity, vp, and averaged position, xp, of the particles

are computed, where the averaging is defined as

η =
1
N

N

∑
i=1

ηi. (4.3)
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To find the average values, first a Reynolds decomposition, g = g+g′, is performed to

split the velocities and positions into their average, g, and fluctuating, g′, terms. By

averaging the decomposed governing equations and noting that because of the linearity

of the derivative operator,

dη

dt
=

dη

dt
, (4.4)

the computational particle velocity and position can be written,

d(xp +xp′)

dt
= vp +vp′,

d(vp +vp′)

dt
= f (a+a′) · (a+a′), (4.5)

or

dxp

dt
= vp,

dvp

dt
= f (a+a′) · (a+a′). (4.6)

Here, a = u−vp where u is the average of the fluid velocity at all particle locations and

a′ = u′−vp
′ where u′ are the fluid velocity fluctuations at the particle positions and v′p

are the fluctuations in the particle phase. Traditionally, the average of the correction

factor term has been taken as the correction factor for the average interphase velocity,

f (a+a′) = f (a),
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leading to the classical first order model,

dxp

dt
= vp,

dvp

dt
= f (a) · (a), (4.7)

where the average fluid velocity is taken as the fluid velocity at the average particle

position, u = u(xp) [28]. Equation 4.7 is a first order model under the assumptions of

CIC because the correction factor, f , is a first order truncation of the full Taylor series

expansion of the correction factor.

To be consistent with the high-order methods used in the EL solver, a higher order

model for the average particle governing equations is required. Additional terms from

the Taylor expansion of the correction factor, f (a), around a, where a = (a1,a2,a3) =

(a1 +a′1,a2 +a′2,a3 +a′3), must be taken,

f (a) = f (a)+
d f (a)
da1

((a1 +a′1)−a1)+
d f (a)
da2

((a2 +a′2)−a2)...

+
d f (a)
da3

((a3 +a′3)−a3)+O(a′2),

= f (a)+
d f (a)
da1

a′1 +
d f (a)
da2

a′2 +
d f (a)
da3

a′3 +O(a′2). (4.8)

Assuming that the fluctuations in the interphase velocity difference are small, the expan-

sion is truncated at O(a′2).

Using (4.8) in the particle momentum equation (4.2) yields,

dv1

dt
= ( f (a)+

d f (a)
da1

a′1 +
d f (a)
da2

a′2 +
d f (a)
da3

a′3)(a1 +a′1),

dv2

dt
= ( f (a)+

d f (a)
da1

a′1 +
d f (a)
da2

a′2 +
d f (a)
da3

a′3)(a2 +a′2),

dv3

dt
= ( f (a)+

d f (a)
da1

a′1 +
d f (a)
da2

a′2 +
d f (a)
da3

a′3)(a3 +a′3). (4.9)
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Algebraically expanding,

dv1

dt
= f (a)a1 +

d f (a)
da1

a1a′1 +
d f (a)
da2

a1a′2 +
d f (a)
da3

a1a′3...

f (a)a′1 +
d f (a)
da1

a′1a′1 +
d f (a)
da2

a′1a′2 +
d f (a)
da3

a′1a′3,

dv2

dt
= f (a)a2 +

d f (a)
da1

a2a′1 +
d f (a)
da2

a2a′2 +
d f (a)
da3

a2a′3...

f (a)a′2 +
d f (a)
da1

a′1a′2 +
d f (a)
da2

a′2a′2 +
d f (a)
da3

a′2a′3,

dv3

dt
= f (a)a3 +

d f (a)
da1

a3a′1 +
d f (a)
da2

a3a′2 +
d f (a)
da3

a3a′3...

f (a)a′3 +
d f (a)
da1

a′1a′3 +
d f (a)
da2

a′2a′3 +
d f (a)
da3

a′3a′3, (4.10)

and averaging yields the second order model,

dvp1
dt

= f (a)a1 +
d f (a)
da1

a′1a′1 +
d f (a)
da2

a′1a′2 +
d f (a)
da3

a′1a′3,

dvp2
dt

= f (a)a2 +
d f (a)
da1

a′1a′2 +
d f (a)
da2

a′2a′2 +
d f (a)
da3

a′2a′3,

dvp3
dt

= f (a)a3 +
d f (a)
da1

a′1a′3 +
d f (a)
da2

a′2a′3 +
d f (a)
da3

a′3a′3. (4.11)

The particle phase stress terms, or “Reynolds Stress Equivalent” terms, a′1a′1,

a′1a′2, a′1a′3, a′2a′2, a′2a′3 and a′3a′3 require a modeling effort which is beyond the scope of

this thesis. Future directions for the closure of these terms will be discussed further in

Section 9.3. In the present study, these terms will be closed using an a priori approach

where the perturbations of the physical particles are used directly in the SPARSE model.

The second important feature of the SPARSE model is the approximation of the

average fluid velocity through the entire cloud. Classically, the fluid velocity used in the

particle governing equation is interpolated at the modeled particle location. However, the

average fluid velocity in the cloud is not equal to the fluid velocity at the averaged particle

location, u f luid(x) 6= u f luid(x). A model governing the average cloud behavior must
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therefore account for changes in the fluid throughout the volume of the approximated

particle cloud. This term is once again closed in an a priori manner in the following

numerical studies.

4.2 Numerical Experiments

The accuracy of a single computational particle modeling the average motion of

a cloud containing thousands of physical particles is analyzed. Single particle velocities

and positions, computed with the first order and SPARSE models, are compared with

the average velocities and positions of a cloud of thousands of particles as they interact

with the fluid field. In the following sections, the computations tracking the full physical

cloud of particles will be referred to as the “exact” case. Errors are characterized by the

ability of the modeled particle to compute the average of the exact particle locations and

velocities over time. Sub-scale particle perturbations and average fluid velocities needed

for closure in the SPARSE model are taken at each time step from the exact particle cloud

statistics in an a priori fashion. In the future, these models will be derived using statistics

from micro-scale computations as described in Section 5.

4.2.1 One Dimensional Analysis of SPARSE in Frozen Fluid Field

The one-dimensional temporal evolution of a cloud of particles through a frozen

fluid phase is analyzed. To isolate errors in the modeling of the particle cloud dynamics,

the background fluid velocity is governed by an explicit function, independent of the

particle phase. The exact case computes the interaction of 10,000 particles with the fluid,

which the first and SPARSE models trace only a single particle. Average velocities and

locations for the exact particle cloud are then compared with the modeled computational
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particle location and velocity. The first order model in 1D is defined by,

dxp

dt
= vp,

dvp

dt
= f (a) ·a, (4.12)

and the SPARSE model simplifies to

dxp

dt
= vp,

dvp

dt
= f (a) ·a+ d f (a)

da
a′a′. (4.13)

Physical particles are initialized at the locations and velocities,

xp = 5.0+σx ·dcloud,

vp = 5.0+σv · γ, (4.14)

where dcloud is the cloud diameter, set to 1.0, γ is the maximum amplitude of the initial

velocity perturbations and σi is an evenly distributed random number such that −1.0≤

σi ≤ 1.0. The initial velocity perturbations are set to a reference scale on the order of the

average fluid velocity, γ = 10. The modeled particle position and velocity are initialized

as the mean of the exact locations and velocities. Errors in the particle phase shown in

the following analysis are calculated as

εxp =
|xp,exact− xp,model|

xp,exact
,

εvp =
|vp,exact− vp,model|

vp,exact
, (4.15)

where εxp is the error in the modeled particle position and εvp is the error in the modeled
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particle velocity. Time integration is performed using an first order explicit time stepping

routine with a time step of dt = 10−5, where modeling errors dominate. The fluid

velocities at exact and first order model particle positions are computed directly using the

fluid velocity equations.

The SPARSE model improves upon existing point source particle modeling in two

ways: inclusion of the sub-scale particle fluctuations and the modeling the fluid velocity

through the entire cloud rather than at a single point. Differing flow fields are presented

to highlight the importance of including each of these components. Improvements to the

SPARSE model with the inclusion of the Taylor expansion of the sub-scale perturbation

terms is highlighted first followed by the analysis of errors stemming from the assumption

of the average fluid velocity through a cloud being interpolated at a single point.

Effect of the Reynolds Stress Equivalent Terms

The importance of including the sub-scale particle fluctuations is shown by using

a constant fluid velocity,

u f luid(x, t) = 10, (4.16)

to eliminate errors from the assumption in the first order model that u f luid(x) = u f luid(x).

This profile is chosen to analyze only that error caused by truncating the correction factor

in the first order model at O(a′) and thereby eliminating terms which include information

about the sub-scale particle perturbations.

Any differences between the average velocity and location of the exact particle

cloud and the modeled particles’ velocity and location arises because of the truncation of

the Taylor series expansion of the particle correction factor. To highlight this error, the



39

particle correction factor, f (a), is set to a linearly dependent function of a,

f (a) =
0.1a
St

, (4.17)

where St is the particle Stokes number, set to 1.0 in the following numerical experiments.

This model is chosen to be on a similar scale with other low Reynolds number correction

factors such as the one proposed by Schiller and Naumann [122]. Because the correction

factor is linearly dependent on the interphase velocity difference, all second order or

higher derivatives are zero, d2 f/da2 = 0. The Taylor expansion of the correction factor

in the SPARSE model is therefore exact, leading to a modeling error in the SPARSE

computation on the order of machine precision. Analyzing the computed particle cloud

velocities and locations in Figure 4.1, the exact and modeled cases are collinear. The

error profiles for the velocity and location, Figure 4.2a and 4.2b respectively, shows the

importance of including the second order term in the Taylor expansion of the correction

factor. Truncating the expansion at O(a′) causes an error, which rises to 17.1% at time

t = 1 whereas the SPARSE model has an error on the order of 10−15.

(a) (b)

Figure 4.1: Particle (a) velocities and (b) locations using the mean of the exact particle
locations as well as the first order and SPARSE models with a uniform background

fluid velocity and a linear correction factor.
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(a) (b)

Figure 4.2: Modeling error of the mean particle (a) velocity and (b) location using the
first order and SPARSE models with a uniform background fluid velocity and a linear

correction factor.

In many physical applications, the particle correction factor is a function of the

Reynolds number, which in turn is a function of the absolute value of the interphase

velocity difference, a [28]. Using a correction factor of

f (a) =
0.1|a|

St
, (4.18)

provides a more realistic computation of the particle-fluid interaction and demonstrates

the improved accuracy of the SPARSE model with a non-linear correction factor. The

first order model does not account for the sub-scale kinetic energy in the particle phase,

causing the modeled particle to lag behind the average particle position of the exact cloud,

as seen in Figure 4.3. As the particle velocity approaches the constant fluid velocity,

the derivative of the correction factor is discontinuous for a = 0 causing errors in the

modeling of the average particle velocity with the SPARSE model, as is evident in Figure

4.4. However, because the SPARSE model accounts for the perturbations in the particle

phase, the computed velocity is nearly 10% more accurate at time t = 1.
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(a) (b)

Figure 4.3: Particle (a) velocities and (b) locations using the mean of the exact particle
locations as well as the first order and SPARSE models with a uniform background

fluid velocity and an absolute value correction factor.

(a) (b)

Figure 4.4: Modeling error of the mean particle (a) velocity and (b) location using the
first order and SPARSE models with a uniform background fluid velocity and an

absolute value correction factor.

Effect of Modeling the Average Cloud Velocity

The use of a constant correction factor, such at Stokes’ drag [136],

f (a) =
24
St

, (4.19)
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eliminates truncation errors in the Taylor expansion of the correction factor in the first

order model because the first derivative of f (a) is zero. Combining the constant correction

factor and a spatially varying fluid velocity,

u f luid = cos(πx)+ x, (4.20)

isolates the errors caused by approximating the fluid velocity throughout the entire cloud

with a single point sample.

(a) (b)

Figure 4.5: Particle (a) velocities and (b) locations using the mean of the exact particle
locations as well as the first order and SPARSE models with a spatially varying

background fluid velocity.

As stated in the derivation in Section 4, the erroneous assumption that u f luid(xp)

= u f luid(xp) creates approximation errors in the first order numerical model. Errors as

high as 16.6% are seen in the first order modeling of the fluid velocity in Figure 4.6a

whereas the average velocity and location of the cloud is computed exactly with the

SPARSE model. The perturbations in the fluid velocity are periodic so the errors in the

modeled particle velocity are oscillatory and only cause a maximum 1% error in the

particle location in Figure 4.6b. However, as will be shown in Section 4.2.2, the initial

error in modeling the fluid velocity can cause the modeled particle to diverge entirely

from the physical cloud’s path when the perturbations are no longer periodic.
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(a) (b)

Figure 4.6: Modeling error of the mean particle (a) velocity and (b) location using the
first order and SPARSE models with a spatially varying background fluid velocity.
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4.2.2 Three Dimensional Analysis of SPARSE in Decaying Isotropic

Turbulence

In this section, a simulation of decaying isotropic turbulence similar to the one

performed in [11, 12] with a Fourier pseudo-spectral method is reproduced with the

addition of passive particles using the high-order EL method. The particles’ inertia is

assumed small so the forcing from the particle phase does not influence the fluid phase

i.e. the source term in the fluid governing equations is zero. The purpose of this test is

twofold: validation of the fluid solver and testing of the SPARSE model. First, the time

integration of initially isotropic turbulence is compared to literature. Next, the velocities

in the reference case initialization are multiplied by a scaling factor of five to demonstrate

the error in the first order model, particularly in the assumption that the fluid velocity

needed to compute the particle trajectory can be approximated with the velocity at a

single point in space.

Initial Conditions

The isotropic turbulence simulation is performed in a cube with periodic boundary

conditions on all sides. Because of the absence of specified boundary conditions and, by

definition of decaying turbulence, the lack of a forcing source term in the governing flow

creates a difficulty in generating the turbulence. Following [116], Blaisdell et. al. [11]

generated turbulence by specifying initial energy spectra that produce a correlated flow

field with turbulent characteristics. Full details of this procedure can be found in [11]

and are not repeated here. The specific equations used for the case Blaisdell et. al. refer

to as “iga96” are, however, presented in the following.

Initial conditions are produced by specifying the solenoidal, Es, and dilatational,

Ed , velocity, density, Eρ, and temperature, ET , spectra. Each spectrum is initialized as a
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Table 4.1: Initial amplitudes of the spectra for case “iga96” from Blaisdell et. al. [11].

Spectrum Initial Value
Es 2.8125×10−4

Ed 3.1250×10−5

Eρ 1.2500×10−3

ET 1.2500×10−3

tophat distribution with the amplitudes specified in Table 4.1, which span all wavenumbers

between k = 8 and k = 16.

Using Es, the Fourier coefficients for the solenoidal velocity field can be calculated

as,


ûs(k)

v̂s(k)

ŵs(k)

=


αrankk2+βrank1k3

kk12

βrank2k3−αrankk1
kk12

−βrank12
k

 , (4.21)

where αran and βran are set to

α
ran =

√
Es(k)
4πk2 eiφ1 cos(φ3), (4.22)

β
ran =

√
Es(k)
4πk2 eiφ2 sin(φ3). (4.23)

The terms φ are uniformly distributed randomly generated numbers on the domain [0,2π],

i is the imaginary number
√
−1, k is the magnitude of the wavenumber vector, (k1,k2,k3),

and k12 is
√

k2
1 + k2

2. If k12 = 0, then ûs = αran and v̂s = βran. The dilation velocity

Fourier coefficients are given as,


ûd(k)

v̂d(k)

ŵd(k)

=


γrank1

k

γrank2
k

γrank3
k

 , (4.24)



46

where

γ
ran =

√
Ed(k)
4πk2 eiφ4 . (4.25)

The density and temperature Fourier coefficients are determined with,

ρ̂(k) =

√
Eρ(k)
4πk2 eiφ5 , (4.26)

T̂ (k) =

√
ET (k)
4πk2 eiφ6 . (4.27)

The initialized variables are defined on the equidistant grid at the points,

xi =
(li−1)L f

N
, where li = 1, ...,N, (4.28)

with the wavenumbers,

ki =
2πni

L f
, where ni =−N/2+1, ...,N/2, (4.29)

for each direction, i = 1,2,3. The reference length, L f = 2π, is used in the discrete

Fourier transform using the coefficients from Equations 4.21, 4.24 and 4.27,

q(l1, l2, l3) =
N/2

∑
n1=−N/2+1

N/2

∑
n2=−N/2+1

N/2

∑
n3=−N/2+1

q̂(n1,n2,n3)e2πi( n1(l1−1)
N +

n2(l2−1)
N +

n3(l3−1)
N ).

(4.30)

The flow field conditions u, v, w, ρ and T are computed with a Fast Fourier Transform

(FFT), which initializes a flow field correlated to the tophat spectrum on the uniform

physical grid.
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Computations

Computations are performed on a 128× 128× 128 domain that spans 2π in

each dimension, (x,y,z) = (0 : 2π,0 : 2π,0 : 2π). The average initial density, ρ0, and

temperature, T 0 are set to 1.0, which leads to an average initial fluctuating Mach number,

M0 = 0.05 where

M0 =

√
u′iu
′
i

c(T0)
, (4.31)

where u′i is the fluctuating fluid velocity and is written in index notation. The reference

fluid Reynolds number is set to Re f = 2357.

The decay of turbulent kinetic energy, TKE = 1/2u′iu
′
i, computed with the EL code

(using a 4th order central difference method for the fluxes) is compared with the results

from Blaisedell et. al. [11] in Figure 4.7 for the “iga96” case described above. The

referenced case study used an N = 96 Fourier spectral method. The oscillatory behavior

is a result of the exchange of energy between the kinetic and internal acoustic energy,

also known as pressure-dilation [77]. The results agree well with the referenced solution.



48

Figure 4.7: Comparison of the turbulent kinetic energy (TKE) versus time in isotropic
turbulence using the high-order EL code and a Fourier spectral method performed by

Blaisdell et. al. [11].

To compare the dynamics of the average particle cloud using the SPARSE and first

order point particle models with the exact particle dispersion, a higher energy isotropic

turbulence system is desired to increase the particle cloud dispersion and movement. The

physical velocities computed with the spectral initialization are multiplied by a scaling

factor of 5.0, raising the initial fluctuating Mach number to M0 = 0.25. The kinetic

energy transferred to the particle phase is increased to show greater particle spreading

and the effects of modeling both the average fluid velocity through the cloud and the

sub-scale particle perturbations.

Physical particles are uniformly initialized over a domain stretching approxi-

mately 3 grid cells in each direction with 303 = 27,000 total physical particles. Each
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physical particle is given an initial perturbation of σ · γ where γ = 5.0 is the maximum

amplitude of the initial velocity perturbations and σ is an evenly distributed random

number such that −0.5≤ σ≤ 0.5. Particles are assumed light, with a Stokes number of

St = 0.01, and therefore do not effect the fluid phase. The particle correction factor of

Boiko et. al. [15] from (5.15) is used in this experiment to reflect the drag modeling used

in the EL method in the remainder of this dissertation.

The time lapse in Figure 4.8, shows the maximum physical particle cloud spread

over time (in green) as compared to the average particle location for the first order model

(in red) and the SPARSE model (in blue). The modeled computational particles are

shown with the initial particle cloud diameter. The helicity of the fluid is projected

onto the boundaries with a range of -0.1157:0.1157 or a variation of 10% of the initial

maximum helicity.

The statistics for the magnitude of the average particle cloud distance from the

origin and velocity,

|xp|=
√

x2
p + y2

p + z2
p,

|vp|=
√

u2
p + v2

p +w2
p, (4.32)

for the exact, first order and SPARSE models are shown in Figure 4.9. While both the

full particle cloud and the single modeled particles are initially entrained in the same

turbulent eddy, the physical cloud spreads over time. Because the turbulence is isotropic,

the average velocity in the box is zero, so as the cloud spreads and the fluid velocity is

sampled over a larger area, the fluid velocity through the cloud approaches zero. Because

the fluid velocity is interpolated at a single point in the first order model, this decay is

delayed. Additionally, the kinetic energy present in the initialization of the particle cloud

causes the particles to deviate from the fluid path, further increasing the particle cloud
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spread. Errors in the magnitude of the distance from the origin and velocity,

ε|xp| = |xp,exact|− |xp,model|,

ε|vp| = |vp,exact|− |vp,model|, (4.33)

are shown in Figure 4.10. The SPARSE model accounts for the initial kinetic energy

and models the average fluid velocity though the cloud appropriately, as is evident in

SPARSE modeling errors below 0.5%.
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(a) t = 0 (b) t = 2

(c) t = 4 (d) t = 6

(e) t = 8 (f) t = 10

Figure 4.8: Projected helicity and particle cloud locations for the 3D isotropic
decaying turbulence case at times t = (a) 0.0, (b) 1.6, (c) 3.2, (d) 4.8, (e) 6.4 and (f) 8.0.

The first order modeled particle is shown in blue, the SPARSE modeled particle is
shown in red and the maximum spread of the physical particle cloud is shown in green.



52

(a) (b)

Figure 4.9: The magnitude of the average (a) velocity and (b) particle distance from
the origin is shown when computed using the first order model, SPARSE model and

average over the physical particles.

(a) (b) ma

Figure 4.10: The error in computing the magnitude of the average (a) velocity and (b)
particle distance from the origin is shown when computed using the first order model,

SPARSE model and average over the physical particles.



Chapter 5

Multi-Scale Computation of

Particle-Laden Flows

In collaboration with Professor Udaykumar’s group at the University of Iowa, the

foundation for a hybrid micro-scale DNS and macro-scale Eulerian-Lagrangian model for

the multi-scale computation of shocked particle-laden flows has been laid out. The hybrid

code couples a full resolution, micro-scale DNS code [119] with the macro-scale EL

code [68] to provide a dynamic closure model to solve the particle momentum equations

over all parameter spaces. The following is a reprint of [124] describing the coupling of

the micro- and macro-scales.

5.1 Introduction

5.1.1 Motivation and Applications

A wide variety of problems in multi-material dynamics including the passage of a

shockwave through a gas laden with particles [42], problems involving crack propagation

in heterogeneous materials such as bones [54, 53, 52, 55] or concrete structures [147, 148]

53
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involve the intricate coupling of physics at two or more distinct length and time scales.

Further examples of such problems include modeling of heterogenous explosives [8, 75,

98, 74], flow of mixtures including sediment transport in river beds [1], flow through

fluidized beds [59] and flow of blood, i.e. plasma carrying cells and macromolecules

[107]. In such systems, the physics of the micro/meso-scale needs to be represented

in macro-scale simulations. This can be achieved by averaging over the heterogenous

micro/meso-scale. In such volume-averaged macro models [138], or homogenized

models [37, 68, 128], micro/meso physics appear in the form of closure terms in the

macro-scale equations.

Process-scale computations typically demand macro-scale governing equations

and simulation techniques. For example, in the problem of a shock wave interacting

with a dusty gas, the number of dust particles is extremely large. To follow the evolution

of the gas-solid mixture, a common practice is to define a computational particle as an

agglomerate of a number of dust particles and to adopt a mixed Eulerian-Lagrangian

viewpoint [68], as in Figure 5.1a. Particle paths are traced in a Lagrangian reference

frame while solving the fluid equations in a fixed Eulerian frame. In this approach,

the computational particles are modeled as singular point sources, which couple with

the carrier fluid through momentum exchange modeled via source terms in the fluid

equations [68, 34, 33]. The source terms close the unresolved momentum exchange

between the fluid and solid (particle) phases, providing the forces on the particles. For

small particle Reynolds numbers and incompressible flow, the drag on a spherical particle

can be determined analytically using Stokes drag law [136]. A range of empirical drag

laws exist, which incorporate the effect of inertia [26], compressibility [16, 88], slip

coefficients [141], various shape factors [143] and/or viscosity ratio for droplets [43] for

more complex flows. In general, closure models are obtained in the form of correlations

developed in a physical experiment.
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(a) (b)

Figure 5.1: Two-dimensional examples of the (a) macroscale interaction of a large
number of modeled particles with a right running normal shock and (b) full resolution
meso-scale computation of a small number of particles interacting with a right running

normal shock.

Empirical closure models such as drag correlations are only applicable in limited

parameter spaces. To overcome this limitation, high resolution micro-scale methods

that resolve the dynamics at the particle scale, as can be seen in Figure 5.1b [91], can

be used as surrogates for physical experiments to obtain closure models connecting the

meso-scale physics to the macro-scale. In [90] for example, an artificial neural network

(ANN) is used to construct a closure model for particle-laden shocked flow based on

computational experiments. The neural network then supplies closure terms (drag force)

to the macro-scale simulation. Further examples of closure terms constructed from

computational experiments using an ANN can be seen in [54, 53, 52, 55, 147, 148, 34].

5.1.2 Bridging Scales in a Multiscale Multimaterial Model

There are three components to the multiscale modeling approach described above:

a macro-scale solver which computes the interaction of a large number of particles with

a carrier flow, a meso-scale solver, which resolves the fine-scale particle-fluid dynamics
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of a smaller number of particles and a closure model which calculates the drag and

other relevant parameters from the meso-scale solver for use in the macro-scale solver.

Generation of a closure model derived from an ensemble of full-resolution meso-scale

computations requires quantifying the output from the meso-scale dynamics (for example,

drag forces) under a number of different input parameters such as shock strength, particle

loading, particle size distribution, etc.

5.1.3 Metamodels as Surrogates to Bridge Scales

A metamodel, or a ‘model of a model’ [79], builds a hypersurface from a limited

amount of input/output data and approximates the output over a much wider param-

eter space. An excellent overview of metamodeling techniques is given in [131, 72,

73]. Several studies have compared metamodels for reconstructing hypersurfaces from

computational experiments. A review of the challenges and concerns in metamodeling

techniques can be found in [153] and [25]. In addition, Jin et. al. [71] compared the hy-

persurfaces approximated by a Polynomial Response Surface Method (RSM), a Kriging

method, a Radial Basis Function Neural Network (RBFANN), and Multivariate Adaptive

Regression splines (MARS) for 14 different test functions. Fang et. al. [40] compared

the RBFANN method and the RSM method, with the express purpose of reconstructing

hypersurfaces in multi-objective crashworthiness optimization. However, these studies

have been limited to comparing the quality of approximation only for a given number of

input points, and not over a range of input points.

The choice of a “good” metamodeling technique depends on the application and

the purpose of the metamodel. Because metamodels are constructed from expensive

numerical computations in multi-scale modeling and because the multiscale method

should converge with increasing degrees of freedom, convergence of the metamodels with

respect to the number of input points for a wide variety of hypersurfaces warrants careful
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investigation. This study shows that some metamodelling techniques converge faster

than others only for a certain classes of hypersurface. Furthermore, some metamodels

converge faster when the number of sampled input points is low, while other metamodels

converge faster when the number of inputs is high. The focus of the current work is to

examine the rate of convergence of the following three classes of metamodels for their

suitability in bridging scales in a multiscale framework:

1. An interpolation method; Stochastic Collocation (PSC) methods [160, 7, 93] -

the Polynomial Stochastic Collocation method (PSC) and the Adaptive Stochastic

Collocation Method (ASC) are chosen as representative interpolation methods.

2. A fitting method; the RBFANN method [23, 110, 58] is the fitting method consid-

ered in the study.

3. A method which first fits a global response surface and then interpolates local

departures from the global fit; the Kriging method [84, 145, 86] and the Dynamic

Kriging Method (DKG) [133] are chosen in this study.

The methods, represent, in their respective classes as approximators, typical and state-of-

the-art techniques for assimilating and representing the complex relationships between

input parameters and the resultant outputs in a multi-dimensional parameter space.

The modeling methods are summarized in Section 5.2. In Section 5.3, the

evaluation criteria that is used to assess the performance of the metamodels is discussed,

and their convergence behavior is analyzed in Sections 5.4 and 5.5 for several analytic

functions and existing empirical particle drag models. To elucidate their metamodeling

capabilities, the approximation error of the metamodels on several known functions is

analyzed.

These functions are chosen to highlight the strengths and weaknesses of each class

of metamodels in approximating a wide variety of hypersurfaces; irregularly sampled
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data and presence of noise in the input data are also studied. Empirical drag laws are then

considered to illustrate the complexities that will be encountered by the metamodeling

techniques in building a closure model for a full multi-scale solver. Conclusions drawn

from the quantification of the modeling error are discussed in Section 5.6. To the best

of the authors’ knowledge, no comparison of the rate of convergence of these classes of

metamodels, with the express purpose of ascertaining the suitability of the methods as an

ingredient in the framework of multiscale modeling, have been previously performed.

5.2 Inter-scale Coupling Methods

The metamodeling techniques are summarized in the following section. Broadly,

the problem of metamodeling is the estimation of the value of a function f (x) at a

point x0 where f (x0) is unknown and the value of f (x) : Cn → C is only known at

certain discrete (distinct) points, x j. Here, Cn [0,1] is a bounded subspace of Rn, with

0 and 1 being an n-dimensional vector with all entries 0 and 1 respectively. The points,

x j, j = 1,2, ...,N, are the “input points” to the metamodel.

5.2.1 Stochastic Collocation Methods

Stochastic Collocation (SC) interpolation methods [160, 7, 93] rely on sparse

grids generated using the Smolyak algorithm [132] to build a multivariate interpolation

method by recursively taking the tensor products of univariate interpolation formulae.

The resultant nodal architecture takes advantage of the recursive nature of the algorithm

to enhance sparsity, i.e. limit the number of new data points required to improve the

order of accuracy of the interpolation function. In SC methods, the estimated value of
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the function, f̃ (x0), is given by [160, 7, 93],

f̃ (x0) =

mi1

∑
j1=1

. . .
min

∑
jn=1

f (xi1
j1, . . . ,x

in
jn)(a

i1
j1⊗ . . .⊗ain

jn), (5.1)

where i is the level of interpolation, mi is the number of input points required for level i

and a j are the basis functions used in n dimensions. An overview of the SC methods used

in this study follow. For a more detailed derivation the reader is referred to [160, 7, 93].

The convergence of the SC method depends on the choice of basis function as

well as the nature of the hypersurface being interpolated. In this study, two SC methods

are considered, which will be referred to as the Polynomial Stochastic Collocation (PSC)

method and the Adaptive Stochastic Collocation (ASC) method. The input points for PSC

method are based on the the end knots of a Chebyshev polynomial on a Clenshaw-Curtis

grid (Figure 5.2a) [160, 7, 93]. The PSC method is particularly effective in interpolating

globally smooth functions because of the fit based on Lagrange polynomials. However,

for steeper gradients and highly localized features, the PSC method displays Gibbs

phenomena. Adaptive methods are therefore required to avoid these spurious oscillations

in the solution. The support nodes in a Clenshaw-Curtis grid are not suited for adaptivity

because they must be predetermined at each level. In the ASC method, input/output pairs

are therefore located on a Newton-Cotes grid with equidistant nodes [93] (Figure 5.2b).

The grid is locally refined around points where the hierarchical surplus, defined as,

wi
j = f (xi1

j1, . . . ,x
iN
jN )− f̃ i−1(xi1

j1 , . . . ,x
iN
jN ), (5.2)

at level i on point j is above a threshold value, ε. Unless otherwise noted, ε = 0.001 will

be used here. Local linear spline functions are used as the polynomial bases in the ASC

method because high order polynomial basis functions suffer from Gibbs’s phenomenon

on uniform grids [93].
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(a) (b)

Figure 5.2: The distribution of nodes from a two-dimensional fifth level Smolyak
Sparse Grid based on (a) Chebyshev polynomial end knots and (b) a uniform

Newton-Cotes grid.

A major advantage of SC methods is the availability of an a priori error estimate.

For the PSC method, the interpolation error in the maximum norm [7, 93] is on the order

of

|| f (x0)− f̃ i(x0)||∞ = O
(

N−2|log2N|3(n−1)
)

(5.3)

where n is the number of dimensions and N is the total number of interpolation points. In

the ASC method, the additional error depends on the threshold hierarchical surplus value,

ε [93],

|| f̃ i(x0)PSC− f̃ i(x0)ASC||∞ ≤ N2ε (5.4)

where N2 is the difference between the full Smolyak sparse grid and the number of input

points in the locally refined grid.
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5.2.2 Artificial Neural Networks Using Radial Basis Functions

A Radial Basis Function Artificial Neural Network (RBFANN) is a fitting method,

particularly suited to function approximation and pattern recognition [126], which com-

prises a (finite) set of identical basis functions, called Radial Basis Functions (RBF)

centered around several distinct points in the input space. In an RBFANN method, the

estimated value of the function at a point x0, is given by [23]

f̃ (x0) =
M

∑
k=1

λkφ(x0,xck ;θck) (5.5)

where λk is the weight associated with each of the basis functions φ(x0,xck ;θck), while

the parameter xck is the position of the basis function and the parameter θck is the

shape parameter. A typical choice of the basis function is a Gaussian φ(x0,xck ;θck) =

exp
(
−d2

ck
/θ2

ck

)
where dck = ‖x0−xck‖, is the Euclidean Norm; this basis function has

non-compact support [58, 157, 159, 101]. If the Gaussians are equally spaced, they form

a set of Riesz Bases for the input space [44].

The weights in (5.5) are given by

λλλ = H†f (5.6)

where H = H jk = φ
(∥∥xj−xck

∥∥ ;θck

)
; j = 1,2, ...,N, k = 1,2, ...,M, with N be-

ing the number of inputs and M the number of Gaussians used. H† is the

pseudoinverse of the interpolation matrix, λλλ =

⌊
λ1 λ2 · · · λM

⌋T

and f =⌊
f (x1) f (x2) · · · f (xN)

⌋T

. Equation (5.6) is thus the least-squares solution to the

overdetermined system of equations given by Hλλλ = f. Because H is a dense matrix and

often ill-conditioned [46, 41], a singular value decomposition of the interpolation matrix

is performed to obtain H†. The determination of optimal parameters, M, xck and θck of
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an RBFANN is a subject of active reseach [45, 82, 23, 24, 9, 31, 36, 62, 104]. In the

current approach the parameters are determined using an unsupervised training process

(which means that a non-linear optimization algorithm is not performed to determine the

parameters). The RBF algorithm involves the following stages.

1. Determination of M: In order to avoid “memorizing” [140] the inputs, in a typical

RBFANN, the number of RBFs is chosen to be less than the number of inputs.

However, in the context of a multiscale framework, RBFANN is used to “learn”

from fully-resolved micro-scale computational experiments. Since such computa-

tions are expensive, the method must create a hypersurface from as few inputs as

possible. The number of Gaussians are therefore chosen to be approximately 1.1

times the number of inputs.

2. Determination of xck ,k = 1,2, ...,M. The RBFs are initially uniformly distributed

in the domain and are updated by a K-means clustering algorithm [100] to avoid

the possibility of an empty cluster in case of non-uniform inputs.

3. Determination of the shape parameter, θck , of the RBFs: The shape parameter is

chosen to be equal to the mean distance of an RBF to its five nearest neighboring

RBF such that they span the entire domain of the input space [100].

5.2.3 Kriging methods

The third class of metamodels studied are derived from Kriging methods, which

have their origin in mining and geostatistical applications involving spatially and tempo-

rally correlated data [27, 96]. Kriging methods combine a global (polynomial) model

which fits to the given response surface, while the local departures from the global fit are

estimated using semi-variogram models [84]. The resulting approximation interpolates
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the sampled input points. In a Kriging method, the estimated value of the function,

denoted by f̃ (x0) can be expressed as [145],

f̃ (x0) =
r

∑
l=0

λl pl (x0)+Z (x0) (5.7)

where pl (x0) denotes the l-th order term in a polynomial basis functions of max-

imum order r and λl is the least-squares solution to the set of normal equations

f̃
(
x j
)
= λl pl

(
x j
)
, j = 1,2, ...,N [133]. In Equation(5.7), Z (x0) is a realization of

a Gaussian random process with zero mean, E
[
Z
(
x j
)]

= 0 and a covariance structure,

E
[
Z
(
x j
)

Z
(
xq
)]

= σ2R jq, j,q = 1,2, ...,N where σ2is the process variance, and R jq is

the correlation model of the process [164] . The correlation model, R jq is often chosen to

be of the form [164]

R = R jq = R
(
θ,x j,xq

)
=

n

∏
k=1

γk (θk,dk) , (5.8)

with a shape parameter θ where dk =
(
xk j− xkq

)
,k = 1,2, ...,n. An example of such

a correlation model is a Gaussian model, where γk = e−θkd2
k , k = 1,2, ...,n. Although

any value of θ would provide an interpolation formula, the optimal value of θ in (5.8)

is selected to maximize the following log-likelihood function of the model parameters

[133]

l =−N
2

ln
[
2πσ

2]− 1
2

ln [|R|]− 1
2σ2 (f−Pλλλ)T R−1 (f−Pλλλ) (5.9)

where f =
⌊

f (x1) f (x2) · · · f (xN)

⌋T

, λλλ =

⌊
λ0 λ1 ... λr

⌋T

and P = Pjl =

pl
(
x j
)
. In the current work, the Kriging method with a first-order mean structure and a

Gaussian correlation model is applied using a MATLAB code, DACE [86].

An improved version of Kriging algorithm called the Dynamic Kriging Method with

adaptive sampling (DKG) [164, 133] has been implemented as well. The detailed
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algorithm can be found in [133], the key aspects of the algorithm are summarized here.

1. The DACE code uses a modified Hooke and Jeeves algorithm [86] to find the

optimum value for θ. However, this method often fails to provide a global optimum

of θ and has therefore been replaced in the DKG method by a Global Pattern

Search (GPS) algorithm [164].

2. The choice of the correlation model and the mean structure depends on the hy-

persurface to be approximated [87] and is not known a priori. In the DACE code,

the order of the mean-structure, r, and the correlation function are selected by the

user a priori. However, the DKG method compares between three mean structures

corresponding to r = 0,1 and 2, using a Cross-Validation (CV) error estimate

[133]. The method also evaluates seven different correlation models, as listed in

Table (5.1) and selects the best one, i.e. the model which maximizes the likelihood

function.

3. In a typical Kriging model, samples are either supplied by the user heuristically or

are supplied by a sampling strategy like the Latin Hypercube Sampling method

[135, 51] or Latin Centroidal Voronoi Tessellation (LCVT) method [20].These

methods usually generate input points in the domain uniformly. However, the

Dynamic Kriging model is integrated with an adaptive sampling strategy, which

selects more samples at highly non-linear portions of the hypersurface, thus aiming

to obtain a better approximation using a parsimonious distribution of input points.

The sample insertion criterion is described in detail in [164].
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Table 5.1: List of correlation functions

Correlation Function γk (θ,dk)
Exponential exp(−θk |dk|)

General Exponential exp
(
−θk |dk|θn+1

)
; 0 < θn+1 ≤ 2

Gaussian exp
(
−θkd2

k

)
Linear max{0,1−θk |dk|}

Spherical 1−1.5ξk +0.5ξ3
k , ξk = min{1,θk |dk|}

Cubic 1−3ξ2
k +2ξ3

k , ξ j = min{1,θk |dk|}

Spline
1−1.5ξ2

k +30ξ3
k for 0≤ ξk ≤ 0.2

1.25(1−ξk)
3 for 0.2 < ξk < 1

0 for ξk ≥ 1
; ξk = θk |dk|

5.3 Evaluation of Techniques for Metamodeling

In order to be used for the generation of closure models in a multiscale modeling

framework, it is desirable that the metamodels described in the previous sections satisfy

certain restrictions on the error behavior and model construction. These include:

1. Parsimonious representation: Computational experiments are expensive to perform

and a single high-resolution realization can take several hours to compute, even on

multiprocessor architectures. Thus, the metamodel should be accurate and converge

rapidly when supplied with information obtained from a minimum number of high

resolution simulations (input data points).

2. Monotonic convergence: The inclusion of additional meso-scale simulations must

result in improved approximation of the closure model. Because the closure model

will not be known a priori, monotonic convergence is required so the modeling

error can be estimated and additional micro-scale computations can be performed

to improve the accuracy of the metamodel.

3. Multidimensional representations: Since multidimensional parameter spaces are

expected, the method must be easily extendable to multiple input dimensions
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without suffering from the “curse of dimensionality”, i.e. the number of input

points should not increase exponentially with the increase in the dimension of

the input space. This consideration obviates the use of methods like Lagrange

interpolation and discourages the use of methods which operate on a dense grid of

input points.

4. Flexibility and Re-use: Since the metamodelling technique relies on expensive

high resolution simulations as inputs, previous results must be utilized when

expanding the parameter space. In addition, if the parameter space is expanded

to include a larger domain of approximation, the augmented parameter space and

corresponding data values must be included in generating an updated hypersurface.

This becomes difficult, for example, when a metamodelling approach relies on

fixed collocation points (for example, Gauss points in the computational domain,

zeroes of a Chebyshev polynomial, etc) for constructing closure models because

additional interpolation would be needed to fit data onto the predefined nodes.

5. Treatment of noisy data: Since numerical noise is expected in the meso-scale

results, it is preferred to have the metamodel filter noisy data to build a smooth

approximation without adding excessive filtering errors.

5.4 Analysis of Convergence Behavior of the Metamod-

eling Techniques for Analytical Functions

To evaluate and compare the metamodels in light of the above mentioned criteria,

hypersurfaces for several predetermined functions are generated and the approximations

are compared to the exact functions. The method of comparing the metamodels is as

follows:
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1. Training the metamodels: A number (say N) of input points of a given function

are provided to the metamodels as training points. These sample inputs are spaced

at regular intervals along each axis throughout the parameter space for the RB-

FANN and the Kriging method. Because the input points of a PSC method are

predetermined for each level of refinement, a comparable number (∼ N) of nodal

collocation points are provided as inputs for the PSC method. In the DKG and

ASC methods, the sample insertion criteria is adjusted such that when the maxi-

mum number of samples reach N, no further inputs are generated and the training

process is terminated. Thus, the approximation of the metamodels are evaluated at

a comparable number of training points.

2. Building the hypersurface to test accuracy: Once trained, the metamodel is used to

predict the value of the function at S = 100×100 uniformly distributed points in

the domain of approximation.

3. Evaluating the Approximation Error and the Rate of Convergence: Because meta-

models are constructed from analytical functions, it is possible to compare the

predicted values of the metamodels with the exact values of the function at these

S points. In order to quantify the accuracy of approximation at these points, a

normalized sum-of-squares error is calculated:

εL2 =

√√√√√√√√
S
∑
j=1

(
f
(
x j
)
− f̃

(
x j
))2

S
∑
j=1

(
f
(
x j
))2

, (5.10)

where f
(
x j
)

is the exact value of the function at the point x j and f̃
(
x j
)

is the

value approximated by a metamodel. The error, εL2 , is calculated and plotted for

different values of N.
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4. Local Error Estimation: Since the error measure εL2 is a global measure of approx-

imation errors, a normalized local error field, δ
(
x j
)
, defined as

δ
(
x j
)
=

f
(
x j
)
− f̃

(
x j
)

1
S

S
∑

l=1
f (xl)

, (5.11)

is calculated to quantify the local approximation error of a hypersurface by a meta-

model at the points x j, j = 1,2, ...,S. Representative plots showing the contours of

the local error field for a given value of N are also shown in the subsequent section.

For the purpose of illustration, representative contours of the hypersurfaces and local

error plots are shown for N = 144 points.

5.4.1 Harmonic Test Function

The first function considered is a smooth harmonic function, given by

f (x,y) = sin(2πx)cos(4πy)+2, (5.12)

where x and y range from 0 to 1.



69

10
1

10
2

10
3

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Total Number of Input Points

E
rr

or
1

2

 

 

ASC
PSC
RBF
Kriging
Dynamic Kriging

Figure 5.3: Error plot showing the convergence rates on approximating the smooth
harmonic test function from (5.12).

As the convergence rates of the errors defined by Equation (5.10) shown in Figure

5.3 demonstrate, if the number of input points is below 60, the hypersurface is best

approximated by the RBFANN and DKG methods. However, as the number of input

points increases, the rate of convergence of the RBFANN method decreases. The value

of the shape parameter, θc j , decreases as the number of input points increases for the

RBFANN method. The system of equations defined by (5.6) becomes ill-conditioned and

the SVD solver essentially “filters” out higher frequencies of the interpolation matrix. As

the higher frequencies are removed, the accuracy of the representation decreases and the

rate of convergence decreases if the number of inputs approaches and exceeds 100 points.
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Table 5.2: Correlation parameters estimated by the Kriging method to approximate the
hypersurface given by (5.12).

Number of Inputs θ(Kriging) θ(DKG)
36 6.13 0.8898
64 6.13 0.4523
81 0.322 0.3741

100 0.161 0.3683
144 0.161 0.2863

The error in approximation by the Kriging method, applied using the DACE

code, does not decrease monotonically, evinced by the spikes seen in Fig. 5.4. The

rate of convergence changes when the number of input points changes from 64 to 81

and from 81 to 100. To further investigate this, the value of the shape parameter θ, as

estimated in the Kriging Method is examined and compared with that obtained by the

DKG method in Table 5.2. The value of θ for the Kriging method undergoes sharp

changes when the number of input points change from 64 to 81 and from 81 to 100.

This corresponds to those points in Figure 5.3 when the rate of convergence of the

Kriging method also changes. In comparison, the shape parameter estimated by the DKG

method decreases uniformly (Table 5.2) and the error in the DKG method also decreases

uniformly (Figure 5.3). This numerical example illustrates the advantage of the GPS

algorithm for determining the optimum value of θ over the modified Hooke and Jeeves

algorithm used in DACE.

The error in approximation of the PSC method is initially constant, as shown

in Fig. 5.3, and decreases as the number of input points exceeds 30, finally decreasing

spectrally when the number of inputs increases beyond 60. In contrast, the error of

approximation of the ASC method does not change for any given number of input points.

The sinusoidal variation of the function along the x axis is satisfactorily reconstructed,

but the cosine waves in the y direction are not recognized all together, as is shown in the
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approximation of the hypersurface by the ASC method in Fig. 5.4. The ASC method

initially operates on a mesh where the collocation nodes lie along the boundaries and

the centerlines of the input domain (as seen in Figure 5.2). Because of the adequate

representation of the sinusoidal values at the boundary and along the centerlines, the

hierarchical surplus falls below the threshold value and input nodes are not successively

refined on the interior of the domain. Hence, the hypersurface reconstructed by the

ASC method is constant with respect to the coordinates along the y axis causing an

aliasing error. The sinusoidal variation of the function along the x axis is satisfactorily

reconstructed, but the cosine waves in the y direction are not predicted by the ASC

method.
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Figure 5.4: The hypersurface of the function given by (5.12) as approximated by the
ASC method.

To appropriately characterize the convergence of the ASC on a smooth function,

the aliasing error is eliminated by introducing slight phase-shifts in the sine and cosine

waves of the function,

f (x,y) = sin(2πx+0.25)cos(4πy+0.5)+2, (5.13)

where x and y range from 0 to 1. The aliasing error seen in Fig. 5.4 does not appear in

this function because the boundaries of the domain no longer trace a simple sine wave.

The Newton-Cotes grid in Figure 5.2 does not line up directly with the sine wave so
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grid refinement occurs on the interior of the domain away from the centerlines and the

sum-of-squares error converges per the theoretical expectation when the number of input

points is greater than 20, which is shown in Figure 5.5.
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Figure 5.5: Error convergence of the approximation of the shifted harmonic test
function from (5.13) using an ASC method.

5.4.2 Hypersurface Reconstructed from Irregularly Spaced Input

Points

In a computational experiment, it is possible to specify the input points in several

different ways. Input points can be specified at the nodes of a structured grid, i.e. at

strictly regular intervals along each axis. In sampling methods like Latin Hypercube
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Sampling Method [135], LCVT method [20] input points are distributed uniformly along

the domain, although the points may not be necessarily specified at strictly regular

intervals along each axis. The resulting input grid, in such a case, is unstructured.

Because in a multiscale model it is not always possible or advisable to perform meso-

scale experiments at strictly regular intervals in the parameter space, the input grid of

a metamodel may not necessarily be structured. Therefore, a metamodeling approach

which is fairly insensitive to the distribution of input points is preferable. In this section,

a comparison is made between the hypersurfaces created by regularly spaced input points

and irregularly spaced input points using the RBFANN and Kriging methods. Note that

the PSC method is trained from inputs placed at specific locations in the input domain

(see Fig 5.2), while the ASC method and the DKG method are integrated with a sampling

strategy and are therefore not tested in this section.

To train the RBFANN methods and the Kriging methods, the harmonic function

defined by Equation (5.12) is considered. Here, the input points are chosen at random

within the domain. Because the location of a given number of input points in the domain

is not unique, five such random input distributions are used to calculate the average

normalized sum-of-squares error, given by Equation (5.10), while the standard deviation

of the error for the input distributions (for a fixed number of input points) is used to obtain

a prima facie measure of the confidence interval. The avergae error is then compared

to the error calculated from the approximation of a structured grid of training points.

Figures 5.6a and 5.6b show the rate of convergence of the error for the RBFANN and

Kriging methods respectively.
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Figure 5.6: Error plot showing the convergence rates on interpolating the harmonic test
function from Eqn. 5.12 using (a) an RBF method and (b) a Kriging method. The error
bars show the standard deviation from the mean error for randomly distributed input

points.

The convergence rates shown in Figures 5.6a and 5.6b demonstrate that structured

grids give the lowest error for the given harmonic function. However, the convergence of

the Kriging Method trained with an unstructured grid of sample points closely follows

the convergence when using a structured grid of input points. However, if the number

of input points increases beyond 81, the rate of convergence of the RBFANN method

trained with regular input points is significantly different from that trained with random

input points. Because the current architecture of the RBFANN uses more Gaussians than

the number of input points, the RBFANN is sensitive to the distribution of input points.

Thus, the rate of convergence of the current RBFANN model not only depends on the

number of training points, but also on the location of the input points in the domain.

Unless otherwise mentioned, an RBFANN method will be trained with regularly spaced

inputs in subsequent sections of the present work.
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5.4.3 Reconstruction of a Hypersurface from Noisy Data

Noise is unavoidable in solutions obtained from computational and physical

experiments. While it is possible to filter out noise from any approximation obtained

from a metamodel with a pre/post processing algorithm, additional errors may be added if

a filter is used. Therefore, a metamodel that is relatively insensitive to noise is preferred.

To analyze the metamodels’ response to numerical noise, each of the metamodels

is given a fixed number of inputs from Equation (5.13) and a (white) noise of maxi-

mum amplitude 0.1 is superposed onto the training samples. The metamodels are then

used to predict the hypersurface of Equation (5.13). The contour plots for each of the

reconstructed hypersurfaces are shown in Figure 5.7.

(a) PSC (b) ASC (c) RBFANN

(d) Kriging (e) DKG

Figure 5.7: Representative hypersurfaces for the noisy shifted harmonic function using
(a) a PSC method, (b) an ASC method, (c) an RBF ANN, (d) a Kriging and (e) a DKG

method.

The hypersurface predicted using the RBFANN method is noise-free. Because an

RBFANN filters out all frequencies beyond a certain limit [44], it can filter out the noise
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components most effectively. As seen in Figure 5.7, the hypersurfaces predicted using

the SC methods are noisy because the PSC and ASC are interpolation methods in which

the reconstructed hypersurface must pass through all the values given at the training

points exactly. Also, the Kriging and DKG methods have an inherent mean-structure

which filters out the noise partially, but the process of minimization of the departure from

the local fit result in an interpolation. Therefore, as can be seen in Figure 5.7, the noise

from the training data is retained in the hypersurface predicted by these methods. This

section thus demonstrates that there may be cases of noisy input data which may not

be satisfactorily reconstructed by the SC methods and the Kriging family of methods.

Unless otherwise mentioned, the training data in the subsequent sections of the work is

noise-free.

5.4.4 A Radially Symmetric Steep Gradient Test Function

The previous examples provided valuable insight into the convergence of the

metamodels for a smooth function. To study the response of the metamodels to a

hypersurface with steep gradients localized in a region in the interior of the input domain,

consider the function,

f (x,y) =


C1

2
√

0.4
ln
∣∣∣∣√x2+y2+

√
0.4√

x2+y2−
√

0.4

∣∣∣∣ if
√

x2 + y2 ≤
√

0.3,

C2
2
√

0.2
ln
∣∣∣∣√x2+y2−

√
0.2√

x2+y2+
√

0.2

∣∣∣∣ if
√

x2 + y2 >
√

0.3,
(5.14)
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where

C1 =
16
√

0.4

ln
∣∣∣√0.3+

√
0.4√

0.3−
√

0.4

∣∣∣
C2 =

16
√

0.2

ln
∣∣∣√0.3−

√
0.2√

0.3+
√

0.2

∣∣∣
and x and y range from 0 to 1. This function is an integral of Equation (65) from [93].

The contours of f (x,y) = constant are radially symmetric with respect to the origin.

Steep gradients arise along the arc
√

x2 + y2 =
√

0.3, while the hypersurface varies more

slowly as the distance from the arc increases. The exact hypersurface is shown in Fig.

5.9a.

Figure 5.8 shows the convergence of the errors of the metamodels with respect to

the number of input points. In the convergence plot (Figure 5.8), the convergence rates

for the metamodels are similar if the number of input points is below 900. However, the

magnitude of the error is higher for the SC methods because the nodes are concentrated

along the boundaries and centerlines of the domain, while the regions of high gradient

are radially symmetric. The input points are therefore not collocated with the highly non-

linear regions of the hypersurface and the local features of the hypersurface are therefore

not well resolved. The maximum values of the function are underrepresented when

using the SC methods and oscillations occur. These oscillations increase as the distance

between a point and the arc
√

x2 + y2 =
√

0.3 decreases resulting in the corresponding

higher local errors seen in Figures 5.10a and 5.10b.
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Figure 5.8: Error plot showing the convergence rates on approximating the test
function from (5.14) using a PSC method, an ASC method, an RBFANN, a Kriging

method and the DKG method.

Figure 5.9 shows that the hypersurfaces reconstructed by the RBFANN, Kriging

and the DKG methods also display spurious oscillations, but these oscillations are smaller

compared to those seen in the PSC reconstruction. When the number of input points

is greater than 900, the PSC method converges exponentially because a larger number

of input nodes fall on the arc containing the steeper gradients. If the number of input

points increases beyond the scope of this study (> 103), the ASC method converges

exponentially because of the increased number of nodes near the steep gradients. An

example of the node distribution for such a case (i.e. N > 103) is shown in Figure 5.11.
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(a) (b) PSC (c) ASC

(d) RBFANN (e) Kriging (f) DKG

Figure 5.9: The (a) exact contours and representative contour plots for the test function
from (5.14) using (b) a PSC method, (c) an ASC method, (d) an RBF ANN, (e) a

Kriging method and (f) the DKG method.
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(a) PSC (b) ASC (c) RBFANN

(d) Kriging (e) DKG

Figure 5.10: Local error plots for the approximation of the test function from (5.14)
using (a) a PSC method, (b) an ASC method, (c) an RBF ANN, (d) a Kriging method,

and (e) the DKG method.

Figure 5.11: Locations of nodes in a 12th level Smolyak sparse grid, refined adaptively
using hierarchical surpluses with a maximum error of ε = 0.01, interpolating the

function in (5.14).
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5.5 Analysis of Convergence Behavior of the Metamod-

eling Techniques for Empirical Drag Models

In addition to specific analytical functions designed to quantify the metamodels’

approximation error on smooth harmonic functions and steep interior gradients, empirical

drag models are considered. The hypersurfaces of these functions are expected to be

similar to those of the closure models that the metamodeling techniques would be required

to approximate in a multiscale modeling framework.

5.5.1 Boiko’s Model for Drag on a Particle in a Shocked Flow

The first drag model considered is a model proposed by Boiko et. al. [15], and is

given by

CD =

(
0.38+

24
Rep

+
4

Rep1/2

)(
1+ e

− 0.43
M4.67

p

)
, (5.15)

This function includes the effects of particle Reynolds number, Rep = |v f −vp|dp/ν, and

relative Mach number, Mp = |v f − vp|/
√

Tf , in the drag coefficient equation. The model

is limited to relative Mach numbers of Mp ≤ 1.2 and Reynolds numbers of Rep ≤ 1×104.

However, for the present study, the model is considered to apply for 0.1≤Mp ≤ 3 and

100≤ Rep≤ 10000. The macro-scale EL code in [94, 34, 33] uses this empirical function

to compute the particle drag coefficient.

The drag predicted by this model has two sharp zones of transition: at transonic

Mach numbers ranging from 0.5 . Mp . 1.5 and at Rep . 200 when the flow changes

from viscous Stokes’ flow to an inertia dominated flow. The contour of the hypersurface

of this figure is shown in Figure 5.14a.

The rate of convergence of the error of the metamodels with respect to the number
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of input points is shown in Figure 5.12. The function is most accurately represented

by the SC methods. This is because in the SC methods collocation points are more

concentrated close to the boundary ( Figure 5.2). The sharpest transition region in the

hypersurface in 5.14a lies along the low Rep boundary. Because the concentration of

nodes in the SC methods coincide with the highly non-linear regions of the hypersurface,

the SC methods most accurately represent the function. It can be further observed from

Figure 5.12 that among the SC methods, when the number of input points is below

400, the PSC method best approximates the hypersurface. This is because the high

order global basis functions in the PSC method capture the flatter portions and smooth

transition regions more accurately than the lower order local basis functions used by

the ASC. If the number of input points is increased beyond 400, the ASC method is

more accurate (Figure 5.12). This is because of the adaptive refinement based sampling

strategy in the ASC method, which results in higher number of input points in the two

transition zones and the ASC method converges exponentially.

As shown in Figure 5.12, the magnitude of the error of approximation by the

RBFANN, Kriging and DKG methods is higher than the SC methods. In the RBFANN

and the Kriging method, the predicted hypersurface shows spurious oscillations (from

Figure 5.15). The magnitude of local error is highest for the Kriging method and the

RBFANN method, while the magnitude of local error is higher for the DKG method than

the SC methods. An important observation in Figure 5.15 that unlike the SC methods, the

hypersurface obtained from the other metamodels is most errorneous along the transition

region from low Re to high Re. This implies that unlike the SC methods, the number of

input points for the other metamodeling techniques in these regions is not adequate to

represent the sharp transition from low Re to high Re. Figure 5.13 shows the training

points of the DKG method in. The number of training points is uniformly distributed

throughout the domain, unlike the SC methods. Similarly, the RBFANN methods and the
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Figure 5.12: Error plot showing the convergence rates on approximating the drag
model of Boiko et. al. [15] using a PSC method, an ASC method, an RBFANN, a

Kriging method and the DKG method.

DKG methods are also trained using regularly spaced training points and hence the error

of approximation of the RBFANN method, the Kriging method and the DKG method is

higher than the SC methods, (Figure 5.12 and Figure 5.15).

5.5.2 Loth’s Model for Drag on a Particle in a Shocked Flow

To further investigate the ability to capture steep gradients in the interior of the

domain, consider the drag model proposed by Loth et. al. [88]. This model also corrects

for high particle Mach and Reynolds numbers but over a wider range, Rep ≤ 1×105 and
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Figure 5.13: The distribution of training points in the DKG method

Mp ≤ 5,

CD =
24

Rep

(
1+0.25Re0.687

p

)(
1.0− 0.258C

1.0+514G

)
+

0.42C

1+4.25×104Re−1.16
p G

, (5.16)

where C and G are defined as,

C =


5
3 tanh(3.0log(Mp +0.1)) if Mp ≤ 1.45,

2.044+0.2e−1.8
(

log
(

Mp
2

))2

if Mp > 1.45,
(5.17)
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(a) (b) PSC (c) ASC

(d) RBFANN (e) Kriging (f) DKG

Figure 5.14: The (a) exact contours and representative contour plots for the drag
coefficient of Boiko et. al.[15] using (b) a PSC method, (c) an ASC method, (d) an RBF

ANN, (e) a Kriging method and (f) the DKG method

G =


1.0−1.525M4

p if Mp ≤ 0.89,

0.0002+0.0008tanh(12.77(Mp−2.02)) if Mp > 0.89,
(5.18)

The function produces very steep gradients arranged in a series of steps in the interior of

the domain. The contour of the hypersurface of Equation (5.16) is shown in Figure 5.17a.

As shown in Figure 5.16, most of the metamodels show a first order convergence

rate in the normalized sum-of-squares error, but the ASC method converges exponentially.

Similar to the drag model discussed in the previous section, because the adaptive refine-

ment algorithm in the ASC adds additional training nodes at highly non-linear regions in

the hypersurface, the ASC method converges exponentially.

As opposed to the function given by Equation (5.15), many of the complex

characteristics of Loth’s model lie in the interior of the domain as can be seen in 5.17a.
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(a) PSC (b) ASC (c) RBFANN

(d) Kriging (e) DKG

Figure 5.15: Local error plots for the approximation of drag model of Boiko et. al.
[15] using (a) a PSC method, (b) an ASC method, (c) an RBF ANN, (d) a Kriging

method and (e) the DKG method.

But from Figure 5.2, it can be seen that the number of nodes of the PSC method are scarce

in the interior of the domain. This lack of training data along with the requirement that

the approximation be exact on the training nodes causes spurious oscillations in regions

of high gradient (Figure 5.17). Because the Kriging and DKG methods also interpolate

the hypersurface through the available inputs, spurious oscillations can also be seen in

the hypersurface predicted by the Kriging method and the DKG method, and is shown

in Figure 5.17. The oscillations in the DKG method is more localized than the Kriging

method. To investigate this, the correletion model used in the DKG method is studied,

and it is found that for any given number of input points, the DKG method approximated

the hypersurface of Equation (5.16) using a General Exponential correletion model.

The correlation model used in the Kriging method is a Gaussian model, but a General

Exponential correlation model is used in the DKG method. A General Exponential model
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Figure 5.16: Error plot showing the convergence rates on approximating the drag
model of Loth [88] using a PSC method, an ASC method, an RBFANN, a Kriging

method and the DKG method.

is more localized than a Gaussian and the use of the General Exponential correlation

model approximates the localized features of the highly non-linear portions of the

hypersurface. Because the RBFANN method also uses non-compact Gaussian basis

functions, spurious oscillations can also be seen in the hypersurface approximated by the

RBFANN in Figure 5.17. Furthermore, the ASC model also uses local basis functions

and adaptively places additional nodes near the higher gradient regions of the input

domain thus eliminating these oscillations in Figure 5.17.
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(a) (b) PSC (c) ASC

(d) RBFANN (e) Kriging (f) DKG

Figure 5.17: The (a) exact contours and representative contour plots for the drag
coefficient of Loth [88] using (b) a PSC method, (c) an ASC method, (d) an RBFANN

method, (e) a Kriging method and (f) the DKG method.

5.5.3 Tong’s Model for Drag on a Particle in a Shocked Flow

Tong et. al. [143] have extended Loth’s model [88] to include variations of

particle shape and particle volume fraction, α,

CD =Cda +0.5048α

(
1.0+

34.8
Re0.5707

p

)4

+0.9858α

(
1.0+

34.8
Re0.5707

p

)
, (5.19)

where Cda is the drag coefficient calculated using (5.16). This model illustrates the com-

plex dependence of the particle drag coefficient on many different parameters, including

the Knudsen number (set equal to 10 here), Mp (set to 1 in here), Rep (varied) and α

(varied). The hypersurface is shown in Figure 5.20a.

The convergence of the metamodels with respect to the number of input points

is shown in Figure 5.19. The PSC method and the DKG method approximate the
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(a) PSC (b) ASC (c) RBFANN

(d) Kriging (e) DKG

Figure 5.18: Local error plots for the approximation of drag model of Loth [88] using
(a) a PSC method, (b) an ASC method, (c) an RBFANN method, (d) a Kriging method

and (e)the DKG method.

hypersurface most accurately. Despite the higher concentration of input nodes in the low

Rep, high α boundary, the local basis functions in the ASC method do not approximate

the function as well. The RBFANN method, employing Gaussians as basis-functions,

over-fits the nearly linear variation of the drag coefficient at higher volume fraction and

lower Reynolds number. Therefore, as is shown in the contour plots of the reconstructed

hypersurfaces in Figure 5.20, oscillations arise when the RBFANN method is used to

build the approximation. Similar to the case of the harmonic function in Section 5.4,

the Kriging model constructed using the DACE code does not converge monotonically.

The value of the shape parameter as calculated using the Kriging method and the DKG

method are compared against the number of input points in Table 5.3. The value of the

shape parameter, θ, in the Kriging method is equal to 0.76655 for less than or equal to

400 input points but increases sharply to θ = 20 past 400, where a non-monotonic jump
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Table 5.3: Correlation parameters estimated by the Kriging method and the DKG
method to approximate the hypersurface given by 5.19

Number of Inputs θ(Kriging) θ(DKG)
36 0.76655 0.9913
64 0.76655 1.3370
81 0.76655 2.7159

100 0.76655 2.5089
144 0.76655 2.8116
225 0.76655 3.5402
324 0.76655 5.8234
400 20 6.6144
529 20 8.3136
625 20 9.0773

is seen in the convergence plot in Figure 5.19. For the DKG method, the value of θ

monotonically increases, indicating that the correlating model becomes more localized

with an increased number of input points. This numerical example also illustrates the

advantage of the GPS algorithm [133] for determining the optimum value of θ over the

modified Hooke and Jeeves algorithm use in DACE.

5.6 Conclusions

The performance of five metamodeling techniques, the PSC, ASC, RBFANN,

Kriging and DKG methods, is compared for use as the coupling algorithm or a metamodel

in a multi-scale solver. The magnitude and the rates of the representation error of each of

these methods has been characterized by their sum-of-squares error from Equation (5.10)

and the local errors (5.11).

For a large number of training points, the SC methods generally approximate

most of the hypersurfaces most acurately. In particular, the adaptive refinement of the

ASC method around steep gradients on the interior of the input domain captures the
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Figure 5.19: Error plot showing the convergence rates on approximating the drag
model of Tong et. al. [143] using a PSC method, an ASC method, an RBFANN, a

Kriging method and the DKG method.

complex regions of high gradient in the hypersurfaces of the empirical drag functions

tested. But the number of input points required to accurately predict a hypersurface

using the SC methods is roughly equal to or more than 100 for most of the hypersurfaces.

Because in a multiscale modeling framework, input points correspond to high resolution

mesoscale computations, generation of such a high number of input points is expensive.

Additionally, both the PSC and ASC methods are constructed using a strict predetermined

nodal architecture and lack the flexibility of the Kriging and the RBFANN methods with

respect to placement of input data. For example, with the SC-based methods, expanding

the parameter space would entail discarding the input from a previous set of data or
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(a) (b) PSC (c) ASC

(d) RBFANN (e) Kriging (f) DKG

Figure 5.20: The (a) exact contours and representative contour plots for the drag
coefficient of Tong [143] using (b) a PSC method, (c) an ASC method, (d) an

RBFANN, (e) a Kriging method and (f) the DKG method.

introducing additional interpolation errors. This would result in waste of computational

time and resources when an expanded parameter space is required.

The input points of the RBFANN and the Kriging methods can be randomly placed

throughout the domain with little or no effect on the convergence of the metamodel, as

seen in Section 5.4.3. Because of this flexibility, the parameter space can be expanded

to include a larger domain of approximation while continuing to utilize previous data.

However, the RBFANN and Kriging methods have the highest sum-of-squares error

in approximating most of the functions tested and do not converge at as high of rates

as the SC methods. Additionally, the Kriging method using the DACE code does not

converge monotonically in some cases. The parameter estimation technique integrated

within the DACE code (i.e. the use of modified Hooke and Jeeves algorithm) leads to the

selection of a local extremum value of the shape parameter θ as the global extremum in

the maximum likelihood estimation process.
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(a) PSC (b) ASC (c) RBFANN

(d) Kriging (e) DKG

Figure 5.21: Local error plots for the approximation of drag model of Tong et. al.
[143] using (a) a PSC method, (b) an ASC method, (c) an RBF ANN, (d) a Kriging

method and (e) the DKG method.

The non-monotonic convergence of the Kriging method is circumvented in the

DKG method by a Global Pattern Search (GPS) algorithm using a maximum likelihood

estimator with a penalty function and by the use of dynamic selection of correlation

models and mean structure. The DKG method is not only monotonically convergent for

all the functions considered in the current work, but at roughly 100 input nodes, has either

the lowest sum-of-squares error or is close to the lowest (i.e. relative to the SC methods).

Therefore, metamodels may be built using less than 100 training points using the DKG

method. Thus, for the functions approximated in the current work, the DKG method is

the optimal choice to serve as the coupling algorithm for the multi-scale solver.

Sections 5.1 to 5.6, in full, is a reprint of the material as it appears in Evaluation of

Convergence Behavior of Metamodeling Techniques for Bridging Scales in Multi-scale

Multimaterial Simulation 2015. Sen, Oishik; Davis, Sean; Jacobs, Gustaaf; Udaykumar,
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H.S. Elsevier Press, 2015. The dissertation/thesis author was a primary investigator and

author of this material.
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5.7 Analysis of 1D Shock-Particle Cloud Interaction

To validate the micro-macro coupling methods, we study the 1D case of a normal

right running shock interacting with a cloud of particles in an initially quiescent flow

found in Ref. [15, 68]. We compute the shock tube problem in the domain x ∈ [−5,6]

with the initial pre-shock flow state [ρR,uR, pR] = [1,0,1]. The post-shock flow state is

computed using the Rankine-Hugoniot relations for Mach number Ms = 2.8 with the

shock initially at Xs = 0. Reflective boundary conditions are used at both ends of the

domain. The grid spacings were taken to be ∆x = 0.055

The initially stationary particle cloud is seeded evenly on the interval [0,0.2981]

with a volume concentration of 3%. The density and particle response time are ρp = 1200

and τp = 3.9296×103, respectively. We take the Reynolds number as Re f = 1.7638×106

to compute the particle traces according to the experiment in Ref [15].

We wish to isolate the online step of calculating the individual particle drag values

from the offline step of building the database because the DNS computations needed

to build the database are computationally expensive. Using input values of 25 Mach

numbers ranging from 0.1 to 2.75 and 25 Reynolds numbers ranging from 100 to 10,000,

we computed a database of particle drag values with Eq. 5.15. We then calculated each

corresponding particle drag coefficient from the database using the method described

above with a second-order Lagrange interpolation.

Figure 5.22a shows the fluid pressure profile evolution at time t = 0.275 using

both the analytic equation directly and the micro-macro coupling scheme. We see that the

two profiles are nearly collinear, showing excellent agreement between the two methods.

Convergence rates for various interpolation orders and particle drag grid sizes are shown

in Fig. 5.22b as a validation of the macro-scale implementation of the multi-scale

algorithm.
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Figure 5.22: One dimensional shock particle interaction validation example showing
(a) a snapshot of the pressure profile at t = 0.275 using the empirical drag model from
Eq. 5.15 and a 2nd order Lagrange interpolation on a 25x25 grid of particle drag data

and (b) convergence rates of second and third order interpolations on varying sized
grids.



Chapter 6

Normal Instabilities

6.1 Introduction

Sections 6.1 to 6.5 are to be submitted to the AIAA Journal under the title,

“Carbuncles in high resolution Eulerian-Lagrangian simulations of Shock-Particle-laden

flow.”

High-speed flows are important in many technological environments, including

supersonic and hypersonic aircraft. In these environments, particles interact with shocks

and turbulence. Liquid or solid fuel particles in scramjet combustors and rocket engines,

for example, are injected into a high-speed chemically reacting fluid causing shock

waves to form. Many physical and numerical instabilities that arise in the analysis of

particle-laden shocked flows must be resolved. Modeling the complex, multi-material

particle-fluid interactions poses high demands on models and methods.

Shock waves, in particular, challenge numerical methods because they are difficult

to capture in a stable, non-oscillatory manner. Traditionally, low order methods have

beens employed that provide a robust regularization of discontinuities but do so with

excessive numerical diffusion. To accurately model small scale flow structures, such as
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turbulent eddies, over a long period of time, higher order/resolution (greater than third

order) shock capturing methods have been shown to reduce dissipation and dispersion

errors [6, 68]. High-order methods on the other hand are plagued by numerical Gibbs

oscillations, which arise near discontinuities.

Weighted Essentially Non-Oscillatory (WENO) schemes combine the benefits

of both high-order and low-order methods by adding numerical dissipation only near

the shock [18, 21] thereby mitigating the effects of Gibbs oscillations. The nonlinear

weighting employed by the WENO method increases numerical dissipation only in

areas near strong gradients, capturing discontinuities while maintaining a high order of

accuracy in smoother areas of the flow. This type of method has proven very effective

for the simulation of the fine scale and delicate structures of turbulent flows involving

shocks.

Computing the entire flow over each particle, tracing individual solid or liquid

complex particle boundaries along their paths and tracking shock waves in the mov-

ing framework of particle-laden shocked flow makes direct numerical simulation too

computationally expensive to be feasible for process scale problems. In order to solve

realistic problems, approximations to the full equations must be employed. Eulerian

Lagrangian (EL) methods have been successfully implemented to solve particle-laden

flows [10, 28, 68]. In particular, EL methods which model particles as points such

as the Particle-Source-in-Cell (PSIC) method [30] have been shown to efficiently and

accurately resolve particle-fluid interactions. In PSIC, the carrier gas is solved in the

Eulerian frame on a stationary mesh, while individual particles are modeled as point

sources and traced along their paths in a Lagrangian frame. By interpolating the fluid

velocity and temperature onto the Lagrangian frame and using a deposition function to

place the particle’s drag influence onto the Eulerian frame, the two phases are coupled

and can be solved simultaneously for large engineering applications.
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While using WENO methods essentially eliminate spurious Gibbs oscillations

near discontinuities, capturing stronger shocks in high Mach number flows creates another

numerical instability when using high-order methods. In situations where a very strong,

slow moving shock is aligned with the numerical grid, anomalous bumps and oscillations

can occur in the shock profile which have earned the nickname carbuncle [111]. These

phenomena have been studied in the case of solid boundaries immersed in high-speed

flows [112, 111, 152]. Particles have a dissipative effect on the fluid phase and may

mitigate the development of carbuncle instabilities. It is not clear whether carbuncles are

found in the computation of shocked particle-laden flows and what effect, if any, do these

instabilities have on the particle phase.

Experiments by Holden [60] have revealed that carbuncle-like phenomenon may

arise naturally by the injection of dust particles along the stagnation line upstream of

a blunt cylinder in a very high speed flow. Through a linear stability analysis of the

motion of a discontinuity in an inviscid fluid, Robinet et. al. [114] derived a new mode,

which could develop into a carbuncle as the instability becomes nonlinear. However,

aside from these fabricated cases, experiments have not shown these instabilities to

occur naturally. While some researchers have hypothesized that carbuncles are incurable,

[38], we feel it safe to assume that carbuncles are an artificial numerical phenomenon

that needs to be mitigated. Many “cures” have been proposed to eliminate carbuncles

from numerical solvers [108, 120]. These methods generally add excessive dissipation,

limiting the accurate resolution of small scale structures. While the Holden experiments

used particles to trigger carbuncle-like instabilities [60], the effect of carbuncles on the

development of particle-laden flows has not been analyzed.

In this paper we report on the impact of carbuncles on the particle-laden flow

developments of a cloud of particles interacting with a high-speed uniform flow using our

in-house high fidelity EL solver [68]. We demonstrate, for the first time, the appearance
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of carbuncle instabilities in particle-laden flows and investigate their impact on both the

particle and fluid phases. We then examine a method to mitigate these instabilities by

adjusting the power parameter of the nonlinear weights in a WENO-Z code [35].

We present a brief description of the fifth order WENO scheme used in our

computations. In Section 6.3, we discuss the formation of carbuncles in high-speed flows

interacting with clouds of particles as well as the effect that they have on the carrier

flow and particle phase. We then demonstrate in Sect. 6.4 how to mitigate the effect

of carbuncles on the carrier flow by adjusting the power parameters of the WENO-Z

nonlinear weights. Conclusions are given in Section 6.5.

6.2 Problem Setup

In our experiments, a 4% volume fraction cloud of 3.9× 109 real particles is

approximated using 39,762 computational particles. The particle response time and

density are, τp = 100.0 and ρp = 7.42× 104, respectively. The particles are initially

evenly distributed with zero velocity in a rectangular cloud stretching from 0.175 to

0.352 in x and −0.044 to 0.044 in y with 282×141 particles.

We consider a WENO mesh with 500× 500 points in the x and y directions

respectively. The computational domain spans an area of 0 to 0.5 in the x-direction

and −0.25 to 0.25 in the y-direction. A uniform inflow boundary condition is specified

at x = 0 and outflow boundary conditions are specified at all other boundaries. We

use a Reynolds number around the particles of Re f = 3.387×107 to compute the drag

force according to Davis et. al. [33]. Experiments are performed with initially uniform

flows where the fluid Mach numbers ranges from 3.5 to 5. The maximum particle Mach

and Reynolds numbers, Mp and Rep respectively, shown in Fig. 6.1, stay within the

physical limits of the drag correction factor, f1, specified by Boiko et. al. [15]. While an
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initial acceleration in Mp occurs and exceeds the bounds of f1, Mp decays rapidly as the

particles accelerate and does not effect the particle physics in the computation.

(a) (b)

Figure 6.1: Maximum particle (a) Reynolds number and (b) Mach number vs. time for
a uniform flow interacting with an initially rectangular cloud of particles. The

embedded figures show the maxima for t = 0 to t = 0.05.

6.3 The Formation and Impact of the Carbuncle Insta-

bility

Carbuncles appear as anomalous oscillations in the profile of a strong shock,

as seen by the spike in the pressure contour plot of a uniform flow of Mach number 5

interacting with an initially stationary cloud of particles at t = 0.5 shown in Fig. 6.2.

Carbuncles form only along the grid-aligned portion of the resultant bow shock because

they are damped by the added numerical dissipation when the shock and numerical grid

are misaligned.

The instability “bleeds” [64] downstream behind the shock, causing ripples in

the post-shock flow profile. This downstream influence can be seen in the Mach number

contours in Fig. 6.3, where the sharp lines and spikes are artifacts of the carbuncles

that appear in the bow shock. The carbuncle instabilities cause alternating high and low
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Figure 6.2: Pressure contours of the bow shock at t = 0.5 for a cloud of initially
stationary particles interacting with a uniform Mach 5 flow. The spike seen at the

stagnation line is the carbuncle instability.

velocity streaks to flow downstream (Fig. 6.3).

The lower velocity streaks from carbuncles in the bow shock cause instabilities,

in turn, in the particle phase to form. Just above the centerline in Fig. 6.4a, a small

grouping of particles protrudes upstream of the otherwise sharp leading edge of the cloud.

These outcroppings have a lower downstream acceleration as compared to the bulk of the

cloud because of the interaction with a lower velocity fluid. The combination of the lower

velocity fluid and the finger shaped particle phase protrusions cause strong instabilities in

the fluid density gradients just downstream of the particle phase instability (Fig. 6.4b).

6.4 Mitigation of the Carbuncle Instability

To reduce or eliminate the numerical errors caused by carbuncle instabilities,

dissipation is generally added either directly (via numerical viscosity) or by rotating the

numerical grid [108, 120]. Increased numerical dissipation over the entire domain limits

the ability of the method to accurately capture small-scale turbulent structures. However,
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(a) (b)

(c) (d)

Figure 6.3: Mach number contours at (a) t = 0.23, (b) t = 0.38, (c) t = 0.48 and (d)
t = 0.53 for a cloud of initially stationary particles interacting with a uniform Mach 5
flow. The spikes behind the bow shock show the bleeding of the carbuncle downstream.
The the particle dispersion pattern is shown downstream of the bow shock. The dotted

line shows the initial location of the particle cloud at t = 0.
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(a) (b)

Figure 6.4: Density contours of the flow at t = 0.5 for a cloud of initially stationary
particles interacting with a uniform Mach 5 flow. The anomalous bumps in the density
contour at the front edge of the particle cloud, in (b), show the downstream effects of

the carbuncle instability on the particle phase.

by properly adjusting the WENO-Z nonlinear weights from (3.7), the method retains its

high fidelity in smooth areas of the domain while damping out carbuncle instabilities

near strong discontinuities.

In stencils containing a discontinuity, the substencils, Sk, are categorized as either

smooth (βk is O(∆x2)) or non-smooth (βk is O(1)) [35]. Because τ5 from (3.6) is of the

same order as the largest βk, the factor,

(
τ5

βk + ε

)p

, (6.1)

from (3.7) is O(1) in a non-smooth substencil and O(∆x−2p) in a smooth substencil

[35]. The larger the power parameter, p, is, the greater the scale separation in the

associated weight between smooth and non-smooth substencils. To increase the damping

of instabilities near discontinuities, we adjust the nonlinear weights, ωZ
k, by increasing

p. The contribution of the flux from the non-smooth substencils becomes vanishingly
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small [35]. With a decreased weight for the discontinuous substencil, the WENO method

increasingly resembles a third order upwinding ENO scheme near shocks while in smooth

areas of the flow, the term inside the brackets from (6.1) is� 1 for all substencils and p

does not greatly effect the nonlinear weighting.

To demonstrate the effects of changing p, consider the interaction of an initially

stationary cloud of particles and a uniform Mach 3.5 flow shown in Fig. 6.5 at t = 0.75.

The added numerical dissipation long the leading edge of the bow shock reduces the

amplitude of carbuncles and mitigates their downstream effects, as seen in comparing the

pressure contours in Fig. 6.5a where p = 2 with Fig. 6.5b where p = 3. With less scale

separation in the weighting term between the smooth and discontinuous substencils in

Fig. 6.5a, the carbuncles persist downstream of the shock. While carbuncles still arise

along the leading contours of the shock with p = 3, the instability is damped out on the

downstream edge in Fig. 6.5b because of the increased dissipation near the strong shock.

(a) (b)

Figure 6.5: Magnified view of the pressure contours at the front of the bow shock at
time t = 0.75 when an initially stationary cloud of particles is placed in a Mach 3.5

uniform flow. Carbuncles can be seen in (a) using a power parameter p = 2 whereas the
bow shock pressure contour is much more stable when the power parameter is p = 3, as

shown in (b).
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6.5 Conclusions

The formation of carbuncles in a particle-laden flow is presented using a high-

order EL solver. The effects of the carbuncle bleeding downstream in alternating high

and low velocity regions furthermore causes an instability to form in the particle phase,

which manifests as a spike of particles protruding from an otherwise well-defined leading

edge. The strong two-way coupling of the particle and fluid phases amplifies the effects

of the carbuncle, causing a strong instability in the density gradient of the fluid just

downstream of the particle instability. The effects of the carbuncle instability can be

mitigated by increasing the power parameter in the nonlinear weighting of the WENO-Z

scheme, thereby adding dissipation to areas of the flow containing steep gradients without

compromising the high order accuracy of the scheme in smoother regions of the flow.

Sections 6.1 to 6.5, in full, are to be submitted to the AIAA Journal under the title,

Carbuncles in high resolution Eulerian-Lagrangian simulations of Shock-Particle-laden

flow. Davis, Sean; Don, W.S.; Jacobs, Gustaaf. The dissertation/thesis author was the

primary investigator and author of this material.

6.6 Gibbs Oscillations Occurring within a Multidimen-

sional ENO Stencil

The ENO method, outlined in Section 3.1 is employed to essentially eliminate os-

cillations in the interpolation of carrier phase variables to the particle locations. However,

in the case of a shock entering the host cell of a particle at an angle, the method of lines

is ineffective at determining the proper sub-stencil and causes instabilities. Figure 6.6a

shows the sub-stencil chosen by the algorithm if only those divided differences along the

x and y grid-lines from the particle host cell location are used.
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(a) (b)

Figure 6.6: Schematic of the ENO stencil chosen by comparing the divided differences
over (a) the grid lines running in the x− and y−directions from the particle’s host node
(method of lines) and (b) the summation of the divided differences in each possible 32

sub-stencil surrounding the particle. The particle is shown in blue and the shock is
shown as a triple line in black.

A more robust algorithm for finding the proper ENO sub-stencil must account

for the divided differences over more than just the orthogonal lines stretching from the

particle host node. Instead of looking at only the smoothness along these lines, the divided

differences on all nodes within the subdomain created by these lines are can be summed

to account for angled discontinuities with respect to the uniform grid. However, adding

all of the divided differences for larger order (9th, for example) in multiple dimensions

adds an unnecessary computational strain. If the shock is far from the particle, the

method of lines accurately predicts the most stable sub-stencil. By only summing all of

the divided differences within a 3n box, where n is the number of dimensions, and adding

it to the method of lines approach, a more accurate and still efficient sub-stencil is found,

as shown in the schematic in Figure 6.6b.



Chapter 7

Wake Instabilities

Sections 7.1 to 7.4 are taken from a manuscript published in the Journal of

Applied Mechanics and Technical Physics in 2013 [33].

7.1 Introduction

Particle-laden and droplet-laden flows play an important role in high-speed tech-

nologies such as solid rocket propulsion systems and high-speed liquid-fuel combustors.

Shock waves occur in scramjet combustors and interact with fuel particles in the resultant

supersonic flow. Accurate tracing of fuel droplet trajectories would allow for more precise

ignition and combustion, boosting overall engine efficiency. The physical complexity

of simultaneously resolving particle-turbulence, shock-turbulence, and shock-particle

interactions along with the large range of spatial and temporal scales pose high demands

on both experimental and computational analysis. Experimental analysis is limited to

large scale observation due to the high velocities, while first principle computations are

expensive and models are not optimal.

Significant effort has gone toward the improvement of empirical governing models

for the particle phase through investigation of the acceleration of an individual particle

109
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behind a shockwave. Boiko et al. [13] determined the drag of a droplet behind a shock by

comparing the known relaxation times of a hard sphere to their experimentally measured

droplet relaxation times. Sun et al. [139] numerically studied the dynamic drag coefficient

of a spherical particle behind a shock wave. A reflected bow shock was observed in

front of the spherical particle, and, as the shock wave traversed over the sphere, a Mach

reflection formed. The Mach reflection proceeded to the rear center of the sphere before

converging with the Mach reflection from the other side. This caused shock focusing

to occur and a region of very high pressure at the rear of the spherical particle. This

region of high pressure resulted in a brief negative drag. Their numerical data matched

experimental data within 10%. Loth [88] investigated the effect of compressibility

and rarefaction on a spherical particle. Boiko et al. [14] also studied different shaped

particles. In a comparison of a cubical and a spherical particle they found that the drag

is predominantly a function of the frontal area of the particle. Therefore the relative

bluntness of the shapes did not significantly affect the particle dynamics.

A limited number of studies have been performed on the dynamics of a large

number of particles in high-speed flow. Olim et al. [106] studied the attenuation of a

normal shock wave in a homogeneous gas particle mixture. Kiselev et al. [78] compared

simulations based on Boiko’s empirical particle models to shock tube experiments on the

dispersion of a cloud of plexiglas and bronze particles in the accelerated flow behind a

moving shock [78, 15]. Not only did they visualize the particle dynamics and dispersion,

they also matched some of their results quantitatively to the experimental dispersions.

In Jacobs et al. [65, 66], a high-order/high-resolution Eulerian-Lagrangian scheme was

developed that was based on the same empirical physical governing model as proposed by

Kiselev et al. Extensive high-order/high-resolution results showed good comparison with

experimental results, while small scale turbulent structures were resolved with improved

efficiency. In Jacobs et al. [65], we studied the effect of initial shape of the cloud’s
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geometry on the dispersion of particles. It was shown that the aerodynamics of the shape

significantly alter the cross-stream dispersion of particles.

This paper extends the investigation of the effect of the geometry of the cloud

on the dispersion of particles in the accelerated flow behind a moving shock. We study

the effect of aspect ratio and rotation of the cloud and present detailed statistics of the

particle dispersion in terms of the averaged particle coordinates. This investigation is

part of our ongoing effort to thoroughly validate Eulerian-Lagrangian methods against

shock tube experiments for shocked, particle-laden flow.

In Section 7.2 we present the physical model and the governing equations, and

briefly review the high-order/high-resolution Eulerian-Lagrangian method. In Section

7.3 we first briefly review the effect of particle cloud shape on the dispersion of particles,

followed by a discussion of the effect of aspect ratios and rotation of the cloud shapes on

the particle-laden flow development. Concluding remarks and future directions are given

in Section 7.4.

7.2 The Physical Model and Governing Equations

In the particle-source-in-cell (PSIC) method, the Eulerian continuum equations

are solved for the carrier flow in the Eulerian frame, while particles are traced along in

the Lagrangian frame. In the following, we present the coupled system of Euler equations

that govern the gas flow and kinematic equations that govern the particle motion. We

shall denote the subscript p for the particle variables and f for the gas variables at the

particle position. Variables without subscript refer to the gas variables unless specified

otherwise. For more detailed discussion of the physical model and governing equations,

readers are referred to Ref. [65].
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7.2.1 Euler equation in the Eulerian frame

The governing equations for the carrier flow are the two-dimensional Euler

equations in Cartesian coordinates given by:

Qt +Fx +Gy = S, (7.1)

where

Q = (ρ,ρu,ρv,E)T ,

F =
(
ρu,ρu2 +P,ρuv,(E +P)u

)T
, (7.2)

G =
(
ρv,ρuv,ρv2 +P,(E +P)v

)T
,

and

P = (γ−1)
(

E− 1
2

ρ
(
u2 + v2)) , γ = 1.4. (7.3)

The equation of state closes the system of equations

T =
γPM2

ρ
, (7.4)

where M =U/
√

γRT is a reference Mach number determined with the reference velocity,

U and reference temperature, T . The source term, S, accounts for the effect of the

particles on the carrier gas and will be discussed in more detail below.
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7.2.2 Particle equation in the Lagrangian frame

Particles are tracked individually in the Lagrangian frame. The kinematic equation

describing the particle’s position~xp, is given as

dxp

dt
= vp, (7.5)

where vp is the particle velocity vector.

The particles’ acceleration is governed by Newton’s second law forced by the

drag on the particle. With particles assumed spherical, we take the drag as a combination

of the Stokes drag corrected for high Reynolds and Mach number and the pressure drag

leading to the following equations governing the particle velocity

dvp

dt
= f1

(
vf−vp

τp

)
− 1

ρp
∇∇∇P| f , (7.6)

where vf is the velocity of the gas at the particle position, and ρp the particle density.

The first term on the right hand side of equation (7.6) describes the particle acceleration

resulting from the velocity difference between the particle and the gas. The second term

in the right hand side of equation (7.6) represents the particle acceleration induced by the

pressure gradient in the carrier flow at the particle position. The particle time constant

τp = Re f d2
pρp/18, where dp is the particle diameter, is a measure for the reaction time

of the particle to the changes in the carrier gas. Re f =UL/ν is the Reynolds number of

the carrier gas flow with L a reference length and ν the dynamic viscosity. In this study,

we assume Re f large and we therefore do not model viscous effects in the governing

Eulerian equations for the gas flow (7.1).

The term f1 is an empirical correction factor that yields an accurate determination

within 10% of measured particle acceleration for higher relative particle Reynolds number
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up to Rep = |vf− vp|dp/ν = 1× 104 and relative particle Mach number up to M f =

|vf−vp|/
√

Tf = 1.2 and is given by

f1 =
3
4
(
24+0.38Rep +4

√
Rep
)(

1+ exp

[
−0.43
M4.67

f

])
. (7.7)

From the first law of thermodynamics and Fourier’s law for heat transfer, the

equation for temperature is derived as,

dTp

dt
=

1
3

Nu
Pr

(
Tf −Tp

τp

)
, (7.8)

where Pr = 1.4 is the Prandtl number, taken as its typical value for air in this paper.

Nu = 2+
√

RepPr0.33 is the Nusselt number corrected for high Reynolds number.

7.2.3 Source term S for the Euler equation

Each particle generates a momentum and energy that affects the carrier flow.

The volume averaged summation of all these contributions gives a continuum source

contribution on the momentum and energy equation in (7.1) as:

Sm(x) =
Np

∑
i=1

K(xp,x)Wm, (7.9)

Se(x) =
Np

∑
i=1

K(xp,x)(Wm ·vp +We), (7.10)

where K(x,y) = K(|x− y|)/V is a normalized weighing function that distributes the

influence of each particle onto the carrier flow. Wm = mp f1(vf− vp)/τp and We =

mp(Nu/(3Pr))(T −Tp)/τp are weigh functions describing the momentum and energy

contribution of one particle, respectively. The term mp is the mass of one spherical

particle which can be derived from τp. Np is the total number of particles in a finite
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volume V .

7.2.4 Flow and Particle Solver

The governing equations are discretized and solved using the WENO-Z based

PSIC scheme proposed by Jacobs et al. [65, 66]. The nonlinear nature of the hyper-

bolic Euler equations admits finite time singularities in the solution even when the

initial condition is smooth. It is important that the numerical methods employed avoid

non-physical oscillations, also known as the Gibbs phenomenon, when the solution

becomes discontinuous. Among many high order shock capturing schemes, the classical

weighted essentially non-oscillatory conservative finite difference schemes (WENO)

for conservation laws by Shu et al. [130] has been very successfully employed for the

simulation of the fine scale and delicate structures of the physical phenomena related to

shock-turbulence interactions [6, 92, 162, 49].

The improved version of classical WENO conservative finite difference scheme,

namely, WENO-Z scheme, [18, 18] is ideally suited for computing a shock wave interact-

ing with a cloud of particles due to the complicated shock structures of the problem, and

the importance of preserving high order resolution to resolve the small scale interactions

present in particle-laden shocked flow.

The essence of the WENO scheme is the use of adaptive stencils. The method

creates a stencil over the computational domain, in which a smoothness indicator is

employed to estimate within which substencils the shocks lie. The method then assigns

an essentially zero weight to low order local interpolation polynomials of the flux based

on the values from substencils that contain high gradients and/or shocks to prevent Gibbs

oscillations.

In computational cells where no shock is present, a high order upwinded central

finite difference scheme is used to calculate the flow properties. But in shocked regions,
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a centered interpolation will produce undesirable Gibbs oscillations. With an ENO

interpolation, these oscillations are essentially removed. The ENO interpolation is

only necessary in WENO-domains identified by the smoothness indicator. The WENO

scheme ensures that the formal order of accuracy/resolution in the smooth regions of the

simulation remains intact as best as one can do.

The flow solver calculates the parameters of the flow by solving the Euler equa-

tions with a particle source term weighed onto the flow at grid points within the domain.

The particle variables are then calculated using a high order ENO interpolation with

a spline function of the same order of accuracy as the flow solver to avoid excessive

computational errors.

7.3 Results and Discussion

We perform simulations based on the fifth order WENO-Z based PSIC algorithm

for flow evolution when a shock runs through a cloud of particles. To summarize the

algorithm, we approximate the system of hyperbolic Euler equations (7.1) in the Eulerian

frame,

dQ
dt

=−∇ ·~F(Q)+S(xp−~x), (7.11)

on each grid point. A Np number of particles are individually traced in the Lagrangian

frame with

dxp

dt
= vp, (7.12)

dvp

dt
= f1

(
vf−vp

τp

)
− 1

ρp
∇∇∇P| f , (7.13)

dTp

dt
=

1
3

Nu
Pr

(
Tf −Tp

τp

)
. (7.14)
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Interpolation determines vf, and Tf , while weighing determines S(xp−~x).

We employ the third order Total Variation Diminishing Runge-Kutta scheme

(RK-TVD):

~U1 = ~Un +∆tL(~Un)

~U2 =
1
4

(
3~Un +~U1 +∆tL(~U1)

)
, (7.15)

~Un+1 =
1
3

(
~Un +2~U2 +2∆tL(~U2)

)

where L is the spatial operator as in the right side of (7.11) or the right hand side of (7.14).

The CFL number is set to 0.4.

 

Figure 7.1: Initial setup of the shock-particle laden flow.

We initialize a right running Mach three shock Ms = 3 at xs = 0.175 in a rect-

angular domain [0,3]× [−0.611,0.611]. Inflow and outflow boundary conditions are

specified, respectively, in the x direction. Periodic boundary conditions are imposed in the

y direction. A uniformly distributed bronze particle cloud is seeded in a rectangular shape,

[0.175,0.352]× [−0.044,0.044], with zero initial velocity. The volume concentration of

the particles in the cloud is 4%. The particle response time and density are, τp = 51.69

and ρp = 7.42×104, respectively. We take the Reynolds number needed to compute the

particle traces according to the experiment at Re f = 3.387×107. In our discussion of

the results below, we shall refer to the collection of the particles as shape.

In the following computations, the number of grid points used to solve the Euler
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equation in the Eulerian frame is 1500×500 in the x and y directions respectively. Clouds

of 3.9×109 real particles were approximated using 40,000± 100 computational particles

depending upon the cloud shape. The dimensions of the different clouds were determined

based on the shape and aspect ratio desired and particles were seeded accordingly to

provide for an even distribution. As an example, the square shape shown in Fig. 7.1 was

arranged with 200×200 particles.

We briefly summarize the effect of initial cloud shape that was studied in Jacobs

et. al. [65] to set the stage for the analysis of the effect of aspect ratio and rotation

of the cloud. In Jacobs et. al. [65], we compared rectangular, circular and triangular

shaped clouds with the same particle volume concentrations. The clouds cover the same

geometric area and are initialized so that the cloud’s location is directly adjacent to the

downstream side of the normal shock. At early times the normal shock wave propagates

through the particle cloud, and a reflected bow shock forms upstream of the particle

cloud (see the vorticity contours in Fig. 7.2). Whereas the bow shock development is

comparable for the circular and rectangular cases (Figs. 7.2a and 7.2b), showing a strong

detached bow shock, the more aerodynamic triangular case (Fig. 7.2c) induces a much

weaker bow shock.

 

Figure 7.2: Vorticity contour of the accelerated gas flow behind a moving shock over
(a) circular, (b) rectangular and (c) triangular shaped clouds at t = 0.1.

The gas flow separates at the sharp front corners of the rectangular shape and at
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the apex of the circular shape. The flow over the triangular shape separates only at the two

rear corners. Figs. 7.3a, 7.3b and 7.3c show that the particle trajectories closely follow

the separated shear layers initially and form distinct material lines. The accelerated flow

stagnates at the front of the blunt rectangular and circular shapes compressing these

clouds. The particles at the front end move downstream and increase the particle density

within the cloud. The leading area of the triangle yields a much lesser compression and

the average location of the particles within the cloud do not move to the right as far

as the other two cases. For a more detailed discussion of the effects of shape on this

particle-laden flow we refer the reader to Jacobs et. al. [65].

(a) Rectangle (t = 0.3) (b) Circle (t = 0.3) (c) Triangle (t = 0.3)

(d) Rectangle (t = 1.0) (e) Circle (t = 1.0) (f) Triangle (t = 1.0)

Figure 7.3: Dispersion pattern of 40K bronze particles in the accelerated gas flow
behind a moving shock over (a, d) rectangular, (b, e) circular and (c, f) triangular cloud

shapes at (top row) an early time, t = 0.3, and (bottom row) a late time, t = 1.0.

To quantify the motion and dispersion of the particles we determine the averaged

and normalized root-mean-square global statistics on the particle cloud. The mean x-

displacement of the particles is determined by comparing the particles’ average location
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at a given time t, x̄(t), to their average location at the initial time t = 0, x̄(0):

xdisp(t) = x̄(t)− x̄(0), where x̄ =
1

Np

Np

∑
i=1

xi(t). (7.16)

is the averaged x-location of Np number of particles.

Similarly, we quantify the dispersion in the cross-stream y-direction through the

normalized root-mean-square deviation from the average y-location of the cloud at time

t, ȳ(t), as

ydisp =
yrms(t)− yrms(0)

yrms(0)
, where yrms(t) =

√√√√ 1
Np

Np

∑
i=1

(yi(t))
2. (7.17)

is the root-mean-square particle y-location at time t.
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Figure 7.4: (a) Temporal history of the averaged x-location of the circular, rectangular
and triangular shaped clouds, xdisp(t). (b) Temporal history of the normalized

root-mean-square y-location deviation of the circular, rectangular and triangular shaped
clouds, ydisp(t).

In Fig. 7.4a, the xdisp statistic shows that the circular and the rectangular shaped

clouds have comparable x-direction convections, while the triangle’s motion is 40% less

at time t = 1.0. This difference is attributed to the smaller force between the gas and

particle phase in the x-direction induced by the more aerodynamic triangle. A smaller

force translates to a lesser acceleration of the shape in x-direction according to Newton’s
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second law.

Fig. 7.4b, which plots the temporal evolution of ydisp, shows that the particle

transport along separated shear layers at the front corners of the rectangle induces the

greatest dispersion of particles in the cross-stream as compared to the other shapes. The

initial dispersion of the cloud leads to greater movement in the cross-stream direction.

However, at around t = 0.4, for the rectangle, the dispersion curve moves from concave

up to concave down indicating a leveling off of the dispersion over time. As the particles

spread away from the bulk cloud shape, micro-scale flow-particle interactions become

the dominant force and the particles convect purely downstream at very late times. The

relative cross-stream motion of particles in the triangular shape in time is greater than

those of the circle and the rectangle. However, the compression of the triangular shape in

time, as shown in Figs. 7.3c and 7.3f, causes ydisp to be negative and hence the dispersion

of the cloud is significantly reduced for the triangle as compared to the other shapes.

7.3.1 Effect of Aspect Ratio η

Changing the cloud’s aspect ratio, η, defined as the ratio of the length of the initial

cloud shape in the x-direction to the width of the initial cloud shape in the y-direction,

does not change the qualitative behavior of the particle-laden flow dynamics for a given

type of shape at early (< 0.4) and late (t > 0.7) times .

The snapshots of velocity magnitude contours and particle dispersion patterns in

Fig. 7.5 at t=0.3 and Fig. 7.6 at t=1.0 show that the particles in the rectangular shaped

cloud are transported along the separated shear layers at the front and rear corners of

the shape at early times. At later times, the arms which initially formed at the front

corners shield the flow extending the width of the wake. The reduced velocity in the

wake prevents further transport of the particles into the arms at the rear corners of the

shape.
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(a) Rectangle (η = 4,θ = 0◦) (b) Rectangle (η = 1,θ = 0◦)(c) Rectangle (η = 0.5,θ = 0◦)

(d) Ellipsoid (η = 4,θ = 0◦) (e) Ellipsoid (η = 1,θ = 0◦) (f) Ellipsoid (η = 0.5,θ = 0◦)

Figure 7.5: Velocity magnitude contours and particle dispersion patterns at an early
time t = 0.3 for (a) a rectangle shaped cloud with aspect ratios η = 4, (b) η = 1, (c)

η = 0.5 and (d) an ellipsoid shaped cloud with aspect ratios η = 4, (e) η = 1, (f)
η = 0.5, and an angle of attack θ = 0◦.

(a) Rectangle (η = 4,θ = 0◦) (b) Rectangle (η = 1,θ = 0◦)(c) Rectangle (η = 0.5,θ = 0◦)

(d) Ellipsoid (η = 4,θ = 0◦) (e) Ellipsoid (η = 1,θ = 0◦) (f) Ellipsoid (η = 0.5,θ = 0◦)

Figure 7.6: Same as caption 7.5 except at a late time t = 1.0.
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The flow separation location changes with time along the smooth surface of the

ellipsoidal shapes. As with the rectangular shaped cloud, particles are transported along

the separated shear layers. Since the separation location is moving in time as opposed to

the fixed separation at the front corners of the rectangular cloud shapes, the particle arms

are less defined for the ellipsoidal shapes at early times.

Both circular and rectangular shaped clouds with η > 1 are compressed relatively

more in the x-direction in time than clouds with η < 1. Clouds with η < 1 experience

more compression along the longer sides in y-direction as compared to clouds with η > 1

that have relatively small lengths along the sides.
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Figure 7.7: xdisp(t) versus aspect ratio η, for initially rectangular and ellipsoidal
particle shaped clouds at t = 1.0.

With an increase of the cloud’s aspect ratio, the cloud’s geometry is more slender

and the cloud blocks the flow less. For higher aspect ratio η, the wake zones and low

velocity stagnation areas in front of the shape decrease due to this smaller obstruction.

The slender geometry induces a smaller forcing between the gas and particle phase,

which results in the reduced convection of the cloud in x-direction with increased η, as

shown in Fig. 7.7, for both the ellipsoidal and rectangular shaped clouds at the late time

t = 1. The reduced convection of the ellipsoids as compared to the rectangles, shows that

the ellipsoid induces a smaller mutual forcing and is more aerodynamic.
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7.3.2 Effect of Rotation θ

To rotate the shape, we change the coordinates of particles in the rectangle and

the ellipsoid shaped clouds as follows

[xp,yp]new = R[xp,yp]old, (7.18)

where

R =

 cosθ −sinθ

sinθ cosθ

 , (7.19)

is the rotation matrix with a given angle of rotation θ. The leading point of the rotated

particle cloud is initially positioned directly behind the right moving shock at x = 0.175

ensuring that the shock wave moves through the cloud at the same time for all rotation

angles.

Snapshots of the velocity magnitudes and particle dispersion patterns at early

times (Figs. 7.8a and 7.8d) show that the particle-laden flow developments are qualita-

tively similar at moderate angles of attack as compared to the unrotated cases. Particles

separate into arms along the front corner of the rectangle and shield the downstream

portion of the cloud more in the rectangular shaped cloud than the ellipsoidal one. How-

ever, the flow strength, flow separation and amount of arm shielding changes due to the

rotation as the upstream corner of the cloud becomes a focal point for the flow stagnation.

A larger, more dense cloud region forms from this focus and can be seen at later times as

a leading arm protruding from the rest of the cloud most evidently in Figs. 7.9a but also

in Fig. 7.9d. Because of the rotation, the top surface faces the oncoming flow directly,

shielding the bottom downstream portion of the cloud at early times causing a larger arm

to form on the downstream portion of the cloud at later times.



125

(a) Rectangle (η = 2,θ = 15◦)(b) Rectangle (η = 2,θ = 45◦)(c) Rectangle (η = 2,θ = 75◦)

(d) Ellipsoid (η = 2,θ = 15◦) (e) Ellipsoid (η = 2,θ = 45◦) (f) Ellipsoid (η = 2,θ = 75◦)

Figure 7.8: Velocity magnitude contours and particle dispersion patterns at an early
time t = 0.3 for a rectangle shaped cloud with angles of attack (a) θ = 15◦, (b) θ = 45◦,
(c) θ = 75◦ and an ellipsoid shaped cloud with angles of attack (d) θ = 15◦, (e) θ = 45◦,

(f) θ = 75◦, and a fixed aspect raio η = 2.

(a) Rectangle (η = 2,θ = 15◦)(b) Rectangle (η = 2,θ = 45◦)(c) Rectangle (η = 2,θ = 75◦)

(d) Ellipsoid (η = 2,θ = 15◦) (e) Ellipsoid (η = 2,θ = 45◦) (f) Ellipsoid (η = 2,θ = 75◦)

Figure 7.9: Same as caption 7.8 except at a late time t = 1.0.
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As the angle of rotation θ further increases, the particle-laden flow development

dramatically changes both qualitatively and quantitatively. At medium angles of rotation

the flow development of the initially rectangular shaped cloud shows similar features

to the flow development of the initially triangular particle cloud (Figs. 7.8b and 7.10a).

One of the front corners of the shape now protrudes into the flow and the flow does

not separate from this corner. Since the flow is attached along the sides, particles no

longer leave from the shape at this corner. At early times most particles are transported

out of the shape at the two corners that are downstream of the leading corner of the

rectangle comparable to particle dynamics of the triangular cloud. At later times the

rectangular shaped cloud has been compressed towards the symmetry line (Fig. 7.9b),

also comparable to the triangle case (Fig. 7.10c). At early times, the ellipsoidal case

is very similar to the rectangular case at medium angle of rotation (Fig. 7.8e), but the

smoother geometry leads to material arms and flow separations that are less distinct. One

additional feature of the ellipsoid shaped cloud is the cavernous region which forms from

the flow separation point near the upper half of the cloud. In Fig. 7.8e, a small divot can

be seen which, at later times, grows until it bifurcates the cloud. This split lasts only

briefly before the spanwise dispersion of the two new clouds overlap.

We note that the cases of a rectangle shaped cloud and an ellipsoid shaped cloud

with η > 1 and large angle of rotation (Figs. 7.8c and 7.8f as well as 7.9c and 7.9f) are

geometrically the same as a shape with 1/η and a small angle of rotation. As discussed

previously, the particle-laden flow developments of shapes with small rotation angle are

comparable to the flow developments of the same shape with zero angle of rotation.

To underscore that the flow dynamics of a rectangle shaped cloud at medium

angles are comparable to that of a triangle, we place a square (η = 1) under angle of

rotation θ = 45◦. The front half of the diamond shape is now geometrically exactly a

triangle. From the snapshots at early times (Fig. 7.10a and b) and late times (Fig. 7.10c
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and d), we can see that the dynamics of this front half are indeed the same as that of the

triangle described above. The trailing half of the diamond does not move significantly

and since this half is shielded from the oncoming flow it does not significantly affect the

gas flow at early times. At later times, the wider trailing half of the diamond is exposed to

the oncoming flow yielding a slightly wider cloud and wake as compared to the triangle

case.

(a) Triangle (b) Square (θ = 45◦)

(c) Triangle (d) Square (θ = 45◦)

Figure 7.10: Velocity magnitude contours and particle dispersion patterns for a triangle
shaped cloud and a square shaped cloud rotated θ = 45◦, at t=0.3 (top row) and t = 1.0

(bottom row).

The square shaped cloud is convected further downstream in x-direction at zero

angle of rotation θ = 0◦ than at θ = 45◦ of rotation (when it behaves like a triangle),

since the force between gas and particle phase is larger for the blunt square shape at zero
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rotation as compared to the more aerodynamic rotated shape. The averaged x-location

of the cloud, xdisp, is hence larger at small angle of rotation as compared to medium

angles of rotation (Fig. 7.11a). Because of the symmetry of the square, the xdisp curve is

symmetric versus angle of rotation θ.

Noting again that a shape with η > 1 at a ninety degree rotation (θ = 90◦) is

geometrically identical to that same shape with one over η ( 1
η

) at θ = 0◦, it follows that

xdisp is smaller for η > 1 at θ = 0◦ as compared to that shape at θ = 90◦, similar to the

trends of xdisp versus η in Fig. 7.7. We observe that curves for different aspect ratio

in Fig. 7.11a cross through a single point, indicating a correlation between rectangular

shaped clouds at a rotation angle θ≈ 30◦.

At medium angles of rotation, rectangles behave like triangles and hence they

show a minimum ydisp for all η (Fig. 7.11b). The minimum is naturally at θ = 45◦ for

the symmetric square and the compression of the cloud reduces with increasing η.
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Figure 7.11: (a) xdisp(t) and (b) ydisp(t) versus angle of rotation, θ, for initially
rectangular particle clouds with aspect ratio η = 1,2,3,4.

A comparison of xdisp for the ellipsoid shaped cloud in Fig. 7.12a with xdisp

for the rectangular shaped cloud in Fig. 7.11a confirms the similarity between the two

shapes. The trends with rotation and aspect ratio are the same and Fig. 7.12a shows the

same crossing at a single point of the curves with different aspect ratio, only at a slightly

smaller rotation angle of θ = 15◦. Note that since a circle with η = 1 does not change
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Figure 7.12: (a) xdisp(t) and (b) ydisp(t) versus angle of rotation θ, for initially
ellipsoidal particle clouds with aspect ratio η = 1,2,3,4.

geometrically with rotation, xdisp of an ellipsoid shaped cloud is not affected by rotation

at η = 1. For shapes with η > 1, instabilities play a major role in the dispersion of the

particle clouds at late times, which causes a disparity in the initial spanwise dispersion

for an angle of rotation of zero. Early flow dynamics dominate the ydisp trends for clouds

rotated past θ = 45◦, which are geometrically similar to clouds with η < 1, with greater

spanwise dispersion as the cloud becomes longer in the y-direction.

7.4 Conclusions and Future Developments

A numerical study of the effect of initial shape, aspect ratio and rotation of a

cloud of particles on the particle-laden flow development in the accelerated flow behind

a moving shock is conducted using a high-order/high-resolution Eulerian-Lagrangian

method.

A change of shape dramatically changes the particle-laden flow development. In

the case of an initially rectangular shaped cloud, particles separate mostly along shear

layers into distinct arms that emanate from the front corners. These arms shield the

incoming flow from the rear part of the cloud. The flow separation location changes in

time along the smooth circular shaped cloud surface, and hence the particle arms are less
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distinct as compared to the initially rectangular shaped cloud. The flow remains attached

along the sides of the more aerodynamically shaped triangular cloud and particles are

transported along shear layers that emanate from the rear corners.

The averaged triangular shaped cloud location is convected 40% less downstream

as compared to the blunt rectangular and the circular shaped clouds at time t = 1.0. This

is attributed to a reduced forcing between the gas and particle phase and hence a lesser

particle acceleration for the aerodynamic triangle shape. The attached gas flow along the

sides of the triangular shape compresses the particles towards the symmetry line, leading

to a reduction of the root-mean-square cross-stream location of the cloud. The particles

that are pulled out of the rectangular and circular shapes by separated shear layers move

away from the symmetry line and increase the root-mean-square cross-stream cloud

location.

A change of aspect ratio does not change the particle-laden flow qualitatively.

However, a slender, aerodynamic high aspect ratio shape is convected less in the stream-

wise direction as compared to low aspect ratio shapes. Low aspect ratio shapes are

relatively more compressed in the streamwise direction, whereas high aspect ratio shapes

are relatively more compressed in the cross-stream direction.

Except for small wake and dispersion asymmetries, at low angles of rotation,

qualitative flow developments are similar to the case of zero angle of rotation. At medium

angles of rotation, the flow characteristics of the cases with rectangular and ellipsoidal

shaped clouds are comparable to the flow features of the initially triangular shaped cloud

case.

The current investigation is part of a larger effort to validate our high-order/high-

resolution Eulerian-Lagrangian solver against shock-tube experiments detailing the

dispersion of a cloud of particles in the flow behind a moving shock. Results are databased,

while the particle-laden shocked flow developments are elucidated and documented. We
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have extended our codes to three-dimensions recently and are conducting investigations

into the three-dimensional effects on these configurations.

Sections 7.1 to 7.4, in full, are a reprint of the material as it appears in Dispersion

of a cloud of particles by a moving shock: Effects of the shape, angle of rotation, and

aspect ratio. Davis, Sean; Dittman, Thomas; Jacobs, Gustaaf; Don, Wai Sun, Springer

Publishing, 2013. The dissertation/thesis author was the primary investigator and author

of this material.



Chapter 8

Shear Instabilities

Sections 8.1 to 8.7 are taken from a manuscript published in Physics of Fluids in

2015 [125].

8.1 Introduction

The mixing of two layers with different velocity and particle loading profiles is

commonly observed in natural and industrial processes such as the shear layer formed

by the confluence of two rivers or the injection of coal particles in a coal-fired power

plant. The mixing efficiency of these flow systems depends on intrinsic hydrodynamic

instabilities. These instabilities not only determine the size of the mixing zone, but

also give rise to large- and small-scale flow structures, which homogenize the mass,

momentum and energy balance.

In linear stability analysis of particle-laden flows one typically studies the growth

rate of a linear disturbance governed by a reduced, linearized model of the full non-linear

Eulerian-Eulerian (EE) model. In these EE models, both the carrier phase and the particle

phase are modeled in an Eulerian frame. Like the carrier phase, the particle phase is

governed by conservation laws.

132
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Whereas the modeling assumptions of first-principle Eulerian carrier-phase mod-

els, such as the Navier-Stokes equations, typically do not give rise to significant inaccu-

racy within modeling bounds, Eulerian particle models suffer from a “closure problem”.

While a range of Eulerian particle phase models exist that address the closure problem

[63, 69, 121, 150, 109, 127, 128], it remains an open research area.

Saffman [118] presented the first analytical stability analysis of a viscous, incom-

pressible mixing layer with uniform loading in 1961. In the nineties and the early 2000s,

a range of studies [29, 144, 142, 103] appeared on the temporal linear stability analysis

of a mixing layer, which covered viscous [144, 103] and inviscid [29, 142] particle-laden

mixing layers.

In all of these studies, a non-linear first-moment (averaged) particle model that

governs averaged particle phase variables is reduced to either one Rayleigh equation or

the Orr-Sommerfeld equation for inviscid and viscous flow, respectively. This equation

governs the growth of stable and unstable modes. Further, it is assumed in all such studies

that the mean flow is a particle-free single-phase mixing layer. The particle and gas

phases are initially in dynamic equilibrium before being slightly perturbed [161]. As

compared to a single phase analysis, the particle-laden flow stability analysis involves at

least two additional parameters including the bulk mass loading and the particle Stokes

number (St).

The primary investigations on linear stability analysis of viscous, particle-laden

mixing layers [118, 144, 103] focused on incompressible flow and uniform bulk mass

loading. In particular, Saffman [118] found that particles with fast response to the

fluid (i.e. small St) destabilize a viscous flow, because an increase in the bulk average

mixture density of the gas leads to an increase in the effective Reynolds number. The

flow is therefore less stable because the effective critical Reynolds number decreases

(velocity, density and reference length kept constant) with respect to the single phase
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flow. Alternatively, particles with a large response time dissipate disturbances in the gas

and stabilize the flow.

Through numerical experiments, Tong and Wang [144] confirmed that the addition

of small-inertia particles can destabilize the flow and increase the effective interphase

momentum transfer. Particles with a relative medium- to large-inertia dissipate flow

instabilities, with the most added dissipation at St = 1. The qualitatively different behavior

of small-, medium- and large-inertia particles is shown to affect the direction of interphase

energy transfer.

Prior to this study, as compared to the single-phase configuration, growth rate

computations in the temporal stability analysis of inviscid particle-laden mixing layers

[142, 155, 156, 142] have not shown a destabilizing effect induced by the presence of the

particles. Thevand and Daniel [142] studied the temporal development of inviscid particle-

laden mixing layers with a given uniform bulk mass loading and different disturbance

wave numbers. As opposed to the results obtained by Tong and Wang [144] for viscous

mixing layers, the maximum growth rate inevitably decreases when particles are present

in the flow. Consistent with the results of Tong and Wang, the stabilization effect depends

greatly on the particle inertia and is a maximum for particles with Stokes number around

unity. For inviscid, uniformly laden shear layers, the lowest growth rate attenuation is

computed for fast-responding particles, i.e. low Stokes number.

In this paper, we analyze the effect of non-uniform bulk mass loading on the

linear, temporal development of an incompressible, inviscid particle-laden shear flow

when the mass loading interface is much thinner than, and displaced with respect to,

the velocity interface. For the first time in stability analysis of inviscid flows, we show

that particles with small St may destabilize the temporal mixing layer development with

respect to pure-gas flow. The destabilizing effect is triggered by the non-uniformity of

the bulk mass loading.
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Theoretical results predicted by the proposed Rayleigh equation are analytically

derived and then verified numerically. The physical explanation of the destabilizing

effect induced by quick-responding particles is acquired by applying the interface energy

transfer budget proposed by Tong and Wang [144] to this particular case. We show that

an energy transfer that flows globally from the particle phase to the gas phase causes the

destabilization. The verification of the growth rate computations is achieved through

simulations based on a fully non-linear Eulerian-Lagrangian (EL) model [67]. In the EL

model, individual particles are modeled as points and traced along their Lagrangian path.

Both the energy budget and growth rates are in very good comparison with theoretical

results of Thevand and Daniel’s approach [142] and we then extend beyond their analysis

to the case of non-uniform bulk mass loading.

We note that, in the nineties, the investigation of the temporal development of

inviscid, non-uniformly laden, particle-laden shear flows was tackled by Wen and Evans

[155, 156]. In their first article [155], the amplification rates for different disturbance

wavenumbers are computed for a “frozen” particle phase configuration, i.e. a simplified

situation in which the particles do not respond to the fluctuation of the gas phase but

rather the particle response time is much greater than the time scale of the perturbations.

They found that two opposite traveling unstable modes govern the particle-laden shear

layer instability: the first unstable mode (Kelvin-Helmholtz mode) has the largest growth

rate and the second unstable mode is analogous to the Holmboe instability in a density-

stratified mixing layer flow [61, 81]. In this paper, we confirm this behavior for particles

with high Stokes numbers.

When Wen and Evans attempted to extend their analysis to the broader scenario

of finite particle inertia in a follow-up article [156], the computed growth rates showed

significant lack of consistency with the results presented by Thevand and Daniel [142]

for a uniformly laden inviscid, nearly incompressible shear layer. Quite surprisingly, the
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growth rate of the dominant unstable mode in Wen and Evans’ study[156] weakens with

decreasing St.

Especially for the case of slow-responding particles, we believe that Wen and

Evans’ model [155] suffers from the omission of the convective terms in the momentum

equation for the particle phase. To correct this, our model starts with the stochastic

Eulerian model proposed by Pandya and Mashayek [109] and Shotorban [127] for large-

eddy simulation and direct numerical simulation, respectively. This EE model is derived

based on a combination of the Liouville theorem applied to the system of dynamical

particle equations and a method of moments. This approach does include convective terms

and, because in linear stability analysis the evolution of small perturbations is determined,

we address the “closure” of second order moments in the momentum equation for the

particle phase with a first order approximation (zeroing the second order cumulant). Due

to the difference in the proposed Rayleigh equations, the boundary conditions to be

imposed at the bulk mass loading interface also formally differ from the ones proposed

by Wen and Evans [155].

In Section 8.2 we discuss the particle-laden shear layer flow to be studied. Fol-

lowing, in Section 8.3 the first-order Eulerian-Eulerian model is derived. Then, the

Rayleigh equation and the numerical solution of the evolution of a linear particle-laden

gas perturbation are presented in Section 8.4. We then discuss the stability behavior

of non-uniform shear layers in Section 8.5. In Section 8.6 we verify the results of the

stability analysis with EL simulations. Conclusions are reserved for the last Section, 8.7.
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8.2 Particle-laden shear layers with non-uniformly

laden bulk mass Loading

We consider a two-dimensional (2D) shear layer as shown in 8.1 with a normalized

velocity profile given by

U(z) =
U1 +U2

2
+

U2−U1

2
tanh(2z− ε) , (8.1)

where ε is a measure of the relative offset between the x-direction and the location

of maximum shear. The velocity profile is normalized with respect to the reference

velocity ∆U∗ =U∗2 −U∗1 , where the asterisk superscript denotes a dimensional variable.

The coordinate system is selected such that the streamwise flow is in the x-direction.

Following Yang et. al. [161], the velocity profile for the carrier-phase and particle phase

are the same, i.e. the slip velocity between the phases is zero. The reference length scale

is taken as the shear layer’s vorticity thickness [19], δ∗ω, as defined by

δ
∗
ω =

∆U∗(dU∗
dz∗
)

max

, (8.2)

where the denominator represents the maximum gradient in the shear in the z-direction.

Following Wen and Evans [155], the particle phase mass loading is discontinuous

( 8.1b) and is initialized with a particle to gas mass loading ratio, R, defined by:

R(z) =
m∗pn∗p(z)

ρ∗
=


R1 = (1+λ)R , z≤ 0 ,

R2 = (1−λ)R , z > 0 ,

(8.3)

where ρ∗ is the fluid density, −1≤ λ≤ 1 is the relative offset parameter of the particle

loading profile with respect to the average value R; m∗p and n∗p are particle’s mass and
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Figure 8.1: (a) Base (unperturbed) velocity profile U versus z and (b) particle mass
loading R versus z, in the shear layer.

particle phase number density, respectively.

8.3 First-order Stochastic Eulerian-Eulerian model

8.3.1 Eulerian fluid phase

Following Yang et al. [161], we neglect viscous stresses in the carrier phase

momentum equation. As reported by Thevand and Daniel [142], this simplification is

physically justified by the inviscid nature of the Kelvin-Helmoltz instability and has

been validated for single phase flows in the viscous stability calculations of Ragab

and Wu [113] where results were shown to be independent of Reynolds number for

Re= ρ∗∆U∗δ∗ω/µ∗ > 1000. We retain, instead, the momentum exchanged with the

dispersed phase because the typical particle Reynolds number, Rep = ρ∗|uuu∗−VVV ∗|D∗/µ∗,
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is usually small for fine particles [155]. In the definition of Rep, uuu∗ is the fluid velocity

and D∗ and VVV ∗ are the particle diameter and Lagrangian velocity, respectively. The

non-dimensional, 2D, incompressible flow equations in the Eulerian framework are given

by

∇∇∇ ·uuu = 0 , (8.4a)

∂uuu
∂t

+uuu ·∇∇∇uuu+
1
ρ

∇∇∇p = SSS , (8.4b)

where ρ = ρ∗/ρ∗ = 1 is the fluid density and p = 2p∗/ρ∗∆U∗2 is the fluid pressure. The

source term SSS on the right hand side accounts for the momentum transfer between the

gas and particle phase. In the limit of small particle Reynolds number and particle Mach

number [95], Map = |uuu∗−VVV ∗|/
√

kp∗/ρ∗ (k being the fluid specific heat ratio), the source

term for an Eulerian particle phase reference frame is

SSS =
1
St

r̃(ũuu−uuu) , (8.5)

where St=ρpReD2/18 is the Stokes number[28], with D = D∗/δ∗ω and ρp = ρ∗p/ρ∗ the

non-dimensional particle diameter and density, respectively. In (8.5), ũuu = (ũ, w̃) is the

Eulerian particle phase velocity and r̃ = m∗pφ̃∗/ρ∗ represents the Eulerian particle to gas

mass loading ratio, where φ̃∗ is the Eulerian particle number density. These variables are

rigorously defined in Section 8.3.3. For a complete derivation of the source term, see

Pandya and Mashayek [109] and Shotorban [127].
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8.3.2 Lagrangian particle phase

Finite sized particles are modeled as singular points according to the point particle

model [28]. In the Lagrangian frame, the non-dimensional kinematic equation,

dXXX
dt

=VVV , (8.6)

governs the position vector of the particle, XXX . In gas-particle flows with high particle-

to-gas density ratios, low particle volume fractions, ρp = ρ∗p/ρ∗ > O(103), and small

particle Reynolds number and Mach number, the velocity vector VVV of an isolated non-

rotating spherical particle in a uniform flow is governed by Stokes’ law [28]

dVVV
dt

=
1
St
(
uuu(XXX , t)−VVV

)
. (8.7)

8.3.3 Eulerian particle phase

Following Pandya and Mashayek [109], Shotorban [127], and Shotorban et. al.

[128], we derive an Eulerian model for the particle phase from the Lagrangian model by

using the Liouville equation in combination with a method of moments.

The fine-grained phase-space density [109], W (xxx,vvv, t), defined by

W (xxx,vvv, t) = δ(xxx−XXX)δ(vvv−VVV ) , (8.8)

is the probability of finding a particle in phase-space near (xxx,vvv) at time t. More precisely,

W (xxx,vvv, t) is proportional to the fraction of particles in the ensemble having a phase-space

coordinate within the volume defined by xxx to xxx+dxxx and vvv to vvv+dvvv. The fine-grained
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phase-space density satisfies the Liouville equation,

∂W
∂t

+∇xxx · (vvvW )−∇vvv ·
[

1
St
(vvv−uuu)W

]
= 0 , (8.9)

where ∇xxx =
(

∂

∂xxx111
, ∂

∂xxx222

)
, ∇vvv =

(
∂

∂vvv111
, ∂

∂vvv222

)
and xxx and vvv are the phase-space vectors corre-

sponding to XXX and VVV , respectively. With a filter on the size of the smallest scale of the

fluid field, the fine-grained phase-space equation is coarse grained to

∂W̄
∂t

+∇xxx · (vvvW̄ )−∇vvv ·
[

1
St
(vvv−uuu)W̄

]
= 0 , (8.10)

where W̄ is the coarse grained density function [127]. Moments of the coarse grained

density function lead to the Eulerian number density, φ̃, and the velocity of the particle

phase, ũuu, given by

φ̃(xxx, t) =
∫

W̄ (xxx,vvv, t) dvvv , (8.11a)

ũuu(xxx, t) =
1

φ̃

∫
vvvW̄ dvvv , (8.11b)

respectively.

By taking zero and first moments of (8.10) for the two-dimensional case, govern-

ing equations for the number density and particle velocity are derived as

∂φ̃

∂t
+∇ · (φ̃ũuu) = 0 , (8.12a)

∂(φ̃ũuu)
∂t

+∇(φ̃ũuuuuu) =
1
St

φ̃(uuu− ũuu). (8.12b)

Here, the convective terms are included in the particle phase momentum governing

equation unlike in the study performed by Wen and Evans[156], where the convective

terms were neglected. The closure problem arises with the second order moment, ũuuuuu,
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that, taking ũ1 = ũ and ũ2 = w̃, is defined as

[̃uuuuuu]i j = ũiu j =
1

φ̃

∫
viv jW̄dvvv, (8.13)

for i = [1,2] and j = [1,2]. While a transport equation can be derived for the second

order moments [̃uuuuuu]i j by taking the second moment of 8.9, they give rise to a new closure

problem on the third order moments. Pandya and Mashayek [109] and Shotorban [127]

closed the problem by setting the third cumulants to zero, so that the third-order moments

can be expressed in terms of the lower-order moments.

Rather than closing on the third order moments, since we are interested in the

growth of small, linear pertubations in stability analysis and second order effects may be

assumed small, we will close the equation on the second order moments following the

same approach, i.e. by setting the second cumulants equal to zero,

∫
(vi− ũi)(v j− ũ j)W̄ dvvv∼= 0 ⇒ [ũuuuuu]i j ∼= ũiũ j . (8.14)

8.4 Linear stability analysis in non-uniformly laden

shear layers

8.4.1 Modified Rayleigh’s equation

To derive the Rayleigh equation for small disturbances, we follow the standard

linear stability analysis approach by dividing the instantaneous flow property state

q = {p,u, ũ,w, w̃, r̃} (8.15)
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into a base flow component, Q, described by the shear layer in Fig. 8.1, and a small

perturbation component, q′, such that

q = Q+q′ = Q+ q̂eiα(x−ct) . (8.16)

Here α and c are the wave number and phase speed of an infinitesimal perturbation.

Substituting into Eqs. (8.4) and (8.12) and collecting the first order terms, the system

of governing equations is algebraically reduced into a modified Rayleigh’s equation for

the transverse component of the gas perturbation velocity, ŵ. In the case of a piecewise

constant mass particle loading profile, R, as in Eq. (8.3), we find:

d2ŵ
dz2 =

[
α

2 +

d2U
dz2 +R d

dz(M
2 dU

dz )

U− c− iR(1−M)/αSt

]
ŵ , (8.17)

where the damping factor M describes the averaged frequency response of the particle

phase to fluctuations in gas velocity. It is defined by

M(z) =
1

1+ iαSt
(
U(z)− c

) . (8.18)

In the far-field the perturbation goes to zero, i.e.

lim
z→∓∞

ŵ→ 0 . (8.19)

Proper matching conditions are derived at the interface z = 0. A dynamic condition is

obtained by matching the pressures:

iα∆ p̂ = ∆

[(
(U− c)− i

αSt
R(1−M)

)
dŵ
dz
− dU

dz
(1+RM2)ŵ

]
= 0 , (8.20)

where the symbol ∆ represents the difference across the interface. Directly from (8.20), a
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kinematic condition is derived by observing that

iαp̂
(U− c− iR(1−M)/αSt)2 =

d
dz

[
ŵ

U− c− iR(1−M)/αSt

]
. (8.21)

Therefore, integrating across the interface, i.e. between z∓β, in the limit of β tending to

zero, another condition is found as

lim
β→0

∫
β

−β

iαp̂
(U− c− iR(1−M)/αSt)2 dz = ∆

[
ŵ

U− c− iR(1−M)/αSt

]
= 0 . (8.22)

For the temporal stability analysis conducted in this investigation, disturbances

grow in time but not in space and thus it follows that α is real while c is complex.

The imaginary part, ci, multiplied by the wavenumber α denotes the amplification

rate of the disturbance, ωi, while the real part, cr, represents its phase speed. Eq.

(8.17), together with Eqs. (8.19), (8.20) and (8.22), poses an eigenvalue problem of

a second order differential operator with c as the complex eigenvalue. The Rayleigh

equation for a particle-free mixing layer is obtained by setting R = 0 in Eq. (8.17). The

Rayleigh equation has real coefficients and hence any complex eigenvalues will appear in

complex conjugate pairs [123]. From Eq. (8.17), we conclude that for the more complex

case of particle-laden shear layers, the eigenvalues are no longer necessarily conjugate

pairs because the coefficients are, in general, complex. Within the (countable) set of

eigenvalues that can be computed, we are looking for eigenvalues, if any, with a positive

imaginary part representing the modes of an unstable disturbance growth rate. In stability

analysis of non-uniformly laden shear flows [61, 81, 17, 155], two unstable modes may

coexist for certain values of the wavenumber α; the principal (or first) mode is the one

which corresponds to the highest amplification rate ωi. As shown in Section 8.5 and first

pointed out by Wen and Evans [155], this is the case for a non-uniformly laden shear

layer laden with particles whose response time is much greater than the perturbation time
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scale.

8.4.2 Numerical solution of the eigenvalue problem

The eigenvalue problem in Eq. (8.17), together with Eqs. (8.19), (8.20) and

(8.22), is solved by means of a shooting technique. In far fields, the behavior of the

eigenfunctions doesn’t depend on the unknown phase speed c. Therefore, given an initial

estimate, c(0), for the eigenvalue c, the candidate solution is propagated in each domain

starting with the prescribed far field behavior. The shoot for c is adjusted to satisfy the

matching conditions from Eqs. (8.20) and (8.22) within the desired accuracy.

To solve the eigenvalue problem in the infinite domain z = (−∞,+∞), we first

truncate the domain at a sufficiently large distance zmax = 6z∗/δ∗ω from the interface

z = 0. Second, the two subdomains I1 = [−zmax,0] and I2 = [0,zmax] are mapped onto a

unity computational interval ξ ∈ [0,1] by affine mappings:

ξ =
z

zmax
+1, z ∈ [−zmax,0], ξ ∈ [0,1] ; (8.23a)

ξ = 1− z
zmax

, z ∈ [0,+zmax], ξ ∈ [0,1] . (8.23b)

In this way integrations are conducted from ξ = 0 to ξ = 1 in both subdomains I1,2.

A fourth order variable step size Runge-Kutta method (the MATLAB subroutine

ode45), with a relative tolerance of 10−9 and the absolute tolerance equal to 10−12 is

used for integration.

To determine the boundary conditions in the far field, we first note that in the

limit of large z, the velocity profile approaches the constant free stream velocities, U1,2.

Since the damping factor M depends on the velocity profile, U(z), it will in turn approach
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a constant value in the limit of large z and Eq. (8.17) thus simplifies to:

d2ŵ
dz2
∼= α

2ŵ, as z→∓∞ . (8.24)

By requiring that the velocity perturbations vanish in the far field, ŵ z→∓∞−−−−→ 0, the

asymptotic boundary conditions in the far-field are then given by

ŵ1
z→−∞−−−−→ σeαz, (8.25a)

ŵ2
z→+∞−−−−→ γe−αz, (8.25b)

where ŵ1,2 refers to the eigenfunction (i.e. solution of Eqs. (8.17), (8.19), (8.20) and

(8.22)) defined in subdomains I1,2, respectively, and σ and γ are undetermined multiplica-

tive factors, but linearly dependent through matching conditions (8.20) and (8.22).

Because we are interested in unstable flow perturbations, we concern ourselves

only with solutions to the eigenvalue problem in Eq. (8.17), c, with a positive imag-

inary part. For wave numbers with multiple unstable modes, the choice of the initial

estimate c(0) is key since it needs to be ”close” to the target in order for the algorithm

to successfully converge. Because of this sensitivity, a range of c(0) values must be

tested before determining the type of instability arising from the initial perturbation. The

candidate solutions, ŵ1,2(ξ,c(0)), are computed by integrating Eq. (8.17) from ξ = 0 to

ξ = 1 starting with the far field behaviors (8.25a) and (8.25b). Without loss of generality,

multiplicative factors σ and γ are set to unity.

At the interface between the subdomains I1 and I2, a matching condition is

applied. This matching condition is derived as follows. Because of the linearity of the
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spectral problem

ŵ1(ξ,c(0)) = σ

[
ŵ1(ξ,c(0))

]
σ=1

, (8.26a)

ŵ2(ξ,c(0)) = γ

[
ŵ2(ξ,c(0))

]
γ=1

, (8.26b)

and by imposing (8.20) and (8.22), the second order linear system

MC(ξ = 1,c(0))

 σ

γ

= 0 (8.27)

is obtained, where MC is the matching condition matrix.

Eq. (8.27) admits the solution σ = γ = 0, but non trivial solutions may exist if

c(0) is an eigenvalue of the spectral problem. This condition would zero the determinant

of the matching condition matrix:

F(c(0)) = det
[
MC(c(0))

]
ξ=1 . (8.28)

If F(c(0)) is not sufficiently close to zero (i.e. if the initial guess doesn’t approximate

the eigenvalue c within the desired accuracy), the shoot c(0) is adjusted using a Newton-

Krylov solver (described by Kelley [76]) and replaced by c(1). Starting at the far field with

the prescribed behavior, Eq. (8.17) is integrated again and the new candidate solutions

are computed:

ŵ1(ξ,c(1)) = σ

[
ŵ1(ξ,c(1))

]
σ=1

, (8.29a)

ŵ2(ξ,c(1)) = γ

[
ŵ2(ξ,c(1))

]
γ=1

, (8.29b)
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Figure 8.2: Maximum perturbation growth rates for an antisymmetric configuration,
ε = 0, of a two-phase shear layer with differing particle St. Figure (a) shows the

maximum growth rates for an increasing jump in particle concentration between the two
layers, λ, but fixed mean mass loading, R = 1, while in (b), a fixed λ = 0.5 but variable
R is studied. The unladen case is shown as a reference in each of the figures as well.

together with

F(c(1)) = det
[
MC(c(1))

]
ξ=1 . (8.30)

The procedure stops at the nth iteration, when:

F(c(n))−F(c)︸︷︷︸
=0

= F(c(n))≤ 10−9. (8.31)

8.5 Disturbance Growth Rates from Stability Analysis

8.5.1 Antisymmetric mixing layer

In an antisymmetric mixing layer, ε = 0, both the fluid velocity direction and the

particle mass loading ratio are reflected across the z = 0 axis. Consistently with previous

linear stability analysis of uniformly loaded shear layers [118, 144, 142], we show that

the shear layer’s instability, eventually characterized by the maximum value over the

different wavenumbers, α, of the amplification rate, ωi = αci , depends strongly on the
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Figure 8.3: Dispersion relations for a fixed mass loading, R = 1, alongside a reference
unladen case where R = 0 with variable jump in particle concentration between the
shear layers (a) λ = 0.0 (b) λ = 0.5 (c) λ = 1.0. The second mode is shown in red.

inertial properties of the particles.

For an increasing jump in the particle concentration, 0≤ λ≤ 1, between the two

layers, particles with St < 1 may destabilize the fluid flow as compared to the unladen

flow configuration. The destabilizing effects are highest for λ∼= 0.5 as can be seen in 8.2a.

For this value of λ, with increasing mean mass loading R (see 8.2b), the destabilizing

effect of the low St laden configuration is reduced for R > 1. While the strength of the

stabilization depends on the value of the offset parameter, λ, intermediate St (1 < St <

10) particles have a stabilizing effect for all λ.

As is evident in our results for λ=0 in 8.2a, we confirm Thevand and Daniel’s
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[142] conclusion that the addition of particles is always stabilizing for a uniformly laden

inviscid, nearly incompressible shear layer. The destabilizing effect, hence, is clearly

induced by the jump in the particle mass loading at the interface (λ > 0) contrary to the

findings of Wen and Evans [156].

For a bulk mass loading R = 1, the dispersion relation in 8.3a for a uniformally

laden (λ = 0) shear layer shows that there are no unstable modes for α≥ 2. However,

in the case of discontinuous mass loading, the instability in the first mode is extended

for greater streamwise wavenumbers, see 8.3b and 8.3c. As first pointed out by Wen

and Evans [155], for the case of a piecewise linear velocity profile laden with stationary

particles (not responding to fluid oscillations), a second weaker unstable mode arises for

”sufficiently” high St, depending on the value of the differential parameter λ. In particular,

with λ increasing, the second mode appears at lower St, while the most unstable wave

numbers are shifted to modes with higher frequency, α.

The two unstable modes can be characterized by looking at their phase speeds,

qualitatively similar to those found by Wen and Evans [155]. In summary, while Kelvin-

Helmholtz modes are standing waves, the first and second unstable modes computed here

travel in opposite directions. The first mode, usually the dominant one, is defined as a

dispersive wave traveling in the negative direction. In the long wave range, the phase

speed of the first mode grows in magnitude for smaller St. The second mode resembles

the Holmboe instability in density-stratified mixing layer flow. It only exists in non-

uniformly laden flows, where the density between layers differs because of the particle

loading. The second mode is only unstable when the Stokes number is sufficiently high

and only in the long and medium wave range. It becomes stable for a high wavenumber

(short wave range), approaching the value computed for the particle-free mixing layer.
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8.5.2 Effect of ε

To further investigate if a jump in the particle mass loading may induce a destabi-

lizing effect on the temporal development of the mixing layer, we analyze the impact of

moving the fluid shear layer interface in the z-direction. 8.4 shows the dispersion relations

for the case of an asymmetric loading configuration, with a shift in the z-direction of

ε =±0.25.

For the case of ε < 0, the majority of the boundary layer resides in the region of

higher mass loading, R1 > 1, causing the flow to be more stable at higher wave numbers

independent of St. A comparison of Figs. 8.3b, 8.4a for λ = 0.5 and Figs. 8.3c, 8.4b for

λ = 1.0 shows that the maximum growth rate is slightly higher and occurs at a lower wave

number for the ε =−0.25 case as well. In particular, for the first mode, the imaginary

part of the phase speed, ci, is negative (and hence stable) at lower wave numbers, α, for

St<1. The second mode is damped with ε < 0. As can be seen by the red lines (or lack

thereof) in 8.4a and 8.4b, the second mode does not grow for the case of λ = 0.5 for any

St up to and including 50 but for λ = 1.0 , a weak, second mode does appear at low wave

numbers.

A comparison of Figs. 8.3b, 8.4c for λ = 0.5 and Figs. 8.3c, 8.4d for λ = 1.0

shows that a shear layer with an asymmetry of ε = 0.25 stabilizes the maximum growth

rate of the flow perturbations. In the case of a positive ε, most of the boundary layer

resides in the region of lowest particle mass loading. The maximum eigenvalue locations

shift towards higher wave numbers, α, with increasing ε, hence the asymptotic growth

rate in the short wave range (large α) is strongly enhanced. With positive asymmetry,

the second mode becomes more predominant. In fact, the second mode is the dominant

mode for St=50. Since the maximum eigenvalue of the second mode occurs at a smaller

α, a longer wave type instability characterizes the linear growth when the second mode

dominates the first one.
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Figure 8.4: The dispersion relations for (a) λ = 0.5 and ε =−0.25, (b) λ = 1.0 and
ε =−0.25, (c) λ = 0.5 and ε = 0.25 and (d) λ = 1.0 and ε = 0.25 with varying St and

an average mass loading, R = 1, for the first modes are shown in black. Dispersion
relations for the second modes are represented in red.
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8.5.3 Stability and energy transfer between phases

To elucidate the underlying physical mechanisms in the increased instability

induced by fast-responding particles, we analyze the energy transfer between the carrier

and dispersed phases. Because of viscous drag between the two phases, the amount of

energy leaving the fluid phase does not equal the energy transferred to the particle phase.

The energy transfer budget, firstly introduced by Tong and Wang [144], has never been

applied before to a case with non-uniformly laden particle mass loading. The interphase

energy transfer budget consists of three components: the energy rate transferred to the

particle phase, the energy rate departing from the continuous phase and the viscous

dissipation rate induced by the presence of the particles (Stokes drag).

Because of relative motion between the phases, energy is transferred from one

phase to the other. First, the energy rate (per unit volume) transferred to the particle

phase, P∗, is determined by

P∗(x,z) =
ρ∗(∆U∗)3

δ∗w

1
St

r̃(uuu− ũuu) · ũuu︸ ︷︷ ︸
P(x,z)

, (8.32)

where ρ∗, ∆U∗, δ∗w are the dimensional reference quantities. In this analysis, the volume

is computed by considering a unit reference length in the transversal y-direction (i.e.

y∗ = δ∗w). The non-dimensional energy rate (per unit volume), P, is defined as the product

between the momentum transferred from the gas to the particle phase (see also 8.5) and

the Eulerian particle phase velocity.

Analogously, the energy rate (per unit volume) departing from the continuous

phase, Q∗, can be defined as

Q∗(x,z) =
ρ∗(∆U∗)3

δ∗w

1
St

r̃(uuu− ũuu) ·uuu︸ ︷︷ ︸
Q(x,z)

, (8.33)



154

Figure 8.5: Streamwise average of energy-related terms with a discontinuous mass
loading, λ = 0.5, St=1, α=1 and R=1.

Both Q and P can be either positive or negative, since they depend on the inertial response

of both the fluid and the particles.

Finally, because of viscous drag forces, particles dissipate energy from the carrier

phase (and vice versa). The local dissipation rate (per unit volume), εp, represents the

difference between Q and P:

εp = Q−P =
1
St

r̃(uuu− ũuu)2 . (8.34)

To determine if the particle phase is stabilizing or destablizing the flow with

respect to the single phase case, we consider the bulk energy-related budgets [144].

Starting from the definitions above, the bulk energy-related budgets
〈
P
〉
,
〈
Q
〉
,
〈
εp
〉

are

computed by first taking a streamwise average over one wavelength (indicated by the
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overbar):

P(z) =
α

2π

∫ 2π/α

0
P(x,z)dx, (8.35a)

Q(z) =
α

2π

∫ 2π/α

0
Q(x,z)dx, (8.35b)

εp(z) =
α

2π

∫ 2π/α

0
εp(x,z)dx, (8.35c)

and then integrating over z (indicated by angle brackets):

〈
P
〉
=

∫ +∞

−∞

P(z)dz∼=
∫ +zmax

−zmax

P(z)dz, (8.36a)〈
Q
〉
=

∫ +∞

−∞

Q(z)dz∼=
∫ +zmax

−zmax

Q(z)dz, (8.36b)〈
εp
〉
=

∫ +∞

−∞

εp(z)dz∼=
∫ +zmax

−zmax

εp(z)dz. (8.36c)

Whether the flow is more stable or not relative to the single phase case depends

on the sign of
〈
Q
〉
, that is zero in the case of single phase flow. For a negative

〈
Q
〉
, a

net energy is globally transferred from the particle phase to the carrier phase and the

work exerted by the particles on the carrier phase is larger than the dissipation rate itself.

Particles then destabilize the flow.

The bulk energy-related budgets are computed within the framework of the linear

instability. In particular, referring to (8.16) for the decomposition of the flow property

state into a basic component and a perturbation component (indicated by the apostrophe),

the streamwise averaging of energies leads to:

P(z) =
1
St

(
Rũuu′′′ · (uuu′− ũuu′)+Ur̃′(u′x− ũx

′)

)
, (8.37a)

Q(z) =
1
St

(
Ruuu′′′ · (uuu′− ũuu′)+Ur̃′(u′x− ũx

′)

)
, (8.37b)

εp(z) =
R
St
(
uuu′− ũuu′

)2
. (8.37c)
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Figure 8.6: Bulk energy-related budget as a function of St (α = 1, R = 1) for (a)
λ = 0.0 and (b) λ = 0.5.

In 8.5 the streamwise averaged energy contributions are plotted versus the cross

stream direction, z, for a representative particle-laden, non-uniformly laden shear flow

with R = 1, α = 1, St= 1, λ = 0.5 and ε=0. P and Q are negative near the center of the

mixing layer. At that location, kinetic energy is transferred from the particle phase to

the carrier phase. Away from the interface, the signs on P and Q are positive and energy

flows from the fluid to the particle phase.

The bulk energy budgets versus St plotted in 8.6a, for a uniform mass loading, and

8.6b, for a discontinuous mass loading, show a transition from a consistently stabilizing

energy transfer with uniform loading to a net destabilizing energy transfer for small

values of St when the mass loading is discontinuous. With increasing St in 8.6b, a

significantly increasing (always positive) viscous dissipation changes the sign of
〈
Q
〉

and yields a more stable flow with respect the single phase configuration at intermediate

and large St. The transition from a destabilizing to a stabilizing effect from the particles

occurs at approximately St ∼=0.2 for a mixing layer with R̄=1 and λ=0.5. Note further

that for St between 1 and 10, the dissipation rate and the rate of work departing from the

continuous phase have a peak, in agreement with the fact that the maximum stabilizing

effect is obtained for this range of St.
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8.6 Eulerian-Lagrangian Validation

8.6.1 Eulerian-Lagrangian model

To assess the validity of the theoretical results from the linear stability analysis,

based on a lower-order stochastic Eulerian particle model, we compute the disturbance

growth rate of the mixing layer with differential loading using an extensively tested and

validated fully non-linear, high-order resolution, EL model described by Jacobs and

Don [68]. This EL model is based on closure point particles, which are traced in the

Lagrangian frame, while the compressible Euler equations are solved with a higher-order

resolution weighted essentially non-oscillatory (WENO) finite difference scheme [18]

in an Eulerian frame. The source term on the right-hand side of the Euler equations,

modeling the drag force from the individual computational particles, is defined as

SSS =
Nc

∑
i=1

KWm . (8.38)

In (8.38), K is a normalized weighing function, which distributes the influence of each

computational particle onto the carrier flow using a high-order smooth spline deposition

function and Wm is a function that describes the momentum of each particle. A high-

order essentially non-oscillatory (ENO) algorithm interpolates the carrier phase velocity

and temperature onto the Lagrangian particle locations so the particle phase momentum

and energy equations can be solved directly. These methods are shown to preserve high-

order resolution[68] and hence capture small-scale flow structures that lead to the growth

of the instabilities in the shear layer with low dissipation and dispersion errors. This

numerical scheme ensures a high-fidelity resolution of this validation computation with

two-way coupling between the particle and fluid phases. For a detailed derivation and

validation of the Eulerian-Lagrangian model used in the computations, see for example
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Jacobs and Don [68], Jacobs et. al.[66] and Davis et. al. [33].

8.6.2 Flow initializations

We compute four cases that are summarized in Table 8.1 to verify the theoretical

results including an unladen case and the three most unstable modes for discontinuously

laden cases (St=0.01, 0.1 and 1). The carrier and particle flow velocities are initialized

with the hyperbolic-tangent streamwise velocity profile defined in (8.1), perturbed with

the real part of the eigenfunctions obtained from the linear stability analysis,

u(x,z, t0) =U(z)+Θℜ
{

û(z)eiα(x−ct0)
}︸ ︷︷ ︸

u′

, (8.39)

w(x,z, t0) = Θℜ
{

ŵ(z)eiα(x−ct0)
}︸ ︷︷ ︸

w′

. (8.40)

Here, t0 is an arbitrary initial time that we set to t0=5, i.e. the instant at which the

computation starts. The small coefficient Θ = |∆U |/2×10−3 ensures linear growth of

the perturbation. For one wavelength (2π/α), the contour plot for the z-directed flow

velocity w = w′(x,z, t0) at time t = t0 is shown in 8.7a and 8.7b for particles of St=0.1

and St=1, respectively. The contour plot for the case of St=0.01 is indistinguishable from

8.7a and is therefore not shown.

Since our EL method solves the compressible Euler equations and we have per-

formed an incompressible stability analysis, we set a low free-stream Mach number, Ma∞,

equal to 0.15, which minimizes density variations. While a lower Mach number would

be more preferable, the Euler solver becomes excessively computationally demanding

because of restrictions on the stable, explicit time step.

The characteristic fluid Reynolds number, Re, has been set to 1.80×106 in order

to compute the particle drag. It is not used in the inviscid fluid governing equations[68].
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Table 8.1: Initialization parameter settings depending on the value of St.

St
diameter (D) Np α Lx Lz grid pts Nc S f R(√

18St
ρpRe

)
(4π/α) (NxxNz) (Np/Nc)

(
πNpρpD3

6ρV

)
unladen - - 0.9 13.96 12 465x400 - - -

0.01 1.00E-05 8.00E+13 1.4 8.98 12 299x400 1.91E+06 4.18E+07 0.39
0.1 3.16E-05 6.50E+12 1.4 8.98 12 299x400 1.91E+06 3.39E+06 1.00
1 1.00E-04 2.88E+11 1.0 12.57 12 419x400 2.68E+06 1.07E+05 1.00

Given the (non-dimensional) density of the particle, ρp = 103, and particle’s St, the

particle diameter, D, is computed and reported in Table 8.1.

The 2D computational domain spans from z=−6 to z= 6, so that the perturbation

at the z-boundaries is negligible, which has been tested with a domain convergence

study. The size of the domain in the x-direction, Lx, fits two waves (4π/α, the domain

represented in 8.7a has been truncated to show only one wave), with the wavenumber

of the most unstable modes, α, in Tab. 8.1. The boundary conditions are periodic in

x, while free-stream flow conditions are specified on the z-boundaries. Computations

are performed on a structured grid with uniform and equal grid spacing in the x- and

z-direction. A fifth-order WENO scheme approximates the spatial derivatives and a

third order total variation diminishing (TVD) Runge-Kutta scheme advances the solver

temporally. We have performed resolution studies and find that with Nz = 400 grid points

in the z-direction, the solution is more than sufficiently resolved. The number of grid

points in the x-direction varies with Lx from case to case in order to ensure square cells.

The particles are initially uniformly spaced in the computational domain and

are initialized with the fluid velocity. The number of particles is fixed for a given mass

loading, R, and vice versa, see Table 8.1, where V = 1×Lx×Lz is the volume. For

St=0.1 and St=1, R = 1.0 is imposed and Np is consequently obtained, whereas when

St=0.01 it was preferred to lower R to 0.39 (i.e. a volume fraction of 0.00039) to reduce

the computational costs.

However, since the number of physical particles is by far too large to fully resolve
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(a) St=0.1 (b) St=1

Figure 8.7: Level curves of the initial z-directed flow perturbation velocity w = w′

defined in Eq. (8.40) for different values of the Stokes number, see Tab. 8.1. The
figures are magnified to focus on one wave in the domain.

with limited computational resources, we consider a reduced number of computational

particles, Nc, in our Eulerian-Lagrangian simulations [68] so that each computational

particle represents a cloud of physical particles. The ratio of the number of computational

particles to the number of physical particles, S f = Np/Nc, is tabulated in Table 8.1. The

discontinuity in the mass loading is specified by weighting the ratio, S f , above and below

the bulk mass loading interface as follows:

S f j =


S f (1−λ), if Z j(t0)≥ 0 ,

S f (1+λ), if Z j(t0)< 0 ,
(8.41)

with the particle counter j = 1,2, . . . ,Nc and Z j is the location of the particle in the

z-direction. To ensure a statistically meaningful description of the two phase coupling

source terms, sixteen computational particles are initially uniformly located in every fluid

grid cell. The boundary conditions are periodic in x-direction for each particle, while

particles leave the domain freely in the z-direction.
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Figure 8.8: Time evolution of integrated disturbance fluid kinetic energies, Kd , for
different values of St. Marks correspond to results obtained from the simulation, while

continuous lines refer to the exponential fitting.

8.6.3 Growth rate computations from numerical experiments

To validate the results from the linear stability analysis, we compare growth rates

of the initial perturbation in the EL simulation with the growth rates determined from the

stability analysis. As a measure of the magnitude of the perturbation at a given time, we

integrate the disturbance kinetic energy of the fluid phase over the computational domain

Kd =
1
2

∫
D

ρ

(
(u−U)2︸ ︷︷ ︸

=u′2

+ w2︸︷︷︸
=w′2

)
dxdz . (8.42)

Disturbance kinetic energy transient plots for the case of particle-free and non-

uniformly laden (St=0.01, 0.1, 1) mixing layer are reported in 8.8. The destabilizing

effect induced by quick-responding particles is significant. In particular, the growth rate

is computed as

ωi =
1
2

d
dt

ln(Kd) (8.43)

from an exponential fit to the integrated disturbance kinetic energy, Kd , versus time, t.
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Table 8.2: Comparison of growth rates obtained using the Eulerian-Lagrangin (EL)
method to those obtained from linear stability analysis (LSA).

St
Growth Rate Difference
EL LSA %

unladen 0.1789 0.1897 -5.7
0.01 0.2026 0.2040 -0.7
0.1 0.1896 0.2021 -6.1
1 0.1379 0.1474 -6.4

In Table 8.2, a comparison of the growth rates obtained from the EL methods and

the linear stability analysis (LSA) shows that the EL computations and LSA predict the

same trends and are in very good agreement. The slightly smaller growth rates of the EL

computations as compared to the LSA growth rates are attributed to small compressibility

effects that reduce the disturbance growth.

The EL computations confirm that the growth rate of the mixing layer is strongly

dependent on the Stokes number of the particle phase. In the EL computations, the

growth rate of the mixing layer laden with particles with small St is larger than for an

unladen shear layer. Hence, like in the LSA analysis, the EL computations confirm that

particles with small St have a destabilizing effect as compared to the unladen flow.

8.7 Conclusions

For the first time, we have shown that a non-uniformly laden particle mass loading

may trigger a destabilizing effect on the mixing layer development of particle-laden shear

layers as compared to the pure-gas flow configuration. This destabilization occurs when

the gas is laden with small-inertia particles (St < 0.2).

The application of the interface energy transfer budget [144] to the case of small-

inertia particles shows a net energy rate flowing globally from the particulate phase to

the gas phase. This energy transfer explains why the destabilization effect is seen with
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low St particles. For intermediate particle’s St (1<St<10), maximum stabilizing effect is

computed, while at larger St two unstable modes may coexist.

Furthermore, the growth rate computations from the linear stability analysis are

verified numerically through simulations based on a fully non-linear Eulerian-Lagrangian

(EL) model [68]. The growth rates found in numerical experiments using the EL method

are in good agreement with growth rates from the linear stability analysis. In particular,

the destabilizing effect induced by the presence of particles with low St is validated by

the EL computations.

Previous attempts to tackle the linear stability problem of a non-uniformly laden

particle-laden shear layer [155, 156] suffered from the omission of the convective terms

in the momentum equation for the particle phase and didn’t preserve consistency with

several studies on uniformly laden shear flows [118, 144, 142]. The stochastic Eulerian-

Eulerian (EE) model proposed here, obtained from a combination of the Liouville theorem

applied to the system of dynamical particle equations and a method of moments [109,

127], does include the convective terms. In particular, zeroing the second order cumulant

of the second velocity moments not only preserves consistency, but also allows for the

computation of results in good agreement with full-scale EL simulations.

Sections 8.1 to 8.7, in full, are a reprint of the material as it appears in The Effect

of Non-Uniform Mass Loading on the Linear, Temporal Development of Particle-Laden

Shear Layers. Senatore, Giacomo; Davis, Sean; Jacobs, Gustaaf AIP Publishing, 2015.

The dissertation/thesis author was a primary investigator and author of this material.



Chapter 9

Conclusions

Numerical methods and modeling tools have been developed to enable the im-

proved study of high-speed particle-laden flows and related instabilities. A high-order

Weighted Essentially Non-Oscillatory (WENO) Eulerian Lagrangian (EL) method is

implemented. A multi-scale framework for the closure of the macro-scale modeling of

averaged particle cloud dynamics and drag forcing with micro-scale statistics has been

introduced. Normal, wake and shear instabilities are studied.

9.1 Numerical Methods/Modeling

EL Solver: A parallel Lagrangian particle tracking algorithm is two-way coupled

with a high-fidelity WENO-Z scheme to solve shocked particle-laden flows. A high-

order Essentially Non-Oscillatory (ENO) interpolation ensures a stable interpolation

of the fluid velocity and temperature to the particle locations. An ENO sub stencil

determined using the method of lines can be unstable if the shock is misaligned with the

tensor grid in multiple dimensions. The sub stencil resulting from a summation of the

divided differences within an area around the particle’s host cell removes these numerical

instabilities.

164
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Sub Scale Modeling: Sub-scale particle dynamics are modeled to a single com-

putational particle by a method of averaging. The so-called Subgrid Particle Averaged

Reynolds Stress Equivalent (SPARSE) model can reduce the number of computational

particles by a factor on the order of 103. The dispersion of a cloud of 27,000 physical

particles in 3D isotropic turbulence is modeled using a single computational particle with

both the current state-of-the-art method and the SPARSE model. Near zero errors in the

computation of the particle velocity are found using the SPARSE model while the first

order model produced errors on the order of 10%.

Multi-Scale Closure: Metamodeling techniques that build closure models from

micro-scale statistics for macro-scale computations, are compared. Because mesoscale

experiments are computationally expensive, the number of support points must be mini-

mized. For the low number of inputs desired, a dynamic kriging method builds the most

accurate representation of the data needed to close the particle drag and SPARSE models.

9.2 Instabilities

Normal Instabilities: The formation of numerical oscillations on grid-aligned,

strong shocks, called carbuncles, is presented for the first time in a particle-laden flow.

The effects of the alternating high and low velocity regions behind the carbuncle, which

bleed downstream, cause an instability in the particle phase. The particle phase instability

manifests as a spike of particles protruding upstream of an otherwise well-defined leading

edge. The strong two-way coupling of the particle and fluid phases amplifies the effects

of the carbuncle, causing an instability in the density gradient of the fluid just downstream

of the particle instability. By increasing the power parameter in the non-linear WENO-Z

weighting, the formation and downstream effects of the carbuncle instabilities can be

mitigated. Increasing the WENO-Z power parameter adds dissipation to areas of the flow
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containing steep gradients while not effecting the high order accuracy of the scheme in

smoother regions of the flow.

Wake Instabilities: A study on the effect of initial shape, aspect ratio and

rotation of a cloud of particles on the particle dispersion and flow development behind a

moving shock is conducted. Changing the initial shape of even a low volume fraction

(4% in this study) particle cloud changes the particle-laden flow dynamics. For initially

aerodynamically shaped clouds, such as a triangle, the flow remains attached along the

sides and the particle cloud is compressed towards the symmetry line. Because the cloud

is compressed rather than dispersing individual particles into the flow, the overall Stokes

number of the cloud is increased resulting in a reduction of the downstream convection

as compared to more blunt shapes. In the case of initially blunter rectangular and circular

shaped clouds, particles separate along strong shear layers. The particles entrained in

the fluid shear layers form arms, shielding the downstream portion of the particle cloud.

Because of the streamwise particle dispersion, the averaged particle cloud accelerates

more quickly than the aerodynamically shaped cloud.

Shear Instabilities: To better understand the growth rate in the shear layers

formed by the interaction of a high-speed flow and a particle cloud, a fundamental

analysis of the linear growth rate of particle-laden shear layers was conducted. The

growth rates computed with a linear stability analysis of a non-uniformly particle-laden

shear layer compare well with growth rates found in numerical experiments with the EL

method. Non-uniform mass loading of small inertia particles (St < 0.2) creates a net

energy transfer from the particle phase to the carrier phase, causing a destabilization of

the flow. For intermediate particle response times (1<St<10), a maximum stabilizing

effect is computed. At large St, two unstable modes may coexist and the addition of

particles always stabilizes the flow.
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9.3 Future Work

Extension of this work should be directed at numerical improvement, fundamental

physical understanding and physical application. Micro-scale DNS results of shock-

particle-turbulence interaction is needed to produce the relevant statistics for closure in

both the SPARSE and the particle drag modeling of the macro-scale EL code. Models

for particle-particle collisions should be implemented for the study of larger volume

fraction flows. The linear stability analysis of particle-laden shear layers should be further

extended to include compressibility effects and higher order moments. The addition of

methods to resolve evaporation and reaction in the flow would provide more detailed

results on the dispersion of fuel in scramjet combustors.
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